18-Bit, 2 MSPS SAR ADC
AD7641
FEATURES
FUNCTIONAL BLOCK DIAGRAM
TEMP REFBUFIN REF REFGND
DVDD DGND
AGND
OVDD
AD7641
AVDD
OGND
REF
REF AMP
IN+
SERIAL
PORT
SWITCHED
CAP DAC
IN–
18
D[17:0]
PARALLEL
INTERFACE
PDREF
MODE1
BUSY
CLOCK
PDBUF
PD
MODE0
RD
CONTROL LOGIC AND
CALIBRATION CIRCUITRY
CS
RESET
D0/OB/2C
WARP
04761-001
Throughput
2 MSPS (wideband warp and warp mode)
1.5 MSPS (normal mode)
INL: ±2 LSB typical, ±3 LSB max; ±8 ppm of full scale
18-bit resolution with no missing codes
Dynamic range: 95.5 dB
SNR: 93.5 dB typical @ 20 kHz (VREF = 2.5 V)
THD: −112 dB typical @ 20 kHz (VREF = 2.5 V)
2.048 V internal reference: typ drift 10 ppm/°C; TEMP output
Differential input range: ±VREF (VREF up to 2.5 V)
No pipeline delay (SAR architecture)
Parallel (18-, 16-, or 8-bit bus) and
serial 5 V/3.3 V/2.5 V interface
SPI®/QSPI™/MICROWIRE™/DSP compatible
Single 2.5 V supply operation
Power dissipation
75 mW typical @ 2 MSPS with internal REF
2 µW in power-down mode
Pb-free, 48-lead LQFP and 48-lead LFCSP
Speed upgrade of the AD7674, AD7678, AD7679
NORMAL CNVST
Figure 1.
Table 1. PulSAR® Selection
Type/kSPS
Pseudo
Differential
APPLICATIONS
100 to
250
AD7651,
AD7660,
AD7661
AD7610,
AD7663
AD7675
Medical instruments
High speed data acquisition/high dynamic data acquisition
Digital signal processing
Spectrum analysis
Instrumentation
Communications
ATE
True Bipolar
GENERAL DESCRIPTION
PRODUCT HIGHLIGHTS
The AD7641 is an 18-bit, 2 MSPS, charge redistribution SAR,
fully differential, analog-to-digital converter (ADC) that
operates from a single 2.5 V power supply. The part contains a
high speed, 18-bit sampling ADC, an internal conversion clock,
an internal reference (and buffer), error correction circuits, and
both serial and parallel system interface ports. It features two
very high sampling rate modes (wideband warp and warp) and
a fast mode (normal) for asynchronous rate applications. The
AD7641 is hardware factory calibrated and tested to ensure ac
parameters, such as signal-to-noise ratio (SNR), in addition to
the more traditional dc parameters of gain, offset, and linearity.
The AD7641 is available in Pb-free only packages with
operation specified from −40°C to +85°C.
1.
True
Differential
18-Bit
Multichannel/
Simultaneous
2.
3.
4.
5.
AD7631,
AD7678
500 to
570
AD7650,
AD7652,
AD7664,
AD7666
AD7665
AD7676
AD7679
AD7654
650 to
1000
AD7653,
AD7667
AD7612,
AD7671
AD7677
AD7634,
AD7674
AD7655
>1000
AD7621,
AD7622,
AD7623
AD7641,
AD7643
Fast Throughput.
The AD7641 is a 2 MSPS, charge redistribution,
18-bit SAR ADC.
Superior Linearity.
The AD7641 has no missing 18-bit code.
Internal Reference.
The AD7641 has a 2.048 V internal reference with a typical
drift of ±10 ppm/°C and an on-chip TEMP sensor.
Single-Supply Operation.
The AD7641 operates from a 2.5 V single supply.
Serial or Parallel Interface.
Versatile parallel (16- or 8-bit bus) or 2-wire serial interface
arrangement compatible with 2.5 V, 3.3 V, or 5 V logic.
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice.
No license is granted by implication or otherwise under any patent or patent rights of Analog
Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2006–2020 Analog Devices, Inc. All rights reserved.
AD7641
TABLE OF CONTENTS
Features .............................................................................................. 1
Analog Inputs ............................................................................. 18
Applications ...................................................................................... 1
Multiplexed Inputs..................................................................... 18
General Description ......................................................................... 1
Driver Amplifier Choice ........................................................... 18
Functional Block Diagram .............................................................. 1
Voltage Reference Input............................................................ 19
Product Highlights ........................................................................... 1
Power Supply .............................................................................. 21
Revision History ............................................................................... 2
Conversion Control ................................................................... 21
Specifications .................................................................................... 3
Interfaces ......................................................................................... 22
Timing Specifications ...................................................................... 5
Digital Interface .......................................................................... 22
Absolute Maximum Ratings ........................................................... 7
Parallel Interface......................................................................... 22
ESD Caution.................................................................................. 7
Serial interface ............................................................................ 23
Pin Configuration and Function Descriptions ............................ 8
Master Serial Interface ............................................................... 23
Terminology .................................................................................... 12
Slave Serial Interface .................................................................. 25
Typical Performance Characteristics ........................................... 13
Microprocessor Interfacing ...................................................... 27
Appplications Information ........................................................... 16
Application Hints ........................................................................... 28
Circuit Information ................................................................... 16
Layout .......................................................................................... 28
Converter Operation.................................................................. 16
Evaluating the AD7641 Performance...................................... 28
Modes of Operation ................................................................... 16
Outline Dimensions ....................................................................... 29
Transfer Functions ..................................................................... 17
Ordering Guide .......................................................................... 29
Typical Connection Diagram ....................................................... 18
REVISION HISTORY
8/2020—Rev. 0 to Rev. A
Changed CP-48-1 to CP-48-4 ...................................... Throughout
Added Figure 4; Renumbered Sequentially .................................. 8
Updated Outline Dimensions ....................................................... 28
Changes to Ordering Guide .......................................................... 28
1/2006—Revision 0: Initial Version
Rev. A | Page 2 of 29
AD7641
SPECIFICATIONS
AVDD = DVDD = 2.5 V; OVDD = 2.3 V to 3.6 V; VREF = 2.5 V; all specifications TMIN to TMAX, unless otherwise noted.
Table 2.
Parameter
RESOLUTION
ANALOG INPUT
Voltage Range
Operating Input Voltage
Analog Input CMRR
Input Current
Input Impedance 2
THROUGHPUT SPEED
Complete Cycle
Throughput Rate
Time Between Conversions
Complete Cycle
Throughput Rate
DC ACCURACY
Integral Linearity Error 3
Integral Linearity Error
No Missing Codes
Differential Linearity Error
Transition Noise
Transition Noise
Zero Error, TMIN to TMAX 5
Zero Error Temperature Drift
Gain Error, TMIN to TMAX5
Gain Error Temperature Drift
Power Supply Sensitivity
AC ACCURACY
Dynamic Range
Signal-to-Noise
Spurious-Free Dynamic Range
Total Harmonic Distortion
Signal-to-(Noise + Distortion)
−3 dB Input Bandwidth
SAMPLING DYNAMICS
Aperture Delay
Aperture Jitter
Transient Response
INTERNAL REFERENCE
Output Voltage
Temperature Drift
Conditions
Min
18
VIN+ − VIN−
VIN+, VIN− to AGND
fIN = 100 kHz
2 MSPS throughput
−VREF
−0.1
Wideband warp, warp modes
Wideband warp, warp modes
Wideband warp, warp modes
Normal mode
Normal mode
TMIN to TMAX = −40°C to +70°C
TMIN to TMAX = −40°C to +85°C
Typ
Max
Unit
Bits
+VREF
AVDD 1
V
V
dB
µA
500
2
1
667
1.5
ns
MSPS
ms
ns
MSPS
+3
+3.5
±1
±16
LSB 4
LSB4
Bits
LSB
LSB
LSB
LSB
ppm/°C
% of FSR
ppm/°C
LSB
95.5
93.5
92
93
112
113
101
−115
−116
−101
93.5
92
92.5
50
dB 6
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
MHz
1
5
ns
ps rms
ns
58
18
0.001
0
−3
−3.5
18
−1
VREF = 2.5 V
VREF = 2.048 V
±2
±2
+2
1.6
2.0
−15
+15
±0.5
−0.25
AVDD = 2.5 V ± 5%
VREF = 2.5 V
fIN = 20 kHz, VREF = 2.5 V
fIN = 20 kHz, VREF = 2.048 V
fIN = 100 kHz, VREF = 2.5 V
fIN = 20 kHz, VREF = 2.5 V
fIN = 20 kHz, VREF = 2.048 V
fIN = 100 kHz, VREF = 2.5 V
fIN = 20 kHz, VREF = 2.5 V
fIN = 20 kHz, VREF = 2.048 V
fIN = 100 kHz, VREF = 2.5 V
fIN = 20 kHz, , VREF = 2.5 V
fIN = 20 kHz, VREF = 2.048 V
fIN = 100 kHz, , VREF = 2.5 V
Full-scale step
PDREF = PDBUF = low
REF @ 25°C
−40°C to +85°C
Rev. A | Page 3 of 29
+0.25
115
2.038
2.048
±10
2.058
V
ppm/°C
AD7641
Parameter
Line Regulation
Turn-On Settling Time
REFBUFIN Output Voltage
REFBUFIN Output Resistance
EXTERNAL REFERENCE
Voltage Range
Current Drain
REFERENCE BUFFER
REFBUFIN Input Voltage Range
REFBUFIN Input Current
TEMPERATURE PIN
Voltage Output
Temperature Sensitivity
Output Resistance
DIGITAL INPUTS
Logic Levels
VIL
VIH
IIL
IIH
DIGITAL OUTPUTS
Data Format 7
Pipeline Delay 8
VOL
VOH
POWER SUPPLIES
Specified Performance
AVDD
DVDD
OVDD
Operating Current 10
AVDD 11
DVDD
OVDD12
Power Dissipation11
With Internal Reference10
Without Internal Reference10
In Power-Down Mode 12
TEMPERATURE RANGE 13
Specified Performance
Conditions
AVDD = 2.5 V ± 5%
CREF = 10 µF
REFBUFIN @ 25°C
PDREF = PDBUF = high
REF
2 MSPS throughput
PDREF = high, PDBUF = low
REF = 2.048 V typ
REFBUFIN = 1.2 V
Min
Typ
±15
5
1.19
6.33
Max
Unit
ppm/V
ms
V
kΩ
1.8
2.048
180
AVDD + 0.1
V
µA
1.05
1.2
1
1.30
V
nA
@ 25°C
278
1
4.7
−0.3
1.7
−1
−1
ISINK = 500 µA
ISOURCE = −500 µA
mV
mV/°C
kΩ
+0.6
5.25
+1
+1
V
V
µA
µA
0.4
V
V
2.63
2.63
3.6
V
V
V
OVDD − 0.3
2.37
2.37
2.30 9
2 MSPS throughput
With internal reference
23
2.5
0.5
2 MSPS throughput
2 MSPS throughput
PD = high
TMIN to TMAX
2.5
2.5
75
68
2
−40
mA
mA
mA
92
85
mW
mW
µW
+85
°C
When using an external reference. With the internal reference, the input range is −0.1 V to VREF.
