0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD8159ASVZ

AD8159ASVZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    TQFP100

  • 描述:

    IC MUX/DEMUX 4 X 2:1 100TQFP

  • 数据手册
  • 价格&库存
AD8159ASVZ 数据手册
Data Sheet 3.2 Gbps Quad Buffer Mux/Demux AD8159 FEATURES FUNCTIONAL BLOCK DIAGRAM RECEIVE EQUALIZATION Ix_A[3:0] TRANSMIT PREEMPHASIS EQ I/O CROSSOVER SWITCH Ox_C[3:0]/ Ix_C[3:0] 2:1 Ix_B[3:0] EQ Ox_A[3:0] 1:2 Ix_C[3:0]/ Ox_C[3:0] EQ Ox_B[3:0] TRANSMIT PREEMPHASIS QUAD 2:1 MULTIPLEXER/ 1:2 DEMULTIPLEXER RECEIVE EQUALIZATION CONTROL LOGIC AD8159 LB_A LB_B LB_C PE_A[1:0] PE_B[1:0] PE_C[1:0] EQ_A EQ_B EQ_C SEL[3:0] BICAST REVERSE_C 05611-001 Port level 2:1 mux/1:2 demux Each port consists of 4 lanes Each lane runs from dc to 3.2 Gbps, independent of the other lanes Compensates over 40 inches of FR4 at 3.2 Gbps through 2 levels of input equalization or 4 levels of output pre-emphasis Accepts ac- or dc-coupled differential CML inputs Low deterministic jitter, typically 20 ps p-p Low random jitter, typically 1 ps rms BER < 10−16 On-chip termination Reversible inputs and outputs on one port Unicast or bicast on 1:2 demux function Port level loopback capability Single lane switching capability 3.3 V core supply Flexible I/O supply down to 2.5 V Low power, typically 1 W in basic configuration 100-lead TQFP_EP −40°C to +85°C operating temperature range Figure 1. APPLICATIONS Low cost redundancy switch SONET OC-48/SDH-16 and lower data rates XAUI (10 gigabit Ethernet) over backplane Gigabit Ethernet over backplane Fibre Channel 1.06 Gbps and 2.125 Gbps over backplane InfiniBand® over backplane PCI Express (PCIe) over backplane GENERAL DESCRIPTION The AD81591 is an asynchronous, protocol agnostic, quad-lane 2:1 switch with 12 differential PECL-/CML-compatible inputs and 12 differential CML outputs. The operation of this product is optimized for NRZ signaling with data rates of up to 3.2 Gbps per lane. Each lane offers two levels of input equalization and four levels of output pre-emphasis. The AD8159 consists of four multiplexers and four demultiplexers, one per lane. Each port is a four-lane link, and each lane runs up to a 3.2 Gbps data rate, independent of the other lanes. The lanes are switched independently using the four select pins, SEL[3:0]; each select pin controls one lane of the port. The AD8159 has low latency and very low lane-to-lane skew. 1 The main application of the AD8159 is to support redundancy on both the backplane side and the line interface side of a serial link. The device has unicast and bicast capability; therefore, it can be configured to support either 1 + 1 or 1:1 redundancy. The AD8159 supports reversing of the output and input pins on one of its ports, which helps to connect two ASICs with opposite pinouts. The AD8159 is also used for testing high speed serial links by duplicating incoming data and sending it to the destination port and to the test equipment simultaneously. Product covered by one or more patents: U.S. Patent No. 7,813,706. Rev. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2005–2018 Analog Devices, Inc. All rights reserved. AD8159 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Theory of Operation ...................................................................... 15 Applications ....................................................................................... 1 Input Equalization (EQ) and Output Pre-Emphasis (PE) .... 15 General Description ......................................................................... 1 Loopback ..................................................................................... 16 Functional Block Diagram .............................................................. 1 Port C Reverse (Crossover) Capability .................................... 17 Revision History ............................................................................... 2 Applications Information .............................................................. 18 Specifications..................................................................................... 3 Interfacing to the AD8159............................................................. 19 Absolute Maximum Ratings............................................................ 4 Termination Structures.............................................................. 19 ESD Caution .................................................................................. 