0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD7771BCPZ-RL

AD7771BCPZ-RL

  • 厂商:

    AD(亚德诺)

  • 封装:

    WFQFN64

  • 描述:

    IC ADC 24BIT SIGMA-DELTA 64LFCSP

  • 数据手册
  • 价格&库存
AD7771BCPZ-RL 数据手册
8-Channel, 24-Bit, Simultaneous Sampling ADC AD7771 Data Sheet FEATURES 8-channel, 24-bit simultaneous sampling ADC Single-ended or true differential inputs PGA per channel (gains of 1, 2, 4, and 8) Low dc input current ±4 nA (differential)/±8 nA (single-ended) Up to 128 kSPS ODR per channel Programmable ODRs and bandwidth SRC for coherent sampling Sampling rate resolution up to 15.2 × 10−6 SPS Low latency sinc3 and sinc5 filter paths Adjustable phase synchronization Internal 2.5 V reference Two power modes High resolution mode Low power mode Optimizes power dissipation and performance Low resolution SAR ADC for system and chip diagnostics Power supply Bipolar (±1.65 V) or unipolar (3.3 V) supplies Digital I/O supply: 1.8 V to 3.6 V Performance temperature range: −40°C to +105°C Functional temperature range: −40°C to +125°C Performance Combined ac and dc performance 107 dB SNR/dynamic range at 32 kSPS in high resolution mode (sinc5) −109 dB THD ±8 ppm of FSR INL ±15 µV offset error ±0.1% FS gain error ±10 ppm/°C typical temperature coefficient APPLICATIONS Power quality and measurement applications General-purpose data acquisition Electroencephalography (EEG) Industrial process control voltage from 1 V up to 3.6 V. The analog inputs accept unipolar (0 V to VREF) or true bipolar (±VREF/2 V) analog input signals with 3.3 V or ±1.65 V analog supply voltages, respectively. The analog inputs can be configured to accept true differential or single-ended signals to match different sensor output configurations. Each channel contains an ADC modulator and a sinc3/sinc5, low latency digital filter. A sample rate converter (SRC) is provided to allow fine resolution control over the AD7771 output data rate (ODR). This control can be used in applications where the ODR resolution is required to maintain coherency with 0.01 Hz changes in the line frequency. The SRC is programmable through the serial port interface (SPI). The AD7771 implements two different interfaces: a data output interface and SPI control interface. The ADC data output interface is dedicated to transmitting the ADC conversion results from the AD7771 to the processor. The SPI writes to and reads from the AD7771 configuration registers and for the control and reading of data from the successive approximation register (SAR) ADC. The SPI can also be configured to output the Σ-Δ conversion data. The AD7771 includes a 12-bit SAR ADC. This ADC can be used for AD7771 diagnostics without having to decommission one of the Σ-Δ ADC channels dedicated to system measurement functions. With the use of an external multiplexer, which can be controlled through the three general-purpose input/output pins (GPIOs), and signal conditioning, the SAR ADC can validate the Σ-Δ ADC measurements in applications where functional safety is required. In addition, the AD7771 SAR ADC includes an internal multiplexer to sense internal nodes. The AD7771 contains a 2.5 V reference and reference buffer. The reference has a typical temperature coefficient of ±10 ppm/°C. The AD7771 offers two modes of operation: high resolution mode and low power mode. High resolution mode provides a higher dynamic range while consuming 16.6 mW per channel; low power mode consumes only 5.25 mW per channel at a reduced dynamic range specification. GENERAL DESCRIPTION The specified operating temperature range is −40°C to +105°C, although the device is operational up to +125°C. The AD77711 is an 8-channel, simultaneous sampling analog-todigital converter (ADC). Eight full Σ-Δ ADCs are on-chip. The AD7771 provides an ultralow input current to allow direct sensor connection. Each input channel has a programmable gain stage allowing gains of 1, 2, 4, and 8 to map lower amplitude sensor outputs into the full-scale ADC input range, maximizing the dynamic range of the signal chain. The AD7771 accepts a VREF Note that throughout this data sheet, certain terms are used to refer to either the multifunction pins or a range of pins. The multifunction pins, such as DCLK0/SDO, are referred to either by the entire pin name or by a single function of the pin, for example, DCLK0, when only that function is relevant. In the case of ranges of pins, AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. 1 This product is protected by at least U.S. Patent No. 9,432,043. Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2017–2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD7771 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Σ-∆ Output Data............................................................................. 54 Applications ....................................................................................... 1 ADC Conversion Output—Header and Data ........................ 54 General Description ......................................................................... 1 Sample Rate Converter (SRC) (SPI Control Mode) .............. 55 Revision History ............................................................................... 3 Data Output Interface ................................................................ 57 Functional Block Diagram .............................................................. 4 Calculating the CRC Checksum .............................................. 61 Specifications..................................................................................... 5 Register Summary .......................................................................... 62 DOUTx Timing Characterististics ............................................. 9 Register Details ............................................................................... 66 SPI Timing Characterististics ................................................... 10 Channel 0 Configuration Register ........................................... 66 Synchronization Pins and Reset Timing Characteristics ...... 11 Channel 1 Configuration Register ........................................... 66 SAR ADC Timing Characterististics ....................................... 12 Channel 2 Configuration Register ........................................... 67 GPIO SRC Update Timing Characterististics......................... 12 Channel 3 Configuration Register ........................................... 67 Absolute Maximum Ratings .......................................................... 13 Channel 4 Configuration Register ........................................... 68 Thermal Resistance .................................................................... 13 Channel 5 Configuration Register ........................................... 68 ESD Caution ................................................................................ 13 Channel 6 Configuration Register ........................................... 69 Pin Configuration and Function Descriptions ........................... 14 Channel 7 Configuration Register ........................................... 69 Typical Performance Characteristics ........................................... 17 Disable Clocks to ADC Channel Register .............................. 70 Terminology .................................................................................... 32 Channel 0 Sync Offset Register ................................................ 70 Theory of Operation ...................................................................... 34 Channel 1 Sync Offset Register ................................................ 70 Analog Inputs .............................................................................. 34 Channel 2 Sync Offset Register ................................................ 70 Transfer Function ....................................................................... 35 Channel 3 Sync Offset Register ................................................ 71 Core Signal Chain....................................................................... 36 Channel 4 Sync Offset Register ................................................ 71 Capacitive PGA ........................................................................... 36 Channel 5 Sync Offset Register ................................................ 71 Internal Reference and Reference Buffers ............................... 36 Channel 6 Sync Offset Register ................................................ 71 Integrated LDOs ......................................................................... 37 Channel 7 Sync Offset Register ................................................ 71 Clocking and Sampling .............................................................. 37 General User Configuration 1 Register ................................... 72 Digital Reset and Synchronization Pins .................................. 37 General User Configuration 2 Register ................................... 73 Digital Filtering ........................................................................... 38 General User Configuration 3 Register ................................... 74 Shutdown Mode.......................................................................... 38 Data Output Format Register ................................................... 74 Controlling the AD7771 ............................................................ 39 Main ADC Meter and Reference Mux Control Register ...... 75 Pin Control Mode....................................................................... 39 Global Diagnostics Mux Register ............................................. 76 SPI Control .................................................................................. 42 GPIO Configuration Register ................................................... 76 Digital SPI .................................................................................... 45 GPIO Data Register.................................................................... 77 RMS Noise and Resolution............................................................ 48 Buffer Configuration 1 Register ............................................... 77 High Resolution Mode............................................................... 48 Buffer Configuration 2 Register ............................................... 77 Low Power Mode ........................................................................ 49 Channel 0 Offset Upper Byte Register..................................... 78 Diagnostics and Monitoring ......................................................... 50 Channel 0 Offset Middle Byte Register ................................... 78 Self Diagnostics Error ................................................................ 50 Channel 0 Offset Lower Byte Register..................................... 78 Monitoring Using the AD7771 SAR ADC (SPI Control Mode) ........................................................................................... 51 Channel 0 Gain Upper Byte Register....................................... 78 Σ-Δ ADC Diagnostics (SPI Control Mode) ............................ 53 Channel 0 Gain Middle Byte Register ..................................... 78 Channel 0 Gain Lower Byte Register ....................................... 79 Rev. A | Page 2 of 99 Data Sheet AD7771 Channel 1 Offset Upper Byte Register .....................................79 Channel 6 Gain Lower Byte Register ....................................... 86 Channel 1 Offset Middle Byte Register ....................................79 Channel 7 Offset Upper Byte Register ..................................... 86 Channel 1 Offset Lower Byte Register .....................................79 Channel 7 Offset Middle Byte Register.................................... 86 Channel 1 Gain Upper Byte Register........................................79 Channel 7 Offset Lower Byte Register ..................................... 86 Channel 1 Gain Middle Byte Register ......................................80 Channel 7 Gain Upper Byte Register ....................................... 87 Channel 1 Gain Lower Byte Register........................................80 Channel 7 Gain Middle Byte Register ...................................... 87 Channel 2 Offset Upper Byte Register .....................................80 Channel 7 Gain Lower Byte Register ....................................... 87 Channel 2 Offset Middle Byte Register ....................................80 Channel 0 Status Register .......................................................... 87 Channel 2 Offset Lower Byte Register .....................................80 Channel 1 Status Register .......................................................... 88 Channel 2 Gain Upper Byte Register........................................81 Channel 2 Status Register .......................................................... 88 Channel 2 Gain Middle Byte Register ......................................81 Channel 3 Status Register .......................................................... 89 Channel 2 Gain Lower Byte Register........................................81 Channel 4 Status Register .......................................................... 89 Channel 3 Offset Upper Byte Register .....................................81 Channel 5 Status Register .......................................................... 90 Channel 3 Offset Middle Byte Register ....................................81 Channel 6 Status Register .......................................................... 90 Channel 3 Offset Lower Byte Register .....................................82 Channel 7 Status Register .......................................................... 91 Channel 3 Gain Upper Byte Register........................................82 Channel 0/Channel 1 DSP Errors Register.............................. 91 Channel 3 Gain Middle Byte Register ......................................82 Channel 2/Channel 3 DSP Errors Register.............................. 92 Channel 3 Gain Lower Byte Register........................................82 Channel 4/Channel 5 DSP Errors Register.............................. 92 Channel 4 Offset Upper Byte Register .....................................82 Channel 6/Channel 7 DSP Errors Register.............................. 93 Channel 4 Offset Middle Byte Register ....................................83 Channel 0 to Channel 7 Error Register Enable Register ....... 93 Channel 4 Offset Lower Byte Register .....................................83 General Errors Register 1 ........................................................... 94 Channel 4 Gain Upper Byte Register........................................83 General Errors Register 1 Enable .............................................. 94 Channel 4 Gain Middle Byte Register ......................................83 General Errors Register 2 ........................................................... 95 Channel 4 Gain Lower Byte Register........................................83 General Errors Register 2 Enable .............................................. 