See Analog Inputs section.
3
Linearity is tested using endnotes, not best fit.
4
LSB means least significant bit. With the ±2.048 V input range, 1 LSB is 15.63 µV.
5
See Voltage Reference Input section. These specifications do not include the error contribution from the external reference.
6
All specifications in dB are referred to a full-scale input FS. Tested with an input signal at 0.5 dB below full-scale, unless otherwise specified.
7
Parallel or serial 18-bit.
8
Conversion results are available immediately after completed conversion.
9
See the Absolute Maximum Ratings section.
10
In warp mode. Tested in parallel reading mode.
11
With internal reference, PDREF and PDBUF are low; without internal reference, PDREF and PDBUF are high.
12
With all digital inputs forced to OVDD.
13
Consult sales for extended temperature range.
1
2
Rev. A | Page 4 of 29
AD7641
TIMING SPECIFICATIONS
AVDD = DVDD = 2.5 V; OVDD = 2.3 V to 3.6 V; VREF = 2.5 V; all specifications TMIN to TMAX, unless otherwise noted.
Table 3.
Parameter
CONVERSION AND RESET (Refer to Figure 30 and Figure 31)
Convert Pulse Width
Time Between Conversions (Warp Mode 2/Normal Mode 3)
CNVST Low to BUSY High Delay
BUSY High All Modes (Except Master Serial Read After Convert)
Aperture Delay
End of Conversion to BUSY Low Delay
Conversion Time (Warp Mode/Normal Mode)
Acquisition Time (Warp Mode/Normal Mode)
RESET Pulse Width
RESET Low to BUSY High Delay 4
BUSY High Time from RESET Low4
PARALLEL INTERFACE MODES (Refer to Figure 32 to Figure 35 )
CNVST Low to Data Valid Delay (Warp Mode/Normal Mode)
Data Valid to BUSY Low Delay
Bus Access Request to Data Valid
Bus Relinquish Time
MASTER SERIAL INTERFACE MODES 5 (Refer to Figure 36 and Figure 37)
CS Low to SYNC Valid Delay
Symbol
Min
t1
t2
t3
15
500/667
t4
t5
t6
t7
t8
t9
t38
t39
Typ
Unit
70 1
ns
ns
ns
23
385/520
1
10
385/520
115
15
10
600
t10
t11
t12
t13
Max
385/520
ns
20
15
ns
ns
ns
2
2
ns
ns
ns
ns
ns
ns
ns
ns
t14
10
ns
CS Low to Internal SCLK Valid Delay5
t15
10
ns
CS Low to SDOUT Delay
t16
10
ns
CNVST Low to SYNC Delay (Warp Mode/Normal Mode)
SYNC Asserted to SCLK First Edge Delay
Internal SCLK Period 6
Internal SCLK High6
Internal SCLK Low6
SDOUT Valid Setup Time6
SDOUT Valid Hold Time6
SCLK Last Edge to SYNC Delay6
CS High to SYNC HI-Z
t17
t18
t19
t20
t21
t22
t23
t24
t25
10
ns
ns
ns
ns
ns
ns
ns
ns
CS High to Internal SCLK HI-Z
t26
10
ns
CS High to SDOUT HI-Z
t27
10
ns
6
BUSY High in Master Serial Read After Convert
CNVST Low to SYNC Asserted Delay (All Modes)
SYNC Deasserted to BUSY Low Delay
SLAVE SERIAL INTERFACE MODES (Refer to Figure 39 and Figure 40)
External SCLK Setup Time
External SCLK Active Edge to SDOUT Delay
SDIN Setup Time
SDIN Hold Time
External SCLK Period
External SCLK High
External SCLK Low
14/137
0.5
8
2
3
1
0
0
ns
14
t28
t29
See Table 4
383/500
ns
ns
t30
13
ns
t31
t32
t33
t34
t35
t36
t37
5
1
5
5
12.5
5
5
8
See the Conversion Control section.
All timings for wideband warp mode are the same as warp mode.
In warp mode only, the maximum time between conversions is 1 ms; otherwise, there is no required maximum time.
4
See the Digital Interface section and the RESET section.
5
In serial interface modes, the SYNC, SCLK, and SDOUT timings are defined with a maximum load CL of 10 pF; otherwise, the load is 60 pF maximum.
6
In serial master read during convert mode. See Table 4 for serial master read after convert mode timing specifications.
1
2
3
Rev. A | Page 5 of 29
ns
ns
ns
ns
ns
ns
ns
AD7641
Table 4. Serial Clock Timings in Master Read After Convert Mode
DIVSCLK[1]
DIVSCLK[0]
SYNC to SCLK First Edge Delay Minimum
Internal SCLK Period Minimum
Internal SCLK Period Maximum
Internal SCLK High Minimum
Internal SCLK Low Minimum
SDOUT Valid Setup Time Minimum
SDOUT Valid Hold Time Minimum
SCLK Last Edge to SYNC Delay Minimum
BUSY High Width Maximum
500µA
0
0
0.5
8
14
2
3
1
0
0
0.630
0
1
3
16
26
6
7
5
0.5
0.5
0.870
1
0
3
32
52
15
16
5
10
9
1.350
1
1
3
64
103
31
32
5
28
26
2.28
Unit
ns
ns
ns
ns
ns
ns
ns
ns
µs
IOL
1.4V
CL
50pF
2V
IOH
NOTE
IN SERIAL INTERFACE MODES, THE SYNC, SCLK, AND
SDOUT TIMING ARE DEFINED WITH A MAXIMUM LOAD
CL OF 10pF; OTHERWISE, THE LOAD IS 60pF MAXIMUM.
tDELAY
tDELAY
2V
0.8V
2V
0.8V
Figure 3. Voltage Reference Levels for Timing
Figure 2. Load Circuit for Digital Interface Timing,
SDOUT, SYNC, and SCLK Outputs, CL = 10 pF
Rev. A | Page 6 of 29
04761-003
500µA
0.8V
04761-002
TO OUTPUT
PIN
Symbol
t18
t19
t19
t20
t21
t22
t23
t24
t24
AD7641
ABSOLUTE MAXIMUM RATINGS
Table 5.
Parameter
Analog Inputs/Outputs
IN+ 1, IN−, REF, REFBUFIN, TEMP,
INGND, REFGND to AGND
Ground Voltage Differences
AGND, DGND, OGND
Supply Voltages
AVDD, DVDD
OVDD
AVDD to DVDD
AVDD, DVDD to OVDD
Digital Inputs
PDREF, PDBUF 2
Internal Power Dissipation 3
Internal Power Dissipation 4
Junction Temperature
Storage Temperature Range
Rating
AVDD + 0.3 V to
AGND − 0.3 V
±0.3 V
−0.3 V to +2.7 V
−0.3 V to +3.8 V
±2.8 V
−3.8 V to +2.8 V
−0.3 V to +5.5 V
±20 mA
700 mW
2.5 W
125°C
–65°C to +125°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
See Analog Inputs section.
See Voltage Reference Input section.
3
Specification is for the device in free air:
48-Lead LQFP; θJA = 91°C/W, θJC = 30°C/W.
4
Specification is for the device in free air:
48-Lead LFCSP; θJA = 26°C/W.
1
2
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. A | Page 7 of 29
AD7641
MODE0 3
MODE1 4
D0/OB/2C 5
WARP 6
34 PD
33 RESET
32 CS
D0/OB/2C 5
32
RESET
CS
31
RD
30
DGND
AD7641
WARP 6
TOP VIEW
(Not to Scale)
NORMAL 7
D1/A0 8
29
BUSY
29 BUSY
28 D17
D2/A1 9
D3 10
28
D17
27
D16
D4/DIVSCLK[0] 11
D5/DIVSCLK[1] 12
26
D15
D14
25
D13/RDERROR
D11/SCLK
D12/SYNC
DVDD
DGND
D10/SDOUT
OVDD
13 14 15 16 17 18 19 20 21 22 23 24
04761-050
D12/SYNC 23
D13/RDERROR 24
D11/SCLK 22
DVDD 19
DGND 20
D10/SDOUT 21
OVDD 18
OGND 17
D6/EXT/INT 13
REFGND
REF
PD
33
25 D14
D7/INVSYNC 14
D8/INVSCLK 15
D9/RDC/SDIN 16
IN–
34
NC = NO CONNECT
NC = NO CONNECT
AGND
NC
CNVST
MODE0 3
MODE1 4
31 RD
30 DGND
27 D16
26 D15
D4/DIVSCLK[0] 11
D5/DIVSCLK[1] 12
AGND
35
D9/RDC/SDIN
OGND
D2/A1 9
D3 10
36
PIN 1
IDENTIFIER
D6/EXT/INT
D7/INVSYNC
D8/INVSCLK
TOP VIEW
(Not to Scale)
AGND 1
AVDD 2
04761-004
36 AGND
35 CNVST
NORMAL 7
D1/A0 8
IN+
AGND
48 47 46 45 44 43 42 41 40 39 38 37
AGND 1
AVDD 2
AD7641
AVDD
PDBUF
PDREF
REFBUFIN
TEMP
38 REFGND
37 REF
40 NC
39 IN–
42 AGND
41 AGND
44 AVDD
43 IN+
46 REFBUFIN
45 TEMP
48 PDBUF
47 PDREF
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
Figure 5. 48-Lead LQFP Pin Configuration
Figure 4. 48-Lead LFCSP Pin Configuration
Table 6. Pin Function Descriptions
Pin
No.