4 Input Compliance....................................................................... 19 Pin Configuration and Function Descriptions ............................. 5 Output Compliance ................................................................... 20 Typical Performance Characteristics ............................................. 8 Outline Dimensions ....................................................................... 21 Evaluation Board Simplified Block Diagrams ............................ 13 Ordering Guide .......................................................................... 21 Test Circuits ..................................................................................... 14 REVISION HISTORY 10/2018—Rev. B to Rev. C Added Patent Information .............................................................. 1 5/2009—Rev. A to Rev. B Changes to Input Voltage Swing Parameter, Table 1.................... 3 Added VTTI, VTTO, VTTIO, VTTOI Parameter, Table 1 ....................... 3 Changes to Table 3 ............................................................................ 5 Changes to Figure 24 ...................................................................... 11 Deleted Figure 30; Renumbered Sequentially ............................ 12 Deleted Figure 33 ............................................................................ 13 Changes to Figure 32 ...................................................................... 14 Changes to Table 5 and Table 6 ..................................................... 15 Deleted Table 7, Table 8, Table 10, and Table 11 ........................ 16 Changes to Applications Information Section............................ 18 Changes to Termination Structures Section, Figure 39, Figure 40, and Figure 42 ................................................................ 19 Added Figure 41; Renumbered Sequentially .............................. 19 Deleted DC Coupling Section and Figure 44 ............................. 20 Changes to Output Compliance Section ..................................... 20 Added Figure 43, Table 9, Table 10, and Table 11 ...................... 20 Deleted AC Coupling Section, Output Compliance Table Section, and Table 13...................................................................... 21 Added Exposed Pad Notation to Outline Dimensions ............. 21 Changes to Ordering Guide .......................................................... 21 4/2006—Rev. 0 to Rev. A Changes to Applications Section .....................................................1 Changes to Table 5.......................................................................... 15 Updates to Outline Dimensions ................................................... 22 Changes to Ordering Guide .......................................................... 22 9/2005—Revision 0: Initial Version Rev. C | Page 2 of 21 Data Sheet AD8159 SPECIFICATIONS VCC = 3.3 V, VEE = 0 V, RL = 50 Ω, basic configuration, 1 data rate = 3.2 Gbps, input common-mode voltage = 2.7 V, differential input swing = 800 mV p-p, TA = 25°C, unless otherwise noted. Table 1. Parameter DYNAMIC PERFORMANCE Data Rate/Channel (NRZ) Deterministic Jitter Random Jitter Propagation Delay Lane-to-Lane Skew Switching Time Output Rise/Fall Time INPUT CHARACTERISTICS Input Voltage Swing Input Voltage Range Input Bias Current Input Capacitance OUTPUT CHARACTERISTICS Output Voltage Swing Output Voltage Range Output Current Output Capacitance TERMINATION CHARACTERISTICS Resistance Temperature Coefficient POWER SUPPLY Operating Range VCC VTTI, VTTO, VTTIO, VTTOI Supply Current ICC II/O = ITTO + ITTOI + ITTI + ITTIO Supply Current ICC II/O = ITTO + ITTOI + ITTI + ITTIO THERMAL CHARACTERISTICS Operating Temperature Range θJA θJB θJC LOGIC INPUT CHARACTERISTICS Input Voltage High, VIH Input Voltage Low, VIL Conditions Min Typ DC Data rate = 3.2 Gbps; see Figure 21 RMS; see Figure 24 Input to output Unit 3.2 Gbps ps p-p ps ps ps ns ps 2000 2000 VCC + 0.3 mV p-p mV p-p V µA pF 20 1 600 100 5 100 20% to 80% Port C, differential, VICM 2 = VCC − 0.6 V; see Figure 22 Port A/Port B, differential, VICM2 = VCC − 0.6 V; see Figure 22 Common mode, VID 3 = 800 mV p-p; see Figure 25 Max 200 100 VEE + 1.8 4 2 Differential, PE = 0 Single-ended absolute voltage level; see Figure 26 Port A/Port B, PE_A/PE_B = 0 Port C, PE_C = 0 Port A/Port B, PE_A/PE_B = 3 Port C, PE_C = 3 800 VCC − 1.6 VCC + 0.6 16 20 28 32 2 mV p-p V mA mA mA mA pF Differential 90 100 0.15 110 Ω Ω/°C VEE = 0 V 3.0 2.4 3.3 3.3 3.6 3.6 V V Basic configuration,1 dc-coupled inputs/outputs, 400 mV I/O swings (800 mV p-p differential), 50 Ω far-end terminations 175 144 mA mA 255 352 mA mA BICAST = 1, PE = 3 on all ports, dc-coupled inputs/outputs, 400 mV I/O swings (800 mV p-p differential), 50 Ω far-end terminations −40 Still air Still air Still air +85 °C °C/W °C/W °C/W VCC 0.8 V V 29 16 13 2.4 VEE BICAST off, loopback off on all ports, pre-emphasis off on all ports, equalization set to minimum on all ports. VICM is the input common-mode voltage. 