95 Channel 5 Offset Upper Byte Register .....................................84 Error Status Register 1 ................................................................ 96 Channel 5 Offset Middle Byte Register ....................................84 Error Status Register 2 ................................................................ 96 Channel 5 Offset Lower Byte Register .....................................84 Error Status Register 3 ................................................................ 97 Channel 5 Gain Upper Byte Register........................................84 Decimation Rate (N) MSB Register ......................................... 97 Channel 5 Gain Middle Byte Register ......................................84 Decimation Rate (N) LSB Register ........................................... 97 Channel 5 Gain Lower Byte Register........................................85 Decimation Rate (IF) MSB Register ......................................... 97 Channel 6 Offset Upper Byte Register .....................................85 Decimation Rate (IF) LSB Register .......................................... 98 Channel 6 Offset Middle Byte Register ....................................85 SRC Load Source and Load Update Register .......................... 98 Channel 6 Offset Lower Byte Register .....................................85 Outline Dimensions ........................................................................ 99 Channel 6 Gain Upper Byte Register........................................85 Ordering Guide ........................................................................... 99 Channel 6 Gain Middle Byte Register ......................................86 REVISION HISTORY 6/2018—Rev. 0 to Rev. A Changes to IAVDD2x Parameter, Table 1 ............................................. 8 Changes to AUXAIN± Parameter, Table 7 ..................................13 Changes to Table 13 ........................................................................39 Changes to Phase Adjustment Section .........................................42 Added Table 17; Renumbered Sequentially .................................43 Added Figure 121; Renumbered Sequentially ............................. 47 Changes to Figure 132 Caption and Figure 133 Caption........... 57 Updated Outline Dimensions........................................................ 99 Changes to Ordering Guide ........................................................... 99 6/2017—Revision 0: Initial Version Rev. A | Page 3 of 99 AD7771 Data Sheet FUNCTIONAL BLOCK DIAGRAM AVDD1x REFx+ REFx– AVDD2x AREGxCAP COMMONMODE VOLTAGE ANALOG LDO IOVDD DREGCAP DIGITAL LDO 2.5V REF AIN0+ AIN0– AIN1+ AIN1– AIN2+ AIN2– AIN3+ AIN3– AIN4+ AIN4– AIN5+ AIN5– AIN6+ AIN6– AIN7+ AIN7– 280mV p-p EXT_REF INT_REF GAIN OFFSET Σ-Δ ADC SINC3/ SINC5 SRC FILTER GAIN OFFSET PGA Σ-Δ ADC SINC3/ SINC5 SRC FILTER GAIN OFFSET PGA Σ-Δ ADC SINC3/ SINC5 SRC FILTER GAIN OFFSET PGA Σ-Δ ADC SINC3/ SINC5 SRC FILTER GAIN OFFSET PGA Σ-Δ ADC SINC3/ SINC5 SRC FILTER GAIN OFFSET GAIN OFFSET GAIN OFFSET Σ-Δ ADC PGA REFERENCES REFERENCES REFERENCES REFERENCES REFERENCES PGA Σ-Δ ADC SINC3/ SINC5 SRC FILTER PGA Σ-Δ ADC SINC3/ SINC5 SRC FILTER REFERENCES REFERENCES XTAL2/MCLK SYNC_IN SYNC_OUT START SINC3/ SINC5 SRC FILTER PGA XTAL1 CLOCK MANAGER DCLK DRDY DATA OUTPUT INTERFACE DOUT2 DOUT1 DOUT0 REGISTER MAP AND LOGIC CONTROL RESET FORMAT1 FORMAT0 HARDWARE MODE CONFIGURATION MODE3/ALERT MODE2/GPIO2 MODE1/GPIO1 MODE0/GPIO0 ALERT/CS SPI INTERFACE AUXAIN+ AUXAIN– DOUT3 DCLK2/SCLK DCLK1/SDI DCLK0/SDO AD7771 SAR ADC DIAGNOSTIC INPUTS AVSSx AVDD4 CONVST_SAR Figure 1. Rev. A | Page 4 of 99 13802-001 VCM REF_OUT Data Sheet AD7771 SPECIFICATIONS AVDD1x = 1.65 V, AVSSx 1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = analog ground (AGND) (single-supply operation), AVDD2x − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V AVSSx (internal/external), master clock (MCLK) = 8192 kHz for high resolution mode and 4096 kHz for low power mode, ODR = 128 kSPS for high resolution mode and 32 kSPS for low power mode; all specifications at TMIN to TMAX, unless otherwise noted. Table 1. Parameter ANALOG INPUTS Differential Input Voltage Range Single-Ended Input Voltage Range AINx± Common-Mode Input Range Absolute AINx± Voltage Limits DC Input Current Differential Single-Ended Input Current Drift AC Input Capacitance PROGRAMMABLE GAIN AMPLIFIER (PGA) Gain Settings (PGAGAIN) Bandwidth Small Signal Large Signal REFERENCE Internal Initial Accuracy Temperature Coefficient Reference Load Current, IL DC Power Supply Rejection Load Regulation, ∆VOUT/∆IL Voltage Noise, eN p-p Voltage Noise Density, eN Turn On Settling Time External Input Voltage Buffer Headroom REFx− Input Voltage Average REFx± Input Current Test Conditions/Comments Min Typ VREF = (REFx+ − REFx−) AVSSx + 0.10 (AVDD1x + AVSSx)/2 AVSSx + 0.10 High resolution mode Low power mode High resolution mode Low power mode Max Unit ±VREF/PGAGAIN 0 to VREF/PGAGAIN AVDD1x − 0.10 V V V AVDD1x − 0.10 V ±4 ±1 ±8 ±2 50 8 nA nA nA nA pA/°C pF 1, 2, 4, or 8 High resolution mode Low power mode High resolution mode Low power mode REF_OUT, TA = 25°C 2 512 See Figure 39, Figure 40, and Figure 44 See Figure 42, Figure 43, and Figure 47 2.495 2.5 ±10 −10 Line regulation VREF = (REFx+ − REFx−) 2.505 ±38 +10 V ppm/°C mA dB µV/mA µV rms nV/√Hz ms AVDD1x AVDD1x − 0.1 AVDD1x − REFx+ V V V 95 100 6.8 273.5 1.5 0.1 Hz to 10 Hz 1 kHz, 2.5 V reference 100 nF 1 AVSSx + 0.1 2.5 AVSSx Current per channel Reference buffer disabled, high resolution mode Reference buffer precharge mode (pre-Q), high resolution mode Reference buffer disabled, low power mode Reference buffer pre-Q, low power mode Reference buffer enabled, high resolution mode Reference buffer enabled, low power mode Rev. A | Page 5 of 99 MHz kHz 18 µA/V 600 nA/V 4.5 µA/V 100 nA/V 12 nA/V 5 nA/V AD7771 Parameter TEMPERATURE RANGE Specified Performance Functional 2 TEMPERATURE SENSOR Accuracy DIGITAL FILTER RESPONSE Group Delay Settling Time Pass Band Decimation Rate Sinc3 Sinc5 CLOCK SOURCE Frequency Duty Cycle Σ-Δ ADC Speed and Performance Resolution ODR No Missing Codes AC Accuracy Dynamic Range 128 kSPS 32 kSPS 16 kSPS 4 kSPS 32 kSPS 8 kSPS 8 kSPS 2 kSPS Total Harmonic Distortion (THD) Signal-to-Noise-and-Distortion Ratio (SINAD) Spurious-Free Dynamic Range (SFDR) Intermodulation Distortion (IMD) DC Power Supply Rejection DC Common-Mode Rejection Ratio Crosstalk DC ACCURACY Integral Nonlinearity (INL) High Resolution Data Sheet Test Conditions/Comments Min TMIN to TMAX TMIN to TMAX −40 −40 Typ Max Unit +105 +125 °C °C ±2 °C See the SRC Group Delay section See the Settling Time section See the SRC Bandwidth section See the SRC Bandwidth section −0.1 dB −3 dB High resolution mode Low power mode 16 16 4095.99 2048 0.655 1.3 45:55 8.192 4.096 55:45 50:50 24 High resolution mode Low power mode Sinc3, up to 24 kSPS Sinc5 128 32 24 24 Shorted inputs, PGAGAIN = 1 High resolution mode (sinc5) High resolution mode (sinc5) High resolution mode (sinc3) High resolution mode (sinc3) Low power mode (sinc5) Low power mode (sinc5) Low power mode (sinc3) Low power mode (sinc3) −0.5 dBFS, high resolution mode −0.5 dBFS, low power mode fIN = 60 Hz High resolution mode, 16 kSPS, PGAGAIN = 1 fA = 50 Hz, fB = 51 Hz, high resolution mode fA = 50 Hz, fB = 51 Hz, low power mode AVDD1x = 3.3 V Bits kSPS kSPS Bits Bits 95 107 105.9 116 94.5 106.5 95.8 111.8 −109 −105 106 dB dB dB dB dB dB dB dB dB dB dB 132 dB −125 dB −105 dB −90 dB dB dB 80 −120 Endpoint method PGAGAIN = 1 ±8 ±15 Other PGA gains ±4 ±15 Rev. A | Page 6 of 99 MHz MHz % ppm of FSR ppm of FSR Data Sheet Parameter Low Power AD7771 Test Conditions/Comments PGAGAIN = 1 Min Typ ±9 Max ±17 Other PGA gains ±6 ±15 ±90 Over time ±15 0.25 −2 Offset Error Offset Error Drift Offset Matching Gain Error Gain Error Drift vs. Temperature Gain Matching SAR ADC Speed and Performance Resolution Analog Input Range Analog Input Common-Mode Range Analog Input Current Throughput DC Accuracy INL Differential Nonlinearity (DNL) Offset Gain AC Performance Signal-to-Noise Ratio (SNR) THD VCM PIN Output (VCM) Load Current, IL Load Regulation, ∆VOUT/∆IL Short-Circuit Current LOGIC INPUTS Input Voltage High, VIH Low, VIL Hysteresis Input Currents LOGIC OUTPUTS 3 Output Voltage High, VOH Low, VOL Leakage Current Output Capacitance Σ-Δ ADC Data Output Coding SAR ADC Data Output Coding 25 ±0.1 ±0.75 ±0.1 PGAGAIN = 1 12 AVSS4 + 0.1 AVSS4 + 0.1 (AVDD4 + AVSS4)/2 ±100 Unit ppm of FSR ppm of FSR µV µV/°C µV/1000 hours µV % FS ppm/°C % AVDD4 − 0.1 AVDD4 − 0.1 Bits V V 256 nA kSPS Differential mode ±1.5 No missing codes (12-bit) ±1 12 LSB LSB LSB LSB 66 −81 dB dB (AVDD1x + AVSSx)/2 1 12 5 V −0.99 1 kHz 1 kHz 1 mA mV/mA mA 0.7 × IOVDD 0.4 0.1 −10 IOVDD ≥ 3 V, ISOURCE = 1 mA 2.3 V ≤ IOVDD < 3 V, ISOURCE = 500 µA IOVDD < 2.3 V, ISOURCE = 200 µA IOVDD ≥ 3 V, ISINK = 2 mA 2.3 V ≤ IOVDD < 3 V, ISINK = 1 mA IOVDD < 2.3 V, ISINK = 100 µA Floating state Floating state +10 0.8 × IOVDD 0.8 × IOVDD V V 0.8 × IOVDD 0.4 0.4 0.4 +10 −10 Rev. A | Page 7 of 99 V V V µA 10 Twos complement Binary V V V V µA pF AD7771 Parameter POWER SUPPLIES AVDD1x − AVSSx IAVDD1x 4, 5 AVDD2x − AVSSx IAVDD2x AVDD4 − AVSSx IAVDD4 AVSSx − DGND IOVDD − DGND IIOVDD Power Dissipation 6 High Resolution Mode Low Power Mode Power-Down Data Sheet Test Conditions/Comments All Σ-Δ channels enabled Min Typ Max Unit 3.6 V 18.3 5 23.7 6.4 mA mA 20.5 5.5 26.7 7.1 mA mA 14.3 3.9 18.8 5.1 3.6 9.45 3.7 3.6 2 10 0 3.6 17 5.5 14.2 4.9 mA mA V mA mA V mA µA V V mA mA mA mA 153 48.5 mW mW µW 3.0 Reference buffer pre-Q, VCM enabled, internal reference enabled High resolution mode Low power mode Reference buffer enabled, VCM enabled, internal reference enabled High resolution mode Low power mode Reference buffer disabled, VCM disabled, internal reference disabled High resolution mode Low power mode 2.2 High resolution mode Low power mode 9 3.5 3 SAR enabled SAR disabled 1.7 1 −1.8 1.8 High resolution mode (sinc5) Low power mode (sinc5) High resolution mode (sinc3) Low power mode (sinc3) Internal buffers bypassed, internal reference disabled, internal oscillator disabled, SAR disabled 128 kSPS 32 kSPS All ADCs disabled 14.3 4.6 12.2 2.2 133 42 530 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVDD3, and AVSS4. This term is used throughout the data sheet. At temperatures higher than 105°C, the device can be operated normally, though slight degradation on the maximum/minimum specifications is expected because these specifications are only guaranteed up to 105°C. See the Typical Performance Characteristics section for plots showing the typical performance of the device at high temperatures. 3 The SDO pin and the DOUTx pin are configured in the default mode of strength. 4 AVDD1x = 3.3 V, AVSSx = GND = ground, IOVDD = 1.8 V, CMOS clock. 5 Disabling either the VCM pin or the internal reference results in a 40 µA typical current consumption reduction. 6 Power dissipation is calculated using the maximum supply voltage, 3.6 V. 1 2 Rev. A | Page 8 of 99 Data Sheet AD7771 DOUTx TIMING CHARACTERISTISTICS AVDD1x = 1.65 V, AVSSx 1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND (single-supply operation), AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V internal/external, MCLK = 8192 kHz; all specifications at TMIN to TMAX, unless otherwise noted. Table 2. Parameter t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 2 Test Conditions/Comments 50:50 MCLK/2 MCLK/2 Min 0.655 60 60 121 121 Typ 2 1 20 20 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. This term is used throughout the data sheet. All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2. t1 t2 t3 MCLK DCLK t4 t6 t5 t8 t7 t9 DRDY DOUTx LSB MSB Max 8.192 45 45 MSB – 1 t10 t11 Figure 2. Data Interface Timing Diagram Rev. A | Page 9 of 99 LSB + 1 LSB 13802-002 1 Description 2 MCLK frequency MCLK low time MCLK high time DCLK high time DCLK low time MCLK falling edge to DCLK rising edge MCLK falling edge to DCLK falling edge DCLK rising edge to DRDY rising edge DCLK rising edge to DRDY falling edge DOUTx setup time DOUTx hold time Unit MHz ns ns ns ns ns ns ns ns ns ns AD7771 Data Sheet SPI TIMING CHARACTERISTISTICS AVDD1x = 1.65 V, AVSSx 1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX, unless otherwise noted. Table 3. Parameter t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22A t22B t23 t24 t25 2 Test Conditions/Comments 50:50 Min 7 7 10 10 10 10 10 5 5 30 49 10 10 30 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. This term is used throughout the data sheet. All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2. t19 CS t15 t16 t17 t13 t14 t18 SCLK t20 SDI MSB t22A SDO MSB – 1 t12 LSB + 1 LSB t21 MSB t22B MSB – 1 LSB + 1 t24 t23 Figure 3. SPI Control Interface Timing Diagram Rev. A | Page 10 of 99 LSB t25 13802-003 1 Description 2 SCLK period SCLK low time SCLK high time SCLK rising edge to CS falling edge CS falling edge to SCLK rising edge SCLK rising edge to CS rising edge CS rising edge to SCLK rising edge Minimum CS high time SDI setup time SDI hold time CS falling edge to SDO enable (SPI = Mode 0) SCLK falling edge to SDO enable (SPI = Mode 3) SDO setup time SDO hold time CS rising edge to SDO disable Typ Max 30 Unit MHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns Data Sheet AD7771 SYNCHRONIZATION PINS AND RESET TIMING CHARACTERISTICS AVDD1x = 1.65 V, AVSSx 1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX, unless otherwise noted. Table 4. Parameter t26 t27 t28 t29 t30 tINIT_SYNC_IN tINIT_RESET t31 tPOWER_UP 2 Test Conditions/Comments 16 kSPS, high resolution mode 16 kSPS, high resolution mode Min 10 MCLK MCLK 10 MCLK 145 225 2 × MCLK tPOWER_UP is not shown in Figure 4 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. This term is used throughout the data sheet. All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2. MCLK START t26 t27 SYNC_OUT t28 SYNC_IN t29 t30 DRDY tINIT_SYNC_IN RESET t31 tINIT_RESET Figure 4. Synchronization Pins and Reset Control Interface Timing Diagram Rev. A | Page 11 of 99 Typ 2 13802-004 1 Description 2 START setup time START hold time MCLK falling edge to SYNC_OUT falling edge SYNC_IN setup time SYNC_IN hold time SYNC_IN rising edge to first DRDY RESET rising edge to first DRDY RESET hold time Start time Max Unit ns ns ns ns ns µs µs ns ms AD7771 Data Sheet SAR ADC TIMING CHARACTERISTISTICS AVDD1x = 1.65 V, AVSSx 1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX, unless otherwise noted. Table 5. Parameter t32 t33 t34 t35 Description 2 Conversion time Acquisition time 3 Delay time Throughput data rate Min 1 500 50 Typ Max 3.4 Unit µs ns ns kSPS 256 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3 and AVSS4. This term is used throughout the data sheet. All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2. 3 Direct mode enabled. If deglitch mode is enabled, add 1.5/MCLK as described in Table 30. 