Data Sheet
3.2 Gbps
Quad Buffer Mux/Demux
AD8159
FEATURES
FUNCTIONAL BLOCK DIAGRAM
RECEIVE
EQUALIZATION
Ix_A[3:0]
TRANSMIT
PREEMPHASIS
EQ
I/O
CROSSOVER
SWITCH
Ox_C[3:0]/
Ix_C[3:0]
2:1
Ix_B[3:0]
EQ
Ox_A[3:0]
1:2
Ix_C[3:0]/
Ox_C[3:0]
EQ
Ox_B[3:0]
TRANSMIT
PREEMPHASIS
QUAD
2:1
MULTIPLEXER/
1:2
DEMULTIPLEXER
RECEIVE
EQUALIZATION
CONTROL
LOGIC
AD8159
LB_A
LB_B
LB_C
PE_A[1:0]
PE_B[1:0]
PE_C[1:0]
EQ_A
EQ_B
EQ_C
SEL[3:0]
BICAST
REVERSE_C
05611-001
Port level 2:1 mux/1:2 demux
Each port consists of 4 lanes
Each lane runs from dc to 3.2 Gbps, independent of the other
lanes
Compensates over 40 inches of FR4 at 3.2 Gbps through
2 levels of input equalization or 4 levels of output
pre-emphasis
Accepts ac- or dc-coupled differential CML inputs
Low deterministic jitter, typically 20 ps p-p
Low random jitter, typically 1 ps rms
BER < 10−16
On-chip termination
Reversible inputs and outputs on one port
Unicast or bicast on 1:2 demux function
Port level loopback capability
Single lane switching capability
3.3 V core supply
Flexible I/O supply down to 2.5 V
Low power, typically 1 W in basic configuration
100-lead TQFP_EP
−40°C to +85°C operating temperature range
Figure 1.
APPLICATIONS
Low cost redundancy switch
SONET OC-48/SDH-16 and lower data rates
XAUI (10 gigabit Ethernet) over backplane
Gigabit Ethernet over backplane
Fibre Channel 1.06 Gbps and 2.125 Gbps over backplane
InfiniBand® over backplane
PCI Express (PCIe) over backplane
GENERAL DESCRIPTION
The AD81591 is an asynchronous, protocol agnostic, quad-lane
2:1 switch with 12 differential PECL-/CML-compatible inputs and
12 differential CML outputs. The operation of this product is
optimized for NRZ signaling with data rates of up to 3.2 Gbps
per lane. Each lane offers two levels of input equalization and four
levels of output pre-emphasis.
The AD8159 consists of four multiplexers and four demultiplexers,
one per lane. Each port is a four-lane link, and each lane runs up to
a 3.2 Gbps data rate, independent of the other lanes. The lanes are
switched independently using the four select pins, SEL[3:0]; each
select pin controls one lane of the port. The AD8159 has low
latency and very low lane-to-lane skew.
1
The main application of the AD8159 is to support redundancy
on both the backplane side and the line interface side of a serial
link. The device has unicast and bicast capability; therefore, it
can be configured to support either 1 + 1 or 1:1 redundancy.
The AD8159 supports reversing of the output and input pins
on one of its ports, which helps to connect two ASICs with
opposite pinouts.
The AD8159 is also used for testing high speed serial links by
duplicating incoming data and sending it to the destination port
and to the test equipment simultaneously.
Product covered by one or more patents: U.S. Patent No. 7,813,706.
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2005–2018 Analog Devices, Inc. All rights reserved.
AD8159
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Theory of Operation ...................................................................... 15
Applications ....................................................................................... 1
Input Equalization (EQ) and Output Pre-Emphasis (PE) .... 15
General Description ......................................................................... 1
Loopback ..................................................................................... 16
Functional Block Diagram .............................................................. 1
Port C Reverse (Crossover) Capability .................................... 17
Revision History ............................................................................... 2
Applications Information .............................................................. 18
Specifications..................................................................................... 3
Interfacing to the AD8159............................................................. 19
Absolute Maximum Ratings............................................................ 4
Termination Structures.............................................................. 19
ESD Caution .................................................................................. 4
Input Compliance....................................................................... 19
Pin Configuration and Function Descriptions ............................. 5
Output Compliance ................................................................... 20
Typical Performance Characteristics ............................................. 8
Outline Dimensions ....................................................................... 21
Evaluation Board Simplified Block Diagrams ............................ 13
Ordering Guide .......................................................................... 21
Test Circuits ..................................................................................... 14
REVISION HISTORY
10/2018—Rev. B to Rev. C
Added Patent Information .............................................................. 1
5/2009—Rev. A to Rev. B
Changes to Input Voltage Swing Parameter, Table 1.................... 3
Added VTTI, VTTO, VTTIO, VTTOI Parameter, Table 1 ....................... 3
Changes to Table 3 ............................................................................ 5
Changes to Figure 24 ...................................................................... 11
Deleted Figure 30; Renumbered Sequentially ............................ 12
Deleted Figure 33 ............................................................................ 13
Changes to Figure 32 ...................................................................... 14
Changes to Table 5 and Table 6 ..................................................... 15
Deleted Table 7, Table 8, Table 10, and Table 11 ........................ 16
Changes to Applications Information Section............................ 18
Changes to Termination Structures Section, Figure 39,
Figure 40, and Figure 42 ................................................................ 19
Added Figure 41; Renumbered Sequentially .............................. 19
Deleted DC Coupling Section and Figure 44 ............................. 20
Changes to Output Compliance Section ..................................... 20
Added Figure 43, Table 9, Table 10, and Table 11 ...................... 20
Deleted AC Coupling Section, Output Compliance Table
Section, and Table 13...................................................................... 21
Added Exposed Pad Notation to Outline Dimensions ............. 21
Changes to Ordering Guide .......................................................... 21
4/2006—Rev. 0 to Rev. A
Changes to Applications Section .....................................................1
Changes to Table 5.......................................................................... 15
Updates to Outline Dimensions ................................................... 22
Changes to Ordering Guide .......................................................... 22
9/2005—Revision 0: Initial Version
Rev. C | Page 2 of 21
Data Sheet
AD8159
SPECIFICATIONS
VCC = 3.3 V, VEE = 0 V, RL = 50 Ω, basic configuration, 1 data rate = 3.2 Gbps, input common-mode voltage = 2.7 V, differential input swing =
800 mV p-p, TA = 25°C, unless otherwise noted.