3 VID is the input differential peak-to-peak voltage swing. 1 2 Rev. C | Page 3 of 21 AD8159 Data Sheet ABSOLUTE MAXIMUM RATINGS Table 2. Parameter VCC to VEE VTTI VTTIO VTTO VTTOI Internal Power Dissipation Differential Input Voltage Logic Input Voltage Storage Temperature Range Lead Temperature Rating 3.7 V VCC + 0.6 V VCC + 0.6 V VCC + 0.6 V VCC + 0.6 V 4.26 W 2.0 V VEE − 0.3 V < VIN < VCC + 0.6 V −65°C to +125°C 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION Rev. C | Page 4 of 21 Data Sheet AD8159 VCC ION_C3 IOP_C3 VEE ION_C2 IOP_C2 VTTIO ION_C1 IOP_C1 VEE ION_C0 IOP_C0 VCC OIN_C3 OIP_C3 VEE OIN_C2 OIP_C2 VTTOI OIN_C1 OIP_C1 VEE OIN_C0 OIP_C0 VCC PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 NC 1 VCC 2 VEE 3 75 PIN 1 VCC 74 EQ_A 73 EQ_B VEE 4 72 EQ_C VEE 5 71 SEL3 PE_A0 6 70 SEL2 PE_A1 7 69 SEL1 PE_B0 8 68 SEL0 PE_B1 9 67 LB_C PE_C0 10 66 LB_B 65 LB_A 64 BICAST 63 VCC AD8159 PE_C1 11 REVERSE_C 12 TOP VIEW (Not to Scale) VCC 13 ON_A3 14 62 IP_B0 OP_A3 15 61 IN_B0 VEE 16 60 VEE ON_A2 17 59 IP_B1 OP_A2 18 58 IN_B1 19 57 VTTI ON_A1 20 56 IP_B2 OP_A1 21 55 IN_B2 VEE 22 54 VEE ON_A0 23 53 IP_B3 OP_A0 24 52 IN_B3 VCC 25 51 VCC VTTO NOTES 1. THE AD8159 TQFP HAS AN EXPOSED PADDLE (ePAD) ON THE UNDERSIDE OF THE PACKAGE WHICH AIDS IN HEAT DISSIPATION. THE ePAD MUST BE ELECTRICALLY CONNECTED TO THE VEE SUPPLY PLANE IN ORDER TO MEET THERMAL SPECIFICATIONS. 05611-002 VCC OP_B0 ON_B0 VEE OP_B1 ON_B1 VTTO OP_B2 ON_B2 VEE OP_B3 ON_B3 VCC IP_A0 IN_A0 VEE IP_A1 IN_A1 VTTI IP_A2 IN_A2 VEE IP_A3 VCC IN_A3 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 NC = NO CONNECT Figure 2. Pin Configuration Table 3. Pin Function Descriptions Pin No. 1 2, 13, 25, 26, 38, 50, 51, 63, 75, 76, 88, 100 3 to 5, 16, 22, 29, 35, 41, 47, 54, 60, 79, 85, 91, 97, EPAD 6 7 8 9 10 11 12 14 15 17 18 19, 44 Mnemonic NC VCC VEE PE_A0 PE_A1 PE_B0 PE_B1 PE_C0 PE_C1 REVERSE_C ON_A3 OP_A3 ON_A2 OP_A2 VTTO Type N/A Power Power Control Control Control Control Control Control Control Output Output Output Output Power Rev. C | Page 5 of 21 Description No Connect Positive Supply Negative Supply Pre-Emphasis Control for Port A (LSB) Pre-Emphasis Control for Port A (MSB) Pre-Emphasis Control for Port B (LSB) Pre-Emphasis Control for Port B (MSB) Pre-Emphasis Control for Port C (LSB) Pre-Emphasis Control for Port C (MSB) Reverse Inputs and Outputs on Port C High Speed Output Complement High Speed Output High Speed Output Complement High Speed Output Port A and Port B Output Termination Supply AD8159 Pin No. 20 21 23 24 27 28 30 31 32, 57 33 34 36 37 39 40 42 43 45 46 48 49 52 53 55 56 58 59 61 62 64 65 66 67 68 69 70 71 72 73 74 77 78 80 81 82 83 84 86 87 Data Sheet Mnemonic ON_A1 OP_A1 ON_A0 OP_A0 IN_A3 IP_A3 IN_A2 IP_A2 VTTI IN_A1 IP_A1 IN_A0 IP_A0 ON_B3 OP_B3 ON_B2 OP_B2 ON_B1 OP_B1 ON_B0 OP_B0 IN_B3 IP_B3 IN_B2 IP_B2 IN_B1 IP_B1 IN_B0 IP_B0 BICAST LB_A LB_B LB_C SEL0 SEL1 SEL2 SEL3 EQ_C EQ_B EQ_A ION_C3 IOP_C3 ION_C2 IOP_C2 VTTIO ION_C1 IOP_C1 ION_C0 IOP_C0 Type Output Output Output Output Input Input Input Input Power Input Input Input Input Output Output Output Output Output Output Output Output Input Input Input Input Input Input Input Input Control Control Control Control Control Control Control Control Control Control Control Input/Output Input/Output Input/Output Input/Output Power Input/Output Input/Output Input/Output Input/Output Rev. C | Page 6 of 21 Description High Speed Output Complement High Speed Output High Speed Output Complement High Speed Output High Speed Input Complement High Speed Input High Speed Input Complement High Speed Input Port A and Port B Input Termination Supply High Speed Input Complement High Speed Input High Speed Input Complement High Speed Input High Speed Output Complement High Speed Output High Speed Output