Picoampere Input Current Quad
Bipolar Op Amp
AD704
OUTPUT 1
1
+IN 3
AD704
+VS 4
TOP VIEW
+IN 5
–IN 6
2
3
OUTPUT 7
14
OUTPUT
+IN 3
13
–IN
+VS 4
12
+IN
+IN 5
11
–VS
–IN 6
10
+IN
OUTPUT 7
9
–IN
8
OUTPUT
(Not to Scale)
–IN1
OUT1
NC
OUT4
–IN4
2
1
20
19
1
4
NC 5
AD704
+VS 6
TOP VIEW
(Not to Scale)
9
10
11
12
NC
OUT3
3
13
–IN3
2
+IN2 8
13 –VS
TOP VIEW
12 +IN
2
11 –IN
3
10 OUTPUT
NC = NO CONNECT
NC 7
The AD704 is a quad, low power bipolar op amp that has the
low input bias current of a BiFET amplifier and offers a significantly lower IB drift over temperature. It uses superbeta bipolar
input transistors to achieve picoampere input bias current levels
(similar to FET input amplifiers at room temperature), while its
IB typically increases only by 5× at 125°C (unlike a BiFET amp,
for which IB doubles every 10°C, resulting in a 1000× increase at
125°C). In addition, the AD704 achieves 150 μV offset voltage and
the low noise characteristics of a precision bipolar input op amp.
14 +IN
AD704
Figure 2. 16-Lead SOIC (R) Package
3
+IN1 4
15 –IN
4
NC 8 (Not to Scale) 9 NC
Figure 1. 14-Lead Plastic DIP (N)
GENERAL DESCRIPTION
18
+IN4
17
NC
16
–VS
15
NC
14
+IN3
NC = NO CONNECT
Figure 3. 20-Terminal LCC
(E-20-1) Package
100
TYPICAL IB (nA)
10
TYPICAL JFET AMP
1
0.1
AD704
0.01
–55
25
TEMPERATURE (°C)
125
00818-004
The AD704 is an excellent choice for use in low frequency active
filters in 12- and 14-bit data acquisition systems, in precision
instrumentation, and as a high quality integrator. The AD704 is
internally compensated for unity gain stability. The AD704J is
rated over the commercial temperature range of 0°C to 70°C.
The AD704A is rated over the industrial temperature of −40°C
to +85°C. The AD704S is rated over the military temperature
range of −55°C to +125°C, processed to MIL-STD-883B.
4
1
00818-003
–IN 2
00818-001
OUTPUT 1
Industrial/process controls
Weigh scales
ECG/EKG instrumentation
Low frequency active filters
Because it has only 1/20 the input bias current of an OP07, the
AD704 does not require the commonly used balancing resistor.
Furthermore, the current noise is 1/5 that of the OP07, which
makes the AD704 usable with much higher source impedances.
At 1/6 the supply current (per amplifier) of the OP07, the
AD704 is better suited for today’s higher density circuit boards
and battery-powered applications.
16 OUTPUT
–IN 2
–IN2
APPLICATIONS
CONNECTION DIAGRAMS
OUT2
High dc precision
150 µV maximum offset voltage
1.5 µV/°C maximum offset voltage drift
270 pA maximum input bias current
0.3 pA/°C typical IB drift
Low noise: 0.5 µV p-p
Typical noise: 0.1 Hz to 10 Hz
Low power: 600 µA maximum supply current per amplifier
Dual version: AD706
Figure 4. Input Bias Current Over Temperature
Table 1. Low IB @ 125°C
Model
Single
Dual
Quad
30V
N/A
AD706
AD704
16V
AD8663
AD8667
AD8669
1.3 to 5V
AD8603
AD8607
AD8609
Next Generation
N/A
AD8622
AD8624
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2001-2010 Analog Devices, Inc. All rights reserved.