Table 1.
Parameter
DYNAMIC PERFORMANCE
Data Rate/Channel (NRZ)
Deterministic Jitter
Random Jitter
Propagation Delay
Lane-to-Lane Skew
Switching Time
Output Rise/Fall Time
INPUT CHARACTERISTICS
Input Voltage Swing
Input Voltage Range
Input Bias Current
Input Capacitance
OUTPUT CHARACTERISTICS
Output Voltage Swing
Output Voltage Range
Output Current
Output Capacitance
TERMINATION CHARACTERISTICS
Resistance
Temperature Coefficient
POWER SUPPLY
Operating Range
VCC
VTTI, VTTO, VTTIO, VTTOI
Supply Current
ICC
II/O = ITTO + ITTOI + ITTI + ITTIO
Supply Current
ICC
II/O = ITTO + ITTOI + ITTI + ITTIO
THERMAL CHARACTERISTICS
Operating Temperature Range
θJA
θJB
θJC
LOGIC INPUT CHARACTERISTICS
Input Voltage High, VIH
Input Voltage Low, VIL
Conditions
Min
Typ
DC
Data rate = 3.2 Gbps; see Figure 21
RMS; see Figure 24
Input to output
Unit
3.2
Gbps
ps p-p
ps
ps
ps
ns
ps
2000
2000
VCC + 0.3
mV p-p
mV p-p
V
µA
pF
20
1
600
100
5
100
20% to 80%
Port C, differential, VICM 2 = VCC − 0.6 V; see Figure 22
Port A/Port B, differential, VICM2 = VCC − 0.6 V; see Figure 22
Common mode, VID 3 = 800 mV p-p; see Figure 25
Max
200
100
VEE + 1.8
4
2
Differential, PE = 0
Single-ended absolute voltage level; see Figure 26
Port A/Port B, PE_A/PE_B = 0
Port C, PE_C = 0
Port A/Port B, PE_A/PE_B = 3
Port C, PE_C = 3
800
VCC − 1.6
VCC + 0.6
16
20
28
32
2
mV p-p
V
mA
mA
mA
mA
pF
Differential
90
100
0.15
110
Ω
Ω/°C
VEE = 0 V
3.0
2.4
3.3
3.3
3.6
3.6
V
V
Basic configuration,1 dc-coupled inputs/outputs, 400 mV I/O
swings (800 mV p-p differential), 50 Ω far-end terminations
175
144
mA
mA
255
352
mA
mA
BICAST = 1, PE = 3 on all ports, dc-coupled inputs/outputs,
400 mV I/O swings (800 mV p-p differential), 50 Ω far-end
terminations
−40
Still air
Still air
Still air
+85
°C
°C/W
°C/W
°C/W
VCC
0.8
V
V
29
16
13
2.4
VEE
BICAST off, loopback off on all ports, pre-emphasis off on all ports, equalization set to minimum on all ports.
VICM is the input common-mode voltage.
3
VID is the input differential peak-to-peak voltage swing.
1
2
Rev. C | Page 3 of 21
AD8159
Data Sheet
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
VCC to VEE
VTTI
VTTIO
VTTO
VTTOI
Internal Power Dissipation
Differential Input Voltage
Logic Input Voltage
Storage Temperature Range
Lead Temperature
Rating
3.7 V
VCC + 0.6 V
VCC + 0.6 V
VCC + 0.6 V
VCC + 0.6 V
4.26 W
2.0 V
VEE − 0.3 V < VIN < VCC + 0.6 V
−65°C to +125°C
300°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
Rev. C | Page 4 of 21
Data Sheet
AD8159
VCC
ION_C3
IOP_C3
VEE
ION_C2
IOP_C2
VTTIO
ION_C1
IOP_C1
VEE
ION_C0
IOP_C0
VCC
OIN_C3
OIP_C3
VEE
OIN_C2
OIP_C2
VTTOI
OIN_C1
OIP_C1
VEE
OIN_C0
OIP_C0
VCC
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76
NC 1
VCC
2
VEE
3
75
PIN 1
VCC
74
EQ_A
73
EQ_B
VEE
4
72
EQ_C
VEE
5
71
SEL3
PE_A0 6
70
SEL2
PE_A1 7
69
SEL1
PE_B0 8
68
SEL0
PE_B1 9
67
LB_C
PE_C0 10
66
LB_B
65
LB_A
64
BICAST
63
VCC
AD8159
PE_C1 11
REVERSE_C 12
TOP VIEW
(Not to Scale)
VCC 13
ON_A3 14
62
IP_B0
OP_A3 15
61
IN_B0
VEE 16
60
VEE
ON_A2 17
59
IP_B1
OP_A2 18
58
IN_B1
19
57
VTTI
ON_A1 20
56
IP_B2
OP_A1 21
55
IN_B2
VEE 22
54
VEE
ON_A0 23
53
IP_B3
OP_A0 24
52
IN_B3
VCC 25
51
VCC
VTTO
NOTES
1. THE AD8159 TQFP HAS AN EXPOSED PADDLE (ePAD) ON THE UNDERSIDE OF THE PACKAGE WHICH AIDS
IN HEAT DISSIPATION. THE ePAD MUST BE ELECTRICALLY CONNECTED TO THE VEE SUPPLY PLANE IN ORDER
TO MEET THERMAL SPECIFICATIONS.