Complement High Speed Output High Speed Output Complement High Speed Output High Speed Output Complement High Speed Output High Speed Input Complement High Speed Input High Speed Input Complement High Speed Input High Speed Input Complement High Speed Input High Speed Input Complement High Speed Input Bicast Enable Loopback Enable for Port A Loopback Enable for Port B Loopback Enable for Port C A/B Select for Lane 0 A/B Select for Lane 1 A/B Select for Lane 2 A/B Select for Lane 3 Equalization Control for Port C Equalization Control for Port B Equalization Control for Port A High Speed Input/Output Complement High Speed Input/Output High Speed Input/Output Complement High Speed Input/Output Port C Input/Output Termination Supply High Speed Input/Output Complement High Speed Input/Output High Speed Input/Output Complement High Speed Input/Output Data Sheet Pin No. 89 90 92 93 94 95 96 98 99 AD8159 Mnemonic OIN_C3 OIP_C3 OIN_C2 OIP_C2 VTTOI OIN_C1 OIP_C1 OIN_C0 OIP_C0 Type Output/Input Output/Input Output/Input Output/Input Power Output/Input Output/Input Output/Input Output/Input Rev. C | Page 7 of 21 Description High Speed Output/Input Complement High Speed Output/Input High Speed Output/Input Complement High Speed Output/Input Port C Output/Input Termination Supply High Speed Output/Input Complement High Speed Output/Input High Speed Output/Input Complement High Speed Output/Input AD8159 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS VCC = 3.3 V, VEE = 0 V, RL = 50 Ω, basic configuration, data rate = 3.2 Gbps, input common-mode voltage = 2.7 V, differential input swing = 800 mV p-p, TA = 25°C, unless otherwise noted. All graphs were generated using the setup shown in Figure 31, unless otherwise specified. 0 150mV/DIV BIT ERROR RATE (Decades) –2 –4 –6 –8 –10 –12 05611-006 05611-003 –14 –16 0 39.0625ps/DIV 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 1.0 0.9 1.0 TIME (Unit Interval) Figure 3. Output Port A Eye Diagram, 3.2 Gbps, Input Port A or Input Port C Figure 6. Output Port A Bathtub Curve, 3.2 Gbps 0 150mV/DIV BIT ERROR RATE (Decades) –2 –4 –6 –8 –10 –12 05611-007 05611-004 –14 –16 0 39.0625ps/DIV 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 TIME (Unit Interval) Figure 7. Output Port B Bathtub Curve, 3.2 Gbps Figure 4. Output Port B Eye Diagram, Input Port B or Input Port C 0 150mV/DIV BIT ERROR RATE (Decades) –2 –4 –6 –8 –10 –12 05611-008 05611-005 –14 –16 0 39.0625ps/DIV 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 TIME (Unit Interval) Figure 5. Output Port C Eye Diagram, 3.2 Gbps, Input Port A or Input Port B Figure 8. Output Port C Bathtub Curve, 3.2 Gbps Rev. C | Page 8 of 21 AD8159 05611-009 05611-012 150mV/DIV 150mV/DIV Data Sheet 39.0625ps/DIV Figure 12. Eye Diagram over Backplane (18” FR4 + 2 GbX Connectors), PE = 1 05611-013 05611-044 150mV/DIV 150mV/DIV 39.0625ps/DIV Figure 9. Eye Diagram over Backplane (18” FR4 + 2 GbX Connectors), PE = 0 39.0625ps/DIV Figure 13. Eye Diagram over Backplane (30” FR4 + 2 GbX Connectors), PE = 2 05611-011 05611-014 150mV/DIV 150mV/DIV 39.0625ps/DIV Figure 10. Eye Diagram over Backplane (30” FR4 + 2 GbX Connectors), PE = 0 39.0625ps/DIV 39.0625ps/DIV Figure 11. Eye Diagram over Backplane (36” FR4 + 2 GbX Connectors), PE = 0 Figure 14. Eye Diagram over Backplane (36” FR4 + 2 GbX Connectors), PE = 3 Rev. C | Page 9 of 21 Data Sheet 05611-015 05611-018 150mV/DIV 150mV/DIV AD8159 39.0625ps/DIV 39.0625ps/DIV Figure 15. Eye Diagram over Backplane (42” FR4 + 2 GbX Connectors), PE = 0 05611-016 05611-005 150mV/DIV 150mV/DIV Figure 18. Eye Diagram over Backplane (42” FR4 + 2 GbX Connectors), PE = 3 39.0625ps/DIV 39.0625ps/DIV Figure 16. Reference Eye Diagram for Figure 19 05611-019 05611-044 150mV/DIV 150mV/DIV Figure 19. Eye Diagram with Equalization (10” FR4), EQ = 0, See Figure 32 for Test Circuit Used 39.0625ps/DIV Figure 17. Reference Eye Diagram for Figure 20 39.0625ps/DIV Figure 20. Eye Diagram with Equalization (34” FR4 + 2 GbX Connectors), EQ = 1, See Figure 32 for Test Circuit Used Rev. C | Page 10 of 21 Data Sheet AD8159 100 DETERMINISTIC JITTER (ps) 90 80 70 60 50 40 30 0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 05611-021 10 05611-020 20 –3 –2 –1 Figure 21. Deterministic Jitter vs. Data Rate 3 DIFFERENTIAL INPUT SWING = 800mV p-p 90 80 80 DETERMINISTIC JITTER (ps) 90 70 60 INPUT C 50 40 30 0 200 60 INPUT C 50 40 30 20 INPUT A/ INPUT B 10 0 INPUT A/ INPUT B 70 400 