0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD822

AD822

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    AD822 - Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp - Analog Devices

  • 数据手册
  • 价格&库存
AD822 数据手册
Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 3 V to 36 V Dual-supply capability from ±1.5 V to ±18 V High load drive Capacitive load drive of 350 pF, G = +1 Minimum output current of 15 mA Excellent ac performance for low power 800 μA maximum quiescent current per amplifier Unity gain bandwidth: 1.8 MHz Slew rate of 3.0 V/μs Good dc performance