1 2 CS t32 t33 t34 13802-005 CONVST_SAR t35 Figure 5. SAR ADC Timing Diagram GPIO SRC UPDATE TIMING CHARACTERISTISTICS AVDD1x = 1.65 V, AVSSx 1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications TMIN to TMAX, unless otherwise noted. Table 6. Parameter t36 t37 t38 t39 t40 2 Min 10 MCLK 2 × MCLK 20 5 MCLK Typ AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3 and AVSS4. This term is used throughout the data sheet. All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2. MCLK GPIO2 t36 t37 GPIO1 t38 GPIO0 t39 t40 Figure 6. GPIOs for SRC Update Timing Diagram Rev. A | Page 12 of 99 13802-006 1 Description 2 GPIO2 setup time GPIO2 hold time—high resolution mode GPIO2 hold time—low power mode MCLK rising edge to GPIO1 rising edge time GPIO0 setup time GPIO0 hold time Max Unit ns ns ns ns ns ns Data Sheet AD7771 ABSOLUTE MAXIMUM RATINGS Table 7. Parameter Any Supply Pin to AVSSx AVSSx to DGND AREGxCAP to AVSSx DREGCAP to DGND IOVDD to DGND IOVDD to AVSSx AVDD4 to AVSSx Analog Input Voltage REFx± Input Voltage AUXAIN± Digital Input Voltage to DGND Digital Output Voltage to DGND XTAL1 to DGND AINx±, AUXAIN±, and Digital Input Current Operating Temperature Range Junction Temperature, TJ Maximum Storage Temperature Range Reflow Soldering ESD Field Induced Charged Device Model (FICDM) Rating −0.3 V to +3.96 V −1.98 V to +0.3 V −0.3 V to +1.98 V −0.3 V to +1.98 V −0.3 V to +3.96 V −0.3 V to +5.94 V −0.3 V to +3.96 V AVSSx − 0.3 V to AVDD1x + 0.3 V or 3.96 V (whichever is less) AVSSx − 0.3 V to AVDD1x + 0.3 V or 3.96 V (whichever is less) AVSSx − 0.3 V to AVDD4 + 0.3 V or 3.96 V (whichever is less) DGND − 0.3 V to IOVDD + 0.3 V or 3.96 V (whichever is less) DGND − 0.3 V to IOVDD + 0.3 V or 3.96 V (whichever is less) DGND − 0.3 V to DREGCAP + 0.3 V or 1.98 V (whichever is less) ±10 mA Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. THERMAL RESISTANCE Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Close attention to PCB thermal design is required. Table 8. Thermal Resistance Package Type CP-64-151 No Thermal Vias 49 Thermal Vias θJA θJB ΨJT ΨJB Unit 30.43 22.62 N/A2 3.17 0.13 0.09 6.59 3.19 °C/W °C/W Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board. See JEDEC JESD51. 2 N/A means not applicable. 1 ESD CAUTION −40°C to +125°C 150°C −65°C to +150°C 260°C 2 kV 500 V Rev. A | Page 13 of 99 AD7771 Data Sheet 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 AUXAIN– AUXAIN+ AVDD4 AVSS4 AVSS2A AREG1CAP AVDD2A VCM CLK_SEL FORMAT0 FORMAT1 AVSS3 AVDD2B AREG2CAP AVSS2B REF_OUT PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 AD7771 TOP VIEW (Not to Scale) 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 AIN4– AIN4+ AIN5– AIN5+ AVSS1B AVDD1B REF2– REF2+ AIN6– AIN6+ AIN7– AIN7+ RESET SYNC_IN SYNC_OUT START NOTES 1. EXPOSED PAD. CONNECT THE EXPOSED PAD TO AVSSx. 13802-007 CONVST_SAR ALERT/CS DCLK2/SCLK DCLK1/SDI DCLK0/SDO DGND DREGCAP IOVDD DOUT3 DOUT2 DOUT1 DOUT0 DCLK DRDY XTAL1 XTAL2/MCLK 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 AIN0– AIN0+ AIN1– AIN1+ AVSS1A AVDD1A REF1– REF1+ AIN2– AIN2+ AIN3– AIN3+ MODE0/GPIO0 MODE1/GPIO1 MODE2/GPIO2 MODE3/ALERT Figure 7. Pin Configuration Table 9. Pin Function Descriptions Pin No. 1 2 3 4 5 Mnemonic AIN0− AIN0+ AIN1− AIN1+ AVSS1A Type Analog input Analog input Analog input Analog input Supply Direction Input Input Input Input Supply 6 AVDD1A Supply Supply 7 REF1− Reference Input 8 9 10 11 12 13 REF1+ AIN2− AIN2+ AIN3− AIN3+ MODE0/GPIO0 Reference Analog input Analog input Analog input Analog input Digital I/O Input Input Input Input Input I/O 14 MODE1/GPIO1 Digital I/O I/O 15 MODE2/GPIO2 Digital I/O I/O 16 MODE3/ALERT Digital I/O I/O Description Analog Input Channel 0, Negative. Analog Input Channel 0, Positive. Analog Input Channel 1, Negative. Analog Input Channel 1, Positive. Negative Front-End Analog Supply for Channel 0 to Channel 3, Typical at −1.65 V (Dual Supply) and AGND (Single Supply). Connect all the AVSSx pins to the same potential. Positive Front-End Analog Supply for Channel 0 to Channel 3, Typical at AVSSx + 3.3 V. Connect this pin to AVDD1B. Negative Reference Input 1 for Channel 0 to Channel 3, Typical at AVSSx. Connect all the REFx− pins to the same potential. Positive Reference Input 1 for Channel 0 to Channel 3, Typical at REF1− + 2.5 V. Analog Input Channel 2, Negative. Analog Input Channel 2, Positive. Analog Input Channel 3, Negative. Analog Input Channel 3, Positive. Mode 0 Input in Pin Control Mode (MODE0). See Table 14 for more details. Configurable General-Purpose Input/Output 0 in SPI Control Mode (GPIO0). If not in use, connect this pin to DGND or IOVDD. Mode 1 Input in Pin Control Mode (MODE1). See Table 14 for more details. Configurable General-Purpose Input/Output 1 in SPI Control Mode (GPIO1). If not in use, connect this pin to DGND or IOVDD. Mode 2 Input in Pin Control Mode (MODE2). See Table 14 for more details. Configurable General-Purpose Input/Output 2 in SPI Control Mode (GPIO2). If not in use, connect this pin to DGND or IOVDD. Mode 3 Input in Pin Control Mode (MODE3). See Table 14 for more details. Alert Output in SPI Control Mode (ALERT). Rev. A | Page 14 of 99 Data Sheet AD7771 Pin No. 17 Mnemonic CONVST_SAR Type Digital input Direction Input 18 ALERT/CS Digital input Input 19 DCLK2/SCLK Digital input Input 20 DCLK1/SDI Digital input Input 21 DCLK0/SDO Digital output Output 22 23 DGND DREGCAP Supply Supply Supply Output 24 IOVDD Supply Supply 25 DOUT3 Digital output I/O 26 DOUT2 Digital output I/O 27 28 29 30 31 DOUT1 DOUT0 DCLK DRDY XTAL1 Digital output Digital output Digital output Digital output Clock Output Output Output Output Input 32 XTAL2/MCLK Clock Input 33 START Digital input Input 34 SYNC_OUT Digital output Input 35 SYNC_IN Digital input Input 36 RESET Digital input Input 37 38 39 40 41 42 AIN7+ AIN7− AIN6+ AIN6− REF2+ REF2− Analog input Analog input Analog input Analog input Reference Reference Input Input Input Input Input Input 43 AVDD1B Supply Supply Description Σ-Δ Output Interface Selection Pin in Pin Control Mode. See Table 13 for more details. This pin also functions as the start for the SAR conversion in SPI control mode. Alert Output in Pin Control Mode (ALERT). Chip Select in SPI Control Mode (CS). Data Clock Frequency Selection Pin 2 in Pin Control Mode (DCLK2). See Table 15 for more details. SPI Clock in SPI Control Mode (SCLK). Data Clock Frequency Selection Pin 1 in Pin Control Mode (DCLK1). See Table 15 for more details. SPI Data Input in SPI Control Mode (SDI). Connect this pin to DGND if the device is configured in pin control mode with the SPI as the data output interface. Data Clock Frequency Selection Pin 0 in Pin Control Mode (DCLK0). See Table 15 for more details. SPI Data Output in SPI Control Mode (SDO). Digital Ground. Digital Low Dropout (LDO) Output. Decouple this pin to DGND with a 1 µF capacitor. Digital Levels Input/Output and Digital LDO (DLDO) Supply from 1.8 V to 3.6 V. IOVDD must not be lower than DREGCAP. Data Output Pin 3. If the device is configured in daisy-chain mode, this pin acts as an input pin. See the Daisy-Chain Mode section for more details. Data Output Pin 2. If the device is configured in daisy-chain mode, this pin acts as an input pin. See the Daisy-Chain Mode section for more details. Data Output Pin 1. Data Output Pin 0. Data Output Clock. Data Output Ready Pin. Crystal 1 Input Connection. If CMOS is used as a clock source, tie this pin to DGND. See Table 12 for more details. Crystal 2 Input Connection (XTAL2). See Table 12 for more details. CMOS Clock (MCLK). See Table 12 for more details. Synchronization Pulse. This pin internally synchronizes an external START asynchronous pulse with MCLK. The synchronize signal is shifted out by the SYNC_OUT pin. If not in use, tie this pin to DGND. See the Phase Adjustment section and the Digital Reset and Synchronization Pins section for more details. Synchronization Signal. This pin generates a synchronous pulse generated and driven by hardware (via the START pin) or by software (GENERAL_USER_ CONFIG_2, Bit 0). If this pin is in use, it must be wired to the SYNC_IN pin. See the Phase Adjustment section and the Digital Reset and Synchronization Pins section for more details. Reset for the Internal Digital Block and Synchronize for Multiple Devices. See the Digital Reset and Synchronization Pins section for more details. Asynchronous Reset Pin. This pin resets all registers to their default value. It is recommended to generate a pulse on this pin after the device is powered up because a slow slew rate in the supplies may generate an incorrect initialization in the digital block. Analog Input Channel 7, Positive. Analog Input Channel 7, Negative. Analog Input Channel 6, Positive. Analog Input Channel 6, Negative. Positive Reference Input 2 for Channel 4 to Channel 7, Typical at REF2− + 2.5 V. Negative Reference Input 2 for Channel 4 to Channel 7, Typical at AVSSx. Connect all the REFx− pins to the same potential. Positive Front-End Analog Supply for Channel 4 to Channel 7. Connect this pin to AVDD1A. Rev. A | Page 15 of 99 AD7771 Data Sheet Pin No. 44 Mnemonic AVSS1B Type Supply Direction Supply 45 46 47 48 49 AIN5+ AIN5− AIN4+ AIN4− REF_OUT Analog input Analog input Analog input Analog input Reference Input Input Input Input Output 50 51 52 53 54 55 56 57 58 AVSS2B AREG2CAP AVDD2B AVSS3 FORMAT1 FORMAT0 CLK_SEL VCM AVDD2A Supply Supply Supply Supply Digital input Digital input Digital input Analog output Supply Supply Output Supply Supply Input Input Input Output Input 59 60 61 AREG1CAP AVSS2A AVSS4 Supply Supply Supply Output Input Supply 62 63 64 AVDD4 AUXAIN+ AUXAIN− EPAD Supply Analog input Analog input Supply Supply Input Input Input Description Negative Front-End Analog Supply for Channel 4 to Channel 7, Typical at −1.65 V (Dual Supply) or AGND (Single Supply). Connect all the AVSSx pins to the same potential. Analog Input Channel 5, Positive. Analog Input Channel 5, Negative. Analog Input Channel 4, Positive. Analog Input Channel 4, Negative. 2.5 V Reference Output. Connect a 100 nF capacitor on this pin if using the internal reference. Negative Analog Supply. Connect all the AVSSx pins together. Analog LDO Output 2. Decouple this pin to AVSS2B with a 1 µF capacitor. Positive Analog Supply. Connect this pin to AVDD2A. Negative Analog Ground. Connect all the AVSSx to the same potential. Output Data Frame 1. See Table 13 for more details. Output Data Frame 0. See Table 13 for more details. Select Clock Source. See Table 12 for more details. Common-Mode Voltage Output, Typical at (AVDD1x + AVSSx)/2. Analog Supply from 2.2 V to 3.6 V. AVSS2x must not be lower than AREGxCAP. Connect this pin to AVDD2B. Analog LDO Output 1. Decouple this pin to AVSSx with a 1 µF capacitor. Negative Analog supply. Connect all the AVSSx pins to the same potential. Negative SAR Analog Supply and Reference. Connect all AVSSx pins to the same potential. Positive SAR Analog Supply and Reference Source. Positive SAR Analog Input Channel. Negative SAR Analog Input Channel. Exposed Pad. Connect the exposed pad to AVSSx. Rev. A | Page 16 of 99 Data Sheet AD7771 TYPICAL PERFORMANCE CHARACTERISTICS 5 INPUT VOLTAGE (V) 6 10 1.77 1.41 1.06 0.70 0 0.35 –0.35 –0.70 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 8 6 4 4 2 2 INL (ppm) 0 –2 –4 0 –2 –4 6 TA TA TA TA = = = = 13802-012 2.48 2.12 1.77 1.41 1.06 0.70 0.35 0 –0.35 –0.70 INPUT VOLTAGE (V) Figure 9. INL vs. Input Voltage and PGA Gain at 64 kSPS, High Resolution Mode 8 –1.06 –10 –2.48 2.48 –8 INPUT VOLTAGE (V) 10 TA = 25°C DIFFERENTIAL VIN × GAIN VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 –6 13802-009 2.12 1.77 1.41 1.06 0.70 0.35 –0.35 –0.70 –1.06 –1.41 –1.77 –2.48 –2.12 –8 –10 0 TA = 25°C DIFFERENTIAL VIN × GAIN VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 –6 –1.41 INL (ppm) Figure 11. INL vs. Input Voltage and Channel at 16 kSPS, Low Power Mode GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 8 –1.06 INPUT VOLTAGE (V) Figure 8. INL vs. Input Voltage and Channel at 64 kSPS, High Resolution Mode 10 –1.77 –15 –1.41 –10 2.48 1.77 1.06 1.41 0.35 0.70 0 –0.35 –1.06 –0.70 –1.41 –2.12 –2.48 –10 –1.77 –8 13802-008 –6 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 –5 13802-011 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 –4 –2.12 –2 0 2.12 0 2.48 INL (ppm) 2 2.12 INL (ppm) 4 10 TA = 25°C GAIN = 1 DIFFERENTIAL INPUT SIGNAL VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 –1.77 6 –2.48 8 15 TA = 25°C GAIN = 1 DIFFERENTIAL INPUT SIGNAL VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 –2.12 10 Figure 12. INL vs. Input Voltage and PGA Gain at 16 kSPS, Low Power Mode 10 –40°C +25°C +105°C +125°C 5 TA = TA = TA = TA = –40°C +25°C +105°C +125°C INL (ppm) 2 0 –2 0 –5 –4 –8 –10 –3 –2 –1 0 1 2 INPUT VOLTAGE (V) GAIN = 1 DIFFERENTIAL INPUT SIGNAL VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 –10 3 –15 –3 –2 –1 0 1 2 INPUT VOLTAGE (V) Figure 10. INL vs. Input Voltage and Temperature at 64 kSPS, High Resolution Mode Figure 13. INL vs. Input Voltage and Temperature at 16 kSPS, Low Power Mode Rev. A | Page 17 of 99 3 13802-013 GAIN = 1 DIFFERENTIAL INPUT SIGNAL VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 –6 13802-010 INL (ppm) 4 AD7771 20 VREF VREF VREF VREF VREF VREF 15 10 15 = 1.0V = 1.5V = 2.0V = 2.5V = 3.0V = 3.3V 5 INL (ppm) 5 0 –5 0 –20 –4 –2 –3 0 –1 2 1 3 TA = 25°C GAIN = 1 DIFFERENTIAL INPUT SIGNAL VCM = (AVDD1x + AVSSx) ÷ 2 VREF = 2.5V –10 4 INPUT VOLTAGE (V) –15 –4 –3 –2 –1 0 1 2 4 3 INPUT VOLTAGE (V) Figure 14. INL vs. Input Voltage and Reference Voltage (VREF) at 64 kSPS, High Resolution Mode Figure 17. INL vs. Input Voltage and Reference Voltage (VREF) at 16 kSPS, Low Power Mode 10 15 VCM = 1.95V VCM = 1.65V VCM = 1.35V 8 6 VCM = 1.95V VCM = 1.65V VCM = 1.35V 10 4 13802-017 TA = 25°C GAIN = 1 DIFFERENTIAL INPUT SIGNAL VCM = (AVDD1x + AVSSx) ÷ 2 –15 5 INL (ppm) 2 0 –2 0 –5 800 2.48 13802-018 2.12 1.77 1.41 1.06 –0.35 –0.70 0.70 Figure 16. Noise Histogram at 16 kSPS, High Resolution Mode, Sinc3 Filter Enabled Figure 19. Noise Histogram at 4 kSPS, Low Power Mode, Sinc3 Filter Enabled Rev. A | Page 18 of 99 13802-019 8388588 ADC CODE 8388604 8388572 8388556 8388540 8388524 8388508 13802-016 8388492 0 8388476 0 8388460 100 8388444 200 100 8388428 200 8388300 300 8388412 400 300 8388326 8388340 8388354 8388368 8388382 8388396 8388410 8388424 8388438 8388452 8388466 8388480 8388494 8388508 8388522 8388536 8388550 8388564 8388578 8388592 8388606 –1.06 500 8388396 400 600 8388380 500 ADC CODE –1.41 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 700 8388364 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 TA = 25°C 8388348 600 900 8388332 700 1000 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 TA = 25°C 8388316 800 Figure 18. INL vs. Input Voltage and VCM at 16 kSPS, Low Power Mode SAMPLE COUNT 900 –1.77 INPUT VOLTAGE (V) Figure 15. INL vs. Input Voltage and VCM at 64 kSPS, High Resolution Mode 1000 –2.12 –2.48 2.48 INPUT VOLTAGE (V) –15 0 TA = 25°C GAIN = 1 DIFFERENTIAL INPUT SIGNAL VREF = 2.5V –10 13802-015 2.12 1.41 1.77 1.06 0.70 0 –0.35 –0.70 –1.41 –1.06 –1.77 –2.48 –2.12 –8 –10 0.35 TA = 25°C GAIN = 1 DIFFERENTIAL VIN × GAIN VREF = 2.5V –6 0.35 –4 SAMPLE COUNT = 1.0V = 1.5V = 2.0V = 2.5V = 3.0V = 3.3V –5 –10 INL (ppm) VREF VREF VREF VREF VREF VREF 10 13802-014 INL (ppm) Data Sheet Data Sheet 12 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 4 105 125 20 18 8389138 13802-023 8388962 8388874 