600 800 05611-023 20 05611-024 10 0 0 1000 1200 1400 1600 1800 2000 0.5 Figure 22. Deterministic Jitter vs. Differential Input Swing 1.5 2.0 2.5 3.0 3.5 4.0 Figure 25. Deterministic Jitter vs. Input Common-Mode Voltage 100 90 90 80 80 DETERMINISTIC JITTER (ps) 100 70 60 50 INPUT C INPUT A/ INPUT B 30 1.0 INPUT COMMON-MODE VOLTAGE (V) DIFFERENTIAL INPUT SWING (mV p-p) 20 OUTPUT C 70 60 50 40 30 05611-025 20 10 0 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 OUTPUT A/ OUTPUT B 10 0 2.0 4.0 VCC (V) 2.2 2.4 2.6 05611-026 DETERMINISTIC JITTER (ps) 2 100 VICM = 2.7V DETERMINISTIC JITTER (ps) 1 Figure 24. Random Jitter Histogram, See Figure 33 for Test Circuit Used 100 40 0 RANDOM JITTER (ps) DATA RATE (Gbps) 2.8 3.0 3.2 3.4 3.6 3.8 4.0 OUTPUT TERMINATION VOLTAGE (V) Figure 26. Deterministic Jitter vs. Output Termination Voltage Figure 23. Deterministic Jitter vs. Core Supply Voltage Rev. C | Page 11 of 21 AD8159 Data Sheet 100 120 100 TRANSITION TIME (ps) 80 70 60 50 40 30 20 60 40 –40 –20 0 20 40 60 80 0 –60 100 05611-027 10 0 –60 80 20 05611-022 DETERMINISTIC JITTER (ps) 90 –40 –20 0 20 40 60 TEMPERATURE (°C) TEMPERATURE (°C) Figure 27. Deterministic Jitter vs. Temperature Figure 28. Transition Time vs. Temperature, Rev. C | Page 12 of 21 80 100 Data Sheet AD8159 EVALUATION BOARD SIMPLIFIED BLOCK DIAGRAM AD8159-EVAL-AC 3.3V AC-COUPLED EVALUATION BOARD VTTI/ VTTIO 100Ω DIFF. TRACE A C C AD8159 VTTO/ VTTOI AD8159 INPUT A OUTPUT C 100Ω DIFF. TRACE 0.1µF INPUT B 0.1µF AC-COUPLED A EVALUATION BOARD B 100Ω DIFF. TRACE OUTPUT A INPUT C 0.1µF OUTPUT B 100Ω DIFF. TRACE 0.1µF 100Ω DIFF. TRACE 0.1µF VEE 5" Figure 29. AC-Coupled Evaluation Board Simplified Block Diagram Rev. C | Page 13 of 21 5" 05611-028 B 0.1µF 100Ω DIFF. TRACE VCC AD8159 Data Sheet TEST CIRCUITS All graphs were generated using the setup shown in Figure 31, unless otherwise specified. TERADYNE FR4 TEST BACKPLANE GBX4 TO SMA DAUGHTER CARDS 05611-030 0.25" DIFFERENTIAL STRIPLINE TRACES 8mm WIDE, 8mm SPACE, 8mm HEIGHT TRACE LENGTHS = 6", 18", 24", 30" + 3" × 2 DAUGHTER CARDS Figure 30. Test Backplane 50Ω CABLE 50Ω CABLE A DATA OUT 50Ω CABLE TEST BACKPLANE C PATTERN GENERATOR B C HIGH SPEED REAL-TIME OSCILLOSCOPE 50Ω AD8159 AC-COUPLED A EVALUATION BOARD 50Ω 05611-031 B 50Ω NOTES 1. SINGLE-ENDED REPRESENTATION Figure 31. AC-Coupled Test Circuit DEVICE UNDER TEST A C 50Ω CABLE DATA OUT B 50Ω CABLE A 50Ω CABLE TEST BACKPLANE C PATTERN GENERATOR B C C 50Ω AD8159 AC-COUPLED A EVALUATION BOARD 50Ω CABLE HIGH SPEED REAL-TIME OSCILLOSCOPE 50Ω B AD8159 50Ω AC-COUPLED A EVALUATION BOARD 50Ω 05611-033 B 50Ω NOTES 1. SINGLE-ENDED REPRESENTATION Figure 32. Equalization Test Circuit, Test Circuit Used for Figure 19 and Figure 20 50Ω CABLE DATA OUT 50Ω CABLE A HIGH SPEED SAMPLING OSCILLOSCOPE C PATTERN GENERATOR B C 50Ω AD8159 AC-COUPLED A EVALUATION BOARD 50Ω 50Ω NOTES 1. SINGLE-ENDED REPRESENTATION Figure 33. Random Jitter Test Circuit, Test Circuit Used for Figure 24 Rev. C | Page 14 of 21 05611-034 B Data Sheet AD8159 THEORY OF OPERATION The AD8159 relays received data on the demultiplexer Input Port C to Output Port A and/or Output Port B, depending on the mode selected by the BICAST control pin. On the multiplexer side, the AD8159 relays received data on either Input Port A or Input Port B to the Output Port C, based on the SEL[3:0] pin states. The AD8159 is configured by toggling control pins. On the demultiplexer side, when the device is configured in unicast mode, it sends the received data on Input Port C to Output Port A or Output Port B. When the device is configured in bicast mode, received data on Input Port C is sent to both Output Port A and Output Port B. On the multiplexer side, only received data on Input Port A or Input Port B is sent to Output Port C, depending on the state of the SEL[3:0] pins. Table 4 summarizes port selection and configuration when loopback is disabled (LB_A = LB_B = LB_C = 0). When the device is in unicast mode, the output lanes on either Port A or Port B are in an idle state. In the idle state, the output tail current is set to 0 mA, and the P and N sides of the lane are pulled up to the output termination voltage through the on-chip termination resistors. Table 4. Port Selection and Configuration Table SELx 0 0 1 1 BICAST 0 1 0 1 OUT_A IN_C IN_C Idle IN_C OUT_B Idle IN_C IN_C IN_C OUT_C IN_A IN_A IN_B IN_B INPUT EQUALIZATION (EQ) AND OUTPUT PREEMPHASIS (PE) In backplane