Low Cost, Low Power,
True RMS-to-DC Converter
AD736
Data Sheet
FEATURES
GENERAL DESCRIPTION
The AD736 is a low power, precision, monolithic true rms-todc converter. It is laser trimmed to provide a maximum error of
±0.3 mV ± 0.3% of reading with sine wave inputs. Furthermore,
it maintains high accuracy while measuring a wide range of
input waveforms, including variable duty-cycle pulses and triac
(phase)-controlled sine waves. The low cost and small size of
this converter make it suitable for upgrading the performance
of non-rms precision rectifiers in many applications. Compared
to these circuits, the AD736 offers higher accuracy at an equal
or lower cost.
The AD736 can compute the rms value of both ac and dc input
voltages. It can also be operated as an ac-coupled device by
adding one external capacitor. In this mode, the AD736 can
resolve input signal levels of 100 μV rms or less, despite variations
in temperature or supply voltage. High accuracy is also maintained
for input waveforms with crest factors of 1 to 3. In addition,
crest factors as high as 5 can be measured (introducing only 2.5%
additional error) at the 200 mV full-scale input level.
The AD736 has its own output buffer amplifier, thereby providing a great deal of design flexibility. Requiring only 200 µA
of power supply current, the AD736 is optimized for use in
portable multimeters and other battery-powered applications.
FUNCTIONAL BLOCK DIAGRAM
CC 8kΩ
+VS
OUT
VIN
FULL WAVE
RECTIFIER
RMS
CORE
CF
8kΩ
CF
(OPT)
CAV
BIAS
SECTION
COM
CAV
–VS
00834-001
Converts an ac voltage waveform to a dc voltage and then
converts to the true rms, average rectified, or absolute value
200 mV rms full-scale input range (larger inputs with input
attenuator)
High input impedance: 1012 Ω
Low input bias current: 25 pA maximum
High accuracy: ±0.3 mV ± 0.3% of reading
RMS conversion with signal crest factors up to 5
Wide power supply range: +2.8 V, −3.2 V to ±16.5 V
Low power: 200 µA maximum supply current
Buffered voltage output
No external trims needed for specified accuracy
Related device: the AD737—features a power-down control
with standby current of only 25 μA; the dc output voltage
is negative and the output impedance is 8 kΩ
Figure 1.
The AD736 allows the choice of two signal input terminals: a
high impedance FET input (1012 Ω) that directly interfaces with
High-Z input attenuators and a low impedance input (8 kΩ) that
allows the measurement of 300 mV input levels while operating
from the minimum power supply voltage of +2.8 V, −3.2 V. The
two inputs can be used either single ended or differentially.
The AD736 has a 1% reading error bandwidth that exceeds
10 kHz for the input amplitudes from 20 mV rms to 200 mV rms
while consuming only 1 mW.
The AD736 is available in four performance grades. The
AD736J and AD736K grades are rated over the 0°C to +70°C
and −20°C to +85°C commercial temperature ranges. The
AD736A and AD736B grades are rated over the −40°C to +85°C
industrial temperature range. The AD736 is available in three
low cost, 8-lead packages: PDIP, SOIC, and CERDIP.
PRODUCT HIGHLIGHTS
1. The AD736 is capable of computing the average rectified
value, absolute value, or true rms value of various input signals.
2. Only one external component, an averaging capacitor, is
required for the AD736 to perform true rms measurement.
3. The low power consumption of 1 mW makes the AD736
suitable for many battery-powered applications.
4. A high input impedance of 1012 Ω eliminates the need for an
external buffer when interfacing with input attenuators.
5. A low impedance input is available for those applications that
require an input signal up to 300 mV rms operating from low
power supply voltages.
Rev. I
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©1988–2012 Analog Devices, Inc. All rights reserved.