05611-002
VCC
OP_B0
ON_B0
VEE
OP_B1
ON_B1
VTTO
OP_B2
ON_B2
VEE
OP_B3
ON_B3
VCC
IP_A0
IN_A0
VEE
IP_A1
IN_A1
VTTI
IP_A2
IN_A2
VEE
IP_A3
VCC
IN_A3
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
NC = NO CONNECT
Figure 2. Pin Configuration
Table 3. Pin Function Descriptions
Pin No.
1
2, 13, 25, 26, 38, 50, 51, 63, 75, 76, 88, 100
3 to 5, 16, 22, 29, 35, 41, 47, 54, 60, 79, 85, 91, 97, EPAD
6
7
8
9
10
11
12
14
15
17
18
19, 44
Mnemonic
NC
VCC
VEE
PE_A0
PE_A1
PE_B0
PE_B1
PE_C0
PE_C1
REVERSE_C
ON_A3
OP_A3
ON_A2
OP_A2
VTTO
Type
N/A
Power
Power
Control
Control
Control
Control
Control
Control
Control
Output
Output
Output
Output
Power
Rev. C | Page 5 of 21
Description
No Connect
Positive Supply
Negative Supply
Pre-Emphasis Control for Port A (LSB)
Pre-Emphasis Control for Port A (MSB)
Pre-Emphasis Control for Port B (LSB)
Pre-Emphasis Control for Port B (MSB)
Pre-Emphasis Control for Port C (LSB)
Pre-Emphasis Control for Port C (MSB)
Reverse Inputs and Outputs on Port C
High Speed Output Complement
High Speed Output
High Speed Output Complement
High Speed Output
Port A and Port B Output Termination Supply
AD8159
Pin No.
20
21
23
24
27
28
30
31
32, 57
33
34
36
37
39
40
42
43
45
46
48
49
52
53
55
56
58
59
61
62
64
65
66
67
68
69
70
71
72
73
74
77
78
80
81
82
83
84
86
87
Data Sheet
Mnemonic
ON_A1
OP_A1
ON_A0
OP_A0
IN_A3
IP_A3
IN_A2
IP_A2
VTTI
IN_A1
IP_A1
IN_A0
IP_A0
ON_B3
OP_B3
ON_B2
OP_B2
ON_B1
OP_B1
ON_B0
OP_B0
IN_B3
IP_B3
IN_B2
IP_B2
IN_B1
IP_B1
IN_B0
IP_B0
BICAST
LB_A
LB_B
LB_C
SEL0
SEL1
SEL2
SEL3
EQ_C
EQ_B
EQ_A
ION_C3
IOP_C3
ION_C2
IOP_C2
VTTIO
ION_C1
IOP_C1
ION_C0
IOP_C0
Type
Output
Output
Output
Output
Input
Input
Input
Input
Power
Input
Input
Input
Input
Output
Output
Output
Output
Output
Output
Output
Output
Input
Input
Input
Input
Input
Input
Input
Input
Control
Control
Control
Control
Control
Control
Control
Control
Control
Control
Control
Input/Output
Input/Output
Input/Output
Input/Output
Power
Input/Output
Input/Output
Input/Output
Input/Output
Rev. C | Page 6 of 21
Description
High Speed Output Complement
High Speed Output
High Speed Output Complement
High Speed Output
High Speed Input Complement
High Speed Input
High Speed Input Complement
High Speed Input
Port A and Port B Input Termination Supply
High Speed Input Complement
High Speed Input
High Speed Input Complement
High Speed Input
High Speed Output Complement
High Speed Output
High Speed Output Complement
High Speed Output
High Speed Output Complement
High Speed Output
High Speed Output Complement
High Speed Output
High Speed Input Complement
High Speed Input
High Speed Input Complement
High Speed Input
High Speed Input Complement
High Speed Input
High Speed Input Complement
High Speed Input
Bicast Enable
Loopback Enable for Port A
Loopback Enable for Port B
Loopback Enable for Port C
A/B Select for Lane 0
A/B Select for Lane 1
A/B Select for Lane 2
A/B Select for Lane 3
Equalization Control for Port C
Equalization Control for Port B
Equalization Control for Port A
High Speed Input/Output Complement
High Speed Input/Output
High Speed Input/Output Complement
High Speed Input/Output
Port C Input/Output Termination Supply
High Speed Input/Output Complement
High Speed Input/Output
High Speed Input/Output Complement
High Speed Input/Output
Data Sheet
Pin No.