applications, the AD8159 needs to compensate for signal degradation over potentially long traces. The device supports two levels of input equalization, configured on a per-port basis. Table 5 summarizes the high frequency gain (EQ) for each control setting, as well as the typical length of backplane trace that can be compensated for each setting. Table 5. Input Equalization Settings EQ_x 0 1 EQ (dB) 6 12 Typical Backplane Length (Inches) 0 to 20 20 to 40+ The AD8159 also has four levels of output pre-emphasis, configured for each port. The pre-emphasis circuitry adds a controlled amount of overshoot to the output waveform to compensate for the loss in a backplane trace. Table 6 summarizes the high frequency gain, amount of overshoot, and the typical backplane channel length (including two connectors) that can be compensated for using each setting. A typical backplane is made of FR4 material with 8 mil wide traces and 8 mil spacing, loosely coupled differential traces. Each backplane channel consists of two connectors. The total length of the channel includes 3 inches of traces on each card. Table 6. Output Pre-Emphasis Settings PE_x[1] 0 0 1 1 Rev. C | Page 15 of 21 PE_x[0] 0 1 0 1 PE (dB) 0 1.9 3.5 4.9 Overshoot 0% 15% 35% 60% Typical Backplane Length (Inches) 0 to 10 10 to 20 20 to 30 30 to 40+ AD8159 Data Sheet LOOPBACK The AD8159 also supports port level loopback, as is shown in Figure 34. The loopback control pins override the lane select (SEL[3:0]) and bicast control (BICAST) pins. Table 7 summarizes the different loopback configurations. X4 X4 IOx_C[3:0] Ox_A[3:0] 1:2 DEMUX X4 Ox_B[3:0] PORT A LOOPBACK PORT C LOOPBACK PORT B LOOPBACK X4 X4 OIx_C[3.0] Ix_A[3:0] 2:1 MUX Ix_B[3:0] 05611-035 X4 Figure 34. Port-Based Loopback Capability Table 7. Loopback, Bicast, and Port Select Settings 1 LB_A 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 LB_B 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 LB_C 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 SELx 0 0 1 1 0 X2 1 0 1 1 0 1 X2 0 0 1 0 X2 1 0 1 X2 BICAST 0 1 0 1 0 1 0 X2 0 1 X2 0 1 0 1 X2 0 1 X2 X2 X2 X2 OUT_A IN_C IN_C Idle IN_C IN_C IN_C Idle IN_C Idle IN_C IN_C Idle IN_C IN_A IN_A IN_A IN_A IN_A IN_A IN_A IN_A IN_A OUT_B Idle IN_C IN_C IN_C Idle IN_C IN_C IN_B IN_B IN_B IN_B IN_B IN_B Idle IN_C IN_C Idle IN_C IN_C IN_B IN_B IN_B Switching is done on a lane-by-lane basis, but input equalization, output pre-emphasis, and loopback are set for each port. Don’t care. Rev. C | Page 16 of 21 OUT_C IN_A IN_A IN_B IN_B IN_C IN_C IN_C IN_A IN_B IN_B IN_C IN_C IN_C IN_A IN_A IN_B IN_C IN_C IN_C IN_A IN_B IN_C Data Sheet AD8159 PORT C REVERSE (CROSSOVER) CAPABILITY Port C has a reversible I/O capability. The sense (input vs. output) of the Port C pins can be swapped by toggling the REVERSE_C control pin. This feature was added to facilitate the connection to different ASICs that may have the opposite pinouts. Figure 35 illustrates the reversible I/O function of Port C, and Table 8 describes this function in a selection table that corresponds to a TQFP-100 package. Note that the reverse capability is supported only on Port C. X4 I/O SWITCH IOx_C[3:0]/OIx_C[3:0] X4 1:2 DEMUX X4 REVERSE_C X4 Ox_B[3:0] X4 X4 OIx_C[3:0]/IOx_C[3:0] Ox_A[3:0] X4 I/O SWITCH Ix_A[3:0] 2:1 MUX Ix_B[3:0] 05611-036 X4 Figure 35. Port C Reverse I/O Capability Table 8. Port C I/O Selection Port C Pin List on 100-Lead TQFP 77 78 80 81 83 84 86 87 89 90 92 93 95 96 98 99 Port C When REVERSE_C = 0 Pin Name Input/Output Pin ION_C3 = INN_C3 Input IOP_C3 = INP_C3 Input ION_C2 = INN_C2 Input IOP_C2 = INP_C2 Input ION_C1 = INN_C1 Input IOP_C1 = INP_C1 Input ION_C0 = INN_C0 Input IOP_C0 = INP_C0 Input OIN_C3 = OUTN_C3 Output OIP_C3 = OUTP_C3 Output OIN_C2 = OUTN_C2 Output OIP_C2 = OUTP_C2 Output OIN_C1 = OUTN_C1 Output OIP_C1 = OUTP_C1 Output OIN_C0 = OUTN_C0 Output OIP_C0 = OUTP_C0 Output Rev. C | Page 17 of 21 Port C When REVERSE_C = 1 Pin Name Input/Output Pin ION_C3 = OUTN_C3 Output IOP_C3 = OUTP_C3 Output ION_C2 = OUTN_C2 Output IOP_C2 = OUTP_C2 Output ION_C1 = OUTN_C1 Output IOP_C1 = OUTP_C1 Output ION_C0 = OUTN_C0 Output IOP_C0 = OUTP_C0 Output OIN_C3 = INN_C3 Input OIP_C3 = INP_C3 Input OIN_C2 = INN_C2 Input OIP_C2 = INP_C2 Input OIN_C1 = INN_C1 Input OIP_C1 = INP_C1 Input OIN_C0 = INN_C0 Input OIP_C0 = INP_C0 Input AD8159 Data Sheet APPLICATIONS INFORMATION Another application for the AD8159 is test equipment for evaluating high speed