1, 36,
41, 42
2, 44
3, 4
Mnemonic
AGND
Type 1
P
Description
Analog Power Ground Pin.
AVDD
MODE[0:1]
P
DI
5
D0/OB/2C
DI/O
6
WARP
DI
7
NORMAL
DI
8
D1/A0
DI/O
9
D2/A1
DI/O
10
D3
D0
Input Analog Power Pins. Nominally 2.5 V.
Data Output Interface Mode Selection.
Interface MODE#
MODE1
MODE0
Description
0
0
0
18-bit interface
1
0
1
16-bit interface
2
1
0
8-bit (byte) interface
3
1
1
Serial interface
When MODE[1:0] = 0 (18-bit interface mode), this pin is Bit 0 of the parallel port data output bus
and the data coding is straight binary. In all other modes, this pin allows the choice of straight
binary/twos complement. When OB/2C is high, the digital output is straight binary; when low,
the MSB is inverted resulting in a twos complement output from its internal shift register.
Conversion Mode Selection. When WARP = high and NORMAL = high, this selects wideband warp
mode with slightly improved linearity and THD. When WARP = high and NORMAL = low, this selects
warp mode. In either mode, these are the fastest modes; maximum throughput is achievable, and
a minimum conversion rate must be applied to guarantee full specified accuracy.
Conversion Mode Selection. When NORMAL = low and WARP = low, this input selects normal mode
where full accuracy is maintained independent of the minimum conversion rate.
When MODE[1:0] = 0, this pin is Bit 1 of the parallel port data output bus. In all other modes, this
input pin controls the form in which data is output as shown in Table 7.
When MODE[1:0] = 0, this pin is Bit 2 of the parallel port data output bus.
When MODE[1:0] = 1 or 2, this input pin controls the form in which data is output as shown in Table 7.
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 3 of the parallel port data output bus.
This pin is always an output, regardless of the interface mode.
Rev. A | Page 8 of 29
AD7641
Pin
No.
11, 12
Mnemonic
D[4:5]
or DIVSCLK[0:1]
Type 1
DI/O
13
D6
or EXT/INT
DI/O
14
D7
or INVSYNC
DI/O
15
D8
or INVSCLK
DI/O
16
D9
or RDC
DI/O
or SDIN
17
18
OGND
OVDD
P
P
19
20
21
DVDD
DGND
D10
or SDOUT
P
P
DO
22
D11
or SCLK
DI/O
Description
When MODE[1:0] = 0, 1, or 2, these pins are Bit 4 and Bit 5 of the parallel port data output bus.
When MODE[1:0] = 3 (serial mode), serial clock division selection. When using serial master read
after convert mode (EXT/INT = low, RDC/SDIN = low), these inputs can be used to slow down the
internally generated serial clock that clocks the data output. In other serial modes, these pins are
high impedance outputs.
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 6 of the parallel port data output bus.
When MODE[1:0] = 3, (serial mode), serial clock source select. This input is used to select the
internally generated (master) or external (slave) serial data clock.
When EXT/INT = low, master mode. The internal serial clock is selected on SCLK output.
When EXT/INT = high, slave mode. The output data is synchronized to an external clock signal,
gated by CS, connected to the SCLK input.
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 7 of the parallel port data output bus.
When MODE[1:0] = 3, (serial mode), invert sync select. In serial master mode (EXT/INT = low), this
input is used to select the active state of the SYNC signal.
When INVSYNC = low, SYNC is active high.
When INVSYNC = high, SYNC is active low.
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 8 of the parallel port data output bus.
When MODE[1:0] = 3, (serial mode), invert SCLK select. In all serial modes, this input is used to
invert the SCLK signal.
When MODE[1:0] = 0, 1, or 2, this output is used as bit 9 of the parallel port data output bus.
When MODE[1:0] = 3, (serial mode), read during convert. When using serial master mode
(EXT/INT = low), RDC is used to select the read mode.
When RDC = high, the previous conversion result is output on SDOUT during conversion and
the period of SCLK changes (see the Master Serial Interface section).
When RDC = low (read after convert), the current result can be output on SDOUT only when
the conversion is complete.
When MODE[1:0] = 3, (serial mode), serial data in. When using serial slave mode, (EXT/INT = high),
SDIN could be used as a data input to daisy-chain the conversion results from two or more ADCs
onto a single SDOUT line. The digital data level on SDIN is output on SDOUT with a delay of 18 SCLK
periods after the initiation of the read sequence.
Input/Output Interface Digital Power Ground.
Input/Output Interface Digital Power. Nominally at the same supply as the supply of the
host interface (2.5 V or 3 V).
Digital Power. Nominally at 2.5 V.
Digital Power Ground.
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 10 of the parallel port data output bus.
When MODE[1:0] = 3, (serial mode), serial data output. In serial mode, this pin is used as the serial
data output synchronized to SCLK. Conversion results are stored in an on-chip register. The AD7641
provides the conversion result, MSB first, from its internal shift register. The data format is
determined by the logic level of OB/2C.
In master mode, EXT/INT = low. SDOUT is valid on both edges of SCLK.
In slave mode, EXT/INT = high:
When INVSCLK = low, SDOUT is updated on SCLK rising edge and valid on the next falling edge.
When INVSCLK = high, SDOUT is updated on SCLK falling edge and valid on the next rising edge.
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 11 of the parallel port data output bus.
When MODE[1:0] = 3, (serial mode), serial clock. In all serial modes, this pin is used as the serial
data clock input or output, depending upon the logic state of the EXT/INT pin. The active edge
where the data SDOUT is updated depends on the logic state of the INVSCLK pin.
Rev. A | Page 9 of 29
AD7641
Pin
No.
23
Mnemonic
D12
or SYNC
Type 1
DO
24
D13
or RDERROR
DO
25 to
28
29
D[14:17]
DO
BUSY
DO
30
31
DGND
RD
P
DI
32
CS
DI
33
RESET
DI
34
PD
DI
35
CNVST
DI
37
REF
AI/O
38
39
40
43
45
46
REFGND
IN−
NC
IN+
TEMP
REFBUFIN
AI
AI
47
PDREF
DI
48
PDBUF
DI
1
AI
AO
AI/O
Description
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 12 of the parallel port data output bus.
When MODE[1:0] = 3, (serial mode), frame synchronization. In serial master mode (EXT/INT= low),
this output is used as a digital output frame synchronization for use with the internal data clock.
When a read sequence is initiated and INVSYNC = low, SYNC is driven high and remains high
while SDOUT output is valid.
When a read sequence is initiated and INVSYNC = high, SYNC is driven low and remains low
while SDOUT output is valid.
When MODE[1:0] = 0, 1, or 2, this output is used as Bit 13 of the parallel port data output bus.
When MODE[1:0] = 3, (serial mode), read error. In serial slave mode (EXT/INT = high), this output
is used as an incomplete read error flag. If a data read is started and not completed when the
current conversion is complete, the current data is lost and RDERROR is pulsed high.
Bit 14 to Bit 17 of the parallel port data output bus. These pins are always outputs, regardless of
the interface mode.
Busy Output. Transitions high when a conversion is started and remains high until the conversion
is complete and the data is latched into the on-chip shift register. The falling edge of BUSY can be
used as a data-ready clock signal.
Digital Power Ground.
Read Data. When CS and RD are both low, the interface parallel or serial output bus is enabled.
Chip Select. When CS and RD are both low, the interface parallel or serial output bus is enabled.
CS is also used to gate the external clock in slave serial mode.
Reset Input. When high, resets the AD7641. Current conversion, if any, is aborted. Falling edge of
RESET enables the calibration mode indicated by pulsing BUSY high. Refer to the Digital Interface
section. If not used, this pin can be tied to DGND.
Power-Down Input. When high, power downs the ADC. Power consumption is reduced and
conversions are inhibited after the current one is completed.
Conversion Start. A falling edge on CNVST puts the internal sample-and-hold into the hold state
and initiates a conversion.
Reference Output/Input.
When PDREF/PDBUF = low, the internal reference and buffer are enabled producing 2.048 V on this pin.
When PDREF/PDBUF = high, the internal reference and buffer are disabled allowing an externally
supplied voltage reference up to AVDD volts. Decoupling is required with or without the internal
reference and buffer. Refer to the Voltage Reference Input section.
Reference Input Analog Ground.
Differential Negative Analog Input.
No Connect.
Differential Positive Analog Input.
Temperature Sensor Analog Output.
Internal Reference Output/Reference Buffer Input.
When PDREF/PDBUF = low, the internal reference and buffer are enabled producing the 1.2 V (typical)
band gap output on this pin, which needs external decoupling. The internal fixed gain reference
buffer uses this to produce 2.048 V on the REF pin.
When using an external reference with the internal reference buffer (PDBUF = low, PDREF = high),
applying 1.2 V on this pin produces 2.048 V on the REF pin. Refer to the Voltage Reference Input section.
Internal Reference Power-Down Input.
When low, the internal reference is enabled.
When high, the internal reference is powered down and an external reference must been used.
Internal Reference Buffer Power-Down Input.
When low, the buffer is enabled (must be low when using internal reference).
When high, the buffer is powered-down.
AI = analog input; AI/O = bidirectional analog; AO = analog output; DI = digital input; DI/O = bidirectional digital; DO = digital output; P = power.
