0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD7779ACPZ-RL

AD7779ACPZ-RL

  • 厂商:

    AD(亚德诺)

  • 封装:

    LFCSP-64_9X9MM-EP

  • 描述:

    IC ADC 24BIT SIGMA-DELTA 64LFCSP

  • 数据手册
  • 价格&库存
AD7779ACPZ-RL 数据手册
8-Channel, 24-Bit, Simultaneous Sampling ADC AD7779 Data Sheet FEATURES 8-channel, 24-bit simultaneous sampling analog-to-digital converter (ADC) Single-ended or true differential inputs Programmable gain amplifier (PGA) per channel (gains of 1, 2, 4, and 8) Low dc input current ±1.5 nA (differential) ±4 nA (single-ended) Up to 16 kSPS output data rate (ODR) per channel Programmable ODRs and bandwidth Sample rate converter (SRC) for coherent sampling Sampling rate resolution up to 15.2 µSPS Low latency sinc3 filter path Adjustable phase synchronization Internal 2.5 V reference Two power modes optimizing power dissipation and performance: high resolution mode and low power mode Low resolution successive approximation (SAR) ADC for system and chip diagnostics Power supply Bipolar (±1.65 V) or unipolar (3.3 V) supplies Digital input/output (I/O) supply: 1.8 V to 3.6 V Performance temperature range: –40°C to +105°C Functional temperature range: –40°C to +125°C Performance Combined ac and dc performance 108 dB signal-to-noise ratio (SNR)/dynamic range at 16 kSPS in high resolution mode −109 dB total harmonic distortion (THD) ±7 ppm integral nonlinearity (INL) ±40 µV offset error ±0.1% gain error ±10 ppm/°C typical temperature coefficient APPLICATIONS Circuit breakers General-purpose data acquisition Electroencephalography (EEG) Industrial process control Each channel contains an ADC modulator and a sinc3, low latency digital filter. An SRC is provided to allow fine resolution control over the AD7779 ODR. This control can be used in applications where the ODR resolution is required to maintain coherency with 0.01 Hz changes in the line frequency. The SRC is programmable through the serial port interface (SPI). The AD7779 implements two different interfaces: a data output interface and SPI control interface. The ADC data output interface is dedicated to transmitting the ADC conversion results from the AD7779 to the processor. The SPI interface is used to write to and read from the AD7779 configuration registers and for the control and reading of data from the SAR ADC. The SPI interface can also be configured to output the Σ-Δ conversion data. The AD7779 includes a 12-bit SAR ADC. This ADC can be used for AD7779 diagnostics without having to decommission one of the Σ-Δ ADC channels dedicated to system measurement functions. With the use of an external multiplexer, which can be controlled through the three general-purpose inputs/outputs pins (GPIOs), and signal conditioning, the SAR ADC can be used to validate the Σ-Δ ADC measurements in applications where functional safety is required. In addition, the AD7779 SAR ADC includes an internal multiplexer to sense internal nodes. The AD7779 contains a 2.5 V reference and reference buffer. The reference has a typical temperature coefficient of 10 ppm/°C. The AD7779 offers two modes of operation: high resolution mode and low power mode. High resolution mode provides a higher dynamic range while consuming 10.75 mW per channel; low power mode consumes just 3.37 mW per channel at a reduced dynamic range specification. The specified operating temperature range is −40°C to +105°C, although the device is operational up to +125°C. GENERAL DESCRIPTION The AD7779 is an 8-channel, simultaneous sampling ADC. There are eight full Σ-Δ ADCs on chip. The AD7779 provides an ultralow input current to allow direct sensor connection. Each input channel has a programmable gain stage allowing gains of 1, 2, 4, and 8 to map lower amplitude sensor outputs into the full-scale ADC input range, maximizing the dynamic range of Rev. C the signal chain. The AD7779 accepts VREF from 1 V up to 3.6 V. The analog inputs accept unipolar (0 V to VREF/GAIN) or true bipolar (±VREF/GAIN/2 V) analog input signals with 3.3 V or ±1.65 V analog supply voltages. The analog inputs can be configured to accept true differential, pseudo differential, or singleended signals to match different sensor output configurations. Note that throughout this data sheet, certain terms are used to refer to either the multifunction pins or a range of pins. The multifunction pins, such as DCLK0/SDO, are referred to either by the entire pin name or by a single function of the pin, for example, DCLK0, when only that function is relevant. In the case of ranges of pins, AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016–2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD7779 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Σ-∆ Output Data ............................................................................. 51 Applications ....................................................................................... 1 ADC Conversion Output—Header and Data ........................ 51 General Description ......................................................................... 1 Sample Rate Converter (SRC) (SPI COntrol MOde) ............ 52 Revision History ............................................................................... 4 Data Output Interface ................................................................ 54 Functional Block Diagram .............................................................. 5 Calculating the CRC Checksum .............................................. 58 Specifications..................................................................................... 6 Register Summary .......................................................................... 60 DOUTx Timing Characterististics ........................................... 10 Register Details ............................................................................... 64 SPI Timing Characterististics ................................................... 11 Channel 0 Configuration Register ........................................... 64 Synchronization Pins and Reset Timing Characteristics ...... 12 Channel 1 Configuration Register ........................................... 64 SAR ADC Timing Characterististics ....................................... 13 Channel 2 Configuration Register ........................................... 65 GPIO SRC Update Timing Characterististics......................... 13 Channel 3 Configuration Register ........................................... 65 Absolute Maximum Ratings .......................................................... 14 Channel 4 Configuration Register ........................................... 66 Thermal Resistance .................................................................... 14 Channel 5 Configuration Register ........................................... 66 ESD Caution ................................................................................ 14 Channel 6 Configuration Register ........................................... 67 Pin Configuration and Function Descriptions ........................... 15 Channel 7 Configuration Register ........................................... 67 Typical Performance Characteristics ........................................... 18 Disable Clocks to ADC Channel Register .............................. 68 Terminology .................................................................................... 31 Channel 0 Sync Offset Register ................................................ 68 RMS Noise and Resolution............................................................ 33 Channel 1 Sync Offset Register ................................................ 68 High Resolution Mode............................................................... 33 Channel 2 Sync Offset Register ................................................ 69 Low Power Mode ........................................................................ 33 Channel 3 Sync Offset Register ................................................ 69 Theory of Operation ...................................................................... 34 Channel 4 Sync Offset Register ................................................ 69 Analog Inputs .............................................................................. 34 Channel 5 Sync Offset Register ................................................ 69 Transfer Function ....................................................................... 35 Channel 6 Sync Offset Register ................................................ 70 Core Signal Chain....................................................................... 36 Channel 7 Sync Offset Register ................................................ 70 Capacitive PGA ........................................................................... 36 General User Configuration 1 Register ................................... 70 Internal Reference and Reference Buffers ............................... 36 General User Configuration 2 Register ................................... 71 Integrated LDOs ......................................................................... 37 General User Configuration 3 Register ................................... 72 Clocking and Sampling .............................................................. 37 Data Output Format Register ................................................... 72 Digital Reset and Synchronization Pins .................................. 37 Main ADC Meter and Reference Mux Control Register ...... 73 Digital Filtering ........................................................................... 38 Global Diagnostics Mux Register ............................................. 74 Shutdown Mode.......................................................................... 38 GPIO Configuration Register ................................................... 75 Controlling the AD7779 ............................................................ 39 GPIO Data Register.................................................................... 75 Pin Control Mode....................................................................... 39 Buffer Configuration 1 Register ............................................... 75 SPI Control .................................................................................. 41 Buffer Configuration 2 Register ............................................... 76 Digital SPI Interface ................................................................... 44 Channel 0 Offset Upper Byte Register..................................... 76 Diagnostics and Monitoring ......................................................... 47 Channel 0 Offset Middle Byte Register ................................... 76 Self Diagnostics Error ................................................................ 47 Channel 0 Offset Lower Byte Register..................................... 77 Monitoring Using the AD7779 SAR ADC (SPI Control Mode) ........................................................................................... 48 Channel 0 Gain Upper Byte Register....................................... 77 Σ-Δ ADC Diagnostics (SPI Control Mode) ............................ 50 Channel 0 Gain Lower Byte Register ....................................... 77 Channel 0 Gain Middle Byte Register ..................................... 77 Rev. C | Page 2 of 100 Data Sheet AD7779 Channel 1 Offset Upper Byte Register .....................................78 Channel 6 Gain Lower Byte Register ....................................... 86 Channel 1 Offset Middle Byte Register ....................................78 Channel 7 Offset Upper Byte Register ..................................... 87 Channel 1 Offset Lower Byte Register .....................................78 Channel 7 Offset Middle Byte Register.................................... 87 Channel 1 Gain Upper Byte Register........................................78 Channel 7 Offset Lower Byte Register ..................................... 87 Channel 1 Gain Middle Byte Register ......................................79 Channel 7 Gain Upper Byte Register ....................................... 87 Channel 1 Gain Lower Byte Register........................................79 Channel 7 Gain Middle Byte Register ...................................... 88 Channel 2 Offset Upper Byte Register .....................................79 Channel 7 Gain Lower Byte Register ....................................... 88 Channel 2 Offset Middle Byte Register ....................................79 Channel 0 Status Register .......................................................... 88 Channel 2 Offset Lower Byte Register .....................................80 Channel 1 Status Register .......................................................... 89 Channel 2 Gain Upper Byte Register........................................80 Channel 2 Status Register .......................................................... 89 Channel 2 Gain Middle Byte Register ......................................80 Channel 3 Status Register .......................................................... 90 Channel 2 Gain Lower Byte Register........................................80 Channel 4 Status Register .......................................................... 90 Channel 3 Offset Upper Byte Register .....................................81 Channel 5 Status Register .......................................................... 91 Channel 3 Offset Middle Byte Register ....................................81 Channel 6 Status Register .......................................................... 91 Channel 3 Offset Lower Byte Register .....................................81 Channel 7 Status Register .......................................................... 92 Channel 3 Gain Upper Byte Register........................................81 Channel 0/Channel 1 DSP Errors Register.............................. 92 Channel 3 Gain Middle Byte Register ......................................82 Channel 2/Channel 3 DSP Errors Register.............................. 93 Channel 3 Gain Lower Byte Register........................................82 Channel 4/Channel 5 DSP Errors Register.............................. 93 Channel 4 Offset Upper Byte Register .....................................82 Channel 6/Channel 7 DSP Errors Register.............................. 