00818-002
FEATURES
AD704
TABLE OF CONTENTS
Features .............................................................................................. 1
Absolute Maximum Ratings ............................................................5
Applications ....................................................................................... 1
ESD Caution...................................................................................5
General Description ......................................................................... 1
Typical Performance Characteristics ..............................................6
Connection Diagrams ...................................................................... 1
Theory of Operation ...................................................................... 11
Revision History ............................................................................... 2
Outline Dimensions ....................................................................... 13
Specifications..................................................................................... 3
Ordering Guide .......................................................................... 14
REVISION HISTORY
1/10—Rev. D to Rev. E
Updated Format .................................................................. Universal
Changes to Features and General Description Section,
Added Table 1, Renumbered Sequentially .................................... 1
Changes to Table 2 ............................................................................ 3
Changes to Table 3 ............................................................................ 5
Updated Outline Dimensions ....................................................... 13
Changes to Ordering Guide .......................................................... 14
12/09—Rev. C to Rev. D
Updated Outline Dimensions ....................................................... 10
Changes to Ordering Guide .......................................................... 10
11/01—Rev. B to Rev. C
Edits to Features ................................................................................ 1
Edits to Product Description .......................................................... 1
Edits to Absolute Maximum Ratings ............................................. 3
Deleted Metalization Photograph .................................................. 3
Edits to Ordering Guide .................................................................. 4
Rev. E | Page 2 of 16
AD704
SPECIFICATIONS
TA = 25°C, VCM = 0 V, and VS =±15 V dc, unless otherwise noted.
Table 2.
Parameters
INPUT OFFSET VOLTAGE
Initial Offset
Offset
vs. Temp, Average TC
vs. Supply (PSRR)
TMIN − TMAX
Long-Term Stability
INPUT BIAS CURRENT 1
vs. Temp, Average TC
TMIN − TMAX
INPUT OFFSET CURRENT
vs. Temp, Average TC
TMIN − TMAX
Conditions
Min
TMIN − TMAX
VS = ±2 V to ±18 V
VS = ±2.5 V to ±18 V
100
100
VCM = 0 V
VCM = ±13.5 V
AD704J/A
Typ
50
100
0.2
132
126
0.3
100
VCM = 0 V
VCM = ±13.5 V
80
0.6
100
100
VCM = 0 V
VCM = ±13.5 V
TMIN − TMAX
Common-Mode Rejection3
TMIN − TMAX
Power Supply Rejection4
INPUT VOLTAGE NOISE
μV
μV
μV/°C
dB
dB
μV/month
pA
pA
pA/°C
pA
pA
270
300
TMIN − TMAX
f = 10 Hz
RLOAD = 2 kΩ
Rev. E | Page 3 of 16
300
400
94
94
94
94
G = −1
TMIN − TMAX
VCM = ±13.5 V
TMIN − TMAX
0.1 Hz to 10 Hz
f = 10 Hz
0.1 Hz to 10 Hz
f = 10 Hz
f = 1 kHz
250
300
250
400
500
600
Input Bias Current2
INPUT CURRENT NOISE
150
250
1.5
300
400
TMIN − TMAX
FREQUENCY RESPONSE UNITY GAIN
Crossover Frequency
Slew Rate, Unity Gain
Slew Rate
INPUT IMPEDANCE
Differential
Common-Mode
INPUT VOLTAGE RANGE
Common-Mode Voltage
Common-Mode Rejection Ratio
Unit
0.3
VCM = 0 V
VCM = ±13.5 V
MATCHING CHARACTERISTICS
Offset Voltage
Crosstalk5
Max
±13.5
100
98
pA
pA
pA/°C
pA
pA
μV
μV
pA
pA
dB
dB
dB
dB
150
dB
0.8
0.15
0.1
MHz
V/μs
V/μs
40||2
300||2
MΩ||pF
GΩ||pF
±14
132
128
3
50
0.5
17
15
V
dB
dB
pA p-p
fA/√Hz
μV p-p
nV/√Hz
nV/√Hz
22
AD704
Parameters
OPEN-LOOP GAIN
OUTPUT CHARACTERISTICS
Voltage Swing
Current
CAPACITIVE LOAD
Drive Capability
POWER SUPPLY
Rated Performance
Operating Range
Quiescent Current
TRANSISTOR COUNT
Conditions
VO = ±12 V
RLOAD = 10 kΩ
TMIN − TMAX
VO = ±10 V
RLOAD = 2 kΩ
TMIN − TMAX
RLOAD = 10 kΩ
TMIN − TMAX
Short circuit
Min
AD704J/A
Typ
200
150
2000
1500
V/mV
V/mV
200
150
1000
1000
V/mV
V/mV
±13
±14
±15
mA
10,000
pF
Max
V
Gain = 1
±15
±2.0
TMIN − TMAX
Number of transistors
Bias current specifications are guaranteed maximum at either input.