8388786 8388698 8388610 8388522 8388434 8389050 125 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 16 14 NOISE (µV rms) 10 8 6 12 10 8 6 4 4 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 105 TEMPERATURE (°C) 125 0 –40 13802-022 25 2 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 25 105 125 TEMPERATURE (°C) Figure 22. Noise vs. Temperature at 64 kSPS, High Resolution Mode, Sinc5 Filter Enabled Figure 25. Noise vs. Temperature at 16 kSPS, Low Power Mode, Sinc5 Filter Enabled Rev. A | Page 19 of 99 13802-025 NOISE (µV rms) 105 Figure 24. Noise vs. Temperature at 4 kSPS, Low Power Mode, Sinc3 Filter Enabled GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 12 0 –40 25 TEMPERATURE (°C) Figure 21. Noise vs. Temperature at 16 kSPS, High Resolution Mode, Sinc3 Filter Enabled 2 4 0 –40 13802-021 25 TEMPERATURE (°C) 14 6 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 2 0 –40 16 8 13802-024 2 18 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 10 NOISE (µV rms) NOISE (µV rms) 6 8388346 Figure 23. Noise Histogram at 16 kSPS, Low Power Mode, Sinc5 Filter Enabled 10 8 8388258 ADC CODE Figure 20. Noise Histogram at 64 kSPS, High Resolution Mode, Sinc5 Filter Enabled 12 8388170 13802-020 ADC CODE 8388082 0 8387994 0 8387906 50 8387466 50 8387818 100 8387730 100 150 8387642 150 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 200 8387554 200 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 TA = 25°C 250 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 8387690 8387760 8387830 8387900 8387970 8388040 8388110 8388180 8388250 8388320 8388390 8388460 8388530 8388600 8388670 8388740 8388810 8388880 8388950 8389020 8389090 8389160 8389230 SAMPLE COUNT 250 300 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 TA = 25°C SAMPLE COUNT 300 AD7771 Data Sheet 1.80 1.60 700 600 NOISE (nV/√Hz) 8000 16000 ODR (SPS) 0 13802-029 467200 225280 709120 991360 1233280 1475200 1757440 1999360 2241280 2523520 2765440 3007360 3249280 500 2000 4000 8000 ODR (SPS) Figure 27. Noise vs. ODR, High Resolution Mode, Sinc3 Filter Enabled 13802-030 4000 13802-027 1000 Figure 30. Noise vs. ODR, Low Power Mode, Sinc3 Filter Enabled 400 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 350 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 300 NOISE (nV/√Hz) 120 100 80 60 250 200 150 100 40 50 20 32000 64000 ODR (SPS) 128000 0 13802-028 8000 1000 8000 16000 32000 ODR (SPS) Figure 28. Noise vs. ODR, High Resolution Mode, Sinc5 Filter Enabled Figure 31. Noise vs. ODR, Low Power Mode, Sinc5 Filter Enabled Rev. A | Page 20 of 99 13802-031 NOISE (nV/√Hz) 300 100 20 NOISE (nV/√Hz) 400 200 40 0 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 500 60 140 4015360 4096000 454400 938000 1421600 1905200 2388800 2872400 3356000 3839600 4323200 4806800 5290400 5774000 6257600 6741200 7224800 13802-026 CLOCK FREQUENCY (Hz) GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 80 160 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 Figure 29. Noise vs. Clock Frequency, Low Power Mode 100 180 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 TA = 25°C DECIMATION = 256 0 120 0 6.00 2.00 Figure 26. Noise vs. Clock Frequency, High Resolution Mode 140 8.00 4.00 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 CLOCK FREQUENCY (Hz) 160 1.00 3531520 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 TA = 25°C DECIMATION = 256 1.20 3773440 NOISE (µV rms) 1.40 7708400 1.6 1.5 1.4 1.3 1.2 1.1 1.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 8192000 NOISE (µV rms) AD7771 0 68.36 136.72 205.08 273.44 341.80 410.16 478.52 546.88 615.23 683.59 751.95 820.31 888.67 957.03 1025.39 1093.75 1162.11 1230.47 1298.83 1367.19 1435.55 1503.91 1572.27 1640.63 1708.98 1777.34 1845.70 1914.06 1982.42 FREQUENCY (Hz) 13802-033 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 –180 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 TA = 25°C VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 INPUT FREQUENCY = 1kHz 13802-034 0 74.22 148.44 222.66 296.88 371.09 445.31 519.53 593.75 667.97 742.19 816.41 890.63 964.84 1039.06 1113.28 1187.50 1261.72 1335.94 1410.16 1484.38 1558.59 1632.81 1707.03 1781.25 1855.47 1929.69 AMPLITUDE (dB) TA = 25°C VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 INPUT FREQUENCY = 1kHz 0 341.80 683.59 1025.39 1367.19 1708.98 2050.78 2392.58 2734.38 3076.17 3417.97 3759.77 4101.56 4443.36 4785.16 5126.95 5468.75 5810.55 6152.34 6494.14 6835.94 7177.73 7519.53 7861.33 AMPLITUDE (dB) Figure 36. FFT Plot, Low Power Mode at 32 kSPS, Input Frequency (fIN) = 50 Hz, Sinc5 Filter Enabled GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 FREQUENCY (Hz) TA = 25°C VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 ODR = 32kSPS INPUT FREQUENCY = 50Hz FREQUENCY (Hz) Figure 33. FFT Plot, High Resolution Mode at 128 kSPS, Input Frequency (fIN) = 50 Hz, Sinc5 Filter Enabled 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 –180 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 13802-036 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 –180 0 562.5 1125.0 1687.5 2250.0 2812.5 3375.0 3937.5 4500.0 5062.5 5625.0 6187.5 6750.0 7312.5 7875.0 8437.5 9000.0 9562.5 10125.0 10687.5 11250.0 11812.5 12375.0 12937.5 13500.0 14062.5 14625.0 15187.5 15750.0 AMPLITUDE (dB) TA = 25°C VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 ODR = 128kSPS INPUT FREQUENCY = 50Hz 0 2250 4500 6750 9000 11250 13500 15750 18000 20250 22500 24750 27000 29250 31500 33750 36000 38250 40500 42750 45000 47250 49500 51750 54000 56250 58500 60750 63000 AMPLITUDE (dB) GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 FREQUENCY (Hz) TA = 25°C VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 INPUT FREQUENCY = 50Hz Figure 35. FFT Plot, Low Power Mode at 4 kSPS, Input Frequency (fIN) = 50 Hz, Sinc3 Filter Enabled Figure 32. FFT Plot, High Resolution Mode at 16 kSPS, Input Frequency (fIN) = 50 Hz, Sinc3 Filter Enabled 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 –180 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 FREQUENCY (Hz) Figure 37. FFT Plot, Low Power Mode at 4 kSPS, Input Frequency (fIN) = 1 kHz, Sinc3 Filter Enabled Figure 34. FFT Plot, High Resolution Mode at 16 kSPS, Input Frequency (fIN) = 1 kHz, Sinc3 Filter Enabled Rev. A | Page 21 of 99 13802-037 FREQUENCY (Hz) AMPLITUDE (dB) TA = 25°C VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 INPUT FREQUENCY = 50Hz 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 –180 13802-035 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 13802-032 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 –180 AD7771 0 278.320 555.664 846.680 1125.977 1393.555 1673.828 1954.102 2234.375 2501.953 2769.531 3037.109 3304.687 3572.266 3839.844 4107.422 4388.672 4664.063 4938.477 5211.914 5485.352 5759.766 6033.203 6307.617 6580.078 6851.563 7125.977 7399.414 7672.852 7947.266 AMPLITUDE (dB) Data Sheet 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 –180 FREQUENCY (Hz) TA = 25°C VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 ODR = 32kSPS INPUT FREQUENCY = 1kHz 0 593.75 1187.50 1781.25 2375.00 2968.75 3562.50 4156.25 4750.00 5343.75 5937.50 6531.25 7125.00 7718.75 8312.50 8906.25 9500.00 10093.75 10687.50 11281.25 11875.00 12468.75 13062.50 13656.25 14250.00 14843.75 15437.50 AMPLITUDE (dB) TA = 25°C VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 ODR = 128kSPS INPUT FREQUENCY = 1kHz GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 FREQUENCY (Hz) Figure 41. FFT Plot, Low Power Mode at 32 kSPS, Input Frequency (fIN) = 1 kHz, Sinc5 Filter Enabled Figure 38. FFT Plot, High Resolution Mode at 128 kSPS, Input Frequency (fIN) = 1 kHz, Sinc5 Filter Enabled –100 –100 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –105 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –105 –110 –110 THD (dB) THD (dB) 13802-041 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 13802-038 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 –180 Data Sheet 0 2421.88 4843.75 7265.63 9687.50 12109.38 14531.25 16953.13 19375.00 21796.88 24218.75 26640.63 29062.50 31484.38 33906.25 36328.13 38750.00 41171.88 43593.75 46015.63 48437.50 50859.38 53281.25 55703.13 58125.00 60546.88 62968.75 AMPLITUDE (dB) AD7771 –115 –115 –120 –120 INPUT FREQUENCY (Hz) Figure 39. THD vs. Input Frequency at 64 kSPS, High Resolution Mode, Sinc5 Filter Enabled Figure 42. THD vs. Input Frequency at 16 kSPS, Low Power Mode, Sinc5 Filter Enabled GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –105 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –105 TA = 25°C VREF = 2.5V VIN = –0.5dBFS –110 THD (dB) TA = 25°C VREF = 2.5V VIN = –0.5dBFS –110 –115 –120 13802-042 10.0 89.2 168.4 247.6 326.8 406.0 514.9 604.0 703.0 792.1 881.2 960.4 1280.0 1840.0 2400.0 2960.0 3520.0 4080.0 4710.0 5270.0 5830.0 6460.0 7020.0 7580.0 INPUT FREQUENCY (Hz) –100 –100 –115 –120 –125 –125 –130 –130 –135 INPUT FREQUENCY (Hz) 10.0 49.6 89.2 128.8 168.4 208.0 247.6 287.2 326.8 366.4 406.0 455.5 514.9 554.5 604.0 643.6 703.0 742.6 792.1 841.6 881.2 920.8 960.4 13802-040 10.0 89.2 168.4 247.6 326.8 406.0 485.2 564.4 643.6 722.8 802.0 881.2 970.3 1180.0 1450.0 1720.0 2050.0 2350.0 2590.0 2890.0 3130.0 3400.0 3670.0 3910.0 –135 INPUT FREQUENCY (Hz) Figure 43. THD vs. Input Frequency at 4 kSPS, Low Power Mode, Sinc3 Filter Enabled Figure 40. THD vs. Input Frequency at 16 kSPS, High Resolution Mode, Sinc3 Filter Enabled Rev. A | Page 22 of 99 13802-043 THD (dB) TA = 25°C VREF = 2.5V VIN = –0.5dBFS –125 10.0 89.2 168.4 247.6 326.8 406.0 485.2 564.4 643.6 722.8 802.0 881.2 970.3 2860.0 5340.0 7820.0 10300.0 13090.0 15570.0 18050.0 20530.0 23010.0 25490.0 27970.0 30450.0 –130 TA = 25°C GAIN = 1 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 VIN = –0.5dBFS 13802-039 –125 Data Sheet –105 –110 –110 –115 –115 THD (dB) –120 –120 –125 –125 –130 –130 TA = 25°C VREF = 2.5V INPUT FREQUENCY = 50Hz –135 –140 INPUT VOLTAGE (V) 0.172 0.344 0.516 0.688 0.860 1.032 1.204 1.376 1.548 1.720 1.892 2.064 2.236 2.408 2.580 2.752 2.924 3.096 3.268 3.440 3.612 3.784 3.956 4.128 4.300 4.472 4.644 13802-044 0.172 0.344 0.516 0.688 0.860 1.032 1.204 1.376 1.548 1.720 1.892 2.064 2.236 2.408 2.580 2.752 2.924 3.096 3.268 3.440 3.612 3.784 3.956 4.128 4.300 4.472 4.644 –140 INPUT VOLTAGE (V) Figure 47. THD vs. Input Voltage at 16 kSPS, Low Power Mode Figure 44. THD vs. Input Voltage at 64 kSPS, High Resolution Mode –90 –90 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –95 –100 –100 –105 –105 THD (dB) THD (dB) –95 –110 TA = 25°C ±VREF INPUT FREQUENCY = 50Hz –120 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 13802-045 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 REFERENCE VOLTAGE (V) –125 REFERENCE VOLTAGE (V) Figure 48. THD vs. Reference Voltage at 16 kSPS, Low Power Mode Figure 45. THD vs. Reference Voltage at 64 kSPS, High Resolution Mode –102 –104 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –100 TA = 25°C VREF = 2.5V INPUT FREQUENCY = 50Hz –105 THD (dB) –106 –108 –110 –110 –115 –112 –114 –120 –116 –125 13802-046 MCLK FREQUENCY (Hz) GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 TA = 25°C VREF = 2.5V INPUT FREQUENCY = 50Hz 104320 265600 426880 588160 749440 910720 1072000 1233280 1394560 1555840 1717120 1878400 2039680 2200960 2362240 2523520 2684800 2846080 3007360 3168640 3329920 3491200 3652480 3813760 3975040 –118 212600 535000 857400 1179800 1502200 1824600 2147000 2469400 2791800 3114200 3436600 3759000 4081400 4403800 4726200 5048600 5371000 5693400 6015800 6338200 6660600 6983000 7305400 7627800 7950200 THD (dB) TA = 25°C ±VREF INPUT FREQUENCY = 50Hz –115 –125 –100 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –110 –115 –120 TA = 25°C VREF = 2.5V INPUT FREQUENCY = 50Hz 13802-047 –135 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 MCLK FREQUENCY (Hz) Figure 49. THD vs. Master Clock Frequency, Low Power Mode Figure 46. THD vs. Master Clock Frequency, High Resolution Mode Rev. A | Page 23 of 99 13802-049 THD (dB) –105 –100 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 13802-048 –100 AD7771 AD7771 Data Sheet 125 120 120 115 115 110 105 SNR (dB) 105 100 100 95 95 90 80 1000 TA = 25°C VREF = 2.5V VIN = 0dBFS 4000 8000 85 16000 ODR (SPS) 80 500 8000 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 115 110 TA = 25°C VREF = 2.5V VIN = 0dBFS 105 100 SNR (dB) 95 100 95 90 90 80 8000 85 32000 128000 64000 ODR (SPS) 80 1000 13802-051 85 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 32000 Figure 54. SNR vs. ODR at 16 kSPS, Low Power Mode (AVDDx = 3.6 V, IOVDD = 3.6 V) 108 TA = 25°C ODR = 16kSPS TA = 25°C ODR = 4kSPS 106 DYNAMIC RANGE (dB) 106 104 102 100 104 102 100 98 98 1 2 4 8 PGA GAIN 94 13802-052 96 16000 ODR (SPS) Figure 51. SNR vs. ODR at 64 kSPS, High Resolution Mode (AVDDx = 3.6 V, IOVDD = 3.6 V) 108 8000 1 2 4 8 PGA GAIN Figure 55. Dynamic Range vs. PGA Gain at 4 kSPS, Low Power Mode Figure 52. Dynamic Range vs. PGA Gain at 16 kSPS, High Resolution Mode Rev. A | Page 24 of 99 13802-054 SNR (dB) 4000 120 105 DYNAMIC RANGE (dB) 2000 Figure 53. SNR vs. ODR at 4 kSPS, Low Power Mode (AVDDx = 3.6 V, IOVDD = 3.6 V) TA = 25°C VREF = 2.5V VIN = 0dBFS 110 TA = 25°C VREF = 2.5V VIN = 0dBFS ODR (SPS) Figure 50. SNR vs. ODR at 16 kSPS, High Resolution Mode (AVDDx = 3.6 V, IOVDD = 3.6 V) 115 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 13802-053 85 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 13802-050 90 13802-055 SNR (dB) 110 Data Sheet AD7771 104 105 TA = 25°C ODR = 64kSPS 102 100 98 DYNAMIC RANGE (dB) DYNAMIC RANGE (dB) 100 TA = 25°C ODR = 16kSPS 96 94 92 90 88 95 90 85 86 8 80 PGA GAIN 0 –20 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 –35 –40 1 2 –15 –20 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 –25 –30 8 4 10 PGA GAIN –35 1 –5 OFFSET ERROR (µV) –5 –10 –15 3.3 AVDD1x SUPPLY –10 –15 –20 TA = 25°C VREF = 2.5V VIN = 0V 3.6 –25 3.0 13802-058 OFFSET ERROR (µV) 0 –25 3.0 8 Figure 60. Offset Error vs. PGA Gain at 16 kSPS, Low Power Mode 0 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 4 PGA GAIN Figure 57. Offset Error vs. PGA Gain at 64 kSPS, High Resolution Mode –20 2 13802-060 OFFSET ERROR (µV) –15 13802-057 OFFSET ERROR (µV) –10 –30 8 TA = 25°C VREF = 2.5V VIN = 0V SUPPLY = AVDD1x = 3.3V –5 –25 4 Figure 59. Dynamic Range vs. PGA Gain at 16 kSPS, Low Power Mode TA = 25°C VREF = 2.5V VIN = 0V SUPPLY = AVDD1x = 3.3V –5 2 PGA GAIN Figure 56. Dynamic Range vs. PGA Gain at 64 kSPS, High Resolution Mode 0 1 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 TA = 25°C VREF = 2.5V VIN = 0V 3.3 AVDD1x SUPPLY Figure 58. Offset Error vs. AVDD1x Supply, High Resolution Mode Figure 61. Offset Error vs. AVDD1x Supply, Low Power Mode Rev. A | Page 25 of 99 3.6 13802-061 4 2 13802-056 1 13802-059 84 82 AD7771 40 Data Sheet 45 AVDD1x = 3.3V 40 30 35 GAIN ERROR DRIFT (ppm) 10 0 –10 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 –30 –40 –50 –40 –20 0 20 40 60 80 100 30 25 20 15 10 5 0 –5 –10 –15 120 TEMPERATURE (°C) –20 0 168 0.008 0.008 0 –0.008 –0.017 –0.026 –0.008 –0.017 3.6 3.3 –0.043 3.0 Figure 66. Gain Error vs. AVDD1x Supply, Low Power Mode Figure 63. Gain Error vs. AVDD1x Supply, High Resolution Mode 0 0.005 –0.005 –0.011 –0.017 0 –0.005 –0.011 –0.017 –0.023 –0.023 –0.029 –0.029 –0.035 –0.035 –0.400 –40 25 105 TEMPERATURE (°C) 125 13802-064 GAIN ERROR (%) 0.005 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 AVDD1x = 3.3V VREF = 2.5V VIN = 0dBFS 0.011 GAIN ERROR (%) 0.011 0.017 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 AVDD1x = 3.3V VREF = 2.5V VIN = 0dBFS 3.6 3.3 AVDD1x SUPPLY (V) 13802-066 3.0 13802-063 –0.035 AVDD1x SUPPLY (V) 0.017 TEMPERATURE = 25°C GAIN = 1 VREF = 2.5V VIN = 0dBFS –0.026 –0.035 –0.043 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 –0.400 –40 25 105 TEMPERATURE (°C) Figure 67. Gain Error vs. Temperature, Low Power Mode Figure 64. Gain Error vs. Temperature, High Resolution Mode Rev. A | Page 26 of 99 125 13802-067 GAIN ERROR (%) 0 0.017 TEMPERATURE = 25°C GAIN = 1 VREF = 2.5V VIN = 0dBFS GAIN ERROR (%) CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 1000 Figure 65. Gain Error Drift vs. Time Figure 62. Offset Drift vs. Temperature 0.017 500 TIME (Hours) 13802-065 –20 13802-062 OFFSET DRIFT (µV) 20 Data Sheet 0.09 4 TEMPERATURE = 25°C AVDD1x = 3.3V VREF = 2.5V VIN = 0dBFS 0.07 3 REFERENCE VOLTAGE DRIFT (mV) 0.08 0.06 HIGH RESOLUTION LOW POWER 0.05 0.04 0.03 0.02 0.01 1 0 –1 –2 –3 –4 4 8 PGA GAIN –6 –40 0.006 0.004 TUE AS % OF INPUT 0.002 0 –0.002 –0.004 –0.010 –40 –30 –20 –10 0 CH 4 CH 5 CH 6 CH 7 CH 0 CH 1 CH 2 CH 3 –0.008 0.002 0 –0.002 –0.004 10 20 30 40 50 60 70 80 90 100 110 125 TEMPERATURE (°C) –0.008 –40 –30 –20 –10 0 1.0 AINx+, VCM = 1.95V AINx–, VCM = 1.95V AINx+; VCM = 1.35V AINx–, VCM = 1.35V 0.8 0.6 INPUT CURRENT (nA) 1 0 –1 –2 –3 0.4 0.2 0 –0.2 –0.4 –4 –0.6 VREF = 2.5V SUPPLY = AVDD1x = 3.3V –5 –2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–)) 2.5 VREF = 2.5V SUPPLY = AVDD1x = 3.3V –0.8 –2.5 13802-070 INPUT CURRENT (nA) 10 20 30 40 50 60 70 80 90 100 110 125 Figure 72. Total Unadjusted Error (TUE) (as Percent of Input) vs. Temperature, Low Power Mode AINx+, VCM = 1.95V AINx–, VCM = 1.95V AINx+; VCM = 1.35V AINx–, VCM = 1.35V 2 CH 4 CH 5 CH 6 CH 7 TEMPERATURE (°C) Figure 69. Total Unadjusted Error (TUE) (as Percent of Input) vs. Temperature, High Resolution Mode 3 CH 0 CH 1 CH 2 CH 3 VREF = 2.5V VIN = –0.5dBFS SUPPLY = AVDD1x = 3.3V –0.006 13802-069 TUE AS % OF INPUT 0.004 –0.006 125 Figure 71. Internal Reference Voltage Drift VREF = 2.5V VIN = –0.5dBFS SUPPLY = AVDD1x = 3.3V 0.006 105 TEMPERATURE (°C) Figure 68. Channel Gain Mismatch 0.008 25 13802-072 2 1 13802-071 –5 13802-068 0 2 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–)) Figure 73. Input Current vs. Differential Input Voltage, Low Power Mode Figure 70. Input Current vs. Differential Input Voltage, High Resolution Mode Rev. A | Page 27 of 99 2.5 13802-073 GAIN ERROR (%) AD7771 AD7771 6 –10 –15 –60 VREF = 2.5V VIN = 2.5V SUPPLY = AVDD1x = 3.3V –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) –1 –2 VREF = 2.5V SUPPLY = AVDD1x = 3.3V –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5 DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–)) 4 2 0 20 120 140 AINx+ – AINx–, V CM = 1.95V AINx+ – AINx–, V CM = 1.35V 0.4 0.2 0 –0.2 –0.4 –0.6 –0.8 VREF = 2.5V SUPPLY = AVDD1x = 3.3V –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5 DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–)) DIFFERENTIAL INPUT CURRENT (nA) 6 –20 100 0.6 40 60 80 100 120 TEMPERATURE (°C) 140 VREF = 2.5V VIN = 2.5V SUPPLY = AVDD1x = 3.3V 10 8 6 4 2 0 –40 13802-076 DIFFERENTIAL INPUT CURRENT (nA) 8 –40 80 12 10 0 –60 60 Figure 78. Differential Input Current vs. Differential Input Voltage, Low Power Mode VREF = 2.5V VIN = 2.5V SUPPLY = AVDD1x = 3.3V 12 40 20 0.8 –1.0 –2.5 Figure 75. Differential Input Current vs. Differential Input Voltage, High Resolution Mode 14 0 Figure 77. Absolute Input Current vs. Temperature, Low Power Mode DIFFERENTIAL INPUT CURRENT (nA) 0 –1.5 –20 TEMPERATURE (°C) 13802-075 DIFFERENTIAL INPUT CURRENT (nA) 1 –2.0 –40 1.0 2 –4 –2.5 VREF = 2.5V VIN = 2.5V SUPPLY = AVDD1x = 3.3V –6 AINx+ – AINx–, V CM = 1.95V AINx+ – AINx–, V CM = 1.35V 3 –3 –4 –8 –60 Figure 74. Absolute Input Current vs. Temperature, High Resolution Mode 4 –2 13802-077 –5 0 13802-078 0 2 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) Figure 76. Differential Input Current vs. Temperature, High Resolution Mode Figure 79. Differential Input Current vs. Temperature, Low Power Mode Rev. A | Page 28 of 99 140 13802-079 5 AIN0+ AIN0– AIN2+ AIN2– 4 ABSOLUTE INPUT CURRENT (nA) AIN0+ AIN0– AIN2+ AIN2– 13802-074 ABSOLUTE INPUT CURRENT (nA) 10 Data Sheet Data Sheet 0 AD7771 0 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –20 VCM = 1.65V + 100mV p-p SUPPLY = AVDD1x = 3.3V + 100mV p-p CMRR (dB) 10 –10 –20 195889.595 13802-083 185139.306 174389.017 163638.727 152572.253 141821.964 130913.582 120163.292 98346.529 109096.818 87438.147 76371.673 65463.291 TA = 25°C SUPPLY = AVDD1x = 3.3V + 100mV p-p INPUT FREQUENCY(Hz) Figure 84. AC PSRR vs. Input Frequency at 32 kSPS, Low Power Mode 0 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 0 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 13802-084 INPUT FREQUENCY(Hz) 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 15.0 400014.4 800013.8 1260013.0 1680012.0 2200012.0 2660011.0 3140010.0 3600010.0 4060009.0 4520008.0 4980008.0 5420007.0 5880006.0 6340005.0 6800005.0 7260004.0 7720003.0 8180003.0 8620002.0 9080001.0 9540001.0 AC PSR (dB) TA = 25°C SUPPLY = AVDD1x = 3.3V+100mVpp Figure 81. AC PSRR vs. Input Frequency at 128 kSPS, High Resolution Mode 43804.62 INPUT FREQUENCY (Hz) Figure 83. CMRR vs. Input Frequency at 32 kSPS, Low Power Mode 13802-081 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –10 –20 –30 ATTENUATION (dB) –30 –40 –50 –60 –70 –80 –40 –50 –60 –70 –80 –100 –110 –110 –120 –120 13802-082 FREQUENCY (Hz) 25 1304 2583 3862 5141 6420 7699 8978 10257 11536 12815 14094 15373 16652 17931 19210 20489 21768 23047 24326 25605 26884 28163 29442 30721 –90 –100 25 5144 10263 15382 20501 25620 30739 35858 40977 46096 51215 56334 61453 66572 71691 76810 81929 87048 92167 97286 102405 107524 112643 117762 122881 –90 FREQUENCY (Hz) Figure 82. Filter Profiles at 64 kSPS, High Resolution Mode Figure 85. Filter Profiles at 16 kSPS, Low Power Mode Rev. A | Page 29 of 99 13802-085 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 20014.97 460014.31 880013.68 1340013.00 1740012.00 2220012.00 2640011.00 3040010.00 3480010.00 3900009.00 4520008.00 4920008.00 5360007.00 5780006.00 6200006.00 6620005.00 7020004.00 7440004.00 7860003.00 8360002.00 8780002.00 9200001.00 9620001.00 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 54554.909 171.09249 196752.686 INPUT FREQUENCY (Hz) 13802-080 185585.095 174813.518 152874.35 164041.941 142102.773 131331.196 120163.606 98620.451 109392.029 87294.455 76522.878 65751.301 –140 43732.93 –140 54504.507 –120 32961.353 –120 21793.762 –100 11022.185 –100 32738.145 –80 21829.764 –80 –60 10921.382 –60 Figure 80. CMRR vs. Input Frequency at 128 kSPS, High Resolution Mode AC PSR (dB) VCM = 1.65V + 100mV p-p SUPPLY = AVDD1x = 3.3V + 100mV p-p –40 250.608317 CMRR (dB) –40 ATTENUATION (dB) GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –20 AD7771 18 SUPPLY CURRENT (mA) 16 6 AVDD1x AVDD2x AVDD4 IOVDD 5 SUPPLY CURRENT (mA) 20 Data Sheet 14 12 10 8 6 AVDD1x AVDD2x AVDD4 IOVDD 4 3 2 4 1 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 SUPPLY VOLTAGE (V) 0 2.0 13802-086 7 AVDD1x AVDD2x AVDD4 IOVDD 6 20 15 10 3.4 3.6 AVDD1x AVDD2x AVDD4 IOVDD 3 2 20 40 60 80 100 120 0 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 13802-090 0 13802-087 –20 Figure 90. Supply Current vs. Temperature Low Power Mode 300 REF1– REF1+ REF2– REF2+ 200 REFERENCE INPUT CURRENT (nA) 400 200 0 –200 –400 –600 100 0 –100 –200 –300 –400 –500 –800 TEMPERATURE (°C) 13802-088 –35.263 –29.594 –22.185 –15.223 –7.366 –0.405 7.006 14.429 22.067 29.170 36.646 44.122 52.009 58.557 66.064 74.427 81.446 89.252 96.238 105.348 112.092 119.542 123.075 –600 Figure 88. Reference Input Current vs. Temperature, High Resolution Mode REF1– REF1+ REF2– REF2+ –35.263 –29.594 –22.185 –15.223 –7.366 –0.405 7.006 14.429 22.067 29.170 36.646 44.122 52.009 58.557 66.064 74.427 81.446 89.252 96.238 105.348 112.092 119.542 123.075 REFERENCE INPUT CURRENT (nA) 3.2 4 Figure 87. Supply Current vs. Temperature High Resolution Mode 600 3.0 1 TEMPERATURE (°C) 800 2.8 5 5 0 –40 2.6 Figure 89. Supply Current vs. Supply Voltage, Low Power Mode SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 25 2.4 SUPPLY VOLTAGE (V) Figure 86. Supply Current vs. Supply Voltage, High Resolution Mode 30 2.2 TEMPERATURE (°C) 13802-091 0 2.0 13802-089 2 Figure 91. Reference Input Current vs. Temperature, Low Power Mode Rev. A | Page 30 of 99 Data Sheet AD7771 500 AVDD1x AVDD2x AVDD4 IOVDD 450 SHUTDOWN SUPPLY CURRENT (µA) 70 60 50 40 30 20 0 1.8 AVDD1x AVDD2x AVDD4 IOVDD 2.0 400 350 300 250 200 150 100 50 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 SUPPLY VOLTAGE (V) 0 –60 0 20 40 60 80 100 120 140 Figure 95. Shutdown Supply Current vs. Temperature 20 AVDD1x AVDD2x AVDD4 IOVDD 18 POWER CONSUMPTION (mW) POWER CONSUMPTION (mW) 50 –20 TEMPERATURE (°C) Figure 92. Shutdown Supply Current vs. Supply Voltage 60 –40 13802-095 10 13802-092 SHUTDOWN SUPPLY CURRENT (µA) 80 40 30 20 10 16 AVDD1x AVDD2x AVDD4 IOVDD 14 12 10 8 6 4 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 SUPPLY VOLTAGE (V) 0 2.0 13802-093 0 2.0 70 2.6 2.8 3.0 3.2 3.4 3.6 Figure 96. Power Consumption per Channel vs. Supply Voltage, Low Power Mode 25 AVDD1x AVDD2x AVDD4 IOVDD POWER DISSIPATION (mW) POWER DISSIPATION (mW) 80 2.4 SUPPLY VOLTAGE (V) Figure 93. Power Consumption per Channel vs. Supply Voltage, High Resolution Mode 90 2.2 13802-096 2 60 50 40 30 20 20 AVDD1x AVDD2x AVDD4 IOVDD 15 10 5 –20 0 20 40 60 TEMPERATURE (°C) 80 100 120 0 –40 13802-094 0 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) Figure 97. Power Dissipation vs. Temperature, Low Power Mode Figure 94. Power Dissipation vs. Temperature, High Resolution Mode Rev. A | Page 31 of 99 13802-097 10 AD7771 Data Sheet TERMINOLOGY Common-Mode Rejection Ratio (CMRR) CMRR is the ratio of the power in the ADC output at full-scale frequency, f, to the power of a 100 mV p-p sine wave applied to the common-mode voltage of AINx+ and AINx− at frequency, fS. CMRR (dB) = 10 log(Pf/PfS) where: Pf is the power at frequency, f, in the ADC output. PfS is the power at frequency, fS, in the ADC output. Differential Nonlinearity (DNL) Error In an ideal ADC, code transitions are 1 LSB apart. Differential nonlinearity is the maximum deviation from this ideal value. DNL error is often specified in terms of resolution for which no missing codes are guaranteed. Integral Nonlinearity (INL) Error Integral nonlinearity error refers to the deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs ½ LSB before the first code transition. Positive full scale is a level 1½ LSB beyond the last code transition. The deviation is measured from the middle of each code to the true straight line. Dynamic Range Dynamic range is the ratio of the rms value of the full-scale input signal to the rms noise measured for an input. The value for dynamic range is expressed in decibels. Channel to Channel Isolation Channel to channel isolation is a measure of the level of crosstalk between channels. It is measured by applying a full-scale frequency sweep sine wave signal to all seven unselected input channels and determining how much that signal is attenuated in the selected channel. The value is given for worst case scenarios across all eight channels of the AD7771. Intermodulation Distortion With inputs consisting of sine waves at two frequencies, fA and fB, any active device with nonlinearities creates distortion products at the sum and difference frequencies of mfA and nfB, where m, n = 0,1, 2, 3, and so on. Intermodulation distortion terms are those for which neither m nor n are equal to 0. For example, the second-order terms include (fA + fB) and (fA − fB and the third-order terms include (2fA + fB), (2fA − fB), (fA + 2fB), and (fA − 2fB). The AD7771 is tested using the CCIF standard, where two input frequencies near the top end of the input bandwidth are used. In this case, the second-order terms are usually distanced in frequency from the original sine waves, and the third-order terms are usually at a frequency close to the input frequencies. As a result, the second-order and third-order terms are specified separately. The calculation of the intermodulation distortion is per the THD specification, where it is the ratio of the rms sum of the individual distortion products to the rms amplitude of the sum of the fundamentals, expressed in decibels. Gain Error The first transition (from 100 … 000 to 100 … 001) occurs at a level ½ LSB above nominal negative full scale (−2.49999 V for the ±2.5 V range). The last transition (from 011 … 110 to 011 … 111) occurs for an analog voltage 1½ LSB below the nominal full scale (2.49999 V for the ±2.5 V range). The gain error is the deviation of the difference between the actual level of the last transition and the actual level of the first transition from the difference between the ideal levels. Gain Error Drift Gain error drift is the ratio of the gain error change due to a temperature change of 1°C and the full-scale range (2N). It is expressed in ppm/°C. Least Significant Bit (LSB) The least significant bit, or LSB, is the smallest increment that can be represented by a converter. For a fully differential input ADC with N bits of resolution, the LSB expressed in volts is LSB (V) = 2 × VREF 2N The LSB referred to the input is 2 × VREF PGAGAIN LSB (VIN) = 2N Power Supply Rejection Ratio (PSRR) Variations in power supply affect the full-scale transition but not the linearity of the converter. PSRR is the maximum change in the full-scale transition point due to a change in the power supply voltage from the nominal value. Signal-to-Noise Ratio (SNR) SNR is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, excluding harmonics and dc. The value for SNR is expressed in decibels. Signal-to-(Noise + Distortion) Ratio (SINAD) SINAD is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in decibels. Spurious-Free Dynamic Range (SFDR) SFDR is the difference, in decibels, between the rms amplitude of the input signal and the peak spurious signal including harmonics. Total Harmonic Distortion (THD) THD is the ratio of the rms sum of the first five harmonic components to the rms value of a full-scale input signal and is expressed in decibels. Rev. A | Page 32 of 99 Data Sheet AD7771 Offset Error Offset error is the difference between the ideal midscale input voltage (0 V) and the actual voltage producing the midscale output code. Offset Error Drift Offset error drift is the ratio of the offset error change due to a temperature change of 1°C and the full-scale code range (2N). It is expressed in µV/°C. Rev. A | Page 33 of 99 AD7771 Data Sheet THEORY OF OPERATION The AD7771 is an 8-channel, simultaneously sampling, low noise, 24-bit Σ-Δ ADC with integrated digital filtering per channel and SRC. BAND OF INTEREST Figure 98. Σ-Δ ADC Operation, Reduction of Noise Energy Contained in the