89
90
92
93
94
95
96
98
99
AD8159
Mnemonic
OIN_C3
OIP_C3
OIN_C2
OIP_C2
VTTOI
OIN_C1
OIP_C1
OIN_C0
OIP_C0
Type
Output/Input
Output/Input
Output/Input
Output/Input
Power
Output/Input
Output/Input
Output/Input
Output/Input
Rev. C | Page 7 of 21
Description
High Speed Output/Input Complement
High Speed Output/Input
High Speed Output/Input Complement
High Speed Output/Input
Port C Output/Input Termination Supply
High Speed Output/Input Complement
High Speed Output/Input
High Speed Output/Input Complement
High Speed Output/Input
AD8159
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
VCC = 3.3 V, VEE = 0 V, RL = 50 Ω, basic configuration, data rate = 3.2 Gbps, input common-mode voltage = 2.7 V, differential input swing =
800 mV p-p, TA = 25°C, unless otherwise noted. All graphs were generated using the setup shown in Figure 31, unless otherwise specified.
0
150mV/DIV
BIT ERROR RATE (Decades)
–2
–4
–6
–8
–10
–12
05611-006
05611-003
–14
–16
0
39.0625ps/DIV
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.9
1.0
0.9
1.0
TIME (Unit Interval)
Figure 3. Output Port A Eye Diagram, 3.2 Gbps,
Input Port A or Input Port C
Figure 6. Output Port A Bathtub Curve, 3.2 Gbps
0
150mV/DIV
BIT ERROR RATE (Decades)
–2
–4
–6
–8
–10
–12
05611-007
05611-004
–14
–16
0
39.0625ps/DIV
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
TIME (Unit Interval)
Figure 7. Output Port B Bathtub Curve, 3.2 Gbps
Figure 4. Output Port B Eye Diagram,
Input Port B or Input Port C
0
150mV/DIV
BIT ERROR RATE (Decades)
–2
–4
–6
–8
–10
–12
05611-008
05611-005
–14
–16
0
39.0625ps/DIV
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
TIME (Unit Interval)
Figure 5. Output Port C Eye Diagram, 3.2 Gbps,
Input Port A or Input Port B
Figure 8. Output Port C Bathtub Curve, 3.2 Gbps
Rev. C | Page 8 of 21
AD8159
05611-009
05611-012
150mV/DIV
150mV/DIV
Data Sheet
39.0625ps/DIV
Figure 12. Eye Diagram over Backplane
(18” FR4 + 2 GbX Connectors), PE = 1
05611-013
05611-044
150mV/DIV
150mV/DIV
39.0625ps/DIV
Figure 9. Eye Diagram over Backplane
(18” FR4 + 2 GbX Connectors), PE = 0
39.0625ps/DIV
Figure 13. Eye Diagram over Backplane
(30” FR4 + 2 GbX Connectors), PE = 2
05611-011
05611-014
150mV/DIV
150mV/DIV
39.0625ps/DIV
Figure 10. Eye Diagram over Backplane
(30” FR4 + 2 GbX Connectors), PE = 0
39.0625ps/DIV
39.0625ps/DIV
Figure 11. Eye Diagram over Backplane
(36” FR4 + 2 GbX Connectors), PE = 0
Figure 14. Eye Diagram over Backplane
(36” FR4 + 2 GbX Connectors), PE = 3
Rev. C | Page 9 of 21
Data Sheet
05611-015
05611-018
150mV/DIV
150mV/DIV
AD8159
39.0625ps/DIV
39.0625ps/DIV
Figure 15. Eye Diagram over Backplane
(42” FR4 + 2 GbX Connectors), PE = 0
05611-016
05611-005
150mV/DIV
150mV/DIV
Figure 18. Eye Diagram over Backplane
(42” FR4 + 2 GbX Connectors), PE = 3
39.0625ps/DIV
39.0625ps/DIV
Figure 16. Reference Eye Diagram for Figure 19
05611-019
05611-044
150mV/DIV
150mV/DIV
Figure 19. Eye Diagram with Equalization (10” FR4), EQ = 0,
See Figure 32 for Test Circuit Used
39.0625ps/DIV
Figure 17. Reference Eye Diagram for Figure 20
39.0625ps/DIV
Figure 20. Eye Diagram with Equalization (34” FR4 + 2 GbX Connectors),
EQ = 1, See Figure 32 for Test Circuit Used
Rev. C | Page 10 of 21
Data Sheet
AD8159
100
DETERMINISTIC JITTER (ps)
90
80
70
60
50
40
30
0
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
05611-021
10
05611-020
20
–3
–2
–1
Figure 21. Deterministic Jitter vs. Data Rate
3
DIFFERENTIAL INPUT SWING = 800mV p-p
90
80
80
DETERMINISTIC JITTER (ps)
90
70
60
INPUT C
50
40
30
0
200
60
INPUT C
50
40
30
20
INPUT A/
INPUT B
10
0
INPUT A/
INPUT B
70
400
600
800
05611-023
20
05611-024
10
0
0
1000 1200 1400 1600 1800 2000
0.5
Figure 22. Deterministic Jitter vs. Differential Input Swing
1.5
2.0
2.5
3.0
3.5
4.0
Figure 25. Deterministic Jitter vs. Input Common-Mode Voltage
100
90
90
80
80
DETERMINISTIC JITTER (ps)
100
70
60
50
INPUT C
INPUT A/
INPUT B
30
1.0
INPUT COMMON-MODE VOLTAGE (V)
DIFFERENTIAL INPUT SWING (mV p-p)
20
OUTPUT C
70
60
50
40
30
05611-025
20
10
0
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
OUTPUT A/
OUTPUT B
10
0
2.0
4.0
VCC (V)
2.2
2.4
2.6
05611-026
DETERMINISTIC JITTER (ps)
2
100
VICM = 2.7V
DETERMINISTIC JITTER (ps)
1
Figure 24. Random Jitter Histogram, See Figure 33 for Test Circuit Used
100
40
0
RANDOM JITTER (ps)
DATA RATE (Gbps)
2.8
3.0
3.2
3.4
3.6
3.8
4.0
OUTPUT TERMINATION VOLTAGE (V)
Figure 26. Deterministic Jitter vs. Output Termination Voltage
Figure 23. Deterministic Jitter vs. Core Supply Voltage
Rev. C | Page 11 of 21
AD8159
Data Sheet
100
120
100
TRANSITION TIME (ps)
80
70
60
50
40
30
20
60
40
–40
–20
0
20
40
60
80
0
–60
100
05611-027
10
0
–60
80
20
05611-022
DETERMINISTIC JITTER (ps)
90
–40
–20
0
20
40
60
TEMPERATURE (°C)
TEMPERATURE (°C)
Figure 27. Deterministic Jitter vs. Temperature
Figure 28. Transition Time vs. Temperature,
Rev. C | Page 12 of 21
80
100
Data Sheet
AD8159
EVALUATION BOARD SIMPLIFIED BLOCK DIAGRAM
AD8159-EVAL-AC
3.3V
AC-COUPLED
EVALUATION BOARD
VTTI/
VTTIO
100Ω DIFF.