Rev. A | Page 10 of 29
AD7641
Table 7. Data Bus Interface Definition
MODE
MODE1
MODE0
0
1
0
0
0
1
1
0
1
2
1
0
2
1
0
2
1
0
2
1
0
3
1
1
D0/OB/2C
R[0]
OB/2C
D1/A0
D2/A1
D[3]
D[4:9]
D[10:11]
D[12:15]
D[16:17]
Description
R[1]
A0 = 0
R[2]
R[2]
R[3]
R[3]
R[4:9]
R[4:9]
R[10:11]
R[10:11]
R[12:15]
R[12:15]
R[16:17]
R[16:17]
18-Bit Parallel
16-Bit High Word
OB/2C
OB/2C
A0 = 1
R[0]
R[1]
A0 = 0
A1 = 0
All Hi-Z
R[10:11]
R[12:15]
R[16:17]
8-Bit High Byte
OB/2C
OB/2C
A0 = 0
A1 = 1
All Hi-Z
R[2:3]
R[4:7]
R[8:9]
A0 = 1
A1 = 0
All Hi-Z
R[0:1]
OB/2C
OB/2C
A0 = 1
A1 = 1
All Hi-Z
All Hi-Z
Rev. A | Page 11 of 29
All Zeros
16-Bit Low Word
All Zeros
All Zeros
Serial Interface
R[0:1]
8-Bit Mid Byte
8-Bit Low Byte
8-Bit Low Byte
Serial Interface
AD7641
TERMINOLOGY
Integral Nonlinearity Error (INL)
Linearity error refers to the deviation of each individual code
from a line drawn from negative full scale through positive full
scale. The point used as negative full scale occurs ½ LSB before
the first code transition. Positive full scale is defined as a level
1½ LSB beyond the last code transition. The deviation is
measured from the middle of each code to the true straight line.
Differential Nonlinearity Error (DNL)
In an ideal ADC, code transitions are 1 LSB apart. Differential
nonlinearity is the maximum deviation from this ideal value. It
is often specified in terms of resolution for which no missing
codes are guaranteed.
Gain Error
The first transition (from 000…00 to 000…01) should occur for
an analog voltage ½ LSB above the nominal negative full scale
(−2.0479922 V for the ±2.048 V range). The last transition
(from 111…10 to 111…11) should occur for an analog voltage
1½ LSB below the nominal full scale (+2.0479766 V for the
±2.048 V range). The gain error is the deviation of the
difference between the actual level of the last transition and the
actual level of the first transition from the difference between
the ideal levels.
Zero Error
The zero error is the difference between the ideal midscale
input voltage (0 V) and the actual voltage producing the
midscale output code.
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first five harmonic
components to the rms value of a full-scale input signal and is
expressed in decibels.
Signal to (Noise + Distortion) Ratio (SINAD)
SINAD is the ratio of the rms value of the actual input signal to
the rms sum of all other spectral components below the
Nyquist frequency, including harmonics but excluding dc. The
value for SINAD is expressed in decibels.
Spurious-Free Dynamic Range (SFDR)
The difference, in decibels (dB), between the rms amplitude of
the input signal and the peak spurious signal.
Effective Number of Bits (ENOB)
ENOB is a measurement of the resolution with a sine wave
input. It is related to SINAD and is expressed in bits by
ENOB = [(SINADdB − 1.76)/6.02]
Aperture Delay
Aperture delay is a measure of the acquisition performance and
is measured from the falling edge of the CNVST input to when
the input signal is held for a conversion.
Transient Response
The time required for the AD7641 to achieve its rated accuracy
after a full-scale step function is applied to its input.
Dynamic Range
It is the ratio of the rms value of the full scale to the rms noise
measured with the inputs shorted together. The value for
dynamic range is expressed in decibels.
Signal-to-Noise Ratio (SNR)
SNR is the ratio of the rms value of the actual input signal to
the rms sum of all other spectral components below the
Nyquist frequency, excluding harmonics and dc. The value for
SNR is expressed in decibels.
Reference Voltage Temperature Coefficient
It is derived from the typical shift of output voltage at 25°C on a
sample of parts maximum and minimum reference output
voltage (VREF) measured at TMIN, T(25°C), and TMAX. It is
expressed in ppm/°C using
TCVREF (ppm/°C ) =
VREF ( Max ) − VREF ( Min)
× 10 6
VREF (25°C ) × (TMAX − TMIN )
where:
VREF (Max) = Maximum VREF at TMIN, T(25°C), or TMAX
VREF (Min) = Minimum VREF at TMIN, T(25°C), or TMAX
VREF (25°C) = VREF at 25°C
TMAX = +85°C
TMIN = –40°C
Rev. A | Page 12 of 29
AD7641
TYPICAL PERFORMANCE CHARACTERISTICS
3.0
2.0
2.5
1.5
2.0
1.5
1.0
DNL (LSB)
INL (LSB)
1.0
0.5
0
–0.5
0.5
0
–0.5
–1.0
–1.5
–1.0
–2.0
–3.0
65536
0
131072
196608
04761-008
–1.5
04761-005
–2.5
–2.0
262144
0
65536
131072
CODE
Figure 6. Integral Nonlinearity vs. Code
Figure 9. Differential Nonlinearity vs. Code
40000
30000
σ = 1.55
34844
35000
σ = 2.02
24731
23436
22225
25000
31003
30000
18995
20000
COUNTS
24739
25000
COUNTS
262144
196608
CODE
20000
16207
15000
12922
10846
15000
10000
10938
8219
10000
1171
589 51 10 1
CODE IN HEX
VREF (V)
2.0515
2.0510
2.0505
2.0500
2.0495
04761-007
2.0490
2.0485
5
25
45
65
85
105
125
TEMPERATURE (°C)
20
18
16
14
12
10
8
6
4
2
0
–2
–4
–6
–8
–10
–12
–14
–16
–18
–20
–55
1FEEB
1FEE9
1FEEA
1FEE7
1FEE8
1FEE5
1FEE6
1FEE3
1FEE4
1FEE2
–FS
ZERO-ERROR
04761-010
2.0520
ZERO-ERROR, FULL-SCALE ERROR (LSB)
2.0525
–15
1FEE0
CODE IN HEX
Figure 10. Histogram of 261,120 Conversions of a DC Input at
the Code Center (Internal Reference)
2.0530
–35
1FEE1
1FEDF
1FEDE
1FEDC
1FEDD
1FEDB
0
Figure 7. Histogram of 261,120 Conversions of a DC Input at
the Code Center (External Reference)
2.0480
–55
04761-009
1
1FED9
0
20000
0
1FFFF
1FFFE
1FFFD
1FFFC
1FFFB
1FFF9
1FFFA
1FFF8
1FFF7
1FFF6
1FFF5
1FFF4
1FFF3
232 39
2105
912
1 52 117
1FEDA
2124
272
1FFF2
2
1FFF1
0
1FFF0
1FFEF
0
04761-006
683
11
0
4688
5000
5248
4730
5000
+FS
–35
–15
5
25
45
65
85
105
125
TEMPERATURE (°C)
Figure 8. Typical Reference Voltage Output vs. Temperature (3 Units)
Rev. A | Page 13 of 29
Figure 11. Zero Error, Positive and Negative Full Scale vs. Temperature
AD7641
–40
–60
–80
–100
–120
04761-011
–140
–160
–180
200
300
400
500
600
700
800
900
–80
–100
–120
–140
–160
–180
1000
0
300
400
500
600
FREQUENCY (kHz)
Figure 12. FFT 20 kHz
Figure 15. FFT 100 kHz
93
15.6
900
1000
19
SNR
89
14.8
87
14.4
85
14.0
83
13.6
81
13.2
79
12.8
77
12.4
75
100
12.0
1000
FREQUENCY (kHz)
SNR, SINAD (dB)
15.2
ENOB (Bits)
91
10
800
SNR
SINAD
94
18
93
17
16
92
SINAD
ENOB
15
91
90
–55
04761-012
ENOB
700
95
16.0
1
200
100
FREQUENCY (kHz)
95
SNR, SINAD (dB)
–60
ENOB (Bits)
100
–40
–35
–15
5
25
45
65
85
105
14
125
04761-015
0
fS = 2MSPS
fIN = 100.8kHz
SNR = 93dB
THD = –101dB
SFDR = 101dB
SINAD = 92.5dB
–20
AMPLITUDE (dB of Full Scale)
–20
AMPLITUDE (dB of Full Scale)
0
fS = 2MSPS
fIN = 20.1kHz
SNR = 93.6dB
THD = –116dB
SFDR = 112dB
SINAD = 93.5dB
04761-014
0
TEMPERATURE (°C)
Figure 16. SNR, SINAD, and ENOB vs. Temperature
Figure 13. SNR, SINAD, and ENOB vs. Frequency
–70
120
–90
110
–95
100
–100
120
SFDR
115
SFDR
60
THD
–120
50
THIRD
HARMONIC
–140
1
10
100
FREQUENCY (kHz)
100
95
–120
90
–125
–130
30
–135
20
1000
THD
–115
40
–130
SECOND
HARMONIC
–110
105
THIRD
HARMONIC
–140
–55
85
SECOND
HARMONIC
80
75
–35
–15
5
25
45
65
85
105
70
125
TEMPERATURE (°C)
Figure 17. THD, Harmonics, and SFDR vs. Temperature
Figure 14. THD, Harmonics, and SFDR vs. Frequency
Rev. A | Page 14 of 29
SFDR (dB)
70
–110
110
–105
04761-016
80
–100
SFDR (dB)
90
THD, HARMONICS (dB)
–90
04761-013
THD, HARMONICS (dB)
–80
AD7641
100000
AVDD
10000
OPERATING CURRENTS (µA)
95.5
95.0
SNR
94.5
SINAD
94.0
1000
DVDD
100
OVDD = 2.5V, ALL MODES
10
1
OVDD = 3.3V, ALL MODES
93.5
93.0
–60
–50
–40
–30
–10
–20
0.01
10
0
04761-019
0.1
04761-017
SNR, SINAD REFERRED TO FULL SCALE (dB)
96.0
PDREF = PDBUF = HIGH
100
1k
10k
100k
1M
10M
SAMPLING RATE (SPS)
INPUT LEVEL (dB)
Figure 18. SNR and SINAD vs. Input Level (Referred to Full Scale)
Figure 20. Operating Current vs. Sample Rate
16
20
14
18
12
16
t12 DELAY (ns)
OVDD = 2.5V @ 25°C
10
DVDD
8
OVDD, 3.3V
6
14
12
10
OVDD = 3.3V @ 25°C
OVDD, 2.5V
4
8
2
6
0
–55
AVDD
–35
–15
5
25
45
65
85
105
125
TEMPERATURE (°C)
04761-020
OVDD = 3.3V @ 85°C
04761-018
DVDD, OVDD (µA)
OVDD = 2.5V @ 85°C
4
4
50
100
150
200
CL (pF)
Figure 19. Power-Down Operating Currents vs. Temperature
Figure 21. Typical Delay vs. Load Capacitance CL
Rev. A | Page 15 of 29
AD7641
APPPLICATIONS INFORMATION
IN+
AGND
LSB
MSB
131,072C
65,536C
4C
2C
C
SW+
SWITCHES
CONTROL
C
BUSY
REF
COMP
CONTROL
LOGIC
REFGND
4C
2C
C
OUTPUT
CODE
C
MSB
SW–
LSB
CNVST
AGND
04761-021
131,072C 65,536C
IN–
Figure 22. ADC Simplified Schematic
CIRCUIT INFORMATION
The AD7641 is a very fast, low power, single-supply, precise
18-bit ADC using successive approximation architecture. The
AD7641 features different modes to optimize performances
according to the applications. In warp mode, the AD7641 is
capable of converting 2,000,000 samples per second (2 MSPS).