Band of Interest (Linear Scale X-Axis) The AD7771 employs a Σ-Δ conversion technique to convert the analog input signal into an equivalent digital word. The overview of the Σ-Δ technique is that the modulator samples the input waveform and outputs an equivalent digital word at the input clock frequency, fCLKIN. Due to the high oversampling rate, this technique spreads the quantization noise from 0 Hz to fCLKIN/2 (in the case of the AD7771, fCLKIN relates to the external clock); therefore, the noise energy contained in the band of interest is reduced (see Figure 98). To further reduce the quantization noise, a high order modulator is employed to shape the noise spectrum so that most of the noise energy is shifted out of the band of interest (see Figure 99). The digital filter that follows the modulator removes the large out of band quantization noise (see Figure 100). For more information on basic and advanced concepts of Σ-Δ ADCs, see the MT-022 Tutorial and MT-023 Tutorial. Digital filtering has certain advantages over analog filtering. Because digital filtering occurs after the analog-to-digital conversion process, it can remove noise injected during the conversion. Analog filtering cannot remove noise injected during conversion. fCLKIN/2 BAND OF INTEREST fCLKIN/2 13802-099 NOISE SHAPING Figure 99. Σ-Δ ADC Operation, Majority of Noise Energy Shifted Out of the Band of Interest (Linear Scale X-Axis) DIGITAL FILTER CUTOFF FREQUENCY BAND OF INTEREST fCLKIN/2 13802-100 The AD7771 offers two operation modes: high resolution mode, which offers up to 128 kSPS, and low power mode, which offers up to 32 kSPS. 13802-098 QUANTIZATION NOISE Figure 100. Σ-Δ ADC Operation, Removal of Noise Energy from the Band of Interest (Linear Scale X-Axis) The Σ-Δ ADC starts the conversions of the input signal after the supplies generated by the internal LDO regulators become stable. An external signal is not required to generate the conversions. ANALOG INPUTS The AD7771 can be operated in bipolar or unipolar modes and accepts true differential, pseudo differential, and single-ended input signals, as shown in Figure 101 through Figure 104. Table 10 summarizes the maximum differential input signal and dynamic range for the different input modes. Table 10. Input Signal Modes Input Signal Mode True differential Pseudo differential Single-ended PGA Gain All gains All gains All gains Maximum Differential Signal ±(VREF/PGAGAIN) ±(VREF/PGAGAIN) VREF/PGAGAIN Rev. A | Page 34 of 99 Maximum Peak-to-Peak Signal 2 × VREF/PGAGAIN 2 × VREF/PGAGAIN VREF/PGAGAIN Data Sheet AD7771 1.6500 TRUE DIFFERENTIAL AVDD1x – 0.1V AVSSx + 0.1V Figure 101. Σ-Δ ADC Input Signal Configuration, True Differential –0.4125 –0.8250 VREF = 2.5V AVDD1x = 1.65V AVSSx = –1.65V –1.6500 1 2 4 PGA GAIN –1.2375 8 The AD7771 provides a common-mode voltage pin (AVDD1x + AVSSx)/2), VCM, for the single-supply, pseudo differential, or true differential input configurations. AVDD1x – 0.1V VREF /PGAGAIN TRANSFER FUNCTION AINx+ AINx+ 13802-102 PSEUDO DIFFERENTIAL 0.4125 (AVDD1x + AVSSx)/2 Figure 105. Maximum Common-Mode Voltage Range for a Maximum Differential Input Signal BIPOLAR OR UNIPOLAR VCM TRUE DIFFERENTIAL PSEUDO DIFFERENTIAL 0.8250 13802-101 AINx+ VCM AINx+ VREF /PGAGAIN 1.2375 13802-105 COMMON-MODE VOLTAGE (V) BIPOLAR OR UNIPOLAR AVSSx + 0.1V Figure 102. Σ-Δ ADC Input Signal Configuration, Pseudo Differential BIPOLAR The AD7771 can operate with up to a 3.6 V reference, typical at 2.5 V, and converts the differential voltage between the analog inputs (AINx+ and AINx−) into a digital output. The ADC converts the voltage difference between the analog input pins (AINx+ − AINx−) into a digital code on the output. The 24-bit conversion result is in MSB first, twos complement format, as shown in Table 11 and Figure 106. SINGLE-ENDED Table 11. Output Codes and Ideal Input Voltages for PGA = 1× VREF /PGAGAIN AINx+ AINx+ 13802-103 AVSSx + 0.1V Figure 103. Σ-Δ ADC Input Signal Configuration, Single-Ended Bipolar Condition FS − 1 LSB Midscale + 1 LSB Midscale Midscale − 1 LSB −FS + 1 LSB −FS Analog Input ((AINx+) − (AINx−)), VREF = 2.5 V +2.499999702 V +298 nV 0V −298 nV −2.499999702 V −2.5 V Digital Output Code, Twos Complement (Hexadecimal) 0x7FFFFF 0x000001 0x000000 0xFFFFFF 0x800001 0x800000 + 0.1V Figure 104. Σ-Δ ADC Input Signal Configuration, Single-Ended Unipolar The common mode input signal is not limited, but keep the absolute input signal voltage on any AINx± pin between AVSSx + 100 mV and AVDD1x − 100 mV; otherwise, the input signal linearity degrades and, if the signal voltage exceeds the absolute maximum signal rating, damages the device. Figure 105 shows the maximum and minimum voltage commonmode range at different PGA gains for a maximum differential input voltage. Rev. A | Page 35 of 99 011 ... 111 011 ... 110 011 ... 101 100 ... 010 100 ... 001 100 ... 000 –FSR –FSR + 1LSB –FSR + 0.5LSB +FSR – 1LSB +FSR – 1.5LSB ANALOG INPUT Figure 106. Transfer Function 13802-106 AINx+ AINx+ ADC CODE (TWOS COMPLEMENT) VREF /PGAGAIN 13802-104 SINGLE-ENDED UNIPOLAR AD7771 Data Sheet MCLK PGA GAIN 1, 2, 4, 8 AINx+ Σ-Δ MODULATOR AINx– START SYNC_OUT DIGITAL FILTER SINC3/ SINC5 SRC ESD PROTECTION SYNC_IN RESET GAIN SCALING AND OFFSET CORRECTION CONVERSION DATA INTERFACE DRDY DOUTx DCLK SIGNAL CHAIN FOR CHANNEL x CONTROL BLOCK FORMAT0 AND FORMAT1 CONTROL OPTION PIN OR SPI MODE0 TO MODE3 SPI CONTROL 13802-107 PIN CONTROL CS SCLK SDO SDI Figure 107. Top Level Core Signal Chain CORE SIGNAL CHAIN Each Σ-Δ ADC channel on the AD7771 has an identical signal path from the analog input pins to the digital output pins. Figure 107 shows a top level implementation of this signal chain. Prior to each Σ-Δ ADC, a PGA maps sensor outputs into the ADC inputs, providing low input current in dc (±8 nA, input current, and ±2 nA differential input current for high resolution mode), an 8 pF input capacitance in ac, and configurable gains of 1, 2, 4, and 8. See the AN-1392 Application Note for more information. Each ADC channel has its own Σ-Δ modulator, which oversamples the analog input and passes the digital representation to the digital filter block. The data is filtered, scaled for gain and offset, and is then output on the data interface. To minimize power consumption, the channels can be individually disabled. for the maximum common-mode voltage at maximum differential input signals. INTERNAL REFERENCE AND REFERENCE BUFFERS The AD7771 integrates a 2.5 V, ±10 ppm/°C (typical), voltage reference that is disabled at power-up. The buffered reference is available at Pin 49 and offers up to 10 mA of continuous current. A 100 nF capacitor is required if the reference is enabled. In applications where a low noise reference is required, it is recommended to add a low-pass filter (LPF) with a cutoff frequency (fCUTOFF) below 10 Hz to the REF_OUT pin. Connect the output of this filter to REFx+, and connect AVSSx to REFx−. In this scenario, configure the Σ-Δ reference as external. An example of performance with and without the output filter is shown in Figure 108. 115 CAPACITIVE PGA The AD7771 uses chopping of the PGA to minimize offset and offset drift in the input amplifier, reducing the 1/f noise as well. For the AD7771, the chopping frequency is set to 128 kHz for high resolution mode, and 32 kHz for low power mode (see the AN-1392 Application Note for more information). The chopping tone is rejected by the sinc3 or sinc5 filters. To minimize intermodulation effects that may cause an image in the band of interest, it is recommended to limit the input signal bandwidth to 2/3 of the chop frequency. The capacitive PGA common-mode voltage does not depend on the gain, and can be any value as long as the input signal voltage is within AVSSx + 100 mV to AVDD1x − 100 mV. See Figure 105 95 85 75 0.05 0.50 1.00 2.00 DIFFERENTIAL INPUT VOLTAGE (V) 2.50 13802-108 The PGA maximizes the signal chain dynamic range for small sensor output signals. 105 SNR (dB) Each Σ-Δ ADC has a dedicated PGA, offering gain ranges of 1, 2, 4, and 8. This PGA reduces the need for an external input buffer and allows the user to amplify small sensor signals to use the full dynamic range of the AD7771. VREF = INTERNAL REFERENCE fCUTOFF = 10Hz Figure 108. SNR Adding External LPF with VREF = Internal Reference and fCUTOFF = 10 Hz The AD7771 can be used with an external reference connected between the REFx+ and REFx− pins. Recommended reference voltage sources for the AD7771 include the ADR441 and ADR4525 family of low noise, high accuracy voltage references. Rev. A | Page 36 of 99 Data Sheet AD7771 DCLK DIVIDER 1, 2, 4, 8, 16, 32, 64, 128 MCLK DIVIDER HIGH RESOLUTION MODE: MCLK/4 LOW POWER MODE: MCLK/8 MOD_MCLK AINx+ PGA AINx– ADC MODULATOR SINC FILTER DATA INTERFACE CONTROL DEC RATES = ×16, ×32, ×64, ×128, ×256, ×512, ×1024, ×2048, ×4095.99 DCLKx DRDY DOUT3 TO DOUT0 13802-109 MCLK Figure 109. Clock Generation on the AD7771 The reference buffers can be operated in three different modes: buffer enabled mode, buffer bypassed mode, and buffer precharged mode. In buffer enabled mode, the buffer is fully enabled, minimizing the current requirements from the external references. Note that the buffer output voltage headroom is ±100 mV from the rails. In buffer bypassed mode, the external reference is directly connected to the ADC reference capacitors; the reference must provide enough current to correctly charge the internal ADC reference capacitors. In this mode of operation, a degradation in crosstalk is expected because the ADC channels are not isolated from each other. Buffer precharged (pre-Q) mode is the default operation mode. It is a hybrid mode where the internal reference buffers are connected during the initial acquisition time to precharge the internal ADC reference capacitors. During the final phase of the acquisition, the reference is connected directly to the ADC capacitors. This mode has some benefits compared to the buffer enabled and buffer bypassed modes. In buffer pre-Q mode, the reference current requirements are minimized compared to buffer bypassed mode and the noise contribution from the internal reference buffers is removed (compared to buffer enabled mode). In buffer pre-Q mode, the headroom/footroom of the buffer reference is not applicable because the reference sets the final voltage in the ADC reference capacitors. INTEGRATED LDOs The AD7771 has three internal LDOs to regulate the internal supplies: two LDOs for the analog block and one LDO for the digital core. The internal LDOs requires an external 1 µF decoupling capacitor on the DREGCAP, AREG1CAP, and the AREG2CAP pins. The LDO slew rate may be low because it depends on the main supply slew rate; therefore, a hardware reset generated by pulsing the RESET pin at power-up is required to guarantee that the digital block initializes correctly. CLOCKING AND SAMPLING The AD7771 includes eight Σ-Δ ADC cores. Each ADC receives the same master clock signal. The AD7771 requires a maximum external MCLK frequency of 8192 kHz for high resolution mode and 4096 kHz for low power mode. The MCLK is internally divided by 4 in high performance mode and by 8 in low power mode to produce the modulator MCLK (MOD_MCLK) signal used as the modulator sampling clock for the ADCs. The MCLK can be decreased to accommodate lower ODRs if the minimum ODR selected by the sinc3 filter is not low enough. If the external clock is lower than 250 kHz, set the CLK_QUAL_DIS bit (in SPI control mode only). The AD7771 integrates an internal oscillator clock that initializes the internal registers at power-up. The CLK_SEL pin defines the external clock used after initialization (see Table 12). Table 12. Clock Sources CLK_SEL State 0 Clock Source CMOS 1 Crystal Connection Input to XTAL2/MCLK, IOVDD logic level. XTAL1 must be tied to DGND. Connected between XTAL1 and XTAL2/MCLK. The MCLK signal generates the DCLK output signal, which in turn clocks the Σ-Δ conversion data from the AD7771, as shown in Figure 109. DIGITAL RESET AND SYNCHRONIZATION PINS An external pulse in the SYNC_IN pin generates the internal reset of the digital block; this pulse does not affect the data programmed in the internal registers. A pulse in this pin is required in two cases as follows: • • After updating one or more registers directly related to the sinc filter (power mode, offset, gain, phase compensation, and sinc filter). To synchronize multiple devices. The pulse in the SYNC_IN pin must be synchronous with MCLK. Rev. A | Page 37 of 99 AD7771 Data Sheet There are two different ways to achieve a synchronous pulse if the controller/processor cannot generate it as follows: • Applying an asynchronous pulse on the START pin, which is then internally synchronized with the external MCLK clock, and the resulting synchronous signal is output on the SYNC_OUT pin. Triggering the SYNC_OUT internally. When the AD7771 is configured in SPI control mode, toggling Bit 0 in the GENERAL_USER_CONFIG_2 register generates a synchronous pulse that is output on the SYNC_OUT pin. The SYNC_IN and SYNC_OUT pins must be externally connected if internal synchronization is used. Figure 111 and Figure 112 show the typical filter transfer function for the high resolution and low power modes using a decimation rate of 32 samples for the sinc3 and sinc5 filters. 0 If multiple AD7771 devices must be synchronized, the SYNC_OUT pin of one device can be connected to multiple devices. This synchronization method requires the use of a common MCLK signal for all the AD7771 devices connected, as shown in Figure 110. If the START pin is not used, tie it to DGND. SINC3 SINC5 –10 –20 –30 GAIN (dB) • The digital sinc3 filter implements three main notches, one at the maximum ODR (128 kHz or 32 kHz, depending on the power mode) and another two at the ODR frequency selected to stop noise aliasing into the pass band. The sinc5 filter implements five notches, one at the maximum ODR (128 kHz or 32 kHz, depending on the power mode) and another four at the ODR frequency selected to stop noise aliasing into the pass band. It is recommended to select the sinc5 digital filter for output data rates higher than 24 kSPS. –40 –50 –60 –70 ASYNCHRONOUS PULSE –80 AD7771 SYNCHRONIZATION LOGIC –100 SYNC_OUT 0 32 64 96 128 160 192 224 256 FREQUENCY (MHz) DIGITAL FILTER Figure 111. Sinc3/Sinc5 Frequency Response in High Resoltuion Mode 0 SYNC_IN SINC3 SINC5 –10 –20 IOVDD –30 SYNCHRONIZATION LOGIC SYNC_OUT NC DIGITAL FILTER –50 –60 –70 SYNC_IN –80 –90 IOVDD –100 AD7771 MCLK –40 START SYNCHRONIZATION LOGIC SYNC_OUT 0 8 16 24 32 40 48 56 64 FREQUENCY (MHz) NC Figure 112. Sinc3/Sinc5 Frequency Response in Low Power Mode The sample rate converter feature allows fine tuning of the decimation rate, even for noninteger multiples of the decimation rate. See the Sample Rate Converter (SRC) section for more information on filter profiles for noninteger decimation rates. 