94 Channel 4 Offset Middle Byte Register ....................................82 Channel 0 to Channel 7 Error Register Enable Register ....... 94 Channel 4 Offset Lower Byte Register .....................................83 General Errors Register 1 ........................................................... 95 Channel 4 Gain Upper Byte Register........................................83 General Errors Register 1 Enable .............................................. 95 Channel 4 Gain Middle Byte Register ......................................83 General Errors Register 2 ........................................................... 96 Channel 4 Gain Lower Byte Register........................................83 General Errors Register 2 Enable .............................................. 96 Channel 5 Offset Upper Byte Register .....................................84 Error Status Register 1 ................................................................ 97 Channel 5 Offset Middle Byte Register ....................................84 Error Status Register 2 ................................................................ 97 Channel 5 Offset Lower Byte Register .....................................84 Error Status Register 3 ................................................................ 98 Channel 5 Gain Upper Byte Register........................................84 Decimation Rate (N) MSB Register ......................................... 98 Channel 5 Gain Middle Byte Register ......................................85 Decimation Rate (N) LSB Register ........................................... 98 Channel 5 Gain Lower Byte Register........................................85 Decimation Rate (IF) MSB Register ......................................... 99 Channel 6 Offset Upper Byte Register .....................................85 Decimation Rate (IF) LSB Register .......................................... 99 Channel 6 Offset Middle Byte Register ....................................85 SRC Load Source and Load Update Register .......................... 99 Channel 6 Offset Lower Byte Register .....................................86 Outline Dimensions ......................................................................100 Channel 6 Gain Upper Byte Register........................................86 Ordering Guide .........................................................................100 Channel 6 Gain Middle Byte Register ......................................86 Rev. C | Page 3 of 100 AD7779 Data Sheet REVISION HISTORY 6/2018—Rev. B to Rev. C Change to t22B Parameter, Table 3 ................................................. 11 Changes to AUXAIN± Parameter, Table 7.................................. 14 Changes to Table 17 ........................................................................ 39 Added Figure 104; Renumbered Sequentially ............................ 46 Changes to Figure 115 Caption and Figure 116 Caption .......... 54 Updated Outline Dimensions ..................................................... 100 Changes to Ordering Guide ........................................................ 100 8/2017—Rev. A to Rev. B Changes to Features Section............................................................ 1 Change to START Pin Description, Table 9 ................................ 15 Changes to Figure 48 ...................................................................... 24 Changes to Digital Reset and Synchronization Pins Section .... 37 Changes to Figure 94 ...................................................................... 38 Changes to Phase Adjustment Section and Table 20 ................. 42 Added Table 21; Renumbered Sequentially ................................ 42 Changes to Digital SPI Interface Section ..................................... 44 9/2016—Rev. 0 to Rev. A Changes to General Description Section ...................................... 1 Changes to Table 1 ............................................................................ 6 Changes to Table 2 .......................................................................... 10 Changes to Table 4 .......................................................................... 12 Changes to Figure 8 Caption through Figure 13 Caption ......... 18 Changes to Figure 14 Caption and Figure 17 Caption .............. 19 Changes to Figure 22 ...................................................................... 20 Changes to Figure 26 Caption, Figure 27 Caption, Figure 29 Caption, and Figure 30 Caption ................................................... 21 Changes to Figure 35 Caption ...................................................... 22 Changes to Figure 38 through Figure 43 ..................................... 23 Changes to Figure 44, Figure 45 Caption, and Figure 47 .......... 24 Changes to Figure 51 Caption, Figure 52 Caption, and Figure 55 Caption ........................................................................... 25 Changes to Figure 56, Figure 58, Figure 59, and Figure 61....... 26 Changes to Figure 63 Caption, Figure 64 Caption, Figure 66 Caption, and Figure 67 Caption ................................................... 27 Changes to Figure 76 and Figure 79 ............................................ 29 Changes to Figure 80 and Figure 81 ............................................ 30 Changes to Figure 100 ................................................................... 44 Changes to SPI SAR Diagnostic Mode (SPI Control Mode) Section .............................................................................................. 46 Changes to SPI Transmission Errors (SPI Control Mode) ....... 48 Changes to CRC Header Section, Figure 107, and Table 33 to Table 35 ............................................................................................ 51 Changes to SRC Bandwidth Section ............................................ 52 Changes to Figure 109, Figure 110, SRC Group Delay and Latency Section, and Setting Time Section ................................. 53 Added Figure 111 and Figure 112; Renumbered Sequentially .....53 Changes to Table 40 ..............................................................................57 Changes to Calculating the CRC Checksum Section and Table 42 ............................................................................................ 58 Changes to SPI Control Mode Checksum Section .................... 59 Changes to Table 66 ....................................................................... 74 2/2016—Revision 0: Initial Version Rev. C | Page 4 of 100 Data Sheet AD7779 FUNCTIONAL BLOCK DIAGRAM AVDD1x REFx+ REFx– AVDD2 COMMONMODE VOLTAGE AREGxCAP ANALOG LDO IOVDD DREGCAP DIGITAL LDO 2.5V REF AIN0+ AIN0– 280mV p-p EXT_REF Σ-Δ ADC PGA SINC3/ SRC FILTER XTAL1 CLOCK MANAGER AIN2+ AIN2– AIN3+ AIN3– AIN4+ AIN4– AIN5+ AIN5– AIN6+ AIN6– AIN7+ AIN7– SYNC_IN SYNC_OUT START GAIN OFFSET DCLK DRDY INT_REF AIN1+ AIN1– XTAL2/MCLK DATA OUTPUT INTERFACE DOUT3 Σ-Δ ADC SINC3/ SRC FILTER GAIN OFFSET PGA Σ-Δ ADC SINC3/ SRC FILTER GAIN OFFSET PGA Σ-Δ ADC SINC3/ SRC FILTER GAIN OFFSET PGA Σ-Δ ADC SINC3/ SRC FILTER GAIN OFFSET MODE0/GPIO0 PGA Σ-Δ ADC SINC3/ SRC FILTER GAIN OFFSET ALERT/CS PGA REFERENCES REFERENCES REFERENCES REFERENCES REFERENCES Σ-Δ ADC SINC3/ SRC FILTER GAIN OFFSET PGA Σ-Δ ADC SINC3/ SRC FILTER GAIN OFFSET REFERENCES REFERENCES DOUT1 DOUT0 REGISTER MAP AND LOGIC CONTROL RESET FORMAT1 FORMAT0 HARDWARE MODE CONFIGURATION SPI INTERFACE PGA AUXAIN+ AUXAIN– DOUT2 MODE3/ALERT MODE2/GPIO2 MODE1/GPIO1 DCLK2/SCLK DCLK1/SDI DCLK0/SDO AD7779 SAR ADC DIAGNOSTIC INPUTS AVSSx AVDD4 CONVST_SAR Figure 1. Rev. C | Page 5 of 100 13295-001 VCM REF_OUT AD7779 Data Sheet SPECIFICATIONS AVDD1x = +1.65 V, AVSSx 1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND (single-supply operation), AVDD2x − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V AVSSx (internal/external), master clock (MCLK) = 8192 kHz for high resolution mode and 4096 kHz for low power mode, ODR = 16 kSPS for high resolution mode and 4 kSPS for low power mode; all specifications at TMIN to TMAX, unless otherwise noted. Table 1. Parameter ANALOG INPUTS Differential Input Voltage Range Single-Ended Input Voltage Range AINx± Common-Mode Input Range Absolute AINx± Voltage Limits DC Input Current Differential Single-Ended Input Current Drift AC Input Capacitance PGA Gain Settings Bandwidth REFERENCE Internal Initial Accuracy Temperature Coefficient Reference Load Current, IL DC Power Supply Rejection Load Regulation, ∆VOUT/∆IL Voltage Noise Voltage Noise Density Turn On Settling Time External Input Voltage Buffer Headroom REFx− Input Voltage Average REFx± Input Current Test Conditions/Comments Min Typ VREF = (REFx+ − REFx−) AVSSx + 0.10 (AVDD1x + AVSSx)/2 AVSSx + 0.10 HR, MCLK = 8192 kHz Low power mode, MCLK = 4096 kHz HR, MCLK = 8192 kHz Low power mode, MCLK = 4096 kHz Max Unit ±VREF/PGAGAIN V 0 to VREF/PGAGAIN V AVDD1x − 0.10 V AVDD1x − 0.10 ±1.5 ±0.6 ±4 ±1.5 50 8 nA nA nA nA pA/°C pF 1, 2, 4, or 8 Small signal, high resolution mode Small signal, low power mode Large signal, high resolution mode Large signal, low power mode REF_OUT, TA = 25°C 2.5 − 0.2% 2.5 ±10 −10 Line regulation 2 512 5 1.5 MHz kHz kHz kHz 2.5 + 0.2% ±38 +10 V ppm/°C mA dB µV/mA µV rms nV/√Hz ms AVDD1x AVDD1x − 0.1 AVDD1x – REFx+ V 95 100 6.8 273.5 1.5 eN p-p, 0.1 Hz to 10 Hz eN, 1 kHz, 2.5 V reference 100 nF VREF = (REFx+ − REFx−) 1 AVSSx + 0.1 2.5 AVSSx V Current per channel Reference buffer disabled, high resolution mode Reference buffer precharge mode (pre-Q), high resolution mode Reference buffer disabled, low power mode Reference buffer pre-Q, low power mode Rev. C | Page 6 of 100 18 µA/V 600 nA/V 4.5 µA/V 100 nA/V Data Sheet Parameter TEMPERATURE RANGE Specified Performance Functional 2 TEMPERATURE SENSOR Accuracy DIGITAL FILTER RESPONSE (SINC3) Group Delay AD7779 Test Conditions/Comments Reference buffer enabled, high resolution mode Reference buffer enabled, low power mode Min TMIN to TMAX TMIN to TMAX −40 −40 CLOCK SOURCE Frequency Duty Cycle Σ-Δ ADC Speed and Performance Resolution ODR No Missing Codes AC Accuracy Dynamic Range 16 kSPS 4 kSPS 1 kSPS THD SINAD SFDR Intermodulation Distortion (IMD) DC Power Supply Rejection DC Common-Mode Rejection Ratio Crosstalk Unit nA/V nA/V +105 +125 ±2 °C °C °C See the SRC Group Delay section See the Settling Time section See the SRC Bandwidth section See the SRC Bandwidth section −0.1 dB −3 dB Decimation Rate Max 5 Settling Time Pass Band Typ 10 High resolution mode Low power mode 128 64 4095.99 4095.99 High resolution mode Low power mode 0.655 1.3 45:55 8.192 4.096 55:45 MHz MHz % 16 8 Bits kSPS kSPS Bits 50:50 24 High resolution mode Low power mode 24 Shorted inputs, PGAGAIN = 1 High resolution mode High resolution mode Low power mode Low power mode −0.5 dBFS, high resolution mode −0.5 dBFS, low power mode fIN = 60 Hz High resolution mode, 16 kSPS, PGAGAIN = 1 fA = 50 Hz, fB = 51 Hz, high resolution mode fA = 50 Hz, fB = 51 Hz, low power mode AVDD1x = 3.3 V 108 116 106 116 −109 −105 106 132 dB dB dB dB dB dB dB dB −125 dB −105 dB −90 dB dB −120 dB 80 Rev. C | Page 7 of 100 AD7779 Parameter DC ACCURACY INL Data Sheet Test Conditions/Comments Min Endpoint method, PGAGAIN = 1 Other PGA gains Offset Error Offset Error Drift Offset Error Drift vs. Time Offset Matching Gain Error Gain Drift vs. Temperature Gain Matching SAR ADC Speed and Performance Resolution Analog Input Range Analog Input CommonMode Range Analog Input Dynamic Current Throughput DC Accuracy INL DNL Offset Gain AC Performance SNR THD VCM PIN Output Load Current, IL Load Regulation, ∆VOUT/∆IL Short-Circuit Current LOGIC INPUTS Input High Voltage, VIH Input Low Voltage, VIL Hysteresis Input Currents LOGIC OUTPUTS 3 Output High Voltage, VOH Output Low Voltage, VOL Leakage Current Output Capacitance Σ-Δ ADC Data Output Coding SAR ADC Data Output Coding Typ Max Unit ±7 ±3 ±40 ±0.5 −2 ±15 ±15 ±125 ppm of FSR ppm of FSR µV µV/°C µV/ 1000 hrs µV % FS ppm/°C % 25 ±0.1 ±0.75 ±0.1 PGAGAIN = 1 12 AVSS4 + 0.1 AVSS4 + 0.1 256 kSPS, 0 dBFS (AVDD4 + AVSS4)/2 AVDD4 − 0.1 AVDD4 − 0.1 ±100 Bits V V nA 256 kSPS Differential mode 1.5 No missing codes (12-bit) 1 12 LSB LSB LSB LSB 66 −81 dB dB (AVDD1x + AVSSx)/2 1 12 5 V mA mV/mA mA −0.99 1 kHz 1 kHz +1 0.7 × IOVDD 0.4 0.1 −10 IOVDD ≥ 3 V, ISOURCE = 1 mA 2.3 ≤ IOVDD < 3 V, ISOURCE = 500 µA IOVDD < 2.3 V, ISOURCE = 200 µA IOVDD ≥ 3 V, ISINK = 2 mA 2.3 ≤ IOVDD < 3 V, ISINK = 1 mA IOVDD < 2.3 V, ISINK = 100 µA Floating state Floating state +10 0.8 × IOVDD 0.8 × IOVDD 0.8 × IOVDD 0.4 0.4 0.4 +10 −10 Rev. C | Page 8 of 100 10 Twos complement Binary V V V µA V V V V V V µA pF Data Sheet Parameter POWER SUPPLIES AVDD1x – AVSSx IAVDD1x 4, 5 AVDD2x – AVSSx IAVDD2x AVDD4 – AVSSx IAVDD4 AVSSx − DGND IOVDD − DGND IIOVDD Power Dissipation 6 High Resolution Mode Low Power Mode Power-Down AD7779 Test Conditions/Comments All Σ-Δ channels enabled Min Typ Max Unit 3.6 V 17 4.5 22.7 6.1 mA mA 19 5 25.5 6.8 mA mA 13 3.5 17.8 4.8 3.6 9.45 3.7 AVDD1x 2 10 0 3.6 10.7 4.4 mA mA V mA mA V mA µA V V mA mA 133 44 mW mW µW 3.0 Reference buffer pre-Q, VCM enabled, internal reference enabled High resolution mode Low power mode Reference buffer enabled, VCM enabled, internal reference enabled High resolution mode Low power mode Reference buffer disabled, VCM disabled, internal reference disabled High resolution mode Low power mode 2.2 High resolution mode Low power mode 9 3.5 AVDD1x – 0.3 SAR enabled SAR disabled 1.7 1 −1.8 1.8 High resolution mode Low power mode Internal buffers bypassed, internal reference disabled, internal oscillator disabled, SAR disabled 16 kSPS 4 kSPS All ADCs disabled 8 3 86 27 530 AVSSx is used to refer to the following pins: AVSS1A, AVSS1B, AVSS2B, and AVSS2A. This term is used throughout the data sheet. At temperatures higher than 105°C, the device can be operated normally, though slight degradation on the maximum/minimum specifications is expected because these specifications are only guaranteed up to 105°C. See the Typical Performance Characteristics section for plots showing the typical performance of the device at high temperatures. 3 The SDO pin and the DOUTx pin are configured in the default mode of strength. 4 AVDD1x = 3.3 V, AVSSx = GND = ground, IOVDD = 1.8 V, CMOS clock. 5 Disabling either the VCM pin or the internal reference results in a 40 µA typical current consumption reduction. 