TRACE
A
C
C
AD8159
VTTO/
VTTOI
AD8159
INPUT A
OUTPUT C
100Ω DIFF.
TRACE
0.1µF
INPUT B
0.1µF
AC-COUPLED
A
EVALUATION BOARD
B
100Ω DIFF.
TRACE
OUTPUT A
INPUT C
0.1µF
OUTPUT B
100Ω DIFF.
TRACE
0.1µF
100Ω DIFF.
TRACE
0.1µF
VEE
5"
Figure 29. AC-Coupled Evaluation Board Simplified Block Diagram
Rev. C | Page 13 of 21
5"
05611-028
B
0.1µF
100Ω DIFF.
TRACE
VCC
AD8159
Data Sheet
TEST CIRCUITS
All graphs were generated using the setup shown in Figure 31, unless otherwise specified.
TERADYNE FR4 TEST BACKPLANE
GBX4 TO SMA DAUGHTER CARDS
05611-030
0.25"
DIFFERENTIAL STRIPLINE TRACES
8mm WIDE, 8mm SPACE, 8mm HEIGHT
TRACE LENGTHS = 6", 18", 24", 30" + 3" × 2 DAUGHTER CARDS
Figure 30. Test Backplane
50Ω CABLE
50Ω CABLE
A
DATA OUT
50Ω CABLE
TEST BACKPLANE
C
PATTERN
GENERATOR
B
C
HIGH SPEED
REAL-TIME
OSCILLOSCOPE
50Ω
AD8159
AC-COUPLED
A
EVALUATION BOARD
50Ω
05611-031
B
50Ω
NOTES
1. SINGLE-ENDED REPRESENTATION
Figure 31. AC-Coupled Test Circuit
DEVICE UNDER TEST
A
C
50Ω CABLE
DATA OUT
B
50Ω CABLE
A
50Ω CABLE
TEST BACKPLANE
C
PATTERN
GENERATOR
B
C
C
50Ω
AD8159
AC-COUPLED
A
EVALUATION BOARD
50Ω CABLE
HIGH SPEED
REAL-TIME
OSCILLOSCOPE
50Ω
B
AD8159
50Ω
AC-COUPLED
A
EVALUATION BOARD
50Ω
05611-033
B
50Ω
NOTES
1. SINGLE-ENDED REPRESENTATION
Figure 32. Equalization Test Circuit, Test Circuit Used for Figure 19 and Figure 20
50Ω CABLE
DATA OUT
50Ω CABLE
A
HIGH SPEED
SAMPLING
OSCILLOSCOPE
C
PATTERN
GENERATOR
B
C
50Ω
AD8159
AC-COUPLED
A
EVALUATION BOARD
50Ω
50Ω
NOTES
1. SINGLE-ENDED REPRESENTATION
Figure 33. Random Jitter Test Circuit, Test Circuit Used for Figure 24
Rev. C | Page 14 of 21
05611-034
B
Data Sheet
AD8159
THEORY OF OPERATION
The AD8159 relays received data on the demultiplexer Input Port
C to Output Port A and/or Output Port B, depending on the mode
selected by the BICAST control pin. On the multiplexer side,
the AD8159 relays received data on either Input Port A or Input
Port B to the Output Port C, based on the SEL[3:0] pin states.
The AD8159 is configured by toggling control pins. On the
demultiplexer side, when the device is configured in unicast
mode, it sends the received data on Input Port C to Output Port A
or Output Port B. When the device is configured in bicast mode,
received data on Input Port C is sent to both Output Port A and
Output Port B.
On the multiplexer side, only received data on Input Port A or
Input Port B is sent to Output Port C, depending on the state of the
SEL[3:0] pins. Table 4 summarizes port selection and configuration
when loopback is disabled (LB_A = LB_B = LB_C = 0).
When the device is in unicast mode, the output lanes on either
Port A or Port B are in an idle state. In the idle state, the output
tail current is set to 0 mA, and the P and N sides of the lane are
pulled up to the output termination voltage through the on-chip
termination resistors.
Table 4. Port Selection and Configuration Table
SELx
0
0
1
1
BICAST
0
1
0
1
OUT_A
IN_C
IN_C
Idle
IN_C
OUT_B
Idle
IN_C
IN_C
IN_C
OUT_C
IN_A
IN_A
IN_B
IN_B
INPUT EQUALIZATION (EQ) AND OUTPUT PREEMPHASIS (PE)
In backplane applications, the AD8159 needs to compensate for
signal degradation over potentially long traces. The device supports
two levels of input equalization, configured on a per-port basis.