13802-110 DIGITAL FILTER SYNC_IN 13802-112 START MCLK GAIN (dB) AD7771 MCLK 13802-111 –90 START MCLK Figure 110. Multiple AD7771 Devices Synchronization DIGITAL FILTERING SHUTDOWN MODE The AD7771 offers low latency sinc3 and sinc5 filters. Most precision Σ-Δ ADCs use sinc filters because the sinc filters offer a low latency path for applications requiring low bandwidth signals, for example, in control loops or where application specific postprocessing is required. The digital filter adds notches at multiples of the sampling frequency. The AD7771 can be placed in shutdown mode by pulling AVDD2x to ground and connecting 1 MΩ resistance, pulled low, to XTAL2/MCLK. In this mode, the average current consumption is reduced to 1 mA, as shown in Figure 113. Rev. A | Page 38 of 99 Data Sheet PIN CONTROL MODE IAVDD1x IAVDD2x IAVDD4 IIOVDD In pin control mode, the AD7771 is configured at power-up based on the level of the mode pins, MODE0, MODE1, MODE2, and MODE3. These four pins set the following functions on the AD7771: the mode of operation, the decimation rate/ODR, the PGA gain, and the reference source, as shown in Table 14. AVDDx = 3.3V IOVDD = 3.3V 0.5 0 –0.5 –40 60 10 125 TEMPERATURE (°C) 13802-113 SUPPLY CURRENT (mA) 1.0 AD7771 Figure 113. Shutdown Current CONTROLLING THE AD7771 The AD7771 can be controlled using either pin control mode or SPI control mode. Pin control mode allows the AD7771 to be hardwired to predefined settings that offer a subset of the overall functionality of the AD7771. In this mode, the SRC and diagnostic features or extended errors source are not available. Controlling the AD7771 over the SPI allows the user access to the full monitoring, diagnostic, and Σ-Δ control functionality. SPI control offers additional functionality such as offset, gain, and phase correction per channel, in addition to access to the flexible SRC to achieve a coherent sampling. See Table 13 for more details about these different configurations. Due to the limited number of mode pins and the number of options available, the PGA gain control is grouped into blocks of 4, and the ODR is selected for the maximum value defined by the decimation rate; ODR (kHz) = 2048/decimation for high resolution mode, and ODR (kHz) = 512/decimation for low power mode. Depending on the mode selected, the device is configured to use an external or an internal reference. The conversion data can be read back using the SPI or the data output interface, as shown in Table 13. If the data output interface is used to read back the data from the conversions, the number of DOUTx lines enabled and the number of clocks required for the Σ-Δ data transfer are determined by the logic level of the CONVST_SAR, FORMAT0, and FORMAT1 pins. In this case, the DCLK2, DCLK1, and DCLK0 pins select the Σ-Δ output interface and control the DCLKx divide function, which is a submultiple of MCLK, as shown in Table 15. The DCLKx divide function sets the frequency of the data output interface DCLKx signal. The DCLK minimum frequency depends on the decimation rate and operation mode. See the Data Output Interface section for more details about the minimum DCLKx frequency. All the pins that define the AD7771 configuration mode are reevaluated each time the SYNC_IN pin is pulsed. The typical connection diagram for pin control mode is shown in Figure 114. Table 13. Format of the Data Interface CONVST_SAR State 1 0 FORMAT1 0 0 1 1 0 FORMAT0 0 1 0 1 0 Control Mode Pin Pin Pin SPI Pin 0 1 Pin 1 1 0 1 Pin SPI Rev. A | Page 39 of 99 Data Output Mode SPI output SPI output SPI output Defined in Register 0x013 and/or Register 0x014 DOUT0, Channel 0 and Channel 1 DOUT1, Channel 2 and Channel 3 DOUT2, Channel 4 and Channel 5 DOUT3, Channel 6 and Channel 7 DOUT0, Channel 0 to Channel 3 DOUT1, Channel 4 to Channel 7 DOUT0, Channel 0 to Channel 7 Defined in Register 0x013 and/or Register 0x014 AD7771 Data Sheet Table 14. Pin Control Mode Options Pin State MODE3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 MODE2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 MODE1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 MODE0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Decimation Rate 16 16 32 32 64 64 128 128 256 16 32 64 16 32 64 32 Power Mode High resolution High resolution High resolution High resolution High resolution High resolution High resolution High resolution High resolution High resolution High resolution High resolution Low power Low power Low power Low power PGA Gain Channel Channel 0 to Channel 4 to Channel 3 Channel 7 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Reference Source External External External External External External External External External Internal Internal Internal External External External External Table 15. DCLKx Selection for Pin Control Mode State DCLK2/SCLK 0 0 0 0 1 1 1 1 DCLK1/SDI 0 0 1 1 0 0 1 1 DCLK0/SDO 0 1 0 1 0 1 0 1 Rev. A | Page 40 of 99 MCLK Divider 1 2 4 8 16 32 64 128 Filter Sinc5 Sinc5 Sinc5 Sinc5 Sinc5 Sinc5 Sinc5 Sinc5 Sinc5 Sinc5 Sinc5 Sinc5 Sinc5 Sinc5 Sinc3 Sinc3 Data Sheet AD7771 EXTERNAL REFERENCE AVDD 3.3V AVDD3.3V AVSSx AVDD1x REFx+ VCM VCM IOVDD 2V TO 3.6V AVSSx AVSSx AVSSx REFx– AVDD4 REF_OUT AVDD2x AREGxCAP BUFFER AVSSx AVSSx IOVDD AD7771 BUFFER AIN0+ AVDD3.3V DRDY PGA AIN7– 24-BIT Σ-Δ ADC PGA DCLK DOUT0 DOUT1 DOUT2 DOUT3 ADC DATA SERIAL INTERFACE AIN0– AIN7+ DREGCAP SYNC_IN SYNC_OUT START RESET SINC3/SINC5 SRC CS SCLK SDO SPI CONTROL INTERFACE SDI SPI/SPORT SLAVE INTERFACE FPGA OR DSP SPI MASTER INTERFACE CLK_SEL XTAL1 XTAL2 MODE3 TO MODE0 CONVST_SAR DCLK2 TO DCLK0 FORMAT1 AND FORMAT0 13802-114 AVSSx CLOCK SOURCE Figure 114. Pin Control Mode Connection Diagram with External Reference AVDD 3.3V AVDD3.3V AVSSx AVDD1x REFx+ VCM VCM AVSSx AVSSx REFx– REF_OUT BUFFER BUFFER AVSSx AVSSx AVDD2x AREGxCAP AD7771 AIN7– DREGCAP SYNC_IN SYNC_OUT START RESET DRDY PGA ADC DATA SERIAL INTERFACE AIN0– AIN7+ IOVDD 24-BIT Σ-Δ ADC PGA SINC3/SINC5 SRC SPI CONTROL INTERFACE DIAGNOSTIC INPUTS FULL BUFFER AUXAIN+ 12-BIT SAR ADC MUX AUXAIN– AVSSx GPIO2 TO GPIO0 CONVST_SAR XTAL1 DCLK DOUT0 DOUT1 DOUT2 DOUT3 CS SCLK SDO SDI SPI/SPORT SLAVE INTERFACE FPGA OR DSP SPI MASTER INTERFACE CLK_SEL XTAL2 FORMAT1 IOVDD FORMAT0 IOVDD CLOCK SOURCE Figure 115. SPI Control Mode Connection Diagram with Internal Reference Rev. A | Page 41 of 99 13802-115 AIN0+ AVDD4 IOVDD 2V TO 3.6V AD7771 Data Sheet SPI CONTROL The second option for control and monitoring the AD7771 is via the SPI. This option allows access to the full functionality on the AD7771, including access to the SAR converter, phase synchronization, offset and gain adjustment, diagnostics, and the SRC. To use the SPI control, set the FORMAT0 and FORMAT1 pins to logic high. In this mode, the SPI can also read the Σ-Δ conversation data by setting the SPI_SLAVE_MODE_EN bit. The typical connection diagram for SPI control mode is shown in Figure 115. Functionality Available in SPI Control Mode SPI control of the AD7771 offers the super set of the functions and diagnostics. The SPI Control Functionality section describes the functionality and diagnostics offered when in SPI control mode. Offset and Gain Correction Offset and gain registers are available for system calibration. The gain register is preprogrammed during final production for a PGA gain of 1, but can be overwritten with a new value if required. The gain register is 24 bits long and is split across three registers, CHx_GAIN_UPPER_BYTE, CHx_GAIN_MID_BYTE, and CHx_GAIN_LOWER_BYTE, which set the gain on a per channel basis. The gain value is relative to 0x555555, which represents a gain of 1. The offset register is 24 bits long and is spread across three byte registers, CHx_OFFSET_UPPER_BYTE, CHx_OFFSET_MID_ BYTE, and CHx_OFFSET_LOWER_BYTE. The default value is 0x000000 at power-up. Program the offset as a twos complement, signed 24-bit number. If the channel gain is set to its nominal value of 0x555555, an LSB of offset register adjustment changes the digital output by −4/3 LSBs. As an example of calibration, the offset measured is −200 LSB (with both AINx± pins connected to the same potential). An offset adjustment of −150 LSB changes the digital output by −150 × (−4/3) = 200 LSBs (gain value = 0x555555), representing this number as two complement, 0xFFFFFF − 0x96 + 1 = 0xFFFF70. Program the offset register as follows: • • • CHx_OFFSET_UPPER_BYTE = 0xFF CHx_OFFSET_MID_BYTE = 0xFF CHx_OFFSET_LOWER_BYTE = 0x70 • • • CHx_GAIN_UPPER_BYTE = 0x40 CHx_GAIN_MID_BYTE = 0x00 CHx_GAIN_LOWER_BYTE = 0x00 SPI Control Functionality Global Control Functions The following list details the global control functions of the AD7771: • • • • • • • • • • • • • • • • • High resolution and low power modes of operation ODR: SRC Sinc3 and sinc5 filters VCM buffer power-down Internal/external reference selection Enable, pre-Q, or bypassed reference buffer modes Internal reference power-down SAR diagnostic mux SAR power-down GPIO write/read SPI SAR conversion readback SPI slave mode—read Σ-Δ results SDO and DOUTx drive strength DOUTx mode DCLK division Internal LDO bypassed Cyclic redundancy check (CRC) protection: enabled or disabled Per Channel Functions The following list details the per channel functions of the AD7771: • • • • • • • • PGA gain. Σ-Δ channel power-down. Phase delay: synchronization phase offset per channel. Calibration of offset. Calibration of gain. Σ-Δ input signal mux. Channel error register. PGA gain. Phase Adjustment Note that the offset compensation is performed before the gain compensation. The gain is programmed during final testing for PGAGAIN = 1. The gain register values can be overwritten; however, after a reset or power cycle, the gain register values revert to the hard coded programmed factory setting. If the gain required is 0.75 of the nominal value (0x555555), the value that must be programmed is 0x555555 × 0.75 = 0x400000 Then, an LSB of the offset register adjustment changes the digital output by −4/3 × 0.75 = 1 LSB. Program the gain register as follows: The AD7771 phase delay can be adjusted to compensate for phase mismatches between channels due to sensors or signal channel phase errors connected to the AD7771. Achieve phase adjustment by programming the CHx_SYNC_OFFSET register. This programming delays the synchronization signal by a certain number of modulator clocks (MOD_MCLK) to individually initiate the digital filter for each Σ-Δ ADC. In other words, programming the channel with higher phase delay as CHx_SYNC_OFFSET= 0, any other channel with lower phase, can be delayed to compensate for the phase mismatch. Rev. A | Page 42 of 99 Data Sheet AD7771 The phase adjustment register is read after a pulse on the SYNC_IN pin; consequently, any further changes on the register have no effect unless a pulse is generated (see the Digital Reset and Synchronization Pins section for more information on how to generate a pulse in the pin). The phase offset register is multiplied internally by a factor (n) that depends on the decimation rate, as shown in Table 16. Table 16. Phase Adjustment vs. Decimation Rate Phase Adjustment Compensation (n) ×1 ×2 ×4 ×8 ×16 Decimation Rate ≤255 ≤511 ≤1023 ≤2047 ≤4095 The PGA gain can be selected individually by appropriately selecting Bits[7:6] in the CHx_CONFIG register, as shown in Table 18. Table 18. PGA Gain Settings via CHx_CONFIG CHx_CONFIG, Bits[7:6] Setting 00 01 10 11 PGA Gain Setting ×1 ×2 ×4 ×8 If the Σ-Δ reference is updated, it is recommended to apply a pulse on the SYNC_IN pin to remove invalid samples during the transition of the reference. Decimation The maximum phase delay cannot be equal to or greater than the decimation rate. If this is the case, the value changes internally to the decimation rate value minus 1. When the CHx_SYNC_OFFSET register is written, it automatically overwrites itself multiplied by the corresponding factor (n), as defined in Table 16. Because CHx_SYNC_OFFSET is only 8 bits long, the resulting value is scaled down to fit 8 bits. To determine whether phase adjustment was clipped or not, see Table 17. Table 17. Phase Adjustment Clipping CHx_SYNC_OFFSET × n ≤255 ≤511 ≤1023 ≤2047 ≤4095 PGA Gain The decimation defines the sampling frequency as follows: • • In high resolution mode, the sampling frequency = MCLK/ (4 × decimation) In low power mode, the sampling frequency = MCLK/ (8 × decimation) Refer to the Sample Rate Converter (SRC) section for more information. GPIOx Pins If the AD7771 operates in SPI control mode, the mode pins operate as GPIOx pins, as shown in Figure 116. The GPIOx pins can be configured as inputs or outputs in any order. CHx_SYNC_OFFSET Overwrite CHx_SYNC_OFFSET × n CHx_SYNC_OFFSET × n/2 CHx_SYNC_OFFSET × n/4 CHx_SYNC_OFFSET × n/8 CHx_SYNC_OFFSET × n/16 GPIO0 GPIO1 As an example, the phase mismatch between Channel 0 and Channel 1 is 5°, and the ODR is 5 kSPS in high resolution mode. In this case, the decimation rate is 2048 kHz/5 kHz = 409.6, which means that the offset register value is multiplied internally by 2. GPIO2 13802-116 Assuming an input signal of 50 Hz, the number of MOD_ MCLK pulses required to sample a full period is 2048 kHz/ 50 Hz = 40960 > 360°/40960 = 0.00878°. REGISTER MAP Figure 116. GPIOx Pin Functionality If a 5° delay is required, the number of MOD_MCLK delays must be 569 (5°/0.00878°) because the offset register is multiplied by 2; the final offset register value is 409.6/2 − 569/2, which gives a negative value. In this case, if the offset value programmed to the register is higher than 204 (for example, 210 × 2 = 420), the value is internally changed to 408, resulting in a phase compensation of 408 × 0.00878° = 3.58°. Configuration control and readback of the GPIOx pins are set via Bits[2:0] in the GPIO_CONFIG register (0 = input, 1 = output) and the GPIO_DATA register. Among other uses, the GPIOs can control an external mux connected to the auxiliary inputs of the SAR ADC. Use this mux to verify the results on the Σ-Δ ADCs. In addition, the GPIOx pins can be used to externally trigger a new decimation rate. Refer to the Sample Rate Converter (SRC) section for more information about this functionality. Rev. A | Page 43 of 99 AD7771 Data Sheet Σ-Δ Reference Configuration The AD7771 can operate with internal or external references. In addition, for diagnostic purposes, the analog supply can be used as a reference, as shown in Table 19. REFx−/REFx+ allow the selection of a voltage reference where the REFx+ voltage is lower than the voltage on the REFx− pin. Table 19. Σ-Δ References Setting for ADC_MUX_CONFIG, Bits[7:6] 00 01 10 11 Channel 0 to Channel 3 REF1+/REF1− Internal reference AVDD1A/AVSS1A REF1−/REF1+ Channel 4 to Channel 7 REF2+/REF2− Internal reference AVDD1B/AVSS1B REF2−/REF2+ Reference buffer operation is described in Table 21. The selected reference and buffer operation mode affect all channels. If the Σ-Δ reference is updated, it is recommended to apply a pulse on the SYNC_IN pin to remove invalid samples during the transition of the reference. Power Modes The AD7771 offers different power modes to improve the power efficiency, high resolution and low power mode, which can be controlled via GENERAL_USER_CONFIG_1, Bit 6. To further reduce the power, additional blocks can be disabled independently, as described in Table 22. If the power mode changes, a pulse on the SYNC_IN pin is required. Sinc3 and Sinc5 Filters The AD7771 implements sinc3 and sinc5 digital filters. By default, the device