The AD7641 provides the user with an on-chip track-and-hold,
successive approximation ADC that does not exhibit any
pipeline or latency, making it ideal for multiple multiplexed
channel applications.
The AD7641 can operate from a single 2.5 V supply and
interface to either 5 V, 3.3 V, or 2.5 V digital logic. It is housed
in a 48-lead LQFP package or a tiny 48-lead LFCSP package,
which combines space savings with flexibility and allows the
AD7641 to be configured as either a serial or a parallel
interface. The AD7641 is pin-to-pin-compatible and is a
speed upgrade of the AD7674, AD7678, and AD7679.
CONVERTER OPERATION
The AD7641 is a successive approximation ADC based on a
charge redistribution DAC. Figure 22 shows the simplified
schematic of the ADC. The capacitive DAC consists of two
identical arrays of 16 binary weighted capacitors that are
connected to the two comparator inputs.
During the acquisition phase, terminals of the array tied to the
comparator’s input are connected to AGND via SW+ and SW−.
All independent switches are connected to the analog inputs.
Therefore, the capacitor arrays are used as sampling capacitors
and acquire the analog signal on the IN+ and IN− inputs. A
conversion phase is initiated once the acquisition phase is complete
and the CNVST input goes low. When the conversion phase
begins, SW+ and SW− are opened first. The two capacitor
arrays are then disconnected from the inputs and connected to
the REFGND input. Therefore, the differential voltage between
the inputs (IN+ and IN−) captured at the end of the acquisition
phase is applied to the comparator inputs, causing the
comparator to become unbalanced. By switching each element
of the capacitor array between REFGND and REF, the comparator
input varies by binary weighted voltage steps (VREF/2, VREF/4
throughVREF/131072). The control logic toggles these switches,
starting with the MSB first, to bring the comparator back into a
balanced condition. After the completion of this process, the
control logic generates the ADC output code and brings BUSY
output low.
MODES OF OPERATION
The AD7641 features three modes of operations: wideband
warp, warp, and normal. Each of these modes is more suitable
for specific applications.
The wideband warp (WARP = high, NORMAL = high) and
warp (WARP = high, NORMAL = low) modes allow the fastest
conversion rate of up to 2 MSPS. However, in these modes, the
full specified accuracy is guaranteed only when the time between
conversions does not exceed 1 ms. If the time between two
consecutive conversions is longer than 1 ms (for instance after
power-up), the first conversion result should be ignored. These
modes make the AD7641 ideal for applications where both high
accuracy and fast sample rates are required. Wideband warp
mode offers slightly improved linearity and THD over warp mode.
Normal mode (NORMAL = low, WARP = low) is the fastest
mode (1.5 MSPS) without any limitation on time between
conversions. This mode makes the AD7641 ideal for
asynchronous applications, such as data acquisition systems,
where both high accuracy and fast sample rates are required.
Rev. A | Page 16 of 29
AD7641
TRANSFER FUNCTIONS
Table 8. Output Codes and Ideal Input Voltages
Description
FSR −1 LSB
FSR − 2 LSB
Midscale + 1 LSB
Midscale
Midscale − 1 LSB
−FSR + 1 LSB
−FSR
111...111
111...110
111...101
1
2
000...010
000...001
000...000
–FSR –FSR + 1 LSB
–FSR + 0.5 LSB
Digital Output Code (Hex)
Straight
Twos
Binary
Complement
1
0x3FFFF
0x1FFFF1
0x3FFFE
0x1FFFE
0x20001
0x00001
0x20000
0x00000
0x1FFFF
0x3FFFF
0x30001
0x20001
0x30000 2 0x200002
Analog Input
VREF = 2.048 V
+2.0479844 V
+2.0479688 V
+15.625 µV
0V
−15.625 µV
−2.0479844 V
−2.048 V
This is also the code for overrange analog input (VIN+ − VIN− above
+VREF − VREFGND).
This is also the code for underrange analog input (VIN+ − VIN− below
−VREF + VREFGND).
+FSR – 1 LSB
04761-022
ADC CODE (Straight Binary)
Using the OB/2C digital input, except in 18-bit interface mode,
the AD7641 offers two output codings: straight binary and twos
complement. The LSB size with VREF = 2.048 V is 2 × VREF/
262,144, which is 15.623 µV. Refer to Figure 23 and Table 8 for
the ideal transfer characteristic.
+FSR – 1.5 LSB
ANALOG INPUT
Figure 23. ADC Ideal Transfer Function
DIGITAL
SUPPLY (2.5V)
NOTE 5
DIGITAL
INTERFACE
SUPPLY
(2.5V OR 3.3V)
10Ω
ANALOG
SUPPLY (2.5V)
100nF
10µF
10µF
AVDD
REF
CREF
10µF
AGND
100nF
10µF
100nF
DGND
DVDD
OVDD
NOTE 3
OGND
SERIAL
PORT
SCLK
REFBUFIN
100nF
SDOUT
REFGND
NOTE 4
BUSY
50Ω
15Ω
ANALOG
INPUT +
U1
D
CNVST
IN+
50pF
AD7641
CC
MICROCONVERTER/
MICROPROCESSOR/
DSP
NOTE 7
NOTE 2
2.7nF
D0/OB/2C
MODE0
MODE1
NOTE 1
OVDD
WARP
NORMAL
NOTE 2
CS
15Ω
ANALOG
INPUT –
U2
CC
IN–
2.7nF
NOTE 1
CLOCK
RD
NOTE 3
PD
PDREF PDBUF
50pF
RESET
10kΩ
1. SEE ANALOG INPUTS SECTION.
2. THE AD8021 IS RECOMMENDED. SEE DRIVER AMPLIFIER CHOICE SECTION.
3. THE CONFIGURATION SHOWN IS USING THE INTERNAL REFERENCE. SEE VOLTAGE REFERENCE INPUT SECTION.
4. A 10µF CERAMIC CAPACITOR (X5R, 1206 SIZE) IS RECOMMENDED (FOR EXAMPLE, PANASONIC ECJ3YB0J106M).
SEE VOLTAGE REFERENCE INPUT SECTION.
5. OPTION, SEE POWER SUPPLY SECTION.
6. OPTION, SEE POWER-UP SECTION.
7. OPTIONAL LOW JITTER CNVST, SEE CONVERSION CONTROL SECTION.
Figure 24. Typical Connection Diagram
Rev. A | Page 17 of 29
04761-023
NOTE 6
AD7641
TYPICAL CONNECTION DIAGRAM
Figure 24 shows a typical connection diagram for the AD7641.
Different circuitry shown in this diagram is optional and is
discussed in the following sections.
ANALOG INPUTS
Figure 25 shows an equivalent circuit of the input structure of
the AD7641.
The two diodes, D1 and D2, provide ESD protection for the
analog inputs IN+ and IN−. Care must be taken to ensure that
the analog input signal never exceeds the supply rails by more
than 0.3 V, because this causes the diodes to become forwardbiased and start conducting current. These diodes can handle a
forward-biased current of 100 mA maximum. For instance,
these conditions could eventually occur when the input buffer’s
U1 or U2 supplies are different from AVDD. In such a case, an
input buffer with a short-circuit current limitation can be used
to protect the part.
AVDD
D1
RIN
IN+ OR IN–
D2
AGND
Because the input impedance of the AD7641 is very high, the
AD7641 can be directly driven by a low impedance source
without gain error. To further improve the noise filtering achieved
by the AD7641 analog input circuit, an external 1-pole RC filter
between the amplifier’s outputs and the ADC analog inputs can
be used, as shown in Figure 24. However, large source impedances
significantly affect the ac performance, especially the total
harmonic distortion (THD). The maximum source impedance
depends on the amount of THD that can be tolerated. The
THD degrades as a function of the source impedance and the
maximum input frequency.
MULTIPLEXED INPUTS
CIN
04761-024
CPIN
comprised of some serial resistors and the on resistance of the
switches. CIN is typically 12 pF and is mainly the ADC sampling
capacitor. During the conversion phase, when the switches are
opened, the input impedance is limited to CPIN. RIN and CIN
make a 1-pole, low-pass filter that has a typical −3 dB cutoff
frequency of 50 MHz, thereby reducing an undesirable aliasing
effect and limiting the noise coming from the inputs.
Figure 25. AD7641 Simplified Analog Input
The analog input of the AD7641 is a true differential structure.
By using this differential input, small signals common to both
inputs are rejected, as shown in Figure 26, representing the
typical CMRR over frequency with internal and external
references.
65
When using the full 2 MSPS throughput in multiplexed
applications for a full-scale step, the RC filter, as shown in
Figure 24, does not settle in the required acquisition time, t8.
These values are chosen to optimize the best SNR perform-ance
of the AD7641. To use the full 2 MSPS throughput in
multiplexed applicaitons, the RC should be adjusted to satisfy t8
(which is ~ 8.5 × RC time constant). However, lowering R and C
increases the RC filter bandwidth and allows more noise into the
AD7641, which degrades SNR. To preserve the SNR performance
in these applications using the RC filter shown in Figure 24,
the AD7641 should be run with t8 > 350 ns; or approximately
1/(t7 + t8) ~ 1.35 MSPS in wideband and warp modes.