Table 5 summarizes the high frequency gain (EQ) for each control
setting, as well as the typical length of backplane trace that can
be compensated for each setting.
Table 5. Input Equalization Settings
EQ_x
0
1
EQ (dB)
6
12
Typical Backplane Length (Inches)
0 to 20
20 to 40+
The AD8159 also has four levels of output pre-emphasis,
configured for each port. The pre-emphasis circuitry adds a
controlled amount of overshoot to the output waveform to
compensate for the loss in a backplane trace.
Table 6 summarizes the high frequency gain, amount of overshoot, and the typical backplane channel length (including two
connectors) that can be compensated for using each setting.
A typical backplane is made of FR4 material with 8 mil wide
traces and 8 mil spacing, loosely coupled differential traces.
Each backplane channel consists of two connectors. The total
length of the channel includes 3 inches of traces on each card.
Table 6. Output Pre-Emphasis Settings
PE_x[1]
0
0
1
1
Rev. C | Page 15 of 21
PE_x[0]
0
1
0
1
PE (dB)
0
1.9
3.5
4.9
Overshoot
0%
15%
35%
60%
Typical
Backplane
Length (Inches)
0 to 10
10 to 20
20 to 30
30 to 40+
AD8159
Data Sheet
LOOPBACK
The AD8159 also supports port level loopback, as is shown in
Figure 34. The loopback control pins override the lane select
(SEL[3:0]) and bicast control (BICAST) pins. Table 7 summarizes
the different loopback configurations.
X4
X4
IOx_C[3:0]
Ox_A[3:0]
1:2 DEMUX
X4
Ox_B[3:0]
PORT A LOOPBACK
PORT C LOOPBACK
PORT B LOOPBACK
X4
X4
OIx_C[3.0]
Ix_A[3:0]
2:1 MUX
Ix_B[3:0]
05611-035
X4
Figure 34. Port-Based Loopback Capability
Table 7. Loopback, Bicast, and Port Select Settings 1
LB_A
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
LB_B
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
LB_C
0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
1
SELx
0
0
1
1
0
X2
1
0
1
1
0
1
X2
0
0
1
0
X2
1
0
1
X2
BICAST
0
1
0
1
0
1
0
X2
0
1
X2
0
1
0
1
X2
0
1
X2
X2
X2
X2
OUT_A
IN_C
IN_C
Idle
IN_C
IN_C
IN_C
Idle
IN_C
Idle
IN_C
IN_C
Idle
IN_C
IN_A
IN_A
IN_A
IN_A
IN_A
IN_A
IN_A
IN_A
IN_A
OUT_B
Idle
IN_C
IN_C
IN_C
Idle
IN_C
IN_C
IN_B
IN_B
IN_B
IN_B
IN_B
IN_B
Idle
IN_C
IN_C
Idle
IN_C
IN_C
IN_B
IN_B
IN_B
Switching is done on a lane-by-lane basis, but input equalization, output pre-emphasis, and loopback are set for each port.
Don’t care.
Rev. C | Page 16 of 21
OUT_C
IN_A
IN_A
IN_B
IN_B
IN_C
IN_C
IN_C
IN_A
IN_B
IN_B
IN_C
IN_C
IN_C
IN_A
IN_A
IN_B
IN_C
IN_C
IN_C
IN_A
IN_B
IN_C
Data Sheet
AD8159
PORT C REVERSE (CROSSOVER) CAPABILITY
Port C has a reversible I/O capability. The sense (input vs.
output) of the Port C pins can be swapped by toggling the
REVERSE_C control pin. This feature was added to facilitate
the connection to different ASICs that may have the opposite
pinouts.
Figure 35 illustrates the reversible I/O function of Port C, and
Table 8 describes this function in a selection table that corresponds
to a TQFP-100 package. Note that the reverse capability is
supported only on Port C.
X4
I/O
SWITCH
IOx_C[3:0]/OIx_C[3:0]
X4
1:2 DEMUX
X4
REVERSE_C
X4
Ox_B[3:0]
X4
X4
OIx_C[3:0]/IOx_C[3:0]
Ox_A[3:0]
X4
I/O
SWITCH
Ix_A[3:0]
2:1 MUX
Ix_B[3:0]
05611-036
X4
Figure 35. Port C Reverse I/O Capability
Table 8. Port C I/O Selection
Port C Pin List on 100-Lead TQFP
77
78
80
81
83
84
86
87
89
90
92
93
95
96
98
99
Port C When REVERSE_C = 0
Pin Name
Input/Output Pin
ION_C3 = INN_C3
Input
IOP_C3 = INP_C3
Input
ION_C2 = INN_C2
Input
IOP_C2 = INP_C2
Input
ION_C1 = INN_C1
Input
IOP_C1 = INP_C1
Input
ION_C0 = INN_C0
Input
IOP_C0 = INP_C0
Input
OIN_C3 = OUTN_C3
Output
OIP_C3 = OUTP_C3
Output
OIN_C2 = OUTN_C2
Output
OIP_C2 = OUTP_C2
Output
OIN_C1 = OUTN_C1
Output
OIP_C1 = OUTP_C1
Output
OIN_C0 = OUTN_C0
Output
OIP_C0 = OUTP_C0
Output
Rev. C | Page 17 of 21
Port C When REVERSE_C = 1
Pin Name
Input/Output Pin
ION_C3 = OUTN_C3
Output
IOP_C3 = OUTP_C3
Output
ION_C2 = OUTN_C2
Output
IOP_C2 = OUTP_C2
Output
ION_C1 = OUTN_C1
Output
IOP_C1 = OUTP_C1
Output
ION_C0 = OUTN_C0
Output
IOP_C0 = OUTP_C0
Output
OIN_C3 = INN_C3
Input
OIP_C3 = INP_C3
Input
OIN_C2 = INN_C2
Input
OIP_C2 = INP_C2
Input
OIN_C1 = INN_C1
Input
OIP_C1 = INP_C1
Input
OIN_C0 = INN_C0
Input
OIP_C0 = INP_C0
Input
AD8159
Data Sheet
APPLICATIONS INFORMATION
Another application for the AD8159 is test equipment for
evaluating high speed serial I/Os running at data rates at or
lower than 3.2 Gbps. Figure 37 illustrates the module redundancy
of a line card application. Figure 38 illustrates a possible application
of the AD8159 in a simple XAUI link tester.