AD736
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
RMS Measurement—Choosing the Optimum Value for CAV .... 11
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Rapid Settling Times via the Average Responding
Connection .................................................................................. 12
Product Highlights ........................................................................... 1
DC Error, Output Ripple, and Averaging Error ..................... 12
Revision History ............................................................................... 2
AC Measurement Accuracy and Crest Factor............................ 12
Specifications..................................................................................... 3
Applications..................................................................................... 13
Absolute Maximum Ratings ............................................................ 5
Connecting the Input................................................................. 13
Thermal Resistance ...................................................................... 5
Selecting Practical Values for Input Coupling (CC),
Averaging (CAV), and Filtering (CF) Capacitors ...................... 14
ESD Caution .................................................................................. 5
Pin Configuration and Function Descriptions ............................. 6
Typical Performance Characteristics ............................................. 7
Theory of Operation ...................................................................... 10
Types of AC Measurement ........................................................ 10
Additional Application Concepts............................................. 15
Evaluation Board ............................................................................ 17
Outline Dimensions ....................................................................... 19
Ordering Guide .......................................................................... 20
Calculating Settling Time Using Figure 16 ............................. 11
REVISION HISTORY
12/12—Rev. H to Rev. I
Changes to Features and Figure 1.................................................. 1
Change to Error vs. Crest Factor Parameter, Table 1 .................. 3
Changes to Operating Voltage Range Parameter, Table 1 .......... 4
Changes to Table 2 ........................................................................... 5
Added Table 3; Renumbered Sequentially ................................... 5
Changes to Figure 9 ......................................................................... 8
Changes to Figure 16 ....................................................................... 9
Changes to Figure 18 ..................................................................... 10
Added Additional Application Concepts Section and
Changes to Figure 25 ..................................................................... 15
Changes to Figure 29 ..................................................................... 17
Deleted Table 6 ............................................................................... 17
Changes to Ordering Guide ......................................................... 20
2/07—Rev. G to Rev. H
Updated Layout .......................................................................9 to 12
Added Applications Section ......................................................... 13
Inserted Figure 21 to Figure 24; Renumbered Sequentially..... 13
Deleted Figure 25 ........................................................................... 15
Added Evaluation Board Section................................................. 16
Inserted Figure 29 to Figure 34; Renumbered Sequentially..... 16
Inserted Figure 35; Renumbered Sequentially........................... 17
Added Table 6................................................................................. 17
2/06—Rev. F to Rev. G
Updated Format ................................................................. Universal
Changes to Features .........................................................................1
Added Table 3 ...................................................................................6
Changes to Figure 21 and Figure 22 ........................................... 14
Changes to Figure 23, Figure 24, and Figure 25 ........................ 15
Updated Outline Dimensions ...................................................... 16
Changes to Ordering Guide ......................................................... 17
5/04—Rev. E to Rev. F
Changes to Specifications ................................................................2
Replaced Figure 18 ........................................................................ 10
Updated Outline Dimensions ...................................................... 16
Changes to Ordering Guide ......................................................... 16
4/03—Rev. D to Rev. E
Changes to General Description .................................................1
Changes to Specifications .............................................................3
Changes to Absolute Maximum Ratings ....................................4
Changes to Ordering Guide .........................................................4
11/02—Rev. C to Rev. D
Changes to Functional Block Diagram.......................................1
Changes to Pin Configuration .....................................................3
Figure 1 Replaced ..........................................................................6
Changes to Figure 2 .......................................................................6
Changes to Application Circuits Figures 4 to 8 .........................8
Outline Dimensions Updated ......................................................8
Rev. I | Page 2 of 20
Data Sheet
AD736
SPECIFICATIONS
At 25°C ± 5 V supplies, ac-coupled with 1 kHz sine wave input applied, unless otherwise noted. Specifications in bold are tested on all
production units at final electrical test. Results from those tests are used to calculate outgoing quality levels.
Table 1.