Input bias current match is the maximum difference between corresponding inputs of all four amplifiers.
3
CMRR match is the difference of ΔVOS/ΔVCM between any two amplifiers, expressed in dB.
4
PSRR match is the difference between ΔVOS/ΔVSUPPLY for any two amplifiers, expressed in dB.
5
See Figure 5 for test circuit.
1
2
Rev. E | Page 4 of 16
Unit
1.5
1.6
180
±18
2.4
2.6
V
V
mA
mA
AD704
ABSOLUTE MAXIMUM RATINGS
Table 3.
–80
Rating
±18 V
AMP4
AMP2
–100
0°C to 70°C
−40°C to +85°C
300°C
–160
10
Specification is for the device in free air:
14-lead plastic package: θJA = 150°C/W.
16-lead SOIC package: θJA = 100°C/W.
20-terminal LCC package: θJA = 150°C/W.
2
The input pins of this amplifier are protected by back-to-back diodes. If the
differential voltage exceeds ±0.7 volts, external series protection resistors
should be added to limit the input current to less than 25 mA.
ESD CAUTION
9kΩ
+VS
OUTPUT
1µF
0.1µF
1µF
AD704
PIN 4
COM
AD704
2.5kΩ
INPUT SIGNAL1
0.1µF
–VS
1kΩ
AD704
PIN 11
NOTES
1. ALL FOUR AMPLIFIERS ARE CONNECTED AS SHOWN.
00818-005
1THE SIGNAL INPUT (SUCH THAT THE AMPLIFIER’S OUTPUT IS AT MAXIMUM
AMPLITUDE WITHOUT CLIPPING OR SLEW LIMITING) IS APPLIED TO ONE
AMPLIFIER AT A TIME. THE OUTPUTS OF THE OTHER THREE AMPLIFIERS ARE
THEN MEASURED FOR CROSSTALK.
100
1k
FREQUENCY (Hz)
10k
Figure 6. Crosstalk vs. Frequency
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
1/4
–120
–140
1
1kΩ
AMP3
Figure 5. Crosstalk Test Circuit
Rev. E | Page 5 of 16
100k
00818-006
±VS
±0.7 V
Indefinite
−65°C to +125°C
CROSSTALK (dB)
Parameter
Supply Voltage
Internal Power Dissipation (25°C)1
Input Voltage
Differential Input Voltage2
Output Short-Circuit Duration (Single Input)
Storage Temperature Range
Operating Temperature Range
AD704J
AD704A
Lead Temperature (Soldering, 10 sec)
AD704
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25°C, VS = ±15 V dc, unless otherwise noted.