The main application of the AD8159 is to support redundancy
on both the backplane side and the line interface side of a serial
link. Each port consists of four lanes to support standards such
as XAUI. Figure 36 illustrates redundancy in an XAUI backplane
system. Each line card is connected to two switch fabrics (primary
and redundant). The device can be configured to support either
1 + 1 or 1:1 redundancy.
PHYSICAL
INTERFACE
FABRIC INTERFACE
TRAFFIC MANAGERS
NETWORK PROCESSOR
MACs
FRAMERS
PRIMARY
SWITCH
FABRIC
AD8159
LINE CARDS
REDUNDANT
SWITCH
FABRIC
AD8159
05611-037
FABRIC INTERFACE
TRAFFIC MANAGERS
NETWORK PROCESSOR
MACs
FRAMERS
BACKPLANE
FABRIC CARDS
Figure 36. Using the AD8159 for Switch Redundancy
PRIMARY
MODULE
MACs
FRAMERS
FABRIC INTERFACE
TRAFFIC MANAGERS
NETWORK PROCESSOR
LINE CARD
Figure 37. Using the AD8159 for Line Interface Redundancy
CONNECT TO DEVICE UNDER TEST
CONNECTOR
PORT B
CONNECT TO PROTOCOL
ANALYZER
PORT A
FPGA
GENERATES SIMPLE
PATTERNS
TEST CARD
Figure 38. Using the AD8159 in Test Equipment
Rev. C | Page 18 of 21
05611-039
PORT C
05611-038
REDUNDANT
MODULE
CONNECTOR
PHYSICAL
INTERFACE
Data Sheet
AD8159
INTERFACING TO THE AD8159
TERMINATION STRUCTURES
INPUT COMPLIANCE
To determine the best strategy for connecting to the high speed
pins of the AD8159, the user must first be familiar with the on-chip
termination structures. The AD8159 contains multiple types of
these structures (see Figure 39, Figure 40, and Figure 41). Note
that Port C has a slightly modified termination structure to support
the bidirectional feature.
The range of allowable input voltages is determined by the
fundamental limitations of the active input circuitry. This range
of signals is normally a function of the common-mode level of
the input signal, the signal swing, and the supply voltage. For a
given input signal swing, there is a range of common-mode
voltages that keeps the high and low voltage excursions within
acceptable limits. Similarly, for a given common-mode input
voltage, there is a maximum acceptable input signal swing.
There is also a minimum signal swing that the active input
circuitry can resolve reliably.
VCC
VTTI
55Ω
55Ω
Figure 22 and Figure 25 summarize the input voltage ranges for
all ports. Note that the input range is different when comparing
bidirectional ports to strictly input ports. This is a consequence
of the additional circuitry required to support the bidirectional
feature on Port C.
IP_xx
1173Ω
05611-045
IN_xx
VEE
AC Coupling
Figure 39. Simplified Input Circuit
One way to simplify the input circuit and make it compatible
with a wide variety of driving devices is to use ac coupling. This
has the effect of isolating the dc common-mode levels of the driver
and the AD8159 input circuitry. AC coupling requires a capacitor
in series with each single-ended input signal, as shown in Figure 42.
This should be done in a manner that does not interfere with
the high speed signal integrity of the PCB.
VCC
VTTO
50Ω
50Ω
OP_xx
VIP
ON_xx
VIN
IT
VEE
05611-046
VTTOD
50Ω
Figure 40. Simplified Output Circuit (Port A or Port B)
VCC
VTTI/VTTIO
50Ω
CP
CN
VCC
IP_xx
IN_xx
55Ω
55Ω
1173Ω
VTTOI
AD8159
55Ω
VEE
OP_xx
VIP
1173Ω
DRIVER
ON_xx
05611-042
55Ω
Figure 42. AC Coupling Input Signal of the AD8159
IT
VEE
05611-047
VIN
Figure 41. Simplified Output Circuit (Port C)
For input and bidirectional ports, the termination structure
consists of two 55 Ω resistors connected to a termination supply
and an 1173 Ω resistor connected across the differential inputs,
the latter being a result of the finite differential input impedance
of the equalizer.
For output ports, there are two 50 Ω resistors connected to the
termination supply. Note that the differential input resistance
for both structures is the same, 100 Ω.
When ac coupling is used, the common-mode level at the input
of the device is equal to VTTI. The single-ended input signal
swings above and below VTTI equally. The user can then use
Figure 22 and Figure 25 to determine the acceptable range of
common-mode levels and signal swing levels that satisfy the
input range of the AD8159.