6 Power dissipation is calculated using the maximum supply voltage, 3.6 V. 1 2 Rev. C | Page 9 of 100 AD7779 Data Sheet DOUTx TIMING CHARACTERISTISTICS AVDD1x/AVSSx = ±1.65 V, 3.3 V/AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX, unless otherwise noted. Table 2. Parameter t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 Test Conditions/Comments 50:50 MCLK/2 MCLK/2 Min 0.655 60 60 121 121 Typ 2 1 20 20 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2. t1 t2 t3 MCLK DCLK t4 t6 t5 t8 t7 t9 DRDY DOUTx LSB MSB Max 8.192 45 45 MSB – 1 t10 t11 Figure 2. Data Interface Timing Diagram Rev. C | Page 10 of 100 LSB + 1 LSB 13295-002 1 Description 1 MCLK frequency MCLK low time MCLK high time DCLKx high time DCLKx low time MCLK falling edge to DCLK rising edge MCLK falling edge to DCLK falling edge DCLKx rising edge to DRDY rising edge DCLKx rising edge to DRDY falling edge DOUTx setup time DOUTx hold time Unit MHz ns ns ns ns ns ns ns ns ns ns Data Sheet AD7779 SPI TIMING CHARACTERISTISTICS AVDD1x/AVSSx = ±1.65 V, 3.3 V/AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX, unless otherwise noted. Table 3. Parameter t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22A t22B t23 t24 t25 Test Conditions/Comments 50:50 Min 7 7 10 10 10 10 10 5 5 30 49 10 10 30 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2. t19 CS t15 t16 t17 t13 t14 t18 SCLK t20 SDI MSB t22A SDO MSB – 1 t12 LSB + 1 LSB t21 MSB t22B MSB – 1 LSB + 1 t24 t23 Figure 3. SPI Control Interface Timing Diagram Rev. C | Page 11 of 100 LSB t25 13295-003 1 Description 1 SCLK period SCLK low time SCLK high time SCLK rising edge to CS falling edge CS falling edge to SCLK rising edge SCLK rising edge to CS rising edge CS rising edge to SCLK rising edge Minimum CS high time SDI setup time SDI hold time CS falling edge to SDO enable (SPI = Mode 0) SCLK falling edge to SDO enable (SPI = Mode 3) SDO setup time SDO hold time CS rising edge to SDO disable Typ Max 30 Unit MHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns AD7779 Data Sheet SYNCHRONIZATION PINS AND RESET TIMING CHARACTERISTICS AVDD1x/AVSSx = ±1.65 V, 3.3 V/AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX, unless otherwise noted. Table 4. Parameter t26 t27 t28 t29 t30 tINIT_ tINIT_ t31 tPOWER_UP SYNC_IN RESET Test Conditions/Comments 16 kSPS, HR mode 16 kSPS, HR mode Min 10 MCLK MCLK 10 MCLK 145 225 2 × MCLK tPOWER_UP is not shown in Figure 4 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2. MCLK START t26 t27 SYNC_OUT t28 SYNC_IN t29 t30 DRDY tINIT_SYNC_IN RESET t31 tINIT_RESET Figure 4. Synchronization Pins and Reset Control Interface Timing Diagram Rev. C | Page 12 of 100 Typ 2 13295-004 1 Description 1 START setup time START hold time MCLK falling edge to SYNC_OUT falling edge SYNC_IN setup time SYNC_IN hold time SYNC_IN rising edge to first DRDY RESET rising edge to first DRDY RESET hold time Start time Max Unit ns ns ns ns ns µs µs ns ms Data Sheet AD7779 SAR ADC TIMING CHARACTERISTISTICS AVDD1x/AVSSx = ±1.65 V, 3.3 V/AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX, unless otherwise noted. Table 5. Parameter t32 t33 t34 t35 1 2 Description 1 Conversion time Acquisition time 2 Delay time Throughput data Min 1 500 50 Typ Max 3.4 Unit µs ns ns kSPS 256 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2. Direct mode enabled. If deglitch mode is enabled, add 1.5/MCLK. CS t33 t32 t34 13295-005 CONVST_SAR t35 Figure 5. SAR ADC Timing Diagram GPIO SRC UPDATE TIMING CHARACTERISTISTICS AVDD1x/AVSSx = ±1.65 V, 3.3 V/AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications TMIN to TMAX, unless otherwise noted. Table 6. Parameter t36 t37 t37 t38 t39 t40 Min 10 MCLK 2 × MCLK 20 5 MCLK All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2. MCLK GPIO2 t36 t37 GPIO1 t38 GPIO0 t39 t40 Figure 6. GPIOs for SRC Update Timing Diagram Rev. C | Page 13 of 100 13295-006 1 Description 1 GPIO2 setup time GPIO2 hold time—high resolution mode GPIO2 hold time—low power mode MCLK rising edge to GPIO1 rising edge time GPIO0 setup time GPIO0 hold time Typ Max Unit ns ns ns ns ns AD7779 Data Sheet ABSOLUTE MAXIMUM RATINGS Table 7. Parameter Any Supply Pin to AVSSx AVSSx to DGND AREGxCAP to AVSSx DREGCAP to DGND IOVDD to DGND IOVDD to AVSSx AVDD4 to AVSSx Analog Input Voltage REFx± Input Voltage AUXAIN± Digital Input Voltage to DGND Digital Output Voltage to DGND XTAL1 to DGND AINx±, AUXAIN±, and Digital Input Current Operating Temperature Range Junction Temperature, TJ Maximum Storage Temperature Range Reflow Soldering ESD Field Induced Charged Device Model (FICDM) Rating −0.3 V to +3.96 V −1.98 V to +0.3 V −0.3 V to +1.98 V −0.3 V to +1.98 V −0.3 V to +3.96 V −0.3 V to +5.94 V AVDD1x − 0.3 V to 3.96 V AVSSx − 0.3 V to AVDD1x + 0.3 V or 3.96 V (whichever is less) AVSSx − 0.3 V to AVDD1x + 0.3 V or 3.96 V (whichever is less) AVSSx − 0.3 V to AVDD4 + 0.3 V or 3.96 V (whichever is less) DGND − 0.3 V to IOVDD + 0.3 V or 3.96 V (whichever is less) DGND − 0.3 V to IOVDD + 0.3 V or 3.96 V (whichever is less) DGND − 0.3 V to DREGCAP + 0.3 V or 1.98 V (whichever is less) ±10 mA Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. THERMAL RESISTANCE Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Close attention to PCB thermal design is required. Table 8. Thermal Resistance Package Type1 64-Lead LFCSP No Thermal Vias1 49 Thermal Vias1 θJA θJB ΨJT ΨJB Unit 30.43 22.62 N/A2 3.17 0.13 0.09 6.59 3.19 °C/W °C/W Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board. See JEDEC JESD51. 2 N/A means not applicable. 1 ESD CAUTION −40°C to +125°C 150°C −65°C to +150°C 260°C 2 kV 500 V Rev. C | Page 14 of 100 Data Sheet AD7779 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 AUXAIN– AUXAIN+ AVDD4 AVSS4 AVSS2A AREG1CAP AVDD2A VCM CLK_SEL FORMAT0 FORMAT1 AVSS3 AVDD2B AREG2CAP AVSS2B REF_OUT PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 AD7779 TOP VIEW (Not to Scale) 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 AIN4– AIN4+ AIN5– AIN5+ AVSS1B AVDD1B REF2– REF2+ AIN6– AIN6+ AIN7– AIN7+ RESET SYNC_IN SYNC_OUT START NOTES 1. EXPOSED PAD. CONNECT THE EXPOSED PAD TO AVSSx. 13295-007 CONVST_SAR ALERT/CS DCLK2/SCLK DCLK1/SDI DCLK0/SDO DGND DREGCAP IOVDD DOUT3 DOUT2 DOUT1 DOUT0 DCLK DRDY XTAL1 XTAL2/MCLK 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 AIN0– AIN0+ AIN1– AIN1+ AVSS1A AVDD1A REF1– REF1+ AIN2– AIN2+ AIN3– AIN3+ MODE0/GPIO0 MODE1/GPIO1 MODE2/GPIO2 MODE3/ALERT Figure 7. Pin Configuration Table 9. Pin Function Descriptions Pin No. 1 2 3 4 5 Mnemonic AIN0− AIN0+ AIN1− AIN1+ AVSS1A Type Analog input Analog input Analog input Analog input Supply Direction Input Input Input Input Supply 6 AVDD1A Supply Supply 7 REF1− Reference Input 8 9 10 11 12 13 REF1+ AIN2− AIN2+ AIN3− AIN3+ MODE0/GPIO0 Reference Analog input Analog input Analog input Analog input Digital I/O Input Input Input Input Input I/O 14 MODE1/GPIO1 Digital I/O I/O 15 MODE2/GPIO2 Digital I/O I/O 16 MODE3/ALERT Digital I/O I/O Description Analog Input Channel 0, Negative. Analog Input Channel 0, Positive. Analog Input Channel 1, Negative. Analog Input Channel 1, Positive. Negative Front-End Analog Supply for Channel 0 to Channel 3, Typical at −1.65 V (Dual Supply) and AGND (Single Supply). Connect all the AVSSx pins to the same potential. Positive Front-End Analog Supply for Channel 0 to Channel 3, Typical at AVSSx + 3.3 V. Connect this pin to AVDD1B. Negative Reference Input 1 for Channel 0 to Channel 3, Typical at AVSSx. Connect all the REFx− pins to the same potential. Positive Reference Input 1 for Channel 0 to Channel 3, Typical at REF1− + 2.5 V. Analog Input Channel 2, Negative. Analog Input Channel 2, Positive. Analog Input Channel 3, Negative. Analog Input Channel 3, Positive. Mode 0 Input Pin in Pin Control Mode (MODE0). See Table 18 for more details. Configurable General-Purpose Input/Output 0 in SPI Control Mode (GPIO0). If not in use, connect this pin to DGND or IOVDD. Mode 1 Input Pin in Pin Control Mode (MODE1). See Table 18 for more details. Configurable General-Purpose Input/Output 1 in SPI Control Mode (GPIO1). If not in use, connect this pin to DGND or IOVDD. Mode 2 Input Pin in Pin Control Mode (MODE2). See Table 18 for more details. Configurable General-Purpose Input/Output 2 in SPI Control Mode (GPIO2). If not in use, connect this pin to DGND or IOVDD. Mode 3 Input Pin in Pin Control Mode (MODE3). See Table 18 for more details. Alert Output Pin in SPI Control Mode (ALERT). Rev. C | Page 15 of 100 AD7779 Data Sheet Pin No. 17 Mnemonic CONVST_SAR Type Digital input Direction Input 18 ALERT/CS Digital input Input 19 DCLK2/SCLK Digital input Input 20 DCLK1/SDI Digital input Input 21 DCLK0/SDO Digital output Output 22 23 24 DGND DREGCAP IOVDD Supply Supply Supply Supply Output Supply 25 DOUT3 Digital output I/O 26 DOUT2 Digital output I/O 27 28 29 30 31 DOUT1 DOUT0 DCLK DRDY XTAL1 Digital output Digital output Digital output Digital output Clock Output Output Output Output Input 32 XTAL2/MCLK Clock Input 33 START Digital input Input 34 SYNC_OUT Digital output Input 35 SYNC_IN Digital input Input 36 RESET Digital input Input 37 38 39 40 41 42 AIN7+ AIN7− AIN6+ AIN6− REF2+ REF2− Analog input Analog input Analog input Analog input Reference Reference Input Input Input Input Input Input 43 AVDD1B Supply Supply 44 AVSS1B Supply Supply Description Σ-Δ Output Interface Selection Pin in Pin Control Mode. See Table 17 for more details. This pin also functions as the start for the SAR conversion in SPI control mode. Alert Output Pin in Pin Control Mode (ALERT). Chip Select Pin in SPI Control Mode (CS). DCLK Frequency Selection Pin 2 in Pin Control Mode (DCLK2). See Table 19 for more details. SPI Clock in SPI Control Mode (SCLK). DCLK Frequency Selection Pin 1 in Pin Control Mode (DCLK1). See Table 19 for more details. SPI Data Input in SPI Control Mode (SDI). Connect this pin to DGND if the device is configured in pin control mode with the SPI as the data output interface. DCLK Frequency Selection Pin 0 in Pin Control Mode (DCLK0). See Table 19 for more details. SPI Data Output in SPI Control Mode (SDO). Digital Ground. Digital LDO Output. Decouple this pin to DGND with a 1 µF capacitor. Digital Levels Input/Output and Digital LDO (DLDO) Supply from 1.8 V to 3.6 V. IOVDD must not be lower than DREGCAP. Data Output Pin 3. If the device is configured in daisy-chain mode, this pin acts as an input pin. See the Daisy-Chain Mode section for more details. Data Output Pin 2. If the device is configured in daisy-chain mode, this pin acts as an input pin. See the Daisy-Chain Mode section for more details. Data Output Pin 1. Data Output Pin 0. Data Output Clock. Data Output Ready Pin. Crystal 1 Input Connection. If CMOS is used as a clock source, tie this pin to DGND. See Table 16 for more details. Crystal 2 Input Connection (XTAL2). See Table 16 for more details. CMOS Clock (MCLK). See Table 16 for more details. Synchronization Pulse. This pin is used to synchronize internally an external START asynchronous pulse with MCLK. The synchronize signal is shift out by the SYNC_OUT pin. If not in use, tie this pin to IOVDD. See the Phase Adjustment section and the Digital Reset and Synchronization Pins section for more details. Synchronization Signal. This pin generates a synchronous pulse generated and driven by hardware (via the START pin) or by software (GENERAL_USER_ CONFIG_2, Bit 0). If this pin is in use, it must be wired to the SYNC_IN pin. See the Phase Adjustment and the Digital Reset and Synchronization Pins section for more details. Reset for the Internal Digital Block and Synchronize for Multiple Devices. See the Digital Reset and Synchronization Pins section for more details. Asynchronous Reset Pin. This pin resets all registers to their default value. It is recommended to generate a pulse on this pin after the device is powered up because a slow slew rate in the supplies may generate an incorrect initialization in the digital block. Analog Input Channel 7, Positive. Analog Input Channel 7, Negative. Analog Input Channel 6, Positive. Analog Input Channel 6, Negative. Positive Reference Input 2 for Channel 4 to Channel 7, Typical at REF2− + 2.5 V. Negative Reference Input 2 for Channel 4 to Channel 7, Typical at AVSSx. Connect all the REFx− pins to the same potential. Positive Front-End Analog Supply for Channel 4 to Channel 7. Connect this pin to AVDD1A. Negative Front-End Analog Supply for Channel 4 to Channel 7, Typical at −1.65 V (Dual Supply) or AGND (Single Supply). Connect all the AVSSx pins together. Rev. C | Page 16 of 100 Data Sheet AD7779 Pin No. 45 46 47 48 49 Mnemonic AIN5+ AIN5− AIN4+ AIN4− REF_OUT Type Analog input Analog input Analog input Analog input Reference Direction Input Input Input Input Output 50 51 52 53 54 55 56 57 58 AVSS2B AREG2CAP AVDD2B AVSS3 FORMAT1 FORMAT0 CLK_SEL VCM AVDD2A Supply Supply Supply Supply Digital input Digital input Digital input Analog output Supply Supply Output Supply Supply Input Input Input Output Input 59 60 61 62 63 64 AREG1CAP AVSS2A AVSS4 AVDD4 AUXAIN+ AUXAIN− EPAD Supply Supply Supply Supply Analog input Analog input Supply Output Input Supply Supply Input Input Input Description Analog Input Channel 5, Positive. Analog Input Channel 5, Negative. Analog Input Channel 4, Positive. Analog Input Channel 4, Negative. 