+VS
UNITS (%)
40
30
20
0
–80
–40
0
40
INPUT OFFSET VOLTAGE (µV)
80
–1.0
–1.5
+1.5
+1.0
+0.5
–VS
00818-007
10
–0.5
Figure 7. Typical Distribution of Input Offset Voltage
0
5
10
SUPPLY VOLTAGE (V)
15
00818-010
INPUT COMMON-MODE VOLTAGE LIMIT –V
(REFERRED TO SUPPLY VOLTAGES)
50
20
Figure 10. Input Common-Mode Voltage Range vs. Supply Voltage
35
50
30
OUTPUT VOLTAGE (V p-p)
UNITS (%)
40
30
20
25
20
15
10
10
–160
–80
0
80
INPUT BIAS CURRENT (pA)
160
0
1k
00818-008
0
Figure 8. Typical Distribution of Input Bias Current
10k
100k
FREQUENCY (Hz)
1M
00818-011
5
Figure 11. Large Signal Frequency Response
50
100
30
20
10
0
–120
–60
0
60
INPUT OFFSET CURRENT (pA)
120
10
1
0.1
1k
00818-009
UNITS (%)
40
Figure 9. Typical Distribution of Input Offset Current
10k
100k
1M
SOURCE RESISTANCE (Ω)
10M
Figure 12. Offset Voltage Drift vs. Source Resistance
Rev. E | Page 6 of 16
100M
00818-012
OUTPUT VOLTAGE DRIFT (µV/°C)
SOURCE RESISTANCE MAY BE EITHER
BALANCED OR UNBALANCED.
AD704
1k
50
VOLTAGE NOISE (nV/ Hz)
40
UNITS (%)
30
20
100
10
–0.8
–0.4
0
0.4
INPUT OFFSET VOLTAGE DRIFT (µV/°C)
1
00818-013
0
0.8
1
100
1k
FREQUENCY (Hz)
Figure 16. Input Noise Voltage Spectral Density
Figure 13. Typical Distribution of Input Offset Voltage Drift
1k
4
CURRENT NOISE (fA/ Hz)
3
2
1
100
100Ω
10
10kΩ
20MΩ
0
0
1
2
3
WARM-UP TIME (Minutes)
4
5
1
1
10
100
1k
FREQUENCY (Hz)
00818-017
VOUT
00818-014
CHANGE IN OFFSET VOLTAGE (µV)
10
00818-016
10
Figure 17. Input Noise Current Spectral Density
Figure 14. Change in Input Offset Voltage vs. Warm-Up Time
120
POSITIVE IB
80
0.5µV
60
40
NEGATIVE IB
0
–15
–10
–5
0
5
COMMON-MODE VOLTAGE (V)
10
15
0
5
TIME (Seconds)
Figure 18. 0.1 Hz to 10 Hz Noise Voltage
Figure 15. Input Bias Current vs. Common-Mode Voltage
Rev. E | Page 7 of 16
10
00818-018
20
00818-015
INPUT BIAS CURRENT (pA)
100
AD704
10M
OPEN-LOOP VOLTAGE GAIN
QUIESCENT CURRENT (µA)
500
450
400
+125°C
+25°C
350
–55°C
+25°C
+125°C
1M
–55°C
5
10
SUPPLY VOLTAGE (±V)
15
20
100k
1
Figure 19. Quiescent Supply Current vs. Supply Voltage (per Amplifier)
10
LOAD RESISTANCE (kΩ)
00818-022
0
00818-019
200
100
Figure 22. Open-Loop Gain vs. Load Resistance Over Temperature
160
140
0
120
30
OPEN-LOOP VOLTAGE GAIN (dB)
140
120
80
60
40
80
90
60
120
150
40
GAIN
180
20
10
100
1k
FREQUENCY (Hz)
10k
100k
1M
–20
0.01
00818-020
1
Figure 20. Common-Mode Rejection vs. Frequency
100
1k
10k
FREQUENCY (Hz)
100k
1M
10M
OUTPUT VOLTAGE SWING –V
(REFERRED TO SUPPLY VOLTAGES)
RL = 10kΩ
120
–PSR
100
80
60
+PSR
40
1
10
100
1k
FREQUENCY (Hz)
10k
100k
1M
–0.5
–1.0
–1.5
+1.5
+1.0
+0.5
–VS
00818-021
PSR (dB)
10
+VS
VS = ±15V
TA = 25°C
140
20
0.1
1