Parameter
TRANSFER FUNCTION
CONVERSION ACCURACY
Total Error, Internal Trim 1
All Grades
TMIN to TMAX
A and B Grades
J and K Grades
vs. Supply Voltage
@ 200 mV rms Input
DC Reversal Error, DC-Coupled
Nonlinearity 2, 0 mV to 200 mV
Total Error, External Trim
ERROR VS. CREST FACTOR 3
Crest Factor = 1 to 3
Crest Factor = 3 to 5
INPUT CHARACTERISTICS
High Impedance Input
Signal Range (Pin 2)
Continuous RMS Level
Peak Transient Input
Input Resistance
Input Bias Current
Low Impedance Input
Signal Range (Pin 1)
Continuous RMS Level
Peak Transient Input
Input Resistance
Maximum Continuous
Nondestructive Input
Input Offset Voltage 4
J and K Grades
A and B Grades
vs. Temperature
vs. Supply
Conditions
Min
AD736J/AD736A
AD736K/AD736B
Typ
Max
Min
Typ
Max
VOUT = √Avg (VIN2)
1 kHz sine wave
Using CC
0 mV rms to 200 mV rms
200 mV to 1 V rms
0.3/0.3
−1.2
@ 200 mV rms
@ 200 mV rms
0.7/0.7
0.007
VS = ±5 V to ±16.5 V
VS = ±5 V to ±3 V
@ 600 mV dc
@ 100 mV rms
0 mV rms to 200 mV rms
0
0
0
CAV, CF = 100 µF
CAV, CF = 100 µF
VS = +2.8 V, −3.2 V
VS = ±5 V to ±16.5 V
VS = +2.8 V, −3.2 V
VS = ±5 V
VS = ±16.5 V
+0.06
−0.18
1.3
0.25
0.1/0.5
0.2/0.2
−1.2
+0.1
−0.3
2.5
0.35
0
0
0
+0.06
−0.18
1.3
0.25
0.1/0.3
±0.9
0.5/0.5
±mV/±% of reading
±% of reading/°C
+0.1
−0.3
2.5
0.35
%/V
%/V
% of reading
% of reading
±mV/±% of reading
% additional error
% additional error
200
1
±0.9
±2.7
±2.7
±4.0
±4.0
1012
1
1012
1
25
300
1
6.4
±mV/±% of reading
% of reading
0.7
2.5
200
1
VS = +2.8 V, –3.2 V
VS = ±5 V to ±16.5 V
VS = +2.8 V, −3.2 V
VS = ±5 V
VS = ±16.5 V
0.3/0.3
±2.0
0.007
0.7
2.5
VS = ±3 V to ±16.5 V
±1.7
±3.8
±11
8
All supply voltages
VS = ±5 V to ±16.5 V
VS = ±5 V to ±3 V
0.5/0.5
±2.0
8
50
80
Rev. I | Page 3 of 20
9.6
±12
±3
±3
30
150
25
300
1
6.4
±1.7
±3.8
±11
8
8
50
80
Unit
9.6
±12
±3
±3
30
150
mV rms
V rms
V
V
V
Ω
pA
mV rms
V rms
V
V
V
kΩ
V p-p
mV
mV
µV/°C
µV/V
µV/V
AD736
Parameter
OUTPUT CHARACTERISTICS
Output Offset Voltage
J and K Grades
A and B Grades
vs. Temperature
vs. Supply
Output Voltage Swing
2 kΩ Load
Data Sheet
Conditions
Quiescent Current
200 mV rms, No Load
TEMPERATURE RANGE
Operating, Rated Performance
Commercial
Industrial
AD736J/AD736A
Typ
Max
±0.1
1
50
50
VS = ±5 V to ±16.5 V
VS = ±5 V to ±3 V
VS = +2.8 V, −3.2 V
VS = ±5 V
No Load
Output Current
Short-Circuit Current
Output Resistance
FREQUENCY RESPONSE
High Impedance Input (Pin 2)
for 1% Additional Error
VIN = 1 mV rms
VIN = 10 mV rms
VIN = 100 mV rms
VIN = 200 mV rms
±3 dB Bandwidth
VIN = 1 mV rms
VIN = 10 mV rms
VIN = 100 mV rms
VIN = 200 mV rms
Low Impedance Input (Pin 1)
for 1% Additional Error
VIN = 1 mV rms
VIN = 10 mV rms
VIN = 100 mV rms
VIN = 200 mV rms
±3 dB Bandwidth
VIN = 1 mV rms
VIN = 10 mV rms
VIN = 100 mV rms
VIN = 200 mV rms
POWER SUPPLY
Operating Voltage Range
Min
VS = ±16.5 V
VS = ±16.5 V
0 to
1.6
0 to
3.6
0 to 4
0 to 4
2
@ dc
AD736K/AD736B
Min
Typ
Max
±0.5
±0.5
20
130
1.7
±0.1
1
50
50
0 to
1.6
0 to
3.6
0 to 4
0 to 4
2
3.8
5
12
±0.3
±0.3
20
130
Unit
mV
mV
µV/°C
µV/V
µV/V
1.7
V
3.8
V
5
12
3
0.2
3
0.2
V
V
mA
mA
Ω
1
6
37
33
1
6
37
33
kHz
kHz
kHz
kHz
5
55
170
190
5
55
170
190
kHz
kHz
kHz
kHz
1
6
90
90
1
6
90
90
kHz
kHz
kHz
kHz
5
55
350
460
5
55
350
460
kHz
kHz
kHz
kHz
Sine wave input
Sine wave input
Sine wave input
Sine wave input
+2.8,
−3.2
Zero signal
Sine wave input
0°C to 70°C
−40°C to +85°C
±5
±16.5
160
230
200
270
AD736JN, AD736JR
AD736AQ, AD736AR
+2.8,
−3.2
±5
±16.5
V
160
230
200
270
µA
µA
AD736KN, AD736KR
AD736BQ, AD736BR
Accuracy is specified with the AD736 connected as shown in Figure 18 with Capacitor CC.