2.5 V Reference Output. Connect a 100 nF capacitor on this pin if using the internal reference. Negative Analog Supply. Connect all the AVSSx pins together. Analog LDO Output 2. Decouple this pin to AVSS2B with a 1 µF capacitor. Positive Analog Supply. Connect this pin to AVDD2A. Negative Analog Ground. Connect all the AVSSx pins together. Output Data Frame 1. See Table 17 for more details. Output Data Frame 0. See Table 17 for more details. Select Clock Source. See Table 16 for more details. Common-Mode Voltage Output, Typical at (AVDD1 + AVSSx)/2. Analog Supply from 2.2 V to 3.6 V. AVSS2x must not be lower than AREGxCAP. Connect this pin to AVDD2B. Analog LDO Output 1. Decouple this pin to AVSS with a 1 µF capacitor. Negative Analog supply. Connect all the AVSSx pins together. Negative SAR Analog Supply and Reference. Connect all AVSSx pins together. Positive SAR Analog Supply and Reference Source. Positive SAR Analog Input Channel. Negative SAR Analog Input Channel. Exposed Pad. Connect the exposed pad to AVSSx. Rev. C | Page 17 of 100 AD7779 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 8 8 4 8 TEMPERATURE = 25°C VREF = 2.5V DIFFERENTIAL VIN × GAIN VCM = (AVDD1x + AVSSx) ÷ 2 4 INL (ppm) 0 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 2.48 13295-019 1.77 2.12 1.41 0.70 0 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –2 –4 –6 2.48 INPUT VOLTAGE (V) Figure 9. INL vs. Input Voltage and PGA Gain at 8 kSPS, High Resolution Mode 13295-012 2.12 1.77 1.41 1.06 0.70 0.35 0 –0.35 –0.70 –1.06 –1.41 –1.77 –2.48 2.48 INPUT VOLTAGE (V) –8 13295-009 2.12 1.77 1.41 1.06 0.70 0.35 0 –0.35 –0.70 –1.06 –1.41 –1.77 –2.12 –6 –2.48 0.35 0 Figure 12. INL vs. Input Voltage and PGA Gain at 2 kSPS, Low Power Mode 6 10 GAIN = 1 DIFFERENTIAL INPUT SIGNAL VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 GAIN = 1 DIFFERENTIAL INPUT SIGNAL VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 8 6 4 2 TA = –40°C TA = +25°C TA = +105°C TA = +125°C –2 2 INL (ppm) 0 0 TA = –40°C TA = +25°C TA = +105°C TA = +125°C –2 –4 –6 –4 –8 2.48 INPUT VOLTAGE (V) Figure 10. INL vs. Input Voltage and Temperature at 8 kSPS, High Resolution Mode Figure 13. INL vs. Input Voltage and Temperature at 2 kSPS, Low Power Mode Rev. C | Page 18 of 100 13295-013 1.77 2.12 1.41 1.06 0.70 0.35 0 –0.35 –0.70 –1.06 –1.41 –1.77 –2.48 2.48 INPUT VOLTAGE (V) –10 13295-010 2.12 1.77 1.41 1.06 0.70 0.35 0 –0.35 –0.70 –1.06 –1.41 –1.77 –2.48 –2.12 –6 –2.12 INL (ppm) 2 –4 INL (ppm) TEMPERATURE = 25°C DIFFERENTIAL VIN × GAIN VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 6 2 4 –0.35 Figure 11. INL vs. Input Voltage and Channel at 2 kSPS, Low Power Mode 6 –2 –0.70 INPUT VOLTAGE (V) Figure 8. INL vs. Input Voltage and Channel at 8 kSPS, High Resolution Mode 4 –1.41 –2.48 2.48 INPUT VOLTAGE (V) 13295-016 1.77 2.12 1.41 0.70 0 0.35 –0.35 –0.70 –1.41 –1.06 –8 –1.77 –8 –2.48 –6 –2.12 –6 –1.06 –4 –1.77 –4 –2 –2.12 –2 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 0 1.06 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 0 2 INL (ppm) 2 1.06 INL (ppm) 4 TEMPERATURE = 25°C GAIN = 1 DIFFERENTIAL INPUT SIGNAL VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 6 –2.12 6 TEMPERATURE = 25°C GAIN = 1 DIFFERENTIAL INPUT SIGNAL VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 Data Sheet 15 AD7779 15 TEMPERATURE = 25°C GAIN = 1 DIFFERENTIAL INPUT SIGNAL VCM = (AVDD1x + AVSSx) ÷ 2 10 10 5 INL (ppm) –10 –15 –3.6 –2.6 –1.6 = 3.3V = 3.0V = 2.5V = 2.0V = 1.5V = 1.0V –0.6 0.4 1.4 INPUT VOLTAGE (V) –10 2.4 3.4 –15 –3.6 Figure 14. INL vs. Input Voltage and Reference Voltage (VREF) at 8 kSPS, High Resolution Mode 10 10 6 4 4 2 2 0 VCM = 1.35V VCM = 1.65V VCM = 1.95V –2 –4 –1.6 –0.6 0.4 1.4 INPUT VOLTAGE (V) 2.4 3.4 TEMPERATURE = 25°C GAIN = 1 DIFFERENTIAL INPUT SIGNAL VREF = 2.5V 8 INL (ppm) 0 VCM = 1.35V VCM = 1.65V VCM = 1.95V –2 –4 2.48 13295-018 1.77 2.12 1.41 1.06 0.70 1200 1000 ADC CODE Figure 16. Noise Histogram at 8 kSPS, High Resolution Mode Figure 19. Noise Histogram at 2 kSPS, Low Power Mode Rev. C | Page 19 of 100 13295-225 8388772 8388688 8388730 8388646 8388604 8388520 8388562 13295-022 8388436 0 8388478 0 8388394 200 8388352 400 200 8388310 400 8388100 600 8388268 800 600 8388226 800 0.35 0 1400 1000 8388300 8388314 8388328 8388342 8388356 8388370 8388384 8388398 8388412 8388426 8388440 8388454 8388468 8388482 8388496 8388510 8388524 8388538 8388552 8388566 8388580 8388594 –0.35 1600 1200 ADC CODE VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 TEMPERATURE = 25°C GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 1800 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 1400 –0.70 2000 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 TEMPERATURE = 25°C 8388142 1600 Figure 18. INL vs. Input Voltage and VCM at 2 kSPS, Low Power Mode SAMPLE CODE 1800 –1.06 INPUT VOLTAGE (V) Figure 15. INL vs. Input Voltage and VCM at 8 kSPS, High Resolution Mode 2000 –1.41 –2.48 2.48 INPUT VOLTAGE (V) 13295-015 2.12 1.77 1.41 1.06 0.35 0.70 0 –0.35 –0.70 –1.41 –1.06 –1.77 –2.48 –8 –10 –2.12 –8 –10 –1.77 –6 –6 8388184 INL (ppm) 6 –2.6 = 3.3V = 3.0V = 2.5V = 2.0V = 1.5V = 1.0V Figure 17. INL vs. Input Voltage and Reference Voltage (VREF) at 2 kSPS, Low Power Mode TEMPERATURE = 25°C GAIN = 1 DIFFERENTIAL INPUT SIGNAL VREF = 2.5V 8 VREF VREF VREF VREF VREF VREF –5 13295-014 VREF VREF VREF VREF VREF VREF –5 0 13295-017 0 –2.12 INL (ppm) 5 SAMPLE COUNT TEMPERATURE = 25°C GAIN = 1 DIFFERENTIAL INPUT SIGNAL VCM = (AVDD1x + AVSSx) ÷ 2 AD7779 Data Sheet 5.0 10 4.5 9 NOISE (µV rms) 7 3.0 2.5 2.0 1.5 6 5 4 3 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 1.0 0.5 0 –40 1 105 25 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 2 0 –40 13295-026 NOISE (µV rms) 3.5 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 8 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 125 TEMPERATURE (°C) 105 25 13295-029 4.0 125 TEMPERATURE (°C) Figure 20. Noise vs. Temperature at 8 kSPS, High Resolution Mode Figure 23. Noise vs. Temperature at 2 kSPS, Low Power Mode 5.0 6 4.5 5 2.5 2.0 2 3980920 13295-035 3750760 3520600 3290440 3060280 2830120 2599960 2369800 2139640 CLOCK FREQUENCY (Hz) Figure 21. Noise vs. Clock Frequency, High Resolution Mode, Decimation = 256 Figure 24. Noise vs. Clock Frequency at 2 kSPS, Low Power Mode, Decimation = 256 120 400 350 100 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 300 NOISE (nV/√Hz) 80 60 40 250 200 150 100 20 0 ODR (Hz) 0 500 1000 2000 4000 ODR (Hz) Figure 22. Noise vs. ODR, High Resolution Mode Figure 25. Noise vs. ODR, Low Power Mode Rev. C | Page 20 of 100 8000 13295-098 50 13295-097 NOISE (nV/√Hz) 1909480 1679320 1449160 988840 0 298360 7961840 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 TEMPERATURE = 25°C DECIMATION = 256 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 1 13295-032 CLOCK FREQUENCY (Hz) 7501520 6580880 7041200 6120560 5660240 5199920 4739600 3358640 2898320 2438000 1977680 1517360 596720 0 1057040 0.5 4279280 VREF = 2.5V VCM = (AVDD1x + AVSSx) ÷ 2 TEMPERATURE = 25°C DECIMATION = 256 1.0 3 1219000 1.5 4 758680 3.0 3818960 NOISE (µV rms) 3.5 NOISE (µV rms) GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 528520 4.0 AD7779 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 FREQUENCY (Hz) Figure 27. FFT Plot, High Resolution Mode, Input Frequency (fIN) = 1 kHz FREQUENCY (Hz) –100 –110 –115 –115 THD (dB) –110 –120 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –120 –125 –135 Figure 28. THD vs. Input Frequency at 8 kSPS, High Resolution Mode GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 10 70 130 190 250 310 370 460 530 590 650 710 770 840 900 960 1066 1198 1352 1484 1616 1748 1880 2012 –135 13295-033 –130 10 90 170 250 330 410 490 570 650 730 810 890 970 1355 1923 2491 3059 3627 4266 4905 5544 6112 6751 7390 7958 –130 INPUT FREQUENCY (Hz) VIN = –0.5dBFS VREF = 2.5V TEMPERATURE = 25°C –105 INPUT FREQUENCY (Hz) Figure 31. THD vs. Input Frequency at 2 kSPS, Low Power Mode Rev. C | Page 21 of 100 13295-036 VIN = –0.5dBFS VREF = 2.5V TEMPERATURE = 25°C –105 –125 VREF = 2.5V TEMPERATURE = 25°C DIFFERENTIAL INPUT = –0.5dBFS VCM = (AVDD1x + AVSSx) ÷ 2 INPUT FREQUENCY = 1kHz 8192 SAMPLES 4kSPS GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 Figure 30. FFT Plot, Low Power Mode, Input Frequency (fIN) = 1 kHz –100 THD (dB) 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 –180 13295-024 AMPLITUDE (dB) VREF = 2.5V TEMPERATURE = 25°C DIFFERENTIAL INPUT = –0.5dBFS VCM = (AVDD1x + AVSSx) ÷ 2 INPUT FREQUENCY = 1kHz 16384 SAMPLES 16kSPS Figure 29. FFT Plot at 4kSPS, Low Power Mode, Input Frequency (fIN) = 50 Hz, (This Plot is a Close Up Perspective of the Original Data) 13295-021 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 –180 0 277.343750 554.687500 832.031250 1109.37500 1386.71875 1664.06250 1941.40625 2218.75000 2496.09375 2773.43750 3050.78125 3328.12500 3605.46875 3882.81250 4160.15625 4437.50000 4714.84375 4992.10875 5269.53125 5546.87500 5824.21875 6101.56250 6378.90625 6656.25000 6933.59375 7210.93750 7488.28125 7765.62500 AMPLITUDE (dB) Figure 26. FFT Plot at 16 kSPS, High Resolution Mode, Input Frequency (fIN) = 50 Hz (This Plot is a Close Up Perspective of the Original Data) 13295-023 0 31.25 62.50 93.75 125.00 156.25 187.50 218.75 250.00 281.25 312.50 343.75 375.00 406.25 437.50 468.75 500.00 531.25 562.50 593.75 625.00 656.25 687.5 718.75 750.00 781.25 812.50 843.75 875.00 906.25 937.50 968.75 AMPLITUDE (dB) 996.093750 FREQUENCY (Hz) VREF = 2.5V TEMPERATURE = 25°C DIFFERENTIAL INPUT = –0.5dBFS VCM = (AVDD1x + AVSSx) ÷ 2 INPUT FREQUENCY = 50Hz 8192 SAMPLES 4kSPS GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 FREQUENCY (Hz) 13295-020 937.500000 878.906250 820.312500 761.718750 703.125000 644.531250 585.937500 527.343750 468.750000 410.156250 351.562500 292.968750 234.375000 175.781250 117.187500 0 VREF = 2.5V TEMPERATURE = 25°C DIFFERENTIAL INPUT = –0.5dBFS VCM = (AVDD1x + AVSSx) ÷ 2 INPUT FREQUENCY = 50Hz 16384 SAMPLES 16kSPS GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 –180 0 66.40625 132.81250 199.21875 265.62500 332.03125 398.43750 464.84375 531.25000 597.65625 664.06250 730.46875 796.87500 863.28125 929.68750 996.09375 1062.50000 1128.90625 1195.31250 1261.71875 1328.12500 1394.53125 1460.93750 1527.34375 1593.75000 1660.15625 1726.56250 1792.96875 1859.37500 1925.78125 1992.18750 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 –180 58.593750 AMPLITUDE (dB) Data Sheet AD7779 Data Sheet –100 –100 INPUT FREQUENCY = 50Hz VREF = 2.5V TEMPERATURE = 25°C –105 –110 –120 –120 –125 –125 –130 –130 –135 –135 0.172 0.344 0.516 0.688 0.860 1.032 1.204 1.376 1.548 1.720 1.892 2.064 2.236 2.408 2.580 2.752 2.924 3.096 3.268 3.440 3.612 3.784 3.956 4.128 4.300 4.472 4.644 13295-034 0.172 0.344 0.516 0.688 0.860 1.032 1.204 1.376 1.548 1.720 1.892 2.064 2.236 2.408 2.580 2.752 2.924 3.096 3.268 3.440 3.612 3.784 3.956 4.128 4.300 4.472 4.644 INPUT VOLTAGE (V) INPUT VOLTAGE (V) Figure 32. THD vs. Input Voltage at 2 kSPS, High Resolution Mode (Input Frequency = 50 Hz) Figure 35. THD vs. Input Voltage at 500 SPS, Low Power Mode (Input Frequency = 50 Hz) –90 –90 –100 THD (dB) –105 –110 –105 –110 –120 –120 –125 –125 REFERENCE VOLTAGE (V) 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 13295-038 –115 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 –115 REFERENCE VOLTAGE (V) Figure 33. THD vs. Reference Voltage at 8 kSPS, High Resolution Mode (Input Frequency = 50 Hz) –100 –100 INPUT FREQUENCY = 50Hz VREF = 2.5V INPUT VOLTAGE = –0.5dBFS TEMPERATURE = 25°C DECIMATION = 256 –102 –104 –106 Figure 36. THD vs. Reference Voltage at 2 kSPS, Low Power Mode (Input Frequency = 50 Hz) GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –102 –104 –106 THD (dB) –108 –110 –112 –110 –112 235840 665920 1096000 1216000 1336000 1456000 1576000 1696000 1816000 1936000 2056000 2176000 2296000 2416000 2536000 2656000 2776000 2896000 3016000 3136000 3256000 3376000 3496000 3616000 3736000 3856000 3976000 4096000 13295-039 7823010 7301490 6779970 5736930 6258450 5215410 4693890 4172370 3129330 –120 3650850 –118 2607810 -118 –120 2086290 –116 1564770 –114 1043250 –114 MCLK FREQUENCY (Hz) GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –108 –116 655000 INPUT FREQUENCY = 50Hz VREF = 2.5V INPUT VOLTAGE = 5V p-p TEMPERATURE = 25°C DECIMATION = 256 FREQUENCY (Hz) Figure 34. THD vs. MCLK Frequency, High Resolution Mode, Input Frequency (fIN) = 50 Hz, Decimation = 256 Figure 37. THD vs. MCLK Frequency, Low Power Mode, Input Frequency (fIN) = 50 Hz, Decimation = 256 Rev. C | Page 22 of 100 13295-042 –100 INPUT FREQUENCY = 50Hz INPUT VOLTAGE = 5V p-p TEMPERATURE = 25°C GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –95 13295-041 INPUT FREQUENCY = 50Hz INPUT VOLTAGE = ±VREF TEMPERATURE = 25°C GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –95 THD (dB) 13295-037 –140 –140 THD (dB) GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –115 THD (dB) THD (dB) –110 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –115 INPUT FREQUENCY = 50Hz VREF = 2.5V TEMPERATURE = 25°C –105 Data Sheet AD7779 VIN = 0dBFS VREF = 2.5V TEMPERATURE = 25°C SNR (dB) VIN = 0dBFS VREF = 2.5V TEMPERATURE = 25°C 2 4 8 16 ODR (kHz) 13295-040 1 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 0.5 2 4 8 ODR (kHz) 4 PGA GAIN 8 1 Figure 39. Dynamic Range vs. PGA Gain, High Resolution Mode, ODR = 8 kSPS 0 TEMPERATURE = 25°C VIN = 0V VREF = 2.5V AVDD1x = 3.3V OFFSET ERROR (µV) CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 –30 –40 –50 –20 –30 –40 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 –50 –60 1 4 2 PGA GAIN 8 –70 13295-044 –60 TEMPERATURE = 25°C VIN = 0V VREF = 2.5V AVDD1x = 3.3V –10 –20 8 Figure 42. Dynamic Range vs. PGA Gain, Low Power Mode, ODR = 2 kSPS 0 –10 2 4 PGA GAIN 13295-090 2 1 2 4 PGA GAIN Figure 40. Offset Error vs. PGA Gain, High Resolution Mode Figure 43. Offset Error vs. PGA Gain, Low Power Mode Rev. C | Page 23 of 100 8 13295-047 1 13295-089 DYNAMIC RANGE (dB) Figure 41. SNR vs. ODR at 2 kSPS, Low Power Mode DYNAMIC RANGE (dB) Figure 38. SNR vs. ODR at 8 kSPS, High Resolution Mode OFFSET ERROR (µV) 1 13295-043 SNR (dB) GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 AD7779 Data Sheet 0 –5 OFFSET ERROR (µV) –10 TEMPERATURE = 25°C VIN = 0V VREF = 2.5V –15 –20 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 TEMPERATURE = 25°C VIN = 0V VREF = 2.5V –25 –30 13295-051 –40 AVDD1x SUPPLY (V) AVDD1x SUPPLY (V) Figure 44. Offset Error vs. Supply Setting, High Resolution Mode Figure 47. Offset Error vs. Supply Setting, Low Power Mode 45 30 40 AVDD1x = 3.3V 20 GAIN ERROR DRIFT (ppm) 35 10 0 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 –10 –20 –30 30 25 20 15 10 5 0 –5 –10 115.991 124.589 95.349 105.439 87.104 78.593 70.920 62.669 54.035 45.142 35.461 26.714 9.272 18.298 0.073 –13.506 –22.232 –30.430 –37.624 –40 –20 0 168 500 1000 TIME (Hours) 13295-058 –15 13295-045 OFFSET DRIFT (µV) 13295-054 –35 TEMPERATURE (°C) Figure 48. Gain Error Drift vs. Time Figure 45. Offset Drift vs. Temperature 0.008 TEMPERATURE = 25°C GAIN = 1 0.008 0 –0.008 –0.017 –0.026 –0.035 TEMPERATURE = 25°C GAIN = 1 –0.008 –0.017 –0.035 3.0 3.3 3.6 AVDD1x SUPPLY (V) Figure 46. Gain Error vs. AVDD1x Supply, High Resolution Mode –0.043 3.0 3.3 AVDD1x SUPPLY (V) Figure 49. Gain Error vs. AVDD1x Supply, Low Power Mode Rev. C | Page 24 of 100 3.6 13295-059 –0.043 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 –0.026 13295-056 GAIN ERROR (%) 0 0.017 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 GAIN ERROR (%) 0.017 Data Sheet 0.011 0.005 0 0.005 –0.005 –0.011 –0.017 –0.011 –0.017 –0.023 –0.029 –0.029 –0.035 –0.035 125 105 25 TEMPERATURE (°C) Figure 50. Gain Error vs. Temperature, High Resolution Mode, AVDD1x = 3.3 V 0.09 –0.400 –40 125 105 25 TEMPERATURE (°C) Figure 53. Gain Error vs. Temperature, Low Power Mode, AVDD1x = 3.3 V REFERENCE VOLTAGE DRIFT (mV) TEMPERATURE = 25°C AVDD1x = 3.3V 0.08 0.07 GAIN ERROR (%) 0 –0.005 –0.023 –0.400 –40 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 AVDD1x = 3.3V 0.011 13295-057 GAIN ERROR (%) 0.017 CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 13295-060 AVDD1x = 3.3V GAIN ERROR (%) 0.017 AD7779 0.06 HIGH RESOLUTION LOW POWER 0.05 0.04 0.03 0.02 8 PGA GAIN 25 125 Figure 54. Internal Reference Voltage Drift 0.008 0.010 0.006 0.008 TUE (% OF INPUT) 0.004 0.002 VREF = 2.5V VIN = –0.5dBFS GAIN = 1 AVDD1x = 3.3V VREF = 2.5V VIN = –0.5dBFS GAIN = 1 AVDD1x = 3.3V 0.006 0.004 0.002 0 –0.002 –0.002 110 125 100 80 90 70 50 60 30 40 20 0 10 –10 –30 –40 TEMPERATURE (°C) Figure 55. TUE (as % of Input) vs. Temperature, Low Power Mode Rev. C | Page 25 of 100 13295-085 TEMPERATURE (°C) Figure 52. Total Unadjusted Error (TUE) (as % of Input) vs. Temperature, High Resolution Mode –0.004 13295-082 110 125 100 80 90 70 50 60 30 40 20 0 10 –10 –30 –20 –0.004 –40 TUE (% OF INPUT) Figure 51. Channel Gain Mismatch, High Resolution Mode 0 105 TEMPERATURE (°C) 13295-099 4 2 1 –20 0 13295-052 0.01 AD7779 Data Sheet AINx+, VCM AINx–, V CM AINx+, VCM AINx–, V CM = = = = 1.95V 1.95V 1.35V 1.35V INPUT CURRENT (nA) INPUT CURRFENT (nA) AINx+, VCM = 1.95V AINx–, VCM = 1.95V AINx+, VCM = 1.35V AINx–, VCM = 1.35V VREF = 2.5V AVDD1 = 3.3V – 2.5 –2.0 4 –2 TEMPERATURE (°C) Figure 57. Absolute Input Current vs. Temperature, High Resolution Mode Figure 60. Absolute Input Current vs. Temperature, Low Power Mode DIFFERENTIAL INPUT CURRENT (nA) AINx+ – AINx–; VCM = 1.95V AINx+ – AINx–; VCM = 1.35V VREF = 2.5V AVDD1x = 3.3V 13295-083 115.991 124.589 95.349 105.439 78.593 87.104 62.669 70.920 54.035 45.142 35.461 –40.000 13295-080 115.991 124.589 95.349 105.439 87.104 78.593 70.920 62.669 54.035 45.142 35.461 26.714 9.272 18.298 –0.073 –8.000 –6 –16.000 –6 –24.000 2.5 –4 –5 –32.000 2 AIN0+ AIN0– AIN2+ AIN2– –3 –5 DIFFERENTIAL INPUT CURRENT (nA) 1.5 –1 26.714 –4 TEMPERATURE (°C) 1 0 9.272 –3 0.5 1 –24.000 AIN0+ AIN0– AIN2+ AIN2– 2 –32.000 ABSOLUTE INPUT CURRENT (nA) 0 –40.000 AINx+ – AINx–; VCM = 1.95V AINx+ – AINx–; VCM = 1.35V VREF = 2.5V AVDD1x = 3.3V –0.1 –0.2 –0.3 –2.5 1.0 1.5 2.0 –2.0 –1.5 –1.0 –0.5 0 0.5 DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–)) 2.5 13295-091 –0.4 –0.5 –2.5 Figure 58. Differential Input Current vs. Differential Input Voltage, High Resolution Mode –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5 DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–)) Figure 61. Differential Input Current vs. Differential Input Voltage, Low Power Mode Rev. C | Page 26 of 100 13295-093 ABSOLUTE INPUT CURRENT (nA) 1 –2 0 VREF = 2.5V VIN = 2.5V AVDD1x = 3.3V 3 2 –1 –0.5 18.298 VREF = 2.5V VIN = 2.5V AVDD1x = 3.3V –0.073 5 3 –1.0 Figure 59. Input Current vs. Differential Input Voltage, Low Power Mode –8.000 Figure 56. Input Current vs. Differential Input Voltage, High Resolution Mode 4 –1.5 DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–)) –16.000 DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–)) 13295-079 13295-076 VREF = 2.5V AVDD1x = 3.3V –40 GAIN 1 GAIN 2 GAIN 4 GAIN 8 INPUT FREQUENCY (Hz) INPUT FREQUENCY (Hz) Figure 62. Differential Input Current vs. Temperature, High Resolution Mode AVDD1x = 3.3V VCM = 1.65V + 100mV p-p Figure 63. CMRR vs. Input Frequency at 8 kSPS, High Resolution Mode –100 –80 –120 –140 –160 –180 Figure 64. AC PSRR vs. Input Frequency at 8 kSPS, High Resolution Mode Rev. C | Page 27 of 100 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 TEMPERATURE = 25°C AVDD1x = 3.3V + 100mV p-p –60 GAIN 1 GAIN 2 GAIN 4 GAIN 8 0 –20 GAIN 1 GAIN 2 GAIN 4 GAIN 8 INPUT FREQUENCY (Hz) TEMPERATURE (°C) 13295-094 124.589 115.991 105.439 95.349 87.104 78.593 70.920 62.669 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0 54.035 45.142 35.461 4 26.714 5 18.298 6 9.272 –0.073 0 –8.000 1 –16.000 2 –24.000 3 –32.000 –40.000 4 13.000 8250.088 16487.177 24724.265 32961.353 41198.442 49435.530 57672.618 65909.707 74146.795 82383.883 90620.971 98858.060 107095.148 115332.236 123569.325 131806.413 140043.501 148280.590 156517.678 164754.766 172991.855 181228.943 189466.031 197782.322 VREF = 2.5V VIN = 2.5V AVDD1x = 3.3V DIFFERENTIAL INPUT CURRENT (nA) 9 INPUT FREQUENCY (Hz) 13295-065 CMRR (dB) TEMPERATURE (°C) 13295-092 124.589 115.991 105.439 95.349 87.104 78.593 70.920 62.669 54.035 45.142 35.461 5 26.714 18.298 9.272 –0.073 –8.000 –16.000 –24.000 10 13295-066 –20 –32.000 –40.000 6 –180 10 380962 761914 1142866 1523818 1904770 2285722 2666674 3047626 3428578 3809530 4190482 4571434 4952386 5333338 5714290 6095242 6476194 6857146 7238098 7619050 8000002 8390478 8790477 9190477 9590477 9990476 0 GAIN 1 GAIN 2 GAIN 4 GAIN 8 AC PSRR (dB) 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 13.000 6903.641 13794.282 20684.924 27575.565 34466.206 41356.847 48247.488 55138.130 62028.771 68919.412 75810.053 82700.694 89591.335 96481.977 103372.618 110263.259 117153.900 124044.541 130935.183 137825.824 144756.066 151646.708 158576.950 165507.193 172437.435 179367.678 186297.920 193228.163 DIFFERENTIAL INPUT CURRENT (nA) 7 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0 13295-062 CMRR (dB) 8 13295-063 10 380962 761914 1142866 1523818 1904770 2285722 2666674 3047626 3428578 3809530 4190482 4571434 4952386 5333338 5714290 6095242 6476194 6857146 7238098 7619050 8000002 8390478 8790477 9190477 9590477 9990476 AC PSRR (dB) Data Sheet AD7779 8 7 VREF = 2.5V VIN = 2.5V AVDD1x = 3.3V 3 2 1 0 Figure 65. Differential Input Current vs. Temperature, Low Power Mode AVDD1x = 3.3V VCM = 1.65V + 100mV p-p Figure 66. CMRR vs. Input Frequency at 2 kSPS, Low Power Mode TEMPERATURE = 25°C AVDD1x = 3.3V + 100mV p-p –40 –60 –80 –100 –120 –140 –160 Figure 67. AC PSRR vs. Input Frequency at 2 kSPS, Low Power Mode AD7779 Data Sheet 0 0 –10 –40 GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –60 –80 –30 –40 –50 –60 –70 –80 –100 –90 FREQUENCY (Hz) Figure 71. Filter Profiles at 2 kSPS, Low Power Mode Figure 68. Filter Profiles at 8 kSPS, High Resolution Mode 18 16 14 6 AVDD1 AVDD2 AVDD4 IOVDD AVDD1 AVDD2 AVDD4 IOVDD 5 ALL CHANNELS ENABLED SUPPLY CURRENT (mA) 20 13295-087 13295-086 25 664 1303 1942 2581 3220 3859 4498 5137 5776 6415 7054 7693 8332 8971 9610 10249 10888 11527 12166 12805 13444 14083 14722 15361 FREQUENCY (Hz) 25 344 663 982 1301 1620 1939 2258 2577 2896 3215 3534 3853 4172 4491 4810 5129 5448 5767 6086 6405 6724 7043 7362 7681 –100 –120 SUPPLY CURRENT (mA) GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 –20 ATTENUATION (dB) ATTENUATION (dB) –20 12 10 8 6 4 ALL CHANNELS ENABLED 4 3 2 1 2.2 2.4 2.6 2.8 3.2 3.0 3.4 3.6 SUPPLY VOLTAGE (V) 0 2.0 13295-064 0 2.0 2.6 2.8 3.0 3.2 3.4 3.6 Figure 72. Supply Current vs. Supply Voltage at 2 kSPS, Low Power Mode 7 ALL CHANNELS ENABLED 6 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 20 AVDD1 AVDD2 AVDD4 IOVDD 2.4 SUPPLY VOLTAGE (V) Figure 69. Supply Current vs. Supply Voltage at 8 kSPS, High Resolution Mode 25 2.2 15 10 13295-067 2 AVDD1 AVDD2 AVDD4 IOVDD ALL CHANNELS ENABLED 5 4 3 2 5 –20 0 20 40 60 TEMPERATURE (°C) 80 100 120 0 –40 13295-069 0 –40 –20 0 20 40 60 TEMPERATURE (°C) Figure 70. Supply Current vs. Temperature at 8 kSPS, High Resolution Mode 80 100 120 13295-072 1 Figure 73. Supply Current vs. Temperature at 2 kSPS, Low Power Mode Rev. C | Page 28 of 100 AD7779 800 300 600 200 REFERENCE INPUT CURRENT (nA) 400 200 REF1– REF1+ REF2– REF2+ 0 –200 –400 –600 100 0 REF1– REF1+ REF2– REF2+ –100 –200 –300 –400 –500 –800 SHUTDOWN SUPPLY CURRENT (µA) SHUTDOWN SUPPLY CURRENT (µA) 600 AVDD1 AVDD2 AVDD4 IOVDD 500 400 300 200 100 0 20 AVDD1 AVDD2 AVDD4 IOVDD 18 50 40 30 20 10 20 0 40 60 80 100 120 140 16 3.6 AVDD1 AVDD2 AVDD4 IOVDD 14 12 10 8 6 4 2 2.0 2.2 2.4 2.6 2.8 3.0 SUPPLY VOLTAGE (V) 3.2 3.4 3.6 0 1.8 13295-068 0 1.8 –20 Figure 78. Shutdown Supply Current vs. Temperature POWER CONSUMPTION (mW) POWER CONSUMPTION (mW) 60 –40 TEMPERATURE (°C) Figure 75. Shutdown Supply Current vs. Supply Voltage 70 AVDD1 AVDD2 AVDD4 IOVDD –100 –60 13295-074 SUPPLY VOLTAGE (V) 13295-095 TEMPERATURE (°C) Figure 77. Reference Input Current vs. Temperature, Low Power Mode 13295-078 Figure 74. Reference Input Current vs. Temperature, High Resolution Mode 13295-071 TEMPERATURE (°C) 13295-096 –35.263 –29.594 –22.185 –15.223 –7.366 –0.405 7.006 14.429 22.067 29.170 36.646 44.122 52.009 58.557 66.064 74.427 81.446 89.252 96.238 105.348 112.092 119.542 123.075 –600 –35.263 –29.594 –22.185 –15.223 –7.366 –0.405 7.006 14.429 22.067 29.170 36.646 44.122 52.009 58.557 66.064 74.427 81.446 89.252 96.238 105.348 112.092 119.542 123.075 REFERENCE INPUT CURRENT (nA) Data Sheet 2.0 2.2 2.4 2.6 2.8 3.0 SUPPLY VOLTAGE (V) Figure 76. Power Consumption per Channel vs. Supply Voltage at 8 kSPS, High Resolution Mode 3.2 3.4 Figure 79. Power Consumption per Channel vs. Supply Voltage at 2 kSPS, Low Power Mode Rev. C | Page 29 of 100 AD7779 90 25 AVDD1 AVDD2 AVDD4 IOVDD 70 POWER DISSIPATION (mW) POWER DISSIPATION (mW) 80 Data Sheet 60 50 40 30 20 20 AVDD1 AVDD2 AVDD4 IOVDD 15 10 5 –20 0 20 40 60 TEMPERATURE (°C) 80 100 120 0 –40 13295-070 0 –40 –20 0 20 40 60 TEMPERATURE (°C) Figure 80. Power Dissipation vs. Temperature at 8 kSPS, High Resolution Mode 80 100 120 13295-073 10 Figure 81. Power Dissipation vs. Temperature at 2 kSPS, Low Power Mode Rev. C | Page 30 of 100 Data Sheet AD7779 TERMINOLOGY Common-Mode Rejection Ratio (CMRR) CMRR is the ratio of the power in the ADC output at full-scale frequency, f, to the power of a 100 mV p-p sine wave applied to the common-mode voltage of VIN+ and VIN− at frequency, fS. CMRR (dB) = 10 log(Pf/PfS) where: Pf is the power at frequency, f, in the ADC output. PfS is the power at frequency, fS, in the ADC output. Differential Nonlinearity (DNL) Error In an ideal ADC, code transitions are 1 LSB apart. Differential nonlinearity is the maximum deviation from this ideal value. DNL error is often specified in terms of resolution for which no missing codes are guaranteed. Integral Nonlinearity (INL) Error Integral noninearity error refers to the deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs ½ LSB before the first code transition. Positive full scale is a level 1½ LSB beyond the last code transition. The deviation is measured from the middle of each code to the true straight line. Dynamic Range Dynamic range is the ratio of the rms value of the full-scale input signal to the rms noise measured for an input. The value for dynamic range is expressed in decibels. Channel to Channel Isolation Channel to channel isolation is a measure of the level of crosstalk between channels. It is measured by applying a full-scale frequency sweep sine wave signal to all seven nonselected input channels and determining how much that signal is attenuated in the selected channel. The figure is given for worst case scenarios across all eight channels of the AD7779. Intermodulation Distortion With inputs consisting of sine waves at two frequencies, fa and fb, any active device with nonlinearities creates distortion products at sum and difference frequencies of mfa and nfb, where m, n = 0, 1, 2, 3, and so on. Intermodulation distortion terms are those for which neither m nor n are equal to 0. For example, the secondorder terms include (fa + fb) and (fa − fb), and the third-order terms include (2fa + fb), (2fa − fb), (fa + 2fb), and (fa − 2fb). The AD7779 is tested using the CCIF standard, where two input frequencies near the top end of the input bandwidth are used. In this case, the second-order terms are usually distanced in frequency from the original sine waves, and the third-order terms are usually at a frequency close to the input frequencies. As a result, the second- and third-order terms are specified separately. The calculation of the intermodulation distortion is per the THD specification, where it is the ratio of the rms sum of the individual distortion products to the rms amplitude of the sum of the fundamentals, expressed in decibels. Gain Error The first transition (from 100 … 000 to 100 … 001) occurs at a level ½ LSB above nominal negative full scale (−2.49999 V for the ±2.5 V range). The last transition (from 011 … 110 to 011 … 111) occurs for an analog voltage 1½ LSB below the nominal full scale (2.49999 V for the ±2.5V range). The gain error is the deviation of the difference between the actual level of the last transition and the actual level of the first transition from the difference between the ideal levels. Gain Error Drift Gain error drift is the ratio of the gain error change due to a temperature change of 1°C and the full-scale range (2N). It is expressed in parts per million. Least Significant Bit (LSB) The least significant bit, or LSB, is the smallest increment that can be represented by a converter. For a fully differential input ADC with N bits of resolution, the LSB expressed in volts is LSB (V) = 2× VREF 2N The LSB referred to the input is 2× VREF PGAGAIN LSB (VIN) = 2N Power Supply Rejection Ratio (PSRR) Variations in power supply affect the full-scale transition but not the linearity of the converter. PSRR is the maximum change in the full-scale transition point due to a change in the power supply voltage from the nominal value. Signal-to-Noise Ratio (SNR) SNR is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, excluding harmonics and dc. The value for SNR is expressed in decibels. Signal-to-(Noise + Distortion) Ratio (SINAD) SINAD is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in decibels. Spurious-Free Dynamic Range (SFDR) SFDR is the difference, in decibels, between the rms amplitude of the input signal and the peak spurious signal (including harmonics). Total Harmonic Distortion (THD) THD is the ratio of the rms sum of the first five harmonic components to the rms value of a full-scale input signal and is expressed in decibels. Rev. C | Page 31 of 100 AD7779 Data Sheet Offset Error Offset error is the difference between the ideal midscale input voltage (0 V) and the actual voltage producing the midscale output code. Offset Error Drift Offset error drift is the ratio of the offset error change due to a temperature change of 1°C