Figure 23. Open-Loop Gain and Phase vs. Frequency
180
160
0.1
00818-023
0
20
0
0.1
PHASE
0
5
10
SUPPLY VOLTAGE (±V)
15
Figure 24. Output Voltage Swing vs. Supply Voltage
Figure 21. Power Supply Rejection vs. Frequency
Rev. E | Page 8 of 16
20
00818-024
CMR (dB)
100
60
100
PHASE SHIFT (Degrees)
VS = ±15V
AD704
IOUT = 1mA
5µs
100
100 • • • •
AV = –1000
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
90
10
1
AV = +1
0.1
10
0% • • • •
0.01
00818-028
CLOSED-LOOP OUTPUT IMPEDANCE (Ω)
1k
1
10
100
1k
FREQUENCY (Hz)
10k
100k
00818-025
20mV
0.001
Figure 28. Unity Gain Follower Small Signal Pulse Response RF = 0 Ω,
CL = 100 pF
Figure 25. Closed-Loop Output Impedance vs. Frequency
RF
5µs
+VS
0.1µF
100 • • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
90
1/4
AD704
RL
2kΩ
VIN
VOUT
CL
00818-026
0.1µF
SQUARE
WAVE INPUT
–VS
00818-029
10
0% • • • •
20mV
Figure 26. Unity Gain Follower (for Large Signal Applications, Resistor RF
Limits the Current Through the Input Protection Diodes)
Figure 29. Unity Gain Follower Small Signal Pulse Response RF = 0 Ω,
CL = 1000 pF
10kΩ
+VS
0.1µF
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
90
VIN
10kΩ
1/4
AD704
SQUARE
WAVE INPUT
RL
2.5kΩ
VOUT
CL
0.1µF
–VS
10
• • • •
• • • •
• • • •
• • • •
• • • •
2V
• • • •
• • • •
• • • •
50µs
• • • •
00818-027
0% • • • •
Figure 27. Unity Gain Follower Large Signal Pulse Response RF = 10 kΩ,
CL = 1000 pF
Rev. E | Page 9 of 16
Figure 30. Unity Gain Inverter Connection
00818-030
100 • • • •
AD704
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
100 • • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
0% • • • •
• • • •
00818-031
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
Figure 33. Unity Gain Inverter Small Signal Pulse Response, CL = 1000 pF
5µs
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
90
20mV
00818-032
10
0% • • • •
• • • •
20mV
Figure 31. Unity Gain Inverter Large Signal Pulse Response, CL = 1000 pF
100 • • • •
• • • •
10
10
0% • • • •
• • • •
90
90
00818-033
100 • • • •
5µs
50µs
2V
Figure 32. Unity Gain Inverter Small Signal Pulse Response, CL = 100 pF
Rev. E | Page 10 of 16
AD704
THEORY OF OPERATION
GAIN TRIM
(500kΩ POT)
OPTIONAL
AC CMRR TRIM
R5
2.4kΩ
R3
6.34kΩ
R4
47.5kΩ
DC
CMRR
TRIM
(5kΩ POT)
+VS
Ct
RG
C1
4C2
1
Q1 =
ω=
R1
6.34kΩ
R2
49.9kΩ
Q2 =
R6 C1C2
ω=
R6 = R7
C1
R6
1MΩ
C3
R7
1MΩ
AD704
1/4
AD704
R8
1MΩ
1/4
C2
0.1µF
R8 C3C4
R8 = R9
0.1µF
1/4
C3
4C4
1
R9
1MΩ
AD704
C4
–VIN
–VS
+VIN
1/4
OUTPUT
AD704
R10, 2MΩ
R11, 2MΩ
C5, 0.01µF
C6, 0.01µF
OPTIONAL BALANCE RESISTOR NETWORKS
CAN BE REPLACED WITH A SHORT.
00818-034
NOTES
R2 2R2
1. INSTRUMENTATION AMPLIFIER GAIN = 1 +
+
(FOR R1 = R3, R2 = R4 + R5).