powers up with the sinc3 filter, but it can be changed by setting GENERAL_USER_CONFIG_2, Bit 6. If the sinc filter is changed, a pulse in the SYNC_IN pin is required. LDO Bypassing The internal LDOs can be individually bypassed and an external supply can be applied directly to the AREG1CAP, AREG2CAP, or DREGCAP pin. Table 20 shows the absolute minimum and maximum supplies for these pins, as well as the associated register used to bypass the regulator. Table 20. LDO Bypassing LDO AREG1CAP AREG2CAP DREGCAP 1 BUFFER_CONFIG_2, Bits[2:0]1 1XX X1X XX1 Max (V) 1.9 1.9 1.9 Supply Min (V) 1.85 1.85 1.65 X means don’t care. Table 21. Reference Buffer Operation Modes Reference Buffer Operation Mode Enabled Precharged Disabled REFx+ BUFFER_CONFIG_1, Bit 4 = 1; BUFFER_CONFIG_2, Bit 7 = 0 BUFFER_CONFIG_1, Bit 4 = 1; BUFFER_CONFIG_2, Bit 7 = 1 BUFFER_CONFIG_1, Bit 4 = 0 REFx− BUFFER_CONFIG_1, Bit 3 = 1; BUFFER_CONFIG_2, Bit 6 = 0 BUFFER_CONFIG_1, Bit 3 = 1; BUFFER_CONFIG_2, Bit 6 = 1 BUFFER_CONFIG_1, Bit 3 = 0 Table 22. Additional Disable Power-Down Blocks Block VCM Reference Buffer Internal Reference Buffer Σ-Δ Channel SAR Internal Oscillator Register GENERAL_USER_CONFIG_1, Bit 5 BUFFER_CONFIG_1, Bits[4:3] GENERAL_USER_CONFIG_1, Bit 4 CH_DISABLE, Bits[7:0] GENERAL_USER_CONFIG_1, Bit 3 GENERAL_USER_CONFIG_1, Bit 2 Rev. A | Page 44 of 99 Notes Enabled by default Precharge mode by default Disabled by default All channels enabled Disabled by default Enabled by default Data Sheet AD7771 DIGITAL SPI The SPI serial interface on the AD7771 consists of four signals: CS, SDI, SCLK, and SDO. A typical connection diagram of the SPI is shown in Figure 117. AD7771 DSP/FPGA CS SCLK SDI SDO 13802-117 SPI CRC—Checksum Protection (SPI Control Mode) Figure 117. SPI Control Interface—AD7771 is the SPI Slave, Digital Signal Processor (DSP)/Field Programmable Gate Array (FPGA) is the Master The SPIs operates in Mode 0 and Mode 3, CPOL = 0, CPHA = 0 (Mode 0) or CPOL = 1, CPHA = 1 (Mode 3). In pin control mode, the SDI can read back the Σ-Δ results, depending on the level of the CONVST_SAR pin, as described in Table 13. In SPI control mode, the SPI transfers data into the on-chip registers while the SDO pin reads back data from the on-chip registers or reads the SAR or the Σ-Δ conversions results, depending on the selected operation mode. 1 Mode Internal register Σ-Δ data conversion SAR conversion X means don’t care. In SPI control mode, there are four different levels of input/ output (I/O) strength on the SDO pin that can be selected in GENERAL_USER_CONFIG_2, Bits[4:3], as described in Table 24. Table 24. SDO Strength GENERAL_USER_CONFIG_2, Bits[4:3] Setting 00 01 10 11 Enabling the SPI_CRC_TEST_EN bit results in a CRC checksum being performed on all the R/W operations. When SPI_CRC_ TEST_EN is enabled, an 8-bit CRC word is appended to every SPI transaction for SAR and register map operations. For more information on Σ-Δ readback operations, see the CRC Header section. For CRC checksum calculations, the following polynomial is always used: x8 + x2 + x + 1. See the SPI Control Mode Checksum section for more information. Table 23. SPI Operation Mode in SPI Control Mode GENERAL_USER_ CONFIG_3, Bit 4 Setting1 0 1 X The AD7771 has a checksum mode that improves SPI robustness in SPI control mode. Using the checksum ensures that only valid data is written to a register and allows data read from the device to be validated. The SPI CRC can be enabled by setting the SPI_CRC_TEST_EN bit. If an error occurs during a register write, the SPI_CRC_ERR is set in the error register. To ensure that the register write is successful, it is recommended to read back the register and verify the checksum. The SDO data source in SPI control mode is defined by the GENERAL_USER_CONFIG_2 and GENERAL_USER_ CONFIG_3 registers, as described in Table 23. GENERAL_USER_ CONFIG_2, Bit 5 Setting 0 0 1 The SPI can operate in multiples of eight bits. For example, in SPI control mode, if the SDO pin is used to read back the data from the internal register or the SAR ADC, the data frame is 16 bits wide (CRC disabled), as shown in Figure 118, or 24 bits wide (CRC enabled), as shown in Figure 119. In this case, the controller can generate one frame of 16 bits or 24 bits (with and without the CRC enabled), or two or three frames of 8 bits (with and without the CRC enabled). When the SDO pin reads back the data from the Σ-Δ channels, 64 bits must be read back from the controller (in this case, the controller can generate a frame of 64 bits—either 2 × 32 bits, 4 × 16 bits, or 8 × 8 bits). Mode Nominal Strong Weak Extra strong SCLK is the serial clock input for the device. All data transfers (on either SDO or SDI) occur with respect to this SCLK signal. SPI Read/Write Register Mode (SPI Control Mode) The AD7771 has on-board registers to configure and control the device. The registers have 7-bit addresses—the 7-bit register address on the SDI line selects the register for the read/write function. The 7-bit register address follows the R/W bit in the SDI data. The 8 bits on the SDI line following the 7-bit register address are the data to be written to the selected register if the SPI is a write transfer. Data on the SDI line is clocked into the AD7771 on the rising edge of SCLK, as shown in Figure 3. The data on the SDO line during the SPI transfer contains the 8-bit 0010 0000 header: 8 bits of register data in the case of a read (R) operation, or 8 zeros in the case of a write (W) operation. With the CRC disabled, the basic data frame on the SDI line during the transfer is 16 bits long, as shown in Figure 118. When the CRC is enabled, a minimum frame length of 24 SCLK periods are required on SPI transfers. The 24 bits of data on the SDO line consist of an 8-bit header (0010 0000), 8 bits of data, and an 8-bit CRC (see Figure 119). Rev. A | Page 45 of 99 AD7771 Data Sheet CS SDI R/W A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 SDO 0 0 1 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 13802-118 SCLK Figure 118. 16-Bit SPI Transfer—CRC Disabled CS SDI R/W A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 ICRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0 SDO 0 0 1 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 ICRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0 13802-119 SCLK Figure 119. 24-Bit SPI Transfer—CRC Enabled SPI SAR Diagnostic Mode (SPI Control Mode) to the device, which is ignored because the SDO pin shifts out the content of the SAR ADC. Setting Bit 5 in the GENERAL_USER_CONFIG_2 register configures the SDO line to shift out data from the SAR ADC conversions, as described in Table 23. If consecutive conversions are performed in the SAR ADC, read back the result from the previous conversion before a new conversion is generated. Otherwise, the results are corrupted. In SAR mode, the AD7771 internal registers can be written to, but any readback command is ignored because the SDO data frame is dedicated to shift out the conversion results from the SAR ADC. Σ-Δ Data, ADC Mode To exit this mode of operation, reset Bit 5 in the GENERAL_ USER_CONFIG_2 register. The data on the SDO line during the SPI transfer contains a 4-bit 0010 header and the 12-bit SAR conversion result if the CRC is disabled. When the CRC is enabled, a minimum frame length of 24 SCLK periods is required on SPI transfers. The 24 bits of data on the SDO line consist of a 4-bit header (0010), the 12-bit data, and an 8-bit CRC, as shown in Figure 120. Per the SPI read/write register mode (see the SPI Read/Write Register Mode section), the SDI line contains the R/W bit, a 7-bit register address, the 8-bit data, and an 8-bit CRC (if enabled). To avoid unwanted writes to the internal register while the SAR conversions are read back through the SDO line, it is recommended to send a readback command, for example, 0x8000, In pin control mode, the SPI can be used to read back the Σ-Δ conversions as described in Table 13. In SPI control mode, the SPI reads back the Σ-Δ conversions by setting GENERAL_USER_ CONFIG_3, Bit 4, as described in Table 23; in this mode, the AD7771 internal register can be written to, but any readback command is ignored because the SDO data frame is dedicated to shifting out the conversion results from the Σ-Δ ADCs. To avoid unwanted writes to the internal register, it is recommended to send a readback command, for example, 0x8000, to the device, which is ignored because the SDO pin shifts out the content of the Σ-Δ ADC. The SDO pin data can be read back in any multiple of 8 bits, for example, as 64 bits, 2 × 32 bits, 4 × 16 bits, or 8 × 8 bits. SPI Software Reset Keeping the SDI pin high during 64 consecutives clocks generates a software reset. Rev. A | Page 46 of 99 Data Sheet AD7771 CS SCLK R/W A6 A5 A4 SDO 0 0 1 0 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 ICRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0 SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR I CRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0 11 10 9 8 7 6 5 4 3 2 1 0 13802-120 SDI Figure 120. SAR ADC/Diagnostic Mode—CRC Enabled DRDY CS SCLK SDO 0x800000 HEADER CH0 0x800000 D23CH0 TO D8CH0 D7CH0 TO D0CH0 HEADER CH1 Figure 121. SPI Used to Read Back the Σ-Δ ADC Data, in 24-Bit Frames Rev. A | Page 47 of 99 D23CH1 TO D16CH1 13802-200 SDI AD7771 Data Sheet RMS NOISE AND RESOLUTION Table 25 through Table 28 show the dynamic range (DR), rms noise (RTI), effective number of bits (ENOB), and effective resolution (ER) of the AD7771 for various output data rates and gain settings. The numbers given are for the bipolar input range with an external 2.5 V reference. These numbers are typical and are generated with a differential input voltage of 0 V when the ADC is continuously converting on a single channel. It is important to note that the effective resolution is calculated using the rms noise; 16,384 consecutives samples were used to calculate the rms noise. Effective Resolution = log2(Input Range/RMS Noise) ENOB = (DR − 1.78)/6 HIGH RESOLUTION MODE Table 25. DR and RTI for High Resolution Mode Sinc Filter Sinc5 Sinc3 Decimation Rate 16 32 64 256 128 256 512 1024 Output Data Rate (SPS) 128,000 64,000 32,000 8,000 16,000 8,000 4,000 1,000 f−3 dB (Hz) 26542.34 13403.14 6833.54 1906.34 4878.83 2756.43 1695.23 899.33 DR (dB) 95.1 101.8 107.1 114.4 105.7 112.1 115.8 122.0 Gain = 1 RTI (µV rms) 31.32 14.31 7.90 3.34 9.01 4.32 2.86 1.39 DR (dB) 91.7 98.5 105.3 113.8 105.2 111.5 115.6 121.6 Gain = 2 RTI (µV rms) 22.68 10.30 4.85 1.84 4.88 2.31 1.51 0.73 DR (dB) 87.1 94.4 101.5 111.6 103.2 109.3 113.5 119.6 Gain = 4 RTI (µV rms) 19.39 8.41 3.65 1.16 2.99 1.52 0.96 0.47 DR (dB) 82.0 89.7 96.9 107.9 99.6 105.5 109.5 115.7 Gain = 8 RTI (µV rms) 17.11 7.37 3.14 0.91 2.26 1.19 0.75 0.36 Table 26. ENOB and ER for High Resolution Mode Sinc Filter Sinc5 Sinc3 Decimation Rate 16 32 64 256 128 256 512 1024 Output Data Rate (SPS) 128,000 64,000 32,000 8,000 16,000 8,000 4,000 1,000 f−3 dB (Hz) 26542.34 13403.14 6833.54 1906.34 4878.83 2756.43 1695.23 899.33 Gain = 1 ENOB ER (Bits) (Bits) 15.5 17.3 16.6 18.4 17.5 19.3 18.7 20.5 17.3 19.1 18.3 20.1 18.9 20.7 20.0 21.8 Rev. A | Page 48 of 99 Gain = 2 ENOB ER (Bits) (Bits) 14.9 17.8 16.1 18.9 17.2 20.0 18.6 21.4 17.2 20.0 18.2 21.0 18.9 21.7 19.9 22.7 Gain = 4 ENOB ER (Bits) (Bits) 14.2 18.0 15.4 19.2 16.6 20.4 18.2 22.0 16.9 20.7 17.9 21.6 18.6 22.3 19.6 23.3 Gain = 8 ENOB ER (Bits) (Bits) 13.3 18.2 14.6 19.4 15.8 20.6 17.6 22.4 16.3 21.1 17.2 22.0 17.9 22.7 18.9 23.7 Data Sheet AD7771 LOW POWER MODE Table 27. DR and RTI for Low Power Mode Sinc Filter Sinc5 Sinc3 Decimation Rate 16 32 64 512 64 128 256 1024 Output Data Rate (SPS) 32,000 16,000 8,000 1,000 8,000 4,000 2,000 500 f−3 dB (Hz) 6833.54 3548.74 1906.34 469.24 2756.43 1695.23 1164.63 766.68 DR (dB) 94.3 100.9 106.7 117.1 95.5 105.4 111.7 118.6 Gain = 1 RTI (µV rms) 34.2 15.7 83.3 25.2 29.86 9.47 4.62 2.1 DR (dB) 90.9 97.8 104.6 116.8 95.0 105.1 111.2 118.2 Gain = 2 RTI (µV rms) 25.04 11.22 5.18 1.29 15.26 4.95 2.41 1.07 DR (dB) 86.5 93.6 100.6 114.4 93.7 102.7 108.9 116.2 Gain = 4 RTI (µV rms) 20.5 9.0 4.03 8.41 8.9 3.21 1.57 0.7 DR (dB) 81.3 87.9 96.1 110.7 90.8 98.7 104.8 112.5 Gain = 8 RTI (µV rms) 19.43 8.39 3.46 0.67 6.11 2.51 1.27 0.54 Table 28. ENOB and ER for Low Power Mode Sinc Filter Sinc5 Sinc3 Decimation Rate 16 32 64 512 64 128 256 1024 Output Data Rate (SPS) 32,000 16,000 8000 1000 8,000 4,000 2,000 500 f−3 dB (Hz) 6833.54 3548.74 1906.34 469.24 2756.43 1695.23 1164.63 766.68 Gain = 1 ENOB ER (Bits) (Bits) 15.4 17.2 16.5 18.3 17.4 15.9 19.2 17.6 15.6 17.4 17.2 19.0 18.3 20.0 19.4 21.2 Rev. A | Page 49 of 99 Gain = 2 ENOB ER (Bits) (Bits) 14.8 17.6 16.0 18.8 17.1 19.9 19.1 21.9 15.5 18.3 17.2 19.9 18.2 21.0 19.3 22.2 Gain = 4 ENOB ER (Bits) (Bits) 14.1 17.9 15.3 19.1 16.4 20.2 18.7 19.2 15.3 19.1 16.8 20.6 17.8 21.6 19.0 22.8 Gain = 8 ENOB ER (Bits) (Bits 13.2 18.0 14.3 19.2 15.7 20.5 18.1 22.8 14.8 19.6 16.1 20.9 17.1 21.9 18.4 23.1 AD7771 Data Sheet DIAGNOSTICS AND MONITORING SELF DIAGNOSTICS ERROR The AD7771 includes self diagnostic features to guarantee the correct operation. If an error is detected, the ALERT pin (Pin 18 when using pin control mode or Pin 16 when using SPI control mode) is pulled high to generate an external interruption to the controller. In addition, the header of the Σ-Δ output data contains an alert bit that informs the controller of a chip error (see the ADC Conversion Output—Header and Data section). Both the ALERT pin and bit (status header) are automatically cleared if the error is no longer present. The errors related to the SPI do not recover automatically; read back the appropriate register to clear the error. The ALERT pin and bit reset in the next SPI access after the bit is read back. If an error detector is manually disabled, it does not generate an internal error and, consequently, the register map or the ALERT pin and bit are not triggered. There are different sources of errors, as described in Table 29. In pin control code, it is not possible to check the error source, and some sources of error are not enabled. In SPI control mode, check the source of an error by reading the appropriate register bit. The STATUS_REG_x register bits identify the register that generates an error, as summarized in Table 29. Table 29. Register Error Source Bit Name ERR_LOC_GEN2 ERR_LOC_GEN1 ERR_LOC_CH7 ERR_LOC_CH6 ERR_LOC_CH5 ERR_LOC_CH4 ERR_LOC_CH3 ERR_LOC_CH2 ERR_LOC_CH1 ERR_LOC_CH0 ERR_LOC_SAT_CH6_7 ERR_LOC_SAT_CH4_5 ERR_LOC_SAT_CH2_3 ERR_LOC_SAT_CH0_1 the CMOS clock. In SPI control mode, if an error occurs in the handover, the EXT_MCLK_SWITCH_ERR bit is set in the general error register, GEN_ERR_REG_2. If EXT_MCLK_SWITCH_ERR is set, this means that the device is operating using the internal oscillator. To use a slow external clock (
AD7771BCPZ-RL 价格&库存

很抱歉,暂时无法提供与“AD7771BCPZ-RL”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AD7771BCPZ-RL
    •  国内价格
    • 1+143.18640
    • 10+137.12760
    • 30+126.64080
    • 100+113.96841

    库存:0

    AD7771BCPZ-RL
    •  国内价格 香港价格
    • 2500+131.193002500+15.92950

    库存:0

    AD7771BCPZ-RL
      •  国内价格
      • 1+110.76800

      库存:0