DRIVER AMPLIFIER CHOICE
60
Although the AD7641 is easy to drive, the driver amplifier
needs to meet the following requirements:
CMRR (dB)
EXT REF
INT REF
•
55
04761-025
50
45
1
10
100
1000
10000
FREQUENCY (kHz)
Figure 26. Analog Input CMRR vs. Frequency
During the acquisition phase for ac signals, the impedance of
the analog inputs, IN+ and IN−, can be modeled as a parallel
combination of capacitor CPIN and the network formed by the
series connection of RIN and CIN. CPIN is primarily the pin
capacitance. RIN is typically 175 Ω and is a lumped component
Rev. A | Page 18 of 29
For multichannel, multiplexed applications, the driver
amplifier and the AD7641 analog input circuit must be
able to settle for a full-scale step of the capacitor array at an
18-bit level (0.0004%). In the amplifier’s data sheet, settling
at 0.1% to 0.01% is more commonly specified. This could
differ significantly from the settling time at a 18-bit level
and should be verified prior to driver selection. The
AD8021 op amp, which combines ultralow noise and high
gain bandwidth, meets this settling time requirement even
when used with gains up to 13.
AD7641
•
Single-to-Differential Driver
The noise generated by the driver amplifier needs to be
kept as low as possible to preserve the SNR and transition
noise performance of the AD7641. The noise coming from
the driver is filtered by the AD7641 analog input circuit
1-pole, low-pass filter made by RIN and CIN or by the
external filter, if one is used. The SNR degradation due
to the amplifier is
SNRLOSS
30
= 20log
πf −3dB
900 +
(Ne N + )2 + πf −3dB (Ne N − )2
2
2
For applications using unipolar analog signals, a single-endedto-differential driver, as shown in Figure 27, allows for a
differential input into the part. This configuration, when
provided an input signal of 0 to VREF, produces a differential
±VREF with midscale at VREF/2. The 1-pole filter using R = 10 Ω
and C = 1 nF provides a corner frequency of 16 MHz.
If the application can tolerate more noise, the AD8139
differential driver can be used.
U1
f–3dB is the input bandwidth of the AD7641 (50 MHz) or
the cutoff frequency of the input RC filter shown in Figure 24
(3.9 MHz), if one is used.
The driver needs to have a THD performance suitable to
that of the AD7641. Figure 14 gives the THD vs. frequency
that the driver should exceed.
The AD8021 meets these requirements and is appropriate for
almost all applications. The AD8021 needs a 10 pF external
compensation capacitor that should have good linearity as an
NPO ceramic or mica type. Moreover, the use of a noninverting
1 gain arrangement is recommended and helps to obtain the
best signal-to-noise ratio.
The AD8022 can also be used when a dual version is needed
and a gain of 1 is present. The AD829 is an alternative in
applications where high frequency (above 100 kHz) performance is
not required. In applications with a gain of 1, an 82 pF
compensation capacitor is required. The AD8610 is an option
when low bias current is needed in low frequency applications.
15Ω
590Ω
2.7nF
5kΩ
15Ω
U2
5kΩ
For instance, when using op amps with an equivalent input
noise density of 2.1 nV/√Hz, such as the AD8021, with a
noise gain of 1 when configured as a buffer, degrades the
SNR by only 0.25 dB when using the RC filter in Figure 24,
and by 2.5 dB without it.
590Ω
IN+
AD7641
N is the noise factor of the amplifier (1 in buffer
configuration).
eN+ and eN− are the equivalent input voltage noise densities
of the op amps connected to IN+ and IN−, in nV/√Hz.
This approximation can be used when the resistances used
around the amplifier are small. If larger resistances are
used, their noise contributions should also be root-sum
squared.
10pF
AD8021
100nF
IN–
REF
2.7nF
10pF
10µF
04761-027
where:
•
AD8021
ANALOG INPUT
(UNIPOLAR 0V TO 2.048V)
Figure 27. Single-Ended-to-Differential Driver Circuit
(Internal Reference Buffer Used)
VOLTAGE REFERENCE INPUT
The AD7641 allows the choice of either a very low temperature
drift internal voltage reference or an external reference.
Unlike many ADCs with internal references, the internal
reference of the AD7641 provides excellent performance and
can be used in almost all applications.
Internal Reference (PDBUF = Low, PDREF = Low)
To use the internal reference, the PDREF and PDBUF inputs
must both be low. This produces a 1.2 V band gap output on
REFBUFIN, which is amplified by the internal buffer and
results in a 2.048 V reference on the REF pin.
The internal reference is temperature compensated to 2.048 V
± 10 mV. The reference is trimmed to provide a typical drift of
10 ppm/°C. This typical drift characteristic is shown in Figure 8.
The output resistance of REFBUFIN is 6.33 kΩ (minimum)
when the internal reference is enabled. It is necessary to
decouple this with a ceramic capacitor greater than 100 nF.
Therefore, the capacitor provides an RC filter for noise reduction.
Because the output impedance of REFBUFIN is typically
6.33 kΩ, relative humidity (among other industrial contaminates)
can directly affect the drift characteristics of the reference.
Typically, a guard ring is used to reduce the effects of drift
under such circumstances.
Rev. A | Page 19 of 29
AD7641
External 1.2 V Reference and Internal Buffer (PDBUF =
Low, PDREF = High)
To use an external reference along with the internal buffer,
PDREF should be high and PDBUF should be low. This powers
down the internal reference and allows the 1.2 V reference to
be applied to REFBUFIN, producing 2.048 V (typically) on
the REF pin.
External 2.5 V Reference (PDBUF = High, PDREF = High)
To use an external 2.5 V reference directly on the REF pin,
PDREF and PDBUF should both be high.
For improved drift performance, an external reference, such as
the AD780 or ADR431, can be used. The advantages of directly
using the external voltage reference are:
•
The SNR and dynamic range improvement (about 1.7 dB)
resulting from the use of a reference voltage very close to
the supply (2.5 V) instead of a typical 2.048 V reference
when the internal reference is used. This is calculated by
For applications that use multiple AD7641 devices, it is more
effective to use an external reference with the internal reference
buffer to buffer the reference voltage. However, because the
reference buffers are not unity gain, ratiometric, simultaneously
sampled designs should use an external reference and external
buffer, such as the AD8031/AD8032; therefore, preserving the
same reference level for all converters.
The voltage reference temperature coefficient (TC) directly
impacts full scale; therefore, in applications where full-scale
accuracy matters, care must be taken with the TC. For instance,
a ±4 ppm/°C TC of the reference changes full scale by ±1 LSB/°C.
Note that VREF can be increased to AVDD + 0.1 V. Because the
input range is defined in terms of VREF, this would essentially
increase the range to 0 V to 2.8 V with an AVDD = 2.7 V.
Temperature Sensor
The TEMP pin measures the temperature of the AD7641. To
improve the calibration accuracy over the temperature range,
the output of the TEMP pin is applied to one of the inputs of
the analog switch (such as, ADG779), and the ADC itself is
used to measure its own temperature. This configuration is
shown in Figure 28.
2.048
SNR = 20log
2.50
•
TEMP
ADG779
The power savings when the internal reference is powered
down (PDREF high).
IN+
ANALOG INPUT
(UNIPOLAR)
PDREF and PDBUF power down the internal reference and
the internal reference buffer, respectively. The input current
of PDREF and PDBUF should never exceed 20 mA. This can
occur when the driving voltage is above AVDD (for instance, at
power-up). In this case, a 125 Ω series resistor is recommended.
Reference Decoupling
Whether using an internal or external reference, the AD7641
voltage reference input (REF) has a dynamic input impedance;
therefore, it should be driven by a low impedance source with
efficient decoupling between the REF and REFGND inputs.
This decoupling depends on the choice of the voltage reference
but usually consists of a low ESR capacitor connected to REF
and REFGND with minimum parasitic inductance. A 10 µF
(X5R, 1206 size) ceramic chip capacitor (or 47 µF tantalum
capacitor) is appropriate when using either the internal
reference or one of the recommended reference voltages.
The placement of the reference decoupling is also important to
the performance of the AD7641. The decoupling capacitor
should be mounted on the same side as the ADC right at the
REF pin with a thick PCB trace. The REFGND should also connect
to the reference decoupling capacitor with the shortest distance.
Rev. A | Page 20 of 29
AD8021
CC
TEMPERATURE
SENSOR
AD7641
Figure 28. Use of the Temperature Sensor
04761-028
However, because the AD7641 has a fine lead pitch, guarding
this node is not practical. Therefore, in these industrial and
other types of applications, it is recommended to use a conformal
coating, such as Dow Corning® 1-2577 or HumiSeal® 1B73.
AD7641
POWER SUPPLY
The AD7641 uses three sets of power supply pins: an analog
2.5 V supply AVDD, a digital 2.5 V core supply DVDD, and a
digital input/output interface supply OVDD. The OVDD
supply allows direct interface with any logic working between
2.3 V and 5.25 V. To reduce the number of supplies needed, the
digital core (DVDD) can be supplied through a simple RC filter
from the analog supply, as shown in Figure 24.
Power Sequencing
The AD7641 is independent of power supply sequencing and
thus free from supply induced voltage latch-up. In addition, it
is very insensitive to power supply variations over a wide
frequency range, as shown in Figure 29.
It should be noted that the digital interface remains active even
during the acquisition phase. To reduce the operating digital
supply currents even further, drive the digital inputs close to
the power rails (that is, OVDD and OGND).
CONVERSION CONTROL
The AD7641 is controlled by the CNVST input. A falling edge
on CNVST is all that is necessary to initiate a conversion.