and the full-scale code range (2N). It is expressed in µV/°C. Rev. C | Page 32 of 100 Data Sheet AD7779 RMS NOISE AND RESOLUTION It is important to note that the effective resolution is calculated using the rms noise; 16,384 consecutives samples were used to calculate the rms noise. Table 10 through Table 12 show the dynamic range (DR), rms noise (RTI), effective number of bits (ENOB), and effective resolution (ER) of the AD7779 for various output data rates and gain settings. The numbers given are for the bipolar input range with an external 2.5 V reference. These numbers are typical and are generated with a differential input voltage of 0 V when the ADC is continuously converting on a single channel. Effective Resolution = log2(Input Range/RMS Noise) ENOB = (DR − 1.78)/6 HIGH RESOLUTION MODE Table 10. DR (dB) and RTI (µVRMS) for High Resolution Mode Gain Decimation Rate 128 256 512 1024 2048 Output Data Rate (SPS) 16000 8000 4000 2000 1000 f−3dB (Hz) 5029.99 2521.99 1267.99 640.99 327.49 1 DR 108.28 112.5 116.12 119.5 122.37 2 RTI 6.80 4.12 2.70 1.87 1.33 DR 105.13 110.21 114.7 118.3 121.55 4 RTI 4.80 2.63 1.59 1.07 0.74 8 DR 101 106.8 111.6765 115.82 119 RTI 3.95 2.01 1.11 0.70 0.49 DR 95.86 102 107.61 112 115.5 RTI 3.46 1.72 0.93 0.57 0.38 Table 11. ENOB and ER for High Resolution Mode Gain Decimation Rate 128 256 512 1024 2048 Output Data Rate (SPS) 16000 8000 4000 2000 1000 f−3dB (Hz) 5029.99 2521.99 1267.99 640.99 327.49 1 ENOB 17.75 18.46 19.06 19.62 20.1 2 ER 19.49 20.21 20.82 21.35 21.84 ENOB 17.23 18.08 18.82 19.42 19.97 4 ER 18.99 19.86 20.58 21.16 21.69 ENOB 16.54 17.51 18.32 19.01 19.54 8 ER 18.27 19.25 20.10 20.76 21.28 ENOB 15.68 16.71 17.64 18.37 18.96 ER 17.46 18.47 19.36 20.08 20.66 LOW POWER MODE Table 12. DR and RTI (µVRMS) for Low Power Mode Gain Decimation Rate 64 128 256 512 Output Data Rate (SPS) 8000 4000 2000 1000 f−3dB (Hz) 2521.99 1267.99 640.99 327.49 1 RTI 19.1 8.82 4.53 2.89 DR 100 106 112 116 2 DR 96 103 108.5 114 4 RTI 13.4 6.18 3.03 1.77 DR 92 98.5 106 111 8 RTI 11.2 5.2 2.32 1.24 DR 87 94 100.5 107 RTI 10.3 4.65 2.05 1.04 Table 13. ENOB and ER for Low Power Mode Gain Decimation Rate 64 128 256 512 Output Data Rate (SPS) 8000 4000 2000 1000 f−3dB (Hz) 2521.99 1267.99 640.99 327.49 1 ENOB 16.37 17.37 18.37 19.04 2 ER 18.00 19.11 20.07 20.72 ENOB 15.71 16.87 17.79 18.71 Rev. C | Page 33 of 100 4 ER 17.51 18.63 19.65 20.43 ENOB 15.04 16.12 17.37 18.21 8 ER 16.77 17.87 19.04 19.94 ENOB 14.21 15.37 16.46 17.54 ER 15.89 17.04 18.22 19.20 AD7779 Data Sheet THEORY OF OPERATION The AD7779 is an 8-channel, simultaneously sampling, low noise, 24-bit Σ-∆ ADC with integrated digital filtering per channel and SRC. Due to the high oversampling rate, this technique spreads the quantization noise from 0 to fCLKIN/2 (in the case of the AD7779, fCLKIN relates to the external clock); therefore, the noise energy contained in the band of interest is reduced (see Figure 82). To further reduce the quantization noise, a high order modulator is employed to shape the noise spectrum so that most of the noise energy is shifted out of the band of interest (see Figure 83). The digital filter that follows the modulator removes the large out of band quantization noise (see Figure 84). For more information on basic and advanced concepts of Σ-∆ ADCs, see the MT-022 and MT-023. Digital filtering has certain advantages over analog filtering. Because digital filtering occurs after the analog-to-digital conversion process, it can remove noise injected during the conversion. Analog filtering cannot remove noise injected during conversion. fICLK\2 Figure 82. Σ-∆ ADC Operation, Reduction of Noise Energy Contained in the Band of Interest (Linear Scale X-Axis) NOISE SHAPING BAND OF INTEREST fICLK\2 Figure 83. Σ-∆ ADC Operation, Majority of Noise Energy Shifted Out of the Band of Interest (Linear Scale X-Axis) DIGITAL FILTER CUTOFF FREQUENCY BAND OF INTEREST fICLK\2 Figure 84. Σ-∆ ADC Operation, Removal of Noise Energy from the Band of Interest (Linear Scale X-Axis) The Σ-∆ ADC starts the conversions of the input signal after the supplies generated by the internal LDOs become stable. An external signal is not required to generate the conversions. ANALOG INPUTS The AD7779 can be operated in bipolar or unipolar modes and accepts true differential, pseudo differential, and single-ended input signals, as shown in Figure 85 through Figure 88. Table 14 summarizes the maximum differential input signal and dynamic range for the different input modes. Table 14. Input Signal Modes Input Signal Mode True differential Pseudo differential Single-ended PGA Gain All gains All gains All gains 13295-101 The AD7779 employs a Σ-∆ conversion technique to convert the analog input signal into an equivalent digital word. The overview of the Σ-∆ technique is that the modulator samples the input waveform and outputs an equivalent digital word at the input clock frequency, fCLKIN. BAND OF INTEREST 13295-102 The AD7779 offers two operation modes: high resolution mode, which offers up to 16 kSPS, and low power mode, which offers up to 8 kSPS. In low power mode, the specifications are guaranteed up to 4 kSPS, with performance degradation expected at ODRs higher than 4 kSPS. 13295-100 QUANTIZATION NOISE Maximum Differential Signal ±(VREF/PGAGAIN) ±(VREF/PGAGAIN) VREF/PGAGAIN Rev. C | Page 34 of 100 Maximum Peak-to-Peak Signal 2 × VREF/PGAGAIN 2 × VREF/PGAGAIN VREF/PGAGAIN Data Sheet AD7779 BIPOLAR OR UNIPOLAR Figure 89 shows the maximum and minimum voltage commonmode range at different PGA gains for a maximum differential input voltage. 13295-103 AINx+ VCM AINx+ VREF /PGAGAIN AVSSx + 0.1V Figure 85. Σ-∆ ADC Input Signal Configuration, True Differential 0.8250 0.4125 (AVDD1x + AVSSx)/2 –0.4125 –0.8250 VREF = 2.5V AVDD1x = 1.65V AVSSx = –1.65V –1.6500 1 4 2 PGA GAIN –1.2375 BIPOLAR OR UNIPOLAR VREF /PGAGAIN The AD7779 provides a common-mode voltage pin (AVDD1x + AVSSx)/2), VCM, for the single-supply, pseudo differential, or true differential input configurations. AINx+ AINx+ TRANSFER FUNCTION Figure 86. Σ-∆ ADC Input Signal Configuration, Pseudo Differential BIPOLAR VREF /PGAGAIN AINx+ AINx+ Table 15. Output Codes and Ideal Input Voltages for PGA = 1× 13295-105 AVSSx + 0.1V Figure 87. Σ-∆ ADC Input Signal Configuration, Single-Ended Bipolar UNIPOLAR VREF /PGAGAIN 13295-106 AINx+ AINx+ + 0.1V The AD7779 can operate with up to a 3.6 V reference, typical at 2.5 V, and converts the differential voltage between the analog inputs (AINx+ and AINx−) into a digital output. The ADC converts the voltage difference between the analog input pins (AINx+ − AINx−) into a digital code on the output. The 24-bit conversion result is in MSB first, twos complement format, as shown in Table 15 and Figure 90. Figure 88. Σ-∆ ADC Input Signal Configuration, Single-Ended Unipolar The input signal common mode is not limited, but keep the absolute input signal voltage on any AINx± pin between AVSSx + 100 mV and AVDD1x – 100 mV; otherwise, the input signal linearity degrades and, if the signal voltage exceeds the absolute maximum signal rating, damages the device. Condition FS − 1 LSB Midscale + 1 LSB Midscale Midscale − 1 LSB −FS + 1 LSB −FS ADC CODE (TWOS COMPLEMENT) VCM AVSSx + 0.1V SINGLE-ENDED 8 Figure 89. Maximum Common-Mode Voltage Range for a Maximum Differential Input Signal 13295-104 PSEUDO DIFFERENTIAL AVDD1x – 0.1V SINGLE-ENDED TRUE DIFFERENTIAL PSEUDO DIFFERENTIAL 13295-107 COMMON-MODE VOLTAGE (V) 1.6500 1.2375 Analog Input (AINx+ − AINx−), VREF = 2.5 V +2.499999702 V +298 nV 0V −298 nV −2.499999702 V −2.5 V Digital Output Code, Twos Complement (Hex) 0x7FFFFF 0x000001 0x000000 0xFFFFFF 0x800001 0x800000 011 ... 111 011 ... 110 011 ... 101 100 ... 010 100 ... 001 100 ... 000 –FSR –FSR + 1LSB –FSR + 0.5LSB +FSR – 1LSB +FSR – 1.5LSB ANALOG INPUT Figure 90. Transfer Function Rev. C | Page 35 of 100 13295-108 TRUE DIFFERENTIAL AVDD1x – 0.1V AD7779 Data Sheet MCLK START SYNC_OUT PGA GAIN 1, 2, 4, 8 AINx+ DIGITAL FILTER SINC3 SRC Σ-Δ MODULATOR AINx– ESD PROTECTION SYNC_IN RESET GAIN SCALING AND OFFSET CORRECTION CONVERSION DATA INTERFACE DRDY DOUTx SCLK SIGNAL CHAIN FOR CHANNEL x CONTROL BLOCK FORMAT0 AND FORMAT1 CONTROL OPTION PIN OR SPI MODE0 TO MODE3 SPI CONTROL 13295-109 PIN CONTROL CS SCLK SDO SDI Figure 91. Top Level Core Signal Chain CORE SIGNAL CHAIN Each Σ-∆ ADC channel on the AD7779 has an identical signal path from the analog input pins to the digital output pins. Figure 91 shows a top level implementation of this signal chain. Prior to each Σ-∆ ADC, a PGA maps sensor outputs into the ADC inputs, providing low input current in dc (±4 nA, input current, and ±1.5 nA differential input current), an 8 pF input capacitance in ac, and configurable gains of 1, 2, 4, and 8. See the AN-1392 for more information. Each ADC channel has its own Σ-∆ modulator, which oversamples the analog input and passes the digital representation to the digital filter block. The data is filtered, scaled for gain and offset, and is then output on the data interface. To minimize power consumption, the channels can be individually disabled. for the maximum common-mode voltage at maximum differential input signals. INTERNAL REFERENCE AND REFERENCE BUFFERS The AD7779 integrates a 2.5 V, 10 ppm/°C typical, voltage reference that is disabled at power-up. The buffered reference is available at Pin 49 and offers up to 10 mA of continuous current. A 100 nF capacitor is required if the reference is enabled. In applications where a low noise reference is required, it is recommended to add a low-pass filter (LPF) with a cutoff frequency (fCUTOFF) below 10 Hz to the REF_OUT pin. Connect the output of this filter to REFx+, and connect AVSSx to REFx−. In this scenario, config-ure the Σ-∆ reference as external. An example of performance with and without the output filter is shown in Figure 92. 115 CAPACITIVE PGA The AD7779 uses chopping of the PGA to minimize offset and offset drift in the input amplifier, reducing the 1/f noise as well. For the AD7779, the chopping frequency is set to 64 kHz for high resolution mode, and 16 kHz for low power mode (see the AN-1311 for more information). The chopping tone is rejected by the SINC filter. To minimize intermodulation effects that may cause image in the band of interest, it is recommended to limit the input signal bandwidth to 2/3 of the chop frequency. The capacitive PGA common-mode voltage does not depend on the gain, and can be any value as long as the input signal voltage is within AVSSx + 100 mV to AVDD1x – 100 mV. See Figure 89 95 85 75 0.05 0.50 1.00 2.00 DIFFERENTIAL INPUT VOLTAGE (V) 2.50 13295-110 The PGA maximize the signal chain dynamic range for small sensor output signals. 105 SNR (dB) Each Σ-∆ ADC has a dedicated PGA, offering gain ranges of 1, 2, 4, and 8. This PGA reduces the need for an external input buffer and allows the user to amplify small sensor signals to use the full dynamic range of the AD7779. VREF = INTERNAL REFERENCE fCUTOFF = 10Hz Figure 92. SNR Adding External LPF with VREF = Internal Reference and fCUTOFF = 10 Hz The AD7779 can be used with an external reference connected between the REFx+ and REFx− pins. Recommended reference voltage sources for the AD7779 include the ADR441 and ADR4525 family of low noise, high accuracy voltage references. Rev. C | Page 36 of 100 Data Sheet AD7779 DCLK DIVIDER 1, 2, 4, 8, 16, 32, 64, 128 MCLK DIVIDER HIGH RESOLUTION MODE: MCLK/4 LOW POWER MODE: MCLK/8 MOD_MCLK AINx+ PGA AINx– ADC MODULATOR SINC FILTER DATA INTERFACE CONTROL DEC RATES = ×128, ×256, ×512, ×1024, ×2048, ×4095.99 DCLKx DRDY DOUT3 TO DOUT0 13295-111 MCLK Figure 93. Clock Generation on the AD7779 The reference buffers can be operated in three different modes: buffer enabled mode, buffer bypassed mode, and buffer precharged mode. In buffer enabled mode, the buffer is fully enabled, minimizing the current requirements from the external references. Note that the buffer output voltage headroom is ±100 mV from the rails. In buffer bypassed mode, the external reference is directly connected to the ADC reference capacitors; the reference must provide enough current to correctly charge the internal ADC reference capacitors. In this mode of operation, a degradation in crosstalk is expected because the ADC channels are not isolated from each other. Buffer precharged (pre-Q) mode is the default operation mode. It is a hybrid mode where the internal reference buffers are connected during the initial acquisition time to precharge the internal ADC reference capacitors. During the final phase of the acquisition, the reference is connected directly to the ADC capacitors. This mode has some benefits compared to the buffer enabled and buffer bypassed modes. In buffer precharged mode, the reference current requirements are minimized compared to buffer bypassed mode the noise contribution from the internal reference buffers is removed (compared to buffer enabled mode). In buffer precharged mode, the headroom/footroom of the buffer reference is not applicable because the reference sets the final voltage in the ADC reference capacitors. INTEGRATED LDOs The AD7779 has three internal LDOs to regulate the internal supplies: two LDOs for the analog block and one LDO for the digital core. The internal LDOs requires an external 1 µF decoupling capacitor on the DREGCAP, AREG1CAP, and the AREG2CAP pins. The LDO slew rate may be low because it depends on the main supply slew rate; therefore, a hardware reset generated by pulsing the RESET pin at power-up is required to guarantee that the digital block initializes correctly. CLOCKING AND SAMPLING The AD7779 includes eight Σ-∆ ADC cores. Each ADC receives the same master clock signal. The AD7779 requires a maximum external MCLK frequency of 8192 kHz for high resolution mode and 4096 kHz for low power mode. The MCLK is internally divided by 4 in high resolution mode and by 8 in low power mode to produce the modulator MCLK (MOD_MCLK) signal used as the modulator sampling clock for the ADCs. The MCLK can be decreased to accommodate lower ODRs if the minimum ODR selected by the SINC filter is not low enough. If the external clock is lower than 250 kHz, set the CLK_QUAL_DIS bit (in SPI control mode only). The AD7779 integrates an internal oscillator clock that initializes the internal registers at power-up. The CLK_SEL pin defines the external clock used after initialization (see Table 16). Table 16. Clock Sources CLK_SEL State 0 Clock Source CMOS 1 Crystal Connection Input to XTAL2/MCLK, IOVDD logic level. XTAL1 must be tied to DGND. Connected between XTAL1 and XTAL2/MCLK. The MCLK signal generates the DCLK output signal, which in turn clocks the Σ-∆ conversion data from the AD7779, as shown in Figure 93. DIGITAL RESET AND SYNCHRONIZATION PINS An external pulse in the SYNC_IN pin generates the internal reset of the digital block; this pulse does not affect the data programmed in the internal registers. A pulse in this pin is required in two cases as follows: • • Rev. C | Page 37 of 100 After updating one or more registers directly related to the sinc3 filter. These are power mode, offset, gain, and phase compensation. To synchronize multiple devices, the pulse in the SYNC_IN pin must be synchronous with MCLK. AD7779 Data Sheet There are two different ways to achieve a synchronous pulse if the controller/processor cannot generate it, as follows: The SYNC_IN and SYNC_OUT pins must be externally connected if internal synchronization is used. If multiple AD7779 devices must be synchronized, the SYNC_OUT pin of one device can be connected to multiple devices. This synchronization method requires the use of a common MCLK signal for all the AD7779 devices connected, as shown in Figure 94. The AD7779 offers a low latency sinc3 filter. Most precision Σ-∆ ADCs use sinc3 filters because the sinc3 filter offers a low latency path for applications requiring low bandwidth signals, for example, in control loops or where application specific postprocessing is required. The digital filter adds notches at multiples of the sampling frequency. The digital filter implements three main notches, one at the maximum ODR (16 kHz or 8 kHz, depending on the power mode) and another two at the ODR frequency selected to stop noise aliasing into the pass band. Figure 95 shows the typical filter transfer function for the high resolution and low power modes using a decimation rate of 256 samples. 