If dc coupling is required, determining the input common-mode
level is less straightforward because the configuration of the
driver must also be considered. In most cases, the user sets VTTI
on the AD8159 to the same level as the driver output termination
voltage, VTTOD. This prevents a continuous dc current from
flowing between the two supplies. As a practical matter, both
devices can be terminated to the same physical supply.
Rev. C | Page 19 of 21
AD8159
Data Sheet
VTTI − 8 mA × (50 Ω || 55 Ω) = VTTI − 210 mV
The user can then use Figure 25 to determine the allowable
range of values for VTTI that meets the input compliance range
based on an 800 mV p-p differential swing.
OUTPUT COMPLIANCE
Figure 43 is depicts the single-ended waveform at the output of
the AD8159. The common-mode level (VOCM) and the amplitude
(VOSE-BOOST) of this waveform are a function of the output tail
current (IT), the output termination supply voltage (VTTO), the
topology of the far-end receiver, and whether ac coupling or dc
coupling is used. Keep in mind that the output tail current varies
with the pre-emphasis level. The user must ensure that the high
(VH) and low (VL) voltage excursions at the output are within the
single-ended absolute voltage range limits as specified in Table 1.
Failure to understand the implications of output signal levels
and the choice of ac coupling or dc coupling may lead to transistor
saturation and poor transmitter performance.
Table 9 and Table 10 show the typical output levels for Port A/
Port B and Port C, respectively, where VCC = VTTO = 3.3 V, with
50 Ω far-end terminations to a 3.3 V supply.
VTTO
VH
VOCM
VOSE-DC
VOSE-BOOST
VL
~320ps
05611-048
Consider the following example: a driver dc-coupled to the
input of the AD8159. The AD8159 input termination voltage
(VTTI) and the driver output termination voltage (VTTOD) are both
set to the same level; that is, VTTI = VTTOD = 3.3 V. If an 800 mV p-p
differential swing is desired, the total output current of the driver
is 16 mA. At balance, the output current is divided evenly between
the two sides of the differential signal path, 8 mA to each side.
This 8 mA of current flows through the parallel combination of the
55 Ω input termination resistor on the AD8159 and the 50 Ω
output termination resistor on the driver, resulting in a commonmode level of
Figure 43. Single-Ended Output Waveform
Table 9. Output Voltage Levels for Port A and Port B
PE Setting
0
1
2
3
IT (mA)
16
20
24
28
VOSE-DC (mV p-p)
400
400
400
400
VOSE-BOOST (mV p-p)
400
500
600
700
VOCM (V)
3.1
3.05
3
2.95
DC-Coupled
VH (V)
3.3
3.3
3.3
3.3
VL (V)
2.9
2.8
2.7
2.6
VOCM (V)
2.9
2.8
2.7
2.6
AC-Coupled
VH (V)
3.1
3.05
3
2.95
VL (V)
2.7
2.55
2.4
2.25
VOSE-BOOST (mV p-p)
400
500
600
700
VOCM (V)
3.05
3
2.95
2.9
DC-Coupled
VH (V)
3.25
3.25
3.25
3.25
VL (V)
2.85
2.75
2.65
2.55
VOCM (V)
2.8
2.7
2.6
2.5
AC-Coupled
VH (V)
3
2.95
2.9
2.85
VL (V)
2.6
2.45
2.3
2.15
Table 10. Output Voltage Levels for Port C
PE Setting
0
1
2
3
IT (mA)
20
24
28
32
VOSE-DC (mV p-p)
400
400
400
400
Table 11. Symbol Definitions
Symbol
VOSE-DC
Formula
× 25 Ω
IT
Definition
Single-ended output voltage swing after settling
VOSE-BOOST
VOCM (dc-coupled)
VOCM (ac-coupled)
VH
VL
IT × 25 Ω
VTTO – IT/2 × 25 Ω
VTTO – IT/2 × 50 Ω
VOCM + VOSE-BOOST/2
VOCM − VOSE-BOOST/2
Boosted single-ended output voltage swing
Common-mode voltage when the output is dc-coupled
Common-mode voltage when the output is ac-coupled
High single-ended output voltage excursion
Low single-ended output voltage excursion
PE = 0
Rev. C | Page 20 of 21
Data Sheet
AD8159
OUTLINE DIMENSIONS
0.75
0.60
0.45
16.00 BSC SQ
1.20
MAX
14.00 BSC SQ
76
100
1
76
75
75
100
1
PIN 1
EXPOSED
PAD
TOP VIEW
(PINS DOWN)
5.00 SQ
0° MIN
0.15
0.05
SEATING
PLANE
0.20
0.09
7°
3.5°
0°
0.08 MAX
COPLANARITY
51
25
26
BOTTOM VIEW
(PINS UP)
51
50
26
0.50 BSC
LEAD PITCH
VIEW A
25
50
0.27
0.22
0.17
VIEW A
ROTATED 90° CCW
COMPLIANT TO JEDEC STANDARDS MS-026-AED-HD
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
Figure 44. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]
(SV-100-4)
Dimensions shown in millimeters
ORDERING GUIDE
Model
AD8159ASVZ 1
AD8159-EVAL-AC
1
Temperature Range
−40°C to +85°C
Package Description
100-Lead TQFP_EP
AC-Coupled Evaluation Board
Z = RoHS Compliant Part.
©2005–2018 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D05611-0-10/18(C)
Rev. C | Page 21 of 21
Package Option
SV-100-4
042209-A
1.05
1.00
0.95