Nonlinearity is defined as the maximum deviation (in percent error) from a straight line connecting the readings at 0 mV rms and 200 mV rms. Output offset voltage is adjusted to zero.
Error vs. crest factor is specified as additional error for a 200 mV rms signal. Crest factor = VPEAK/V rms.
4
DC offset does not limit ac resolution.
1
2
3
Rev. I | Page 4 of 20
Data Sheet
AD736
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 2.
Parameter
Supply Voltage
Internal Power Dissipation
Input Voltage
Pin 2 through Pin 8
Pin 1
Output Short-Circuit Duration
Differential Input Voltage
Storage Temperature Range (Q)
Storage Temperature Range (N, R)
Lead Temperature (Soldering, 60 sec)
ESD Rating
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Rating
±16.5 V
200 mW
Table 3. Thermal Resistance
±VS
±12 V
Indefinite
+VS and –VS
–65°C to +150°C
–65°C to +125°C
300°C
500 V
Package Type
8-Lead PDIP
8-Lead CERDIP
8-Lead SOIC
ESD CAUTION
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rev. I | Page 5 of 20
θJA
165
110
155
Unit
°C/W
°C/W
°C/W
AD736
Data Sheet
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
8
AD736
COM
+VS
TOP VIEW
CF 3 (Not to Scale) 6 OUTPUT
–VS 4
7
5
CAV
00834-025
CC 1
VIN 2
Figure 2. Pin Configuration
Table 4. Pin Function Descriptions
Pin No.
1
Mnemonic
CC
2
3
4
5
6
7
8
VIN
CF
−VS
CAV
OUTPUT
+VS
COM
Description
Coupling Capacitor. If dc coupling is desired at Pin 2, connect a coupling capacitor to this pin. If the coupling at
Pin 2 is ac, connect this pin to ground. Note that this pin is also an input, with an input impedance of 8 kΩ.
Such an input is useful for applications with high input voltages and low supply voltages.
High Input Impedance Pin.
Connect an Auxiliary Low-Pass Filter Capacitor from the Output.
Negative Supply Voltage if Dual Supplies Are Used, or Ground if Connected to a Single-Supply Source.
Connect the Averaging Capacitor Here.
DC Output Voltage.
Positive Supply Voltage.
Common.
Rev. I | Page 6 of 20
Data Sheet
AD736
TYPICAL PERFORMANCE CHARACTERISTICS
10V
SINE WAVE INPUT, VS = ±5V,
CAV = 22µF, CF = 4.7µF, CC = 22µF
VIN = 200mV rms
1kHz SINE WAVE
CAV = 100µF
CF = 22µF
1V
INPUT LEVEL (rms)
0.5
0.3
0.1
0
–0.1
100mV
1% ERROR
10mV
–3dB
1mV
–0.3
0
2
4
6
8
10
SUPPLY VOLTAGE (±V)
12
14
16
100µV
0.1
Figure 3. Additional Error vs. Supply Voltage
10
–3dB FREQUENCY (kHz)
1000
10V
SINE WAVE INPUT, VS = ±5V,
CAV = 22µF, CF = 4.7µF, CC = 22µF
DC-COUPLED
14
1V
INPUT LEVEL (rms)
12
10
PIN 1
8
PIN 2
6
100mV
1% ERROR
10mV
10% ERROR
4
1mV
0
2
4
6
8
10
SUPPLY VOLTAGE (±V)
12
14
16
100µV
0.1
00834-003
0
Figure 4. Maximum Input Level vs. Supply Voltage
1
10
–3dB FREQUENCY (kHz)
100
00834-006
–3dB
2
1000
Figure 7. Frequency Response Driving Pin 2