serial I/Os running at data rates at or lower than 3.2 Gbps. Figure 37 illustrates the module redundancy of a line card application. Figure 38 illustrates a possible application of the AD8159 in a simple XAUI link tester. The main application of the AD8159 is to support redundancy on both the backplane side and the line interface side of a serial link. Each port consists of four lanes to support standards such as XAUI. Figure 36 illustrates redundancy in an XAUI backplane system. Each line card is connected to two switch fabrics (primary and redundant). The device can be configured to support either 1 + 1 or 1:1 redundancy. PHYSICAL INTERFACE FABRIC INTERFACE TRAFFIC MANAGERS NETWORK PROCESSOR MACs FRAMERS PRIMARY SWITCH FABRIC AD8159 LINE CARDS REDUNDANT SWITCH FABRIC AD8159 05611-037 FABRIC INTERFACE TRAFFIC MANAGERS NETWORK PROCESSOR MACs FRAMERS BACKPLANE FABRIC CARDS Figure 36. Using the AD8159 for Switch Redundancy PRIMARY MODULE MACs FRAMERS FABRIC INTERFACE TRAFFIC MANAGERS NETWORK PROCESSOR LINE CARD Figure 37. Using the AD8159 for Line Interface Redundancy CONNECT TO DEVICE UNDER TEST CONNECTOR PORT B CONNECT TO PROTOCOL ANALYZER PORT A FPGA GENERATES SIMPLE PATTERNS TEST CARD Figure 38. Using the AD8159 in Test Equipment Rev. C | Page 18 of 21 05611-039 PORT C 05611-038 REDUNDANT MODULE CONNECTOR PHYSICAL INTERFACE Data Sheet AD8159 INTERFACING TO THE AD8159 TERMINATION STRUCTURES INPUT COMPLIANCE To determine the best strategy for connecting to the high speed pins of the AD8159, the user must first be familiar with the on-chip termination structures. The AD8159 contains multiple types of these structures (see Figure 39, Figure 40, and Figure 41). Note that Port C has a slightly modified termination structure to support the bidirectional feature. The range of allowable input voltages is determined by the fundamental limitations of the active input circuitry. This range of signals is normally a function of the common-mode level of the input signal, the signal swing, and the supply voltage. For a given input signal swing, there is a range of common-mode voltages that keeps the high and low voltage excursions within acceptable limits. Similarly, for a given common-mode input voltage, there is a maximum acceptable input signal swing. There is also a minimum signal swing that the active input circuitry can resolve reliably. VCC VTTI 55Ω 55Ω Figure 22 and Figure 25 summarize the input voltage ranges for all ports. Note that the input range is different when comparing bidirectional ports to strictly input ports. This is a consequence of the additional circuitry required to support the bidirectional feature on Port C. IP_xx 1173Ω 05611-045 IN_xx VEE AC Coupling Figure 39. Simplified Input Circuit One way to simplify the input circuit and make it compatible with a wide variety of driving devices is to use ac coupling. This has the effect of isolating the dc common-mode levels of the driver and the AD8159 input circuitry. AC coupling requires a capacitor in series with each single-ended input signal, as shown in Figure 42. This should be done in a manner that does not interfere with the high speed signal integrity of the PCB. VCC VTTO 50Ω 50Ω OP_xx VIP ON_xx VIN IT VEE 05611-046 VTTOD 50Ω Figure 40. Simplified Output Circuit (Port A or Port B) VCC VTTI/VTTIO 50Ω CP CN VCC IP_xx IN_xx 55Ω 55Ω 1173Ω VTTOI AD8159 55Ω VEE OP_xx VIP 1173Ω DRIVER ON_xx 05611-042 55Ω Figure 42. AC Coupling Input Signal of the AD8159 IT VEE 05611-047 VIN Figure 41. Simplified Output Circuit (Port C) For input and bidirectional ports, the termination structure consists of two 55 Ω resistors connected to a termination supply and an 1173 Ω resistor connected across the differential inputs, the latter being a result of the finite differential input impedance of the equalizer. For output ports, there are two 50 Ω resistors connected to the termination supply. Note that the differential input resistance for both structures is the same, 100 Ω. When ac coupling is used, the common-mode level at the input of the device is equal to VTTI. The single-ended input signal swings above and below VTTI equally. The user can then use Figure 22 and Figure 25 to determine the acceptable range of common-mode levels and signal swing levels that satisfy the input range of the AD8159. If dc coupling is required, determining the input common-mode level is less straightforward because the configuration of the