Detailed timing diagrams of the conversion process are shown
in Figure 30. Once initiated, it cannot be restarted or aborted,
even by the power-down input, PD, until the conversion is
complete. The CNVST signal operates independently of CS and
RD signals.
t2
t1
65.0
62.5
CNVST
57.5
BUSY
EXT REF
t4
t3
55.0
t6
t5
52.5
INT REF
MODE
50.0
ACQUIRE
CONVERT
t7
45.0
1
10
100
1000
CONVERT
t8
Figure 30. Basic Conversion Timing
04761-029
47.5
ACQUIRE
04761-030
PSRR (dB)
60.0
For optimal performance, the rising edge of CNVST should not
occur after the maximum CNVST low time, t1, or until the end
of conversion.
10000
FREQUENCY (MHz)
Figure 29. PSRR vs. Frequency
Although CNVST is a digital signal, it should be designed with
special care with fast, clean edges and levels with minimum
overshoot and undershoot or ringing.
Power-Up
At power-up, or returning to operational mode from the
power-down mode (PD = high), the AD7641 engages an
initialization process. During this time, the first 128
conversions should be ignored or the RESET input could be
pulsed to engage a faster initialization process. Refer to the
Digital Interface section for RESET and timing details.
A simple power-on reset circuit, as shown in Figure 24, can be
used to minimize the digital interface. As OVDD powers up,
the capacitor is shorted and brings RESET high; it is then
charged returning RESET to low. However, this circuit only
works when powering up the AD7641 because the power-down
mode
(PD = high) does not power down any of the supplies and as a
result, RESET is low.
The CNVST trace should be shielded with ground and a low
value serial resistor (for example, 50 Ω) termination should be
added close to the output of the component that drives this
line. In addition, a 50 pF capacitor is recommended to further
reduce the effects of overshoot and undershoot as shown in Figure
24.
For applications where SNR is critical, the CNVST signal
should have very low jitter. This can be achieved by using a
dedicated oscillator for CNVST generation, or by clocking
CNVST with a high frequency, low jitter clock, as shown in
Figure 24.
Rev. A | Page 21 of 29
AD7641
INTERFACES
DIGITAL INTERFACE
PARALLEL INTERFACE
The AD7641 has a versatile digital interface that can be set up
as either a serial or a parallel interface with the host system. The
serial interface is multiplexed on the parallel data bus. The AD7641
digital interface also accommodates 2.5 V, 3.3 V, or 5 V logic with
either OVDD at 2.5 V or 3.3 V. OVDD defines the logic high
output voltage. In most applications, the OVDD supply pin of
the AD7641 is connected to the host system interface 2.5 V or
3.3 V digital supply. By using the D0/OB/2C input pin, either
twos complement or straight binary coding can be used.
The AD7641 is configured to use the parallel interface for an
18-bit, 16-bit, or 8-bit bus width according to Table 7.
The two signals CS and RD control the interface. When at least
one of these signals is high, the interface outputs are in high
impedance. Usually, CS allows the selection of each AD7641 in
multicircuit applications and is held low in a single AD7641
design. RD is generally used to enable the conversion result on
the data bus.
CS = RD = 0
Master Parallel Interface
Data can be continuously read by tying CS and RD low, thus
requiring minimal microprocessor connections. However, in
this mode, the data bus is always driven and cannot be used in
shared bus applications, unless the device is held in RESET.
Figure 32 details the timing for this mode.
t1
CNVST
t10
BUSY
The RESET input is used to reset the AD7641 and generate a
fast initialization. A rising edge on RESET aborts the current
conversion (if any) and tristates the data bus. The falling edge
of RESET clears the data bus and engages the initialization
process indicated by pulsing BUSY high. Conversions can take
place after the falling edge of BUSY. Refer to Figure 31 for the
RESET timing details.
t9
RESET
t11
PREVIOUS CONVERSION DATA
04761-032
DATA
BUS
RESET
t4
t3
NEW DATA
Figure 32. Master Parallel Data Timing for Reading (Continuous Read)
Slave Parallel Interface
In slave parallel reading mode, the data can be read either after
each conversion, which is during the next acquisition phase, or
during the following conversion, as shown in Figure 33 and
Figure 34, respectively. When the data is read during the
conversion, it is recommended that it is read-only during the
first half of the conversion phase. This avoids any potential
feedthrough between voltage transients on the digital interface
and the most critical analog conversion circuitry.
CNVST
CS
DATA
BUSY
Figure 31. RESET Timing
t8
BUSY
DATA
BUS
CURRENT
CONVERSION
t12
t13
Figure 33. Slave Parallel Data Timing for Reading (Read After Convert)
Rev. A | Page 22 of 29
04761-033
t39
04761-031
RD
t38
AD7641
SERIAL INTERFACE
CS = 0
t1
CNVST,
RD
BUSY
The AD7641 is configured to use the serial interface when
MODE[1:0] = 3. The AD7641 outputs 18 bits of data, MSB first,
on the SDOUT pin. This data is synchronized with the 18 clock
pulses provided on the SCLK pin. The output data is valid on
both the rising and falling edge of the data clock.
t4
t3
DATA
BUS
MASTER SERIAL INTERFACE
Internal Clock
t12
045761-034
PREVIOUS
CONVERSION
t13
Figure 34. Slave Parallel Data Timing for Reading (Read During Convert)
16-Bit and 8-Bit Interface (Master or Slave)
In the 16-bit (MODE[1:0] = 1) and 8-bit (MODE[1:0] = 2)
interfaces, the A0/A1 pins allow a glueless interface to a 16- or
8-bit bus, as shown in Figure 35. By connecting A0/A1 to an
address line(s), the data can be read in two words for a 16-bit
interface, or three bytes for an 8-bit interface. This interface can
be used in both master and slave parallel reading modes. Refer
to Table 7 for the full details of the interface.
CS, RD
A1
The AD7641 is configured to generate and provide the serial
data clock SCLK when the EXT/INT pin is held low. The
AD7641 also generates a SYNC signal to indicate to the host
when the serial data is valid. The serial clock SCLK and the
SYNC signal can be inverted. Depending on the read during
convert input, RDC/SDIN, the data can be read after each
conversion or during the following conversion. Figure 36 and
Figure 37 show detailed timing diagrams of these two modes.
Usually, because the AD7641 is used with a fast throughput, the
master read during conversion mode is the most recommended
serial mode. In this mode, the serial clock and data toggle at
appropriate instants, minimizing potential feedthrough
between digital activity and critical conversion decisions. In
this mode, the SCLK period changes because the LSBs require
more time to settle and the SCLK is derived from the SAR
conversion cycle.
D[17:2]
D[17:10]
HI-Z
HI-Z
HIGH
WORD
HIGH
BYTE
t12
MID
BYTE
t12
LOW
WORD
HI-Z
LOW
BYTE
HI-Z
t12
Figure 35. 8-Bit and 16-Bit Parallel Interface
t13
04761-035
A0
In read after conversion mode, it should be noted that unlike
other modes, the BUSY signal returns low after the 18 data bits
are pulsed out and not at the end of the conversion phase,
resulting in a longer BUSY width. As a result, the maximum
throughput cannot be achieved in this mode.
In addition, in read after convert mode, the SCLK frequency
can be slowed down to accommodate different hosts using the
DIVSCLK[1:0] inputs. Refer to Table 4 for the SCLK timing
details when using these inputs.
Rev. A | Page 23 of 29
AD7641
EXT/INT = 0
RDC/SDIN = 0
INVSCLK = INVSYNC = 0
DIVSCLK[1:0] = 0
CS, RD
t3
CNVST
t28
BUSY
t30
t29
t25
SYNC
t18
t19
t14
t24
t21
t20
t26
1
SCLK
2
3
16
17
18
t15
t27
D17
X
t16
D16
D2
D1
D0
04761-036
SDOUT
t23
t22
Figure 36. Master Serial Data Timing for Reading (Read After Convert)
RDC/SDIN = 1
EXT/INT = 0
INVSCLK = INVSYNC = 0
CS, RD
t1
CNVST
t3
BUSY
t17
t25
SYNC
t19
t20 t21
t14
SCLK
t15
1
t24
2
3
16
17
t18
t16
X
t22
t27
D17
D16
D2
D1
D0
04761-037
SDOUT
t26
18
t23
Figure 37. Master Serial Data Timing for Reading (Read Previous Conversion During Convert)
Rev. A | Page 24 of 29
AD7641
SLAVE SERIAL INTERFACE
The AD7641 is configured to accept an externally supplied
serial data clock on the SCLK pin when the EXT/INT pin is
held high. In this mode, several methods can be used to read
the data. The external serial clock is gated by CS. When CS and
RD are both low, the data can be read after each conversion or
during the following conversion. The external clock can be
either a continuous or a discontinuous clock. A discontinuous
clock can be either normally high or normally low when
inactive. Figure 39 and Figure 40 show the detailed timing
diagrams of these methods.
While the AD7641 is performing a bit decision, it is important
that voltage transients be avoided on digital input/output pins
or degradation of the conversion result could occur. This is
particularly important during the second half of the conversion
phase because the AD7641 provides error correction circuitry
that can correct for an improper bit decision made during
the first half of the conversion phase. For this reason, it is
recommended that when an external clock is being provided,
a discontinuous clock is toggled only when BUSY is low or,
more importantly, that it does not transition during the latter
half of BUSY high.
External Discontinuous Clock Data Read After Conversion
Though the maximum throughput cannot be achieved using
this mode, it is the most recommended of the serial slave
modes. Figure 39 shows the detailed timing diagrams of this
method. After a conversion is complete, indicated by BUSY
returning low, the conversion result can be read while both CS
and RD are low. Data is shifted out MSB first with 18 clock
pulses and is valid on the rising and falling edges of the clock.
An example of the concatenation of two devices is shown in
Figure 38. Simultaneous sampling is possible by using a
common CNVST signal. It should be noted that the RDC/SDIN
input is latched on the edge of SCLK opposite to the one used
to shift out the data on SDOUT. Therefore, the MSB of the
upstream converter just follows the LSB of the downstream
converter on the next SCLK cycle.
BUSY
OUT
BUSY
BUSY
AD7641
AD7641
#2
(UPSTREAM)
#1
(DOWNSTREAM)
RDC/SDIN
SDOUT
RDC/SDIN
SDOUT
CNVST
CNVST
CS
CS
SCLK
SCLK
DATA
OUT
SCLK IN
CS IN
CNVST IN
04761-038
External Clock
Figure 38.Two AD7641 Devices in a Daisy-Chain Configuration
External Clock Data Read During Previous Conversion
Figure 40 shows the detailed timing diagrams of this method.