R1 RG
2. CAPACITORS C2 AND C4 ARE SOUTHERN ELECTRONICS MPCC, POLYCARBONATE, ±5%, 50V.
3. ALL RESISTORS METAL FILM, 1%.
Figure 34. Gain-of-10 Instrumentation Amplifier with Post Filtering
R2 = R4 + R5 = 49.9 kΩ
49.9 kΩ
R1 = R3 =
0.9 G − 1
RG (Max Value of
Trim Potentiometer)
166 kΩ
16.6 kΩ
1.66 kΩ
80
TYPICAL MONOLITHIC IN AMP
60
40
WITHOUT CAPACITOR Ct
1
10
100
FREQUENCY (Hz)
1k
10k
Figure 35. Common-Mode Rejection vs. Frequency with and Without
Capacitor Ct
1
2 π ( R3) 5 × 10 5
R1 and R3
6.34 kΩ
526 Ω
56.2 Ω
100
0
Table 4. Resistance Values for Various Gains
Circuit
Gain (G)
10
100
1000
CIRCUIT TRIMMED
USING CAPACITOR Ct
120
20
99.8 kΩ
0.06 G
Max Value of RG =
Ct ≈
GAIN = 10, 0.2V p-p COMMON-MODE INPUT
140
00818-035
The instrumentation amplifier circuit offers many performance
benefits, including BiFET level input bias currents, low input
offset voltage drift, and only 1.2 mA quiescent current. It operates
for gains that are G ≥ 2 and, at lower gains, it benefits from no
output amplifier offset and no noise contribution as encountered
in a 3-op-amp design. Good low frequency CMRR is achieved
even without the optional ac CMRR trim (see Figure 35). Table 4
provides resistance values for three common circuit gains. For
other gains, use the following equations:
160
COMMON-MODE REJECTION (dB)
The instrumentation amplifier with post filtering (see Figure 34)
combines two applications that benefit greatly from the AD704.
This circuit achieves low power and dc precision over temperature
with a minimum of components.
Bandwidth
(−3 dB), Hz
50 k
5k
0.5 k
Rev. E | Page 11 of 16
AD704
180
120
OFFSET VOLTAGE
OF FILTER CIRCUIT (RTI) (µV)
WITHOUT OPTIONAL
BALANCE RESISTOR, R3
60
0
WITH OPTIONAL
BALANCE RESISTOR, R3
–60
–120
–180
–40
0
40
80
TEMPERATURE (°C)
120
00818-036
The 1 Hz, four-pole active filter offers dc precision with a
minimum of components and cost. The low current noise,
IOS, and IB allow the use of 1 MΩ resistors without sacrificing
the 1 μV/°C drift of the AD704. This means that lower capacitor
values can be used, reducing cost and space. Furthermore,
because the AD704’s IB is as low as its IOS, over most of the MIL
temperature range, most applications do not require the use of
the normal balancing resistor (with its stability capacitor).
Adding the optional balancing resistor enhances performance at
high temperatures, as shown in Figure 36. Table 5 gives
capacitor values for several common low pass responses.
Figure 36. VOS vs. Temperature Performance of the 1 Hz Filter Circuit
Table 5. 1 Hz, Four-Pole Low-Pass Filter Recommended Component Values1
Desired Low Pass
Response
Bessel
Butterworth
0.1 dB Chebychev
0.2 dB Chebychev
0.5 dB Chebychev
1.0 dB Chebychev
1
Section 1
Frequency (Hz)
1.43
1.00
0.648
0.603
0.540
0.492
Q
0.522
0.541
0.619
0.646
0.705
0.785
Section 2
Frequency (Hz)
1.60
1.00
0.948
0.941
0.932
0.925
Q
0.806
1.31
2.18
2.44
2.94
3.56
C1 ( µF)
0.116
0.172
0.304
0.341
0.416
0.508
C2 (µF)
0.107
0.147
0.198
0.204
0.209
0.206
C3 (µF)
0.160
0.416
0.733
0.823
1.00
1.23
Specified values are for a −3 dB point of 1.0 Hz. For other frequencies, simply scale the C1 through C4 capacitors directly; that is, for a 3 Hz Bessel response,
C1 = 0.0387 μF, C2 = 0.0357 μF, C3 = 0.0533 μF, and C4 = 0.0205 μF.