0 –20 –30 GAIN (dB) If the START pin is not used, tie it to IOVDD. ASYNCHRONOUS PULSE AD7779 MCLK LOW POWER MODE DECIMATION = 256 HIGH RESOLUTION MODE DECIMATION = 256 –10 –40 –50 –60 –70 START SYNCHRONIZATION SYNC_OUT LOGIC –80 –90 DIGITAL FILTER –100 SYNC_IN 0 16 8 24 32 FREQUENCY (kHz) 13295-113 • Applying an asynchronous pulse on the START pin, which is then internally synchronized with the external MCLK clock, and the resulting synchronous signal is output on the SYNC_OUT pin. Triggering the SYNC_OUT internally. When the AD7779 is configured in SPI control mode, toggling Bit 0 in the GEN_USER_CONFIG_2 register generates a synchronous pulse that is output on the SYNC_OUT pin. Figure 95. Sinc3 Frequency Response IOVDD The sample rate converter featured allows fine tuning of the decimation rate, even for noninteger multiples of the decimation rate. See the Sample Rate Converter (SRC) section for more information on filter profiles for noninteger decimation rates. AD7779 START SYNCHRONIZATION SYNC_OUT LOGIC NC SHUTDOWN MODE DIGITAL FILTER The AD7779 can be placed in shutdown mode by pulling AVDD2 to ground and connecting 1 MΩ resistance, pulled low, to XTAL2. In this mode, the average current consumption is reduced to 1 mA, as shown in Figure 96. SYNC_IN IOVDD AD7779 MCLK START SYNCHRONIZATION SYNC_OUT LOGIC 1.0 IAVDD1x IAVDD2x IAVDD4x IIOVDD NC DIGITAL FILTER SYNC_IN Figure 94. Multiple AD7779 Synchronization SUPPLY CURRENT (mA) MCLK 13295-112 MCLK AVDDx = 3.3V IOVDD = 3.3V 0.5 0 –0.5 –40 10 60 TEMPERATURE (°C) Figure 96. Shutdown Current Rev. C | Page 38 of 100 125 13295-114 • DIGITAL FILTERING Data Sheet AD7779 CONTROLLING THE AD7779 of 4, and the ODR is selected for the maximum value defined by the decimation rate; ODR (kSPS) = 2048/decimation for high resolution mode, and ODR (kSPS) = 512/decimation for low power mode. The AD7779 can be controlled using either pin control mode or SPI control mode. Pin control mode allows the AD7779 to be hardwired to predefined settings that offer a subset of the overall functionality of the AD7779. In this mode, the SRC and diagnostic features or extended errors source are not available. Depending on the mode selected, the device is configured to use an external or an internal reference. The conversion data can be read back using the SPI interface or the data output interface, as shown in Table 17. If the data output interface is used to read back the data from the conversions, the number of DOUTx lines enabled and the number of clocks required for the Σ-∆ data transfer are determined by the logic level of the CONV_SAR, FORMAT0, and FORMAT1 pins. In this case, the DCLK2, DCLK1, and DCLK0 pins select the Σ-∆ output interface and control the DCLKx divide function, which is a submultiple of MCLK, as shown in Table 19. The DCLKx divide function sets the frequency of the data output interface DCLKx signal. The DCLK minimum frequency depends on the decimation rate and operation mode. See the Data Output Interface section for more details about the minimum DCLKx frequency. Controlling the AD7779 over the SPI interface allows the user access to the full monitoring, diagnostic, and Σ-∆ control functionality. SPI control offers additional functionality such as offset, gain, and phase correction per channel, in addition to access to the flexible SRC to achieve a coherent sampling. See Table 17 for more details about these different configurations. PIN CONTROL MODE In pin control mode, the AD7779 is configured at power-up based on the level of the mode pins, MODE 0, MODE1, MODE2, and MODE3. These four pins set the following functions on the AD7779: the mode of operation, the decimation rate/ODR, the PGA gain, and the reference source, as shown in Table 18. All the pins that define the AD7779 configuration mode are reevaluated each time the SYNC_IN pin is pulsed. The typical connection diagram for pin control mode is shown in Figure 97. Due to the limited number of mode pins and the number of options available, the PGA gain control is grouped into blocks Table 17. Format of the Data Interface CONV_SAR State 1 0 FORMAT1 0 0 1 1 0 FORMAT0 0 1 0 1 0 Control Mode Pin Pin Pin SPI Pin 0 1 Pin 1 1 0 1 Pin SPI Data Output Mode SPI output SPI output SPI output Defined in Register 0x013 and/or Register 0x014 DOUT0, Channel 0 to Channel 1 DOUT1, Channel 2 to Channel 3 DOUT2, Channel 4 to Channel 5 DOUT3, Channel 5 to Channel 7 DOUT0, Channel 0 to Channel 3 DOUT1, Channel 4 to Channel 7 DOUT0, Channel 0 to Channel 7 Defined in Register 0x013 and/or Register 0x014 Table 18. Pin Mode Options Pin State MODE3 0 0 0 0 0 0 0 0 MODE2 0 0 0 0 1 1 1 1 MODE1 0 0 1 1 0 0 1 1 MODE0 0 1 0 1 0 1 0 1 Decimation Rate 1024 512 256 128 256 512 256 128 Power Mode High resolution High resolution High resolution High resolution High resolution High resolution High resolution High resolution Rev. C | Page 39 of 100 PGA Gain Channel Channel 0 to Channel 4 to Channel 3 Channel 7 1 1 1 1 1 1 1 1 1 2 1 4 1 4 1 4 Reference Type External External External External External External External External AD7779 Data Sheet Pin State MODE3 1 1 1 1 1 1 1 1 MODE2 0 0 0 0 1 1 1 1 MODE1 0 0 1 1 0 0 1 1 Decimation Rate 512 256 128 512 256 128 128 256 MODE0 0 1 0 1 0 1 0 1 Power Mode High resolution High resolution High resolution Low power Low power Low power Low power Low power PGA Gain Channel Channel 0 to Channel 4 to Channel 3 Channel 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Reference Type Internal Internal Internal External External External Internal Internal Table 19. DCLKx Selection for Pin Control Mode DCLK2/SCLK 0 0 0 0 1 1 1 1 State DCLK0/SDO 0 1 0 1 0 1 0 1 DCLK1/SDI 0 0 1 1 0 0 1 1 MCLK Divider 1 2 4 8 16 32 64 128 EXTERNAL REFERENCE AVDD 3.3V AVDD3.3V AVSSx AVDD1x VCM REFx+ VCM AVSSx AVSSx AVSSx REFx– AVDD4 REF_OUT AVDD2x AREGxCAP BUFFER AVSSx IOVDD 2V TO 3.6V AVSSx IOVDD AD7779 BUFFER AIN0+ AVDD3.3V DRDY PGA 24-BIT Σ-Δ ADC PGA SINC3/SRC CS SCLK SDO SPI CONTROL INTERFACE SDI SPI/SPORT SLAVE INTERFACE FPGA OR DSP SPI MASTER INTERFACE CLK_SEL AVSSx XTAL1 XTAL2 MODE3 TO MODE0 CONVST_SAR DCLK2 TO DCLK0 FORMAT1 AND FORMAT0 13295-115 AIN7– DCLK DOUT0 DOUT1 DOUT2 DOUT3 ADC DATA SERIAL INTERFACE AIN0– AIN7+ DREGCAP SYNC_IN SYNC_OUT START RESET CLOCK SOURCE Figure 97. Pin Mode Connection Diagram with External Reference Rev. C | Page 40 of 100 Data Sheet AD7779 AVDD 3.3V AVDD3.3V AVSSx AVSSx REFx+ AVDD1x VCM VCM BUFFER BUFFER AIN0+ AVDD4 AVSSx AVSSx AVSSx REF_OUT REFx– IOVDD 2V TO 3.6V AVDD2x AREGxCAP IOVDD AD7779 DRDY PGA ADC DATA SERIAL INTERFACE AIN0– AIN7+ AIN7– DREGCAP SYNC_IN SYNC_OUT START RESET 24-BIT Σ-Δ ADC PGA SINC3/SRC SPI CONTROL INTERFACE DIAGNOSTIC INPUTS DCLK DOUT0 DOUT1 DOUT2 DOUT3 CS SCLK SDO SDI FULL BUFFER 12-BIT SAR ADC MUX AUXAIN– AVSSx GPIO2 TO GPIO0 CONVST_SAR XTAL1 FPGA OR DSP SPI MASTER INTERFACE CLK_SEL XTAL2 FORMAT1 IOVDD FORMAT0 IOVDD 13295-116 AUXAIN+ SPI/SPORT SLAVE INTERFACE CLOCK SOURCE Figure 98. SPI Control Mode Connection Diagram with Internal Reference SPI CONTROL The second option for control and monitoring the AD7779 is via the SPI interface. This option allows access to the full functionality on the AD7779, including access to the SAR converter, phase synchronization, offset and gain adjustment, diagnostics and the SRC. To use the SPI control, set the FORMAT0 and FORMAT1 pins to logic high. In this mode, the SPI interface can also be used to read the Σ-∆ conversation data by setting the SPI_SLAVEMODE_EN bit. The typical connection diagram for SPI control mode is shown in Figure 98. Functionality Available in SPI Mode SPI control of the AD7779 offers the super set of the functions and diagnostics. The SPI Control Functionality section describes the functionality and diagnostics offered when in SPI control mode. Offset and Gain Correction Offset and gain registers are available for system calibration. The gain register is preprogrammed during final production for a PGA gain of 1, but can be overwritten with a new value if required. The gain register is 24 bits long and is split across three registers, CHx_GAIN_UPPER_BYTE, CHx_GAIN_MID_BYTE, and CHx_GAIN_LOWER_BYTE, which set the gain on a per channel basis. The gain value is relative to 0x555555, which represents a gain of 1. The offset register is 24 bits long and is spread across three byte registers, CHx_OFFSET_UPPER_BYTE, CHx_OFFSET_MID_ BYTE, and CHx_OFFSET_LOWER_BYTE. The default value is 0x000000 at power-up. Program the offset as a twos complement, signed 24-bit number. If the channel gain is set to its nominal value of 0x555555, an LSB of offset register adjustment changes the digital output by −4/3 LSBs. As an example of calibration, the offset measured is −200 LSB (with both AINx± pins connected to the same potential). An offset adjustment of −150 changes the digital output by −150 × (−4/3) = 200 LSBs (gain value = 0x555555), representing this number as two complement, 0xFFFFFF – 0x96 + 1 = 0xFFFF70. • • • CHx_OFFSET_UPPER_BYTE = 0xFF CHx_OFFSET_MID_BYTE = 0xFF CHx_OFFSET_LOWER_BYTE = 0x70 Note that the offset compensation is performed before the gain compensation. The gain is programmed during final testing for PGAGAIN = 1. The gain register values can be overwritten; however, after a reset or power cycle, the gain register values revert to the hard coded programmed factory setting. If the gain required is 0.75 of the nominal value (0x555555), the value that must be programmed is 0x555555 × 0.75 = 0x400000 Then, an LSB of the offset register adjustment changes the digital output by −4/3 × 0.75 = 1 LSB. • • • Rev. C | Page 41 of 100 CHx_GAIN_UPPER_BYTE = 0x40 CHx_GAIN_MID_BYTE = 0x00 CHx_GAIN_LOWER_BYTE = 0x00 AD7779 Data Sheet SPI Control Functionality Global Control Functions Table 20. Phase Adjustment vs. Decimation Rate The following list details the global control functions of the AD7779: • • • • • • • • • • • • • • • • High resolution and low power modes of operation Output data rate: sample rate converter (SRC) VCM buffer power-down Internal/external reference selection Enable, precharged, or bypassed reference buffer modes Internal reference power-down SAR diagnostic mux SAR power-down GPIO write/read SPI SAR conversion readback SPI slave mode—read Σ-∆ results SDO and DOUT drive strength DOUT mode DCLK division Internal LDO bypassed CRC protection: enabled or disabled Per Channel Functions The following list details the per channel functions of the AD7779: • • • • • • • • Phase Adjustment Compensation (n) ×1 ×2 ×4 ×8 ×16 Decimation Rate ≤255 ≤511 ≤1023 ≤2047 ≤4095 The maximum phase delay cannot be equal to or greater than the decimation rate. If this is the case, the value changes internally to the decimation rate value minus 1. When the CHx_SYNC_OFFSET register is written it automatically overwrites itself multiplied by the corresponding factor (n), as defined in Table 20. As CHx_SYNC_OFFSET is only 8 bits long, the resulting value will be scaled down to fit 8 bits. In order to know whether the phase adjustment has clipped or not, see Table 21. Table 21. CHx_SYNC_OFFSET × n ≤255 ≤511 ≤1023 ≤2047 ≤4095 CHx_SYNC_OFFSET Overwrite CHx_SYNC_OFFSET × n CHx_SYNC_OFFSET × n/2 CHx_SYNC_OFFSET × n/4 CHx_SYNC_OFFSET × n/8 CHx_SYNC_OFFSET × n/16 As an example, the phase mismatch between Channel 0 and Channel 1 is 5°, and the ODR is 5 kSPS in high resolution mode. In this case, the decimation rate is 2048 kHz/5 kHz = 409.6, which means that the offset register value is multiplied internally by 2. PGA gain. Σ-∆ channel power-down. Phase delay: synchronization phase offset per channel. Calibration of offset. Calibration of gain. Σ-∆ input signal mux. Channel error register. PGA gain. Assuming an input signal of 50 Hz, the number of MOD_ MCLK pulses required to sample a full period is 2048 kHz/ 50 Hz = 40960 > 360°/40960 = 0.00878°. Phase Adjustment The AD7779 phase delay can be adjusted to compensate for phase mismatches between channels due to sensors or signal channel phase errors connected to the AD7779. Achieve phase adjustment by programming the CHx_SYNC_OFFSET register. This programming delays the synchronization signal by a certain number of modulator clocks, MOD_CLKs, to individually initiate the digital filter for each Σ-∆ ADC. The phase adjustment register is read during the pulse; consequently, any further changes on the register have no effect unless a pulse is generated (see the Digital Reset and Synchronization Pins