driver must also be considered. In most cases, the user sets VTTI on the AD8159 to the same level as the driver output termination voltage, VTTOD. This prevents a continuous dc current from flowing between the two supplies. As a practical matter, both devices can be terminated to the same physical supply. Rev. C | Page 19 of 21 AD8159 Data Sheet VTTI − 8 mA × (50 Ω || 55 Ω) = VTTI − 210 mV The user can then use Figure 25 to determine the allowable range of values for VTTI that meets the input compliance range based on an 800 mV p-p differential swing. OUTPUT COMPLIANCE Figure 43 is depicts the single-ended waveform at the output of the AD8159. The common-mode level (VOCM) and the amplitude (VOSE-BOOST) of this waveform are a function of the output tail current (IT), the output termination supply voltage (VTTO), the topology of the far-end receiver, and whether ac coupling or dc coupling is used. Keep in mind that the output tail current varies with the pre-emphasis level. The user must ensure that the high (VH) and low (VL) voltage excursions at the output are within the single-ended absolute voltage range limits as specified in Table 1. Failure to understand the implications of output signal levels and the choice of ac coupling or dc coupling may lead to transistor saturation and poor transmitter performance. Table 9 and Table 10 show the typical output levels for Port A/ Port B and Port C, respectively, where VCC = VTTO = 3.3 V, with 50 Ω far-end terminations to a 3.3 V supply. VTTO VH VOCM VOSE-DC VOSE-BOOST VL ~320ps 05611-048 Consider the following example: a driver dc-coupled to the input of the AD8159. The AD8159 input termination voltage (VTTI) and the driver output termination voltage (VTTOD) are both set to the same level; that is, VTTI = VTTOD = 3.3 V. If an 800 mV p-p differential swing is desired, the total output current of the driver is 16 mA. At balance, the output current is divided evenly between the two sides of the differential signal path, 8 mA to each side. This 8 mA of current flows through the parallel combination of the 55 Ω input termination resistor on the AD8159 and the 50 Ω output termination resistor on the driver, resulting in a commonmode level of Figure 43. Single-Ended Output Waveform Table 9. Output Voltage Levels for Port A and Port B PE Setting 0 1 2 3 IT (mA) 16 20 24 28 VOSE-DC (mV p-p) 400 400 400 400 VOSE-BOOST (mV p-p) 400 500 600 700 VOCM (V) 3.1 3.05 3 2.95 DC-Coupled VH (V) 3.3 3.3 3.3 3.3 VL (V) 2.9 2.8 2.7 2.6 VOCM (V) 2.9 2.8 2.7 2.6 AC-Coupled VH (V) 3.1 3.05 3 2.95 VL (V) 2.7 2.55 2.4 2.25 VOSE-BOOST (mV p-p) 400 500 600 700 VOCM (V) 3.05 3 2.95 2.9 DC-Coupled VH (V) 3.25 3.25 3.25 3.25 VL (V) 2.85 2.75 2.65 2.55 VOCM (V) 2.8 2.7 2.6 2.5 AC-Coupled VH (V) 3 2.95 2.9 2.85 VL (V) 2.6 2.45 2.3 2.15 Table 10. Output Voltage Levels for Port C PE Setting 0 1 2 3 IT (mA) 20 24 28 32 VOSE-DC (mV p-p) 400 400 400 400 Table 11. Symbol Definitions Symbol VOSE-DC Formula × 25 Ω IT Definition Single-ended output voltage swing after settling VOSE-BOOST VOCM (dc-coupled) VOCM (ac-coupled) VH VL IT × 25 Ω VTTO – IT/2 × 25 Ω VTTO – IT/2 × 50 Ω VOCM + VOSE-BOOST/2 VOCM − VOSE-BOOST/2 Boosted single-ended output voltage swing Common-mode voltage when the output is dc-coupled Common-mode voltage when the output is ac-coupled High single-ended output voltage excursion Low single-ended output voltage excursion PE = 0 Rev. C | Page 20 of 21 Data Sheet AD8159 OUTLINE DIMENSIONS 0.75 0.60 0.45 16.00 BSC SQ 1.20 MAX 14.00 BSC SQ 76 100 1 76 75 75 100 1 PIN 1 EXPOSED PAD TOP VIEW (PINS DOWN) 5.00 SQ 0° MIN 0.15 0.05 SEATING PLANE 0.20 0.09 7° 3.5° 0° 0.08 MAX COPLANARITY 51 25 26 BOTTOM VIEW (PINS UP) 51 50 26 0.50 BSC LEAD PITCH VIEW A 25 50 0.27 0.22 0.17 VIEW A ROTATED 90° CCW COMPLIANT TO JEDEC STANDARDS MS-026-AED-HD FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. Figure 44. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP] (SV-100-4) Dimensions shown in millimeters ORDERING GUIDE Model AD8159ASVZ 1 AD8159-EVAL-AC 1 Temperature Range −40°C to +85°C Package Description 100-Lead TQFP_EP AC-Coupled Evaluation Board Z = RoHS Compliant Part. ©2005–2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05611-0-10/18(C) Rev. C | Page 21 of 21 Package Option SV-100-4 042209-A 1.05 1.00 0.95
AD8159ASVZ 价格&库存

很抱歉,暂时无法提供与“AD8159ASVZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AD8159ASVZ
    •  国内价格
    • 1+179.40000

    库存:8