6
16
1kHz SINE WAVE INPUT
ADDITIONAL ERROR (% of Reading)
14
12
10
8
6
4
2
3ms BURST OF 1kHz =
3 CYCLES
200mV rms SIGNAL
VS = ±5V
CC = 22µF
CF = 100µF
5
4
CAV = 10µF
CAV = 33µF
3
2
1
CAV = 100µF
0
0
2
4
6
8
10
SUPPLY VOLTAGE (±V)
12
14
16
0
Figure 5. Peak Buffer Output vs. Supply Voltage
1
2
3
4
CREST FACTOR (VPEAK /V rms)
5
00834-007
CAV = 250µF
00834-004
PEAK BUFFER OUTPUT (V)
100
Figure 6. Frequency Response Driving Pin 1
16
PEAK INPUT BEFORE CLIPPING (V)
1
00834-005
–0.5
10% ERROR
00834-002
ADDITIONAL ERROR (% of Reading)
0.7
Figure 8. Additional Error vs. Crest Factor with Various Values of CAV
Rev. I | Page 7 of 20
AD736
1.0
VIN = 200mV rms
1kHz SINE WAVE
CAV = 100µF
CF = 22µF
VS = ±5V
ERROR (% of Reading)
0.4
0.5
0.2
0
–0.2
–0.4
0
–0.5
–1.0
–1.5
VIN = SINE WAVE @ 1kHz
CAV = 22µF, CC = 47µF,
CF = 4.7µF, VS = ±5V
–2.0
–0.6
–0.8
–60
–40
–20
0
20
60
80
40
TEMPERATURE (°C)
100
120
140
–2.5
10mV
Figure 9. Additional Error vs. Temperature
2V
Figure 12. Error vs. RMS Input Voltage (Pin 2),
Output Buffer Offset Is Adjusted to Zero
600
100
VIN = 200mV rms
CC = 47µF
CF = 47µF
VS = ±5V
VIN = 200mV rms
1kHz SINE WAVE
CAV = 100µF
CF = 22µF
VS = ±5V
500
400
CAV (µF)
DC SUPPLY CURRENT (µA)
1V
100mV
INPUT LEVEL (rms)
00834-011
0.6
00834-008
ADDITIONAL ERROR (% of Reading)
0.8
Data Sheet
300
10
–0.5%
200
0
0.2
0.6
0.4
rms INPUT LEVEL (V)
0.8
1.0
1
10
00834-009
100
Figure 10. DC Supply Current vs. rms Input Level
100
FREQUENCY (Hz)
Figure 13. CAV vs. Frequency for Specified Averaging Error
10mV
1V
VIN = 1kHz
SINE WAVE INPUT
AC-COUPLED
VS = ±5V
–0.5%
INPUT LEVEL (rms)
–1%
1mV
100µV
100mV
10mV
10µV
100
1k
10k
–3dB FREQUENCY (Hz)
Figure 11. RMS Input Level (Pin 2) vs. −3 dB Frequency
100k
1mV
1
10
100
FREQUENCY (Hz)
1k
00834-013
VIN SINE WAVE
AC-COUPLED
CAV = 10µF, CC = 47µF,
CF = 47µF, VS = ±5V
00834-010
INPUT LEVEL (rms)
1k
00834-012
–1%
Figure 14. RMS Input Level vs. Frequency for Specified Averaging Error
Rev. I | Page 8 of 20
Data Sheet
AD736
10nA
4.0
1nA
INPUT BIAS CURRENT
3.0
2.5
2.0
2
4
10
6
8
SUPPLY VOLTAGE (±V)
12
14
16
100fA
–55
00834-014
0
Figure 15. Pin 2 Input Bias Current vs. Supply Voltage
1V
VS = 5V
CC = 22µF
CF = 0µF
CAV = 100µF
CAV = 10µF
10mV
CAV = 33µF
10ms
100ms
1s
SETTLING TIME
10s
100s
00834-015
1mV
100µV
1ms
–35
–15
5
25
65
45
TEMPERATURE (°C)
85
105
Figure 17. Pin 2 Input Bias Current vs. Temperature
100mV
INPUT LEVEL (rms)
10pA
1pA
1.5
1.0
100pA
Figure 16. RMS Input Level for Various Values of CAV vs. Settling Time
Rev. I | Page 9 of 20
125
00834-016
INPUT BIAS CURRENT (pA)
3.5
AD736
Data Sheet
THEORY OF OPERATION
AC COUPLED
CC = 10µF
+
DC
COUPLED
FULL-WAVE
RECTIFIER
AD736
CC
COM
8
1
8kΩ
0.1µF
OUTPUT
AMPLIFIER
VIN
2
INPUT
AMPLIFIER
IB