section for more information on how to generate a pulse in the pin). The phase offset register is multiplied internally by a factor (n), that depends on the decimation rate, as shown in Table 20. If a 5° delay is required, the number of MOD_MCLK delays must be 569 (5°/0.00878°) because the offset register is multiplied by 2; the final offset register value is 409.6/2 − 569/2, which gives a negative value. In this case, if the offset value programmed to the register is higher than 204 (for example, 210 × 2 = 420), the value is internally changed to 408, resulting in a phase compensation of 408 × 0.00878° = 3.58°. PGA Gain The PGA gain can be selected individually by appropriately selecting Bits[7:6] in the CHx_CONFIG register, as shown in Table 22. Table 22. PGA Gain Settings via CHx_CONFIG CHx_CONFIG, Bits[7:6] Setting 00 01 10 11 Rev. C | Page 42 of 100 PGA Gain Setting ×1 ×2 ×4 ×8 Data Sheet AD7779 If the Σ-∆ reference is updated, it is recommended to apply a pulse on the SYNC_IN pin to remove invalid samples during the transition of the reference Decimation The decimation defines the sampling frequency as follows: • • In high resolution mode, the sampling frequency = MCLK/ (4 × decimation) In low power mode, the sampling frequency = MCLK/ (8 × decimation) Refer to the Sample Rate Converter (SRC) section for more information. Configuration control and readback of the GPIO pins are dealt with by Bits[2:0] in the GPIO_CONFIG register (0 = input, 1 = output) and the GPIO_DATA register. Among other uses, the GPIOs can control an external mux connected to the auxiliary inputs of the SAR ADC. Use this mux to verify the results on the Σ-∆ ADCs. In addition, the GPIO pins can be used to externally trigger a new decimation rate. Refer to the Sample Rate Converter (SRC) section for more information about this functionality. Σ-∆ Reference Configuration The AD7779 can operate with internal or external references. In addition, for diagnostic purposes, the analog supply can be used as a reference, as shown in Table 23. Table 23. Σ-∆ References GPIO Pins If the AD7779 operates in SPI control mode, the mode pins operate as GPIO pins, as shown in Figure 99. The GPIO pins can be configured as inputs or outputs in any order. GPIO0 GPIO1 Setting for ADC_MUX_CONFIG, Bits[7:6] 00 01 10 11 Channel 0 to Channel 3 REF1+/REF1− Internal reference AVDD1A/AVSS1A REF1−/REF1+ Channel 4 to Channel 7 REF2+/REF2− Internal reference AVDD1B/AVSS1B REF2−/REF2+ Reference buffer operation is described in Table 24. The selected reference and buffer operation mode affect all channels. REGISTER MAP 13295-117 GPIO2 If the Σ-∆ reference is updated, it is recommended to apply a pulse on the SYNC_IN pin to remove invalid samples during the transition of the reference. Figure 99. GPIO Pin Functionality Table 24. Reference Buffer Operation Modes Reference Buffer Operation Mode Enabled Precharged Disabled REFx+ BUFFER_CONFIG_1, Bit 4 = 1; BUFFER_CONFIG_2, Bit 7 = 0 BUFFER_CONFIG_1, Bit 4 = 1; BUFFER_CONFIG_2, Bit 7 = 1 BUFFER_CONFIG_1, Bit 4 = 0 REFx− BUFFER_CONFIG_1, Bit 3 = 1; BUFFER_CONFIG_2, Bit 6 = 0 BUFFER_CONFIG_1, Bit 3 = 1; BUFFER_CONFIG_2, Bit 6 = 1 BUFFER_CONFIG_1, Bit 3 = 0 Table 25. Additional Disable Power-Down Blocks Block VCM Reference Buffer Internal Reference Buffer Σ-∆ Channel SAR Internal Oscillator Register GENERAL_USER_CONFIG_1, Bit 5 BUFFER_CONFIG_1, Bits[4:3] GENERAL_USER_CONFIG_1, Bit 4 CH_DISABLE, Bits[7:0] GENERAL_USER_CONFIG_1, Bit 3 GENERAL_USER_CONFIG_1, Bit 2 Rev. C | Page 43 of 100 Notes Enable by default Precharge mode by default Disable by default All channels enable Disable by default Enable by default AD7779 Data Sheet Power Modes The AD7779 offers different power modes to improve the power efficiency, high resolution and low power mode, which can be controlled via GENERAL_USER_CONFIG_1, Bit 6. To further reduce the power, additional blocks can be disabled independently, as described in Table 25. If the power mode changes, a pulse on the SYNC_IN pin is required. LDO Bypassing The internal LDOs can be individually bypassed and an external supply can be applied directly to AREG1CAP, AREG2CAP, or DREGCAP pins. Table 26 shows the absolute minimum and maximum supplies for these pins, as well as the associated register used to bypass the regulator. Table 26. LDO Bypassing LDO AREG1CAP AREG2CAP DREGCAP 1 BUFFER_CONFIG_2, Bits[2:0]1 1XX X1X XX1 Supply Max (V) Min (V) 1.9 1.85 1.9 1.85 1.98 1.65 X means don’t care. DIGITAL SPI INTERFACE The SPI serial interface on the AD7779 consists of four signals: CS, SDI, SCLK, and SDO. A typical connection diagram of the SPI interface is shown in Figure 100. AD7779 DSP/FPGA The SPI interfaces operates in Mode 0 and Mode 3, CPOL = 0, CPHA = 0 (Mode 0) or CPOL = 1, CPHA = 1 (Mode 3). In pin control mode, the SDO can be used to read back the Σ-∆ results, depending on the level of the CONV_SAR pin, as described in Table 17. In SPI control mode, the SPI interface transfers data into the on-chip registers while the SDO pin reads back data from the on-chip registers or reads the SAR or the Σ-∆ conversions results, depending on the selected operation mode. The SDO data source in SPI control mode is defined by the GENERAL_USER_CONFIG_2 and GENERAL_USER_ CONFIG_3 registers, as described in Table 27. Table 27. SPI Operation Mode in SPI Control Mode GENERAL_USER_ CONFIG_2, Bit 5 Setting 0 0 1 GENERAL_USER_ CONFIG_3, Bit 4 Setting 0 1 X Mode Internal register Σ-∆ data conversion SAR conversion In SPI control mode, there are four different levels of I/O strength on the SDO pin, which can be selected in GENERAL_USER_ CONFIG_2, Bits[4:3], as described in Table 28. Table 28. SDO Strength GENERAL_USER_CONFIG_2, Bits[4:3] Setting 0 0 0 1 1 0 1 1 Mode Nominal Strong Weak Extra strong CS SCLK is the serial clock input for the device. All data transfers (on either SDO or SDI) occur with respect to this SCLK signal. SCLK SDI 13295-118 SDO Figure 100. SPI Control Interface—AD7779 is the SPI Slave, Digital Signal Processor (DSP)/Field Programmable Gate Array (FPGA) is the Master Rev. C | Page 44 of 100 Data Sheet AD7779 To ensure that the register write is successful, it is recommended to read back the register and verify the checksum. The SPI interface can operate in multiples of eight bits. For example, in SPI control mode, if the SDO pin is used to read back the data from the internal register or the SAR ADC, the data frame is 16 bits wide (CRC disabled), as shown in Figure 101, or 24 bits wide (CRC enabled), as shown in Figure 102. In this case, the controller can generate one frame of 16 bits/24 bits (with and without the CRC enabled), or 2/3 frames of 8 bits (with and without the CRC enabled). When the SDO pin is used to read back the data from the Σ-∆ channels, 64 bits must be read back from the controller (in this case, the controller can generate a frame of 64 bits: either 2 × 32 bits, 4 × 16 bits, or 8 × 8 bits). For CRC checksum calculations, the following polynomial is always used: x8 + x2 + x + 1. See the SPI Control Mode Checksum section for more information. SPI Read/Write Register Mode (SPI Control Mode) The AD7779 has on-board registers to configure and control the device. The registers have 7-bit addresses—the 7-bit register address on the SDI line selects the register for the read/write function. The 7-bit register address follows the R/W bit in the SDI data. The 8 bits on the SDI line following the 7-bit register address are the data to be written to the selected register if the SPI is a write transfer. Data on the SDI line is clocked into the AD7779 on the rising edge of SCLK, as shown in Figure 3. SPI CRC—Checksum Protection (SPI Control Mode) The AD7779 has a checksum mode that improves SPI interface robustness in SPI control mode. Using the checksum ensures that only valid data is written to a register and allows data read from the device to be validated. The SPI CRC can be enabled by setting the SPI_CRC_TEST_EN bit. If an error occurs during a register write, the SPI_CRC_ERR is set in the error register. The data on the SDO line during the SPI transfer contains the 8-bit 0010 0000 header: 8 bits of register data in the case of a read (R) operation, or 8 zeros in the case of a write (W) operation. Enabling the SPI_CRC_TEST_EN bit results in a CRC checksum being performed on all the R/W operations. When SPI_ CRC_TEST_EN is enabled, an 8-bit CRC word is appended to every SPI transaction for SAR and register map operations. For more information on Σ-∆ readback operations, see the CRC Header section. With the CRC disabled, the basic data frame on the SDI line during the transfer is 16 bits long, as shown in Figure 101. When the CRC is enabled, a minimum frame length of 24 SCLKs is required on SPI transfers. The 24 bits of data on the SDO line consist of an 8-bit header (0010 0000), 8 bits of data, and an 8-bit CRC (see Figure 102). CS SDI R/W A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 SDO 0 0 1 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 13295-119 SCLK Figure 101. 16-Bit SPI Transfer—CRC Disabled CS SDI R/W A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 ICRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0 SDO 0 0 1 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 ICRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0 Figure 102. 24-Bit SPI Transfer—CRC Enabled Rev. C | Page 45 of 100 13295-120 SCLK AD7779 Data Sheet SPI SAR Diagnostic Mode (SPI Control Mode) to the device, which is ignored because the SDO pin is used to shift out the content of the SAR ADC. Setting Bit 5 in the GENERAL_USER_CONFIG_2 register configures the SDO line to shift out data from the SAR ADC conversions, as described in Table 27. The SAR ADC is disabled at power-up. To enable this ADC, set the PDB_SAR bit. If consecutives conversion are performed in the SAR ADC, read back the result from the previous conversion before a new conversion is generated. Otherwise, the results are corrupted. In SAR mode, the AD7779 internal registers can be written to, but any readback command is ignored because the SDO data frame is dedicated to shift out the conversion results from the SAR ADC. Σ-∆ Data, ADC Mode In pin control mode, the SPI interface can be used to read back the Σ-∆ conversions as described in Table 17. In SPI control mode, the SPI interface reads back the Σ-∆ conversions by setting GENERAL_USER_CONFIG_3, Bit 4, as described in Table 27; in this mode, the AD7779 internal register can be written to, but any readback command is ignored because the SDO data frame is dedicated to shifting out the conversion results from the Σ-∆ ADCs. To avoid unwanted writes to the internal register, it is recommended to send a readback command, for example, 0x8000, to the device, which is ignored because the SDO pin is used to shift out the content of the Σ-∆ ADC. To exit this mode of operation, reset Bit 5 in the GENERAL_ USER_CONFIG_2 register. The data on the SDO line during the SPI transfer contains a 4-bit 0010 header and 12 bits of the SAR conversion result if the CRC is disabled. When the CRC is enabled, a minimum frame length of 24 SCLKs is required on SPI transfers. The 24 bits of data on the SDO line consist of a 4-bit header (0010), 12 bits of data, and an 8-bit CRC, as shown in Figure 103. The SDO pin data can be read back in any multiple of 8 bits, for example, as 64 bits, 2 × 32 bits, 4 × 16 bits, or 8 × 8 bits. Per the SPI read/write register mode (see the SPI Read/Write Register Mode section), the SDI line contains the R/W bit, a 7-bit register address, 8 bits of data, and an 8-bit CRC (if enabled). To avoid unwanted writes to the internal register while the SAR conversions are read back through the SDO line, it is recommended to send a readback command, for example, 0x8000, SPI Software Reset Keeping the SDI pin high during 64 consecutives clocks generates a software reset. CS SCLK R/W A6 A5 A4 SDO 0 0 1 0 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 ICRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0 SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR I CRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0 11 10 9 8 7 6 5 4 3 2 1 0 13295-121 SDI Figure 103. SAR ADC/Diagnostic Mode—CRC Enabled DRDY CS SCLK SDO 0x800000 HEADER CH0 0x800000 D23CH0 TO D8CH0 D7CH0 TO D0CH0 HEADER CH1 Figure 104. SPI Used to Read Back the Σ-Δ ADC Data, in 24-Bit Frames Rev. C | Page 46 of 100 D23CH1 TO D16CH1 13295-201 SDI Data Sheet AD7779 DIAGNOSTICS AND MONITORING SELF DIAGNOSTICS ERROR The AD7779 includes self diagnostic features to guarantee the correct operation. If an error is detected, the ALERT pin is pulled high to generate an external interruption to the controller. In addition, the header of the Σ-∆ output data contains a bit used to inform the controller of a chip error (see the ADC Conversion Output—Header and Data section). Both the ALERT pin and the bit (status header) are automatically cleared if the error is no longer present. The errors related to the SPI interface do not recover automatically; read back the appropriate register to clear the error, resetting both the ALERT pin and the bit. If an error detector is manually disabled, it does not generate an internal error and, consequently, the register map or the ALERT pin and bit are not triggered. There are different sources of errors, as described in Table 29. In pin control mode, it is not possible to check the error source, and some sources of error are not enabled. In SPI control mode, check the source of an error by reading the appropriate register bit. The STATUS_REG_x register bits identify the register that generates an error, as summarized in Table 29. Table 29. Register Error Source Bit Name ERR_LOC_GEN2 ERR_LOC_GEN1 ERR_LOC_CH7 ERR_LOC_CH6 ERR_LOC_CH5 ERR_LOC_CH4 ERR_LOC_CH3 ERR_LOC_CH2 ERR_LOC_CH1 ERR_LOC_CH0 ERR_LOC_SAT_CH6_7 ERR_LOC_SAT_CH4_5 ERR_LOC_SAT_CH2_3 ERR_LOC_SAT_CH0_1 the EXT_MCLK_SWITCH_ERR bit is set in the general error register, GEN_ERR_REG_2. If EXT_MCLK_SWITCH_ERR is set, this means that the device is operating off the internal oscillator. To use a slow external clock (
AD7779ACPZ-RL 价格&库存

很抱歉,暂时无法提供与“AD7779ACPZ-RL”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AD7779ACPZ-RL
  •  国内价格
  • 1+108.15120
  • 10+94.18680
  • 30+85.84920
  • 100+76.99860

库存:3

AD7779ACPZ-RL
  •  国内价格
  • 1+193.73540
  • 10+143.31050
  • 100+122.83770
  • 1000+102.36470

库存:0