During a conversion, while CS and RD are both low, the result
of the previous conversion can be read. The data is shifted out,
MSB first, with 16 clock pulses and is valid on both the rising
and falling edge of the clock. The 18 bits have to be read before
the current conversion is complete; otherwise, RDERROR is
pulsed high and can be used to interrupt the host interface to
prevent incomplete data reading. There is no daisy-chain
feature in this mode, and the RDC/SDIN input should always
be tied either high or low.
Among the advantages of this method is the fact that conversion
performance is not degraded because there are no voltage
transients on the digital interface during the conversion
process. Another advantage is the ability to read the data at any
speed up to 80 MHz, which accommodates both the slow
digital host interface and the fast serial reading.
To reduce performance degradation due to digital activity, a
fast discontinuous clock (at least 60 MHz when normal mode is
used, or 80 MHz when warp mode is used) is recommended to
ensure that all the bits are read during the first half of the SAR
conversion phase.
Finally, in this mode only, the AD7641 provides a daisy-chain
feature using the RDC/SDIN pin for cascading multiple converters
together. This feature is useful for reducing component count and
wiring connections when desired, as, for instance, in isolated
multiconverter applications.
It is also possible to begin to read data after conversion and
continue to read the last bits after a new conversion is initiated.
However, this is not recommended when using the fastest
throughput of any mode because the acquisition time, t8, is
only 115 ns.
If the maximum throughput is not used, thus allowing more
acquisition time, then the use of a slower clock speed can be
used to read the data.
Rev. A | Page 25 of 29
AD7641
RD = 0
INVSCLK = 0
EXT/INT = 1
CS
BUSY
t36
SCLK
t35
t37
1
2
t31
3
16
17
18
19
20
t32
X
SDOUT
D17
t16
D16
D15
D1
D0
X17
X16
X16
X15
X1
X0
Y17
Y16
SDIN
X17
t33
04761-039
t34
Figure 39. Slave Serial Data Timing for Reading (Read After Convert)
t31
EXT/INT = 1
RD = 0
INVSCLK = 0
CS
t3
CNVST
t35
BUSY
t36
SCLK
t37
2
1
4
3
16
17
18
SDOUT
X
D17
D16
D15
D2
D1
D0
t16
Figure 40. Slave Serial Data Timing for Reading (Read Previous Conversion During Convert)
Rev. A | Page 26 of 29
04761-040
t32
AD7641
MICROPROCESSOR INTERFACING
SPI Interface (ADSP-219x)
The AD7641 is ideally suited for traditional dc measurement
applications supporting a microprocessor, and ac signal processing
applications interfacing to a digital signal processor. The AD7641
is designed to interface with a parallel 8-bit or 16-bit wide
interface or with a general-purpose serial port or I/O ports on a
microcontroller. A variety of external buffers can be used with
the AD7641 to prevent digital noise from coupling into the
ADC. The SPI Interface (ADSP-219x) section illustrates the use
of the AD7641 with the ADSP-219x SPI-equipped DSP.
Figure 41 shows an interface diagram between the AD7641 and
an SPI-equipped DSP, the ADSP-219x. To accommodate the
slower speed of the DSP, the AD7641 acts as a slave device and
data must be read after conversion. This mode also allows the
daisy-chain feature. The convert command can be initiated in
response to an internal timer interrupt. The 18-bit output data
are read with three SPI byte access. The reading process can be
initiated in response to the end-of-conversion signal (BUSY
going low) using an interrupt line of the DSP. The serial
peripheral interface (SPI) on the ADSP-219x is configured for
master mode (MSTR) = 1, clock polarity bit (CPOL) = 0, clock
phase bit (CPHA) = 1, and the SPI interrupt enable (TIMOD) =
00 by writing to the SPI control register (SPICLTx). It should
be noted that to meet all timing requirements, the SPI clock
should be limited to 17 Mb/s, allowing it to read an ADC result
in less than 1 µs. When a higher sampling rate is desired, it is
recommended to use one of the parallel interface modes.
DVDD
AD7641
EXT/INT
ADSP-219x1
BUSY
CS
SDOUT
RD
SCLK
INVSCLK CNVST
PFx
SPIxSEL (PFx)
MISOx
SCKx
PFx OR TFSx
1ADDITIONAL PINS OMITTED FOR CLARITY.
Figure 41. Interfacing the AD7641 to ADSP-219x
Rev. A | Page 27 of 29
04761-041
MODE0
MODE1
AD7641
APPLICATION HINTS
LAYOUT
While the AD7641 has very good immunity to noise on the
power supplies, exercise care with the grounding layout. To
facilitate the use of ground planes that can be easily separated,
design the printed circuit board that houses the AD7641 so that
the analog and digital sections are separated and confined to
certain areas of the board. Digital and analog ground planes
should be joined in only one place, preferably underneath the
AD7641, or as close as possible to the AD7641. If the AD7641 is
in a system where multiple devices require analog-to-digital
ground connections, the connections should still be made at
one point only, a star ground point, established as close as
possible to the AD7641.
To prevent coupling noise onto the die, to avoid radiating
noise, and to reduce feedthrough:
• Do not run digital lines under the device.
• Run the analog ground plane under the AD7641.
• Shield fast switching signals, like CNVST or clocks, with
digital ground to avoid radiating noise to other sections of
the board, and never run them near analog signal paths.
• Avoid crossover of digital and analog signals.
• Run traces on different but close layers of the board, at right
angles to each other, to reduce the effect of feedthrough
through the board.
The power supply lines to the AD7641 should use as large a
trace as possible to provide low impedance paths and reduce
the effect of glitches on the power supply lines. Good
decoupling is also important to lower the impedance of the
supplies presented to the AD7641, and to reduce the magnitude
of the supply spikes. Decoupling ceramic capacitors, typically
100 nF, should be placed on each of the power supplies pins,
AVDD, DVDD, and OVDD. The capacitors should be placed
close to, and ideally right up against, these pins and their
corresponding ground pins. Additionally, low ESR 10 µF
capacitors should be located in the vicinity of the ADC to
further reduce low frequency ripple.
The DVDD supply of the AD7641 can be either a separate
supply or come from the analog supply, AVDD, or from the
digital interface supply, OVDD. When the system digital supply
is noisy, or fast switching digital signals are present, and no
separate supply is available, it is recommended to connect the
DVDD digital supply to the analog supply AVDD through an
RC filter, and to connect the system supply to the interface
digital supply OVDD and the remaining digital circuitry. Refer
to Figure 24 for an example of this configuration. When DVDD
is powered from the system supply, it is useful to insert a bead
to further reduce high frequency spikes.
The AD7641 has four different ground pins: REFGND, AGND,
DGND, and OGND. REFGND senses the reference voltage
and, because it carries pulsed currents, should have a low
impedance return to the reference. AGND is the ground to
which most internal ADC analog signals are referenced; it must be
connected with the least resistance to the analog ground plane.
DGND must be tied to the analog or digital ground plane
depending on the configuration. OGND is connected to the
digital system ground.
The layout of the decoupling of the reference voltage is
important. To minimize parasitic inductances, place the
decoupling capacitor close to the ADC and connect it with
short, thick traces.
EVALUATING THE AD7641 PERFORMANCE
A recommended layout for the AD7641 is outlined in the
documentation of the EVAL-AD7641-CB evaluation board for
the AD7641. The evaluation board package includes a fully
assembled and tested evaluation board, documentation, and
software for controlling the board from a PC via the EVALCONTROL BRD3.
Rev. A | Page 28 of 29
AD7641
OUTLINE DIMENSIONS
0.75
0.60
0.45
9.00
BSC SQ
1.60
MAX
37
48
36
1
PIN 1
0.15
0.05
7.00
BSC SQ
TOP VIEW
1.45
1.40
1.35
(PINS DOWN)
0.20
0.09
7°
3.5°
0°
0.08 MAX
COPLANARITY
SEATING
PLANE
25
12
13
24
0.27
0.22
0.17
VIEW A
0.50
BSC
LEAD PITCH
VIEW A
ROTATED 90° CCW
COMPLIANT TO JEDEC STANDARDS MS-026-BBC
Figure 42. 48-Lead Low Profile Quad Flat Package [LQFP]
(ST-48)
Dimensions shown in millimeters
PIN 1
INDICATOR
AREA
7.10
7.00 SQ
6.90
DETAIL A
(JEDEC 95)
0.30
0.23
0.18
37
36
48
1
0.50
BSC
P IN 1
IN D IC ATO R AR E A OP T IO N S
(SEE DETAIL A)
5.20
5.10 SQ
5.00
EXPOSED
PAD
12
0.80
0.75
0.70
END VIEW
PKG-004509
SEATING
PLANE
24
13
BOTTOM VIEW
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.203 REF
0.20 MIN
5.50 REF
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-WKKD-4
10-10-2018-C
TOP VIEW
0.45
0.40
0.35
Figure 43. 48-Lead Lead Frame Chip Scale Package [LFCSP]
7 mm × 7 mm Body and 0.75 mm Package Height
(CP-48-4)
Dimensions shown in millimeters
ORDERING GUIDE
Model
AD7641BCPZ 1
AD7641BCPZRL1
AD7641BSTZ1
AD7641BSTZRL1
EVAL-AD7641CB 2
EVAL-CONTROLBRD3 3
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
48-Lead Lead Frame Chip Scale Package (LFCSP)
48-Lead Lead Frame Chip Scale Package (LFCSP)
48-Lead Low Profile Quad Flat Package (LQFP)
48-Lead Low Profile Quad Flat Package (LQFP)
Evaluation Board
Controller Board
Package Option
CP-48-4
CP-48-4
ST-48
ST-48
Z = Pb-free part.
This board can be used as a standalone evaluation board or in conjunction with the EVAL-CONTROL BRD3 for evaluation/demonstration purposes.
3
This board allows a PC to control and communicate with all Analog Devices, Inc. evaluation boards ending in the CB designators.
1
2
©2006–2020 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D04761-8/20(A)
Rev. A | Page 29 of 29