Rev. E | Page 12 of 16
C4 (µF)
0.0616
0.0609
0.0385
0.0347
0.0290
0.0242
AD704
OUTLINE DIMENSIONS
0.775 (19.69)
0.750 (19.05)
0.735 (18.67)
14
8
1
0.280 (7.11)
0.250 (6.35)
0.240 (6.10)
7
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.100 (2.54)
BSC
0.060 (1.52)
MAX
0.210 (5.33)
MAX
0.015
(0.38)
MIN
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
SEATING
PLANE
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
0.195 (4.95)
0.130 (3.30)
0.115 (2.92)
0.015 (0.38)
GAUGE
PLANE
0.014 (0.36)
0.010 (0.25)
0.008 (0.20)
0.430 (10.92)
MAX
0.005 (0.13)
MIN
0.070 (1.78)
0.050 (1.27)
0.045 (1.14)
070606-A
COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.
Figure 37. 14-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body (N-14)
Dimensions shown in inches and (millimeters)
10.50 (0.4134)
10.10 (0.3976)
9
16
7.60 (0.2992)
7.40 (0.2913)
8
1.27 (0.0500)
BSC
0.30 (0.0118)
0.10 (0.0039)
COPLANARITY
0.10
0.51 (0.0201)
0.31 (0.0122)
10.65 (0.4193)
10.00 (0.3937)
0.75 (0.0295)
0.25 (0.0098)
2.65 (0.1043)
2.35 (0.0925)
SEATING
PLANE
45°
8°
0°
0.33 (0.0130)
0.20 (0.0079)
COMPLIANT TO JEDEC STANDARDS MS-013- AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 38. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body (RW-16)
Dimensions shown in millimeters and (inches)
Rev. E | Page 13 of 16
1.27 (0.0500)
0.40 (0.0157)
032707-B
1
AD704
0.200 (5.08)
REF
0.100 (2.54) REF
0.015 (0.38)
MIN
0.075 (1.91)
REF
0.095 (2.41)
0.075 (1.90)
19
18
0.358 (9.09)
0.342 (8.69)
SQ
0.358
(9.09)
MAX
SQ
0.088 (2.24)
0.054 (1.37)
0.011 (0.28)
0.007 (0.18)
R TYP
0.075 (1.91)
REF
0.055 (1.40)
0.045 (1.14)
3
20
4
0.028 (0.71)
0.022 (0.56)
1
BOTTOM
VIEW
0.050 (1.27)
BSC
8
14
13
9
45° TYP
0.150 (3.81)
BSC
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
022106-A
0.100 (2.54)
0.064 (1.63)
Figure 39. 20-Terminal Ceramic Leadless Chip Carrier [LCC]
(E-20-1)
Dimensions shown in inches and (millimeters)
ORDERING GUIDE
Model1
AD704AR-16
AD704AR-16-REEL
AD704ARZ-16
AD704ARZ-16-REEL
AD704JN
AD704JNZ
AD704JR-16
AD704JR-16-REEL
AD704JRZ-16
AD704JRZ-16-REEL
AD704SE/883B
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
0°C to 70°C
0°C to 70°C
0°C to 70°C
0°C to 70°C
0°C to 70°C
0°C to 70°C
−55°C to +125°C
Package Description
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
14-Lead PDIP
14-Lead PDIP
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
20-Terminal LCC
Z = RoHS Compliant Part.
Rev. E | Page 14 of 16
Package Option
RW -16
RW -16
RW -16
RW -16
N-14
N-14
RW -16
RW -16
RW -16
RW -16
E-20-1
AD704
NOTES
Rev. E | Page 15 of 16
AD704
NOTES
©2001-2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D00818-0-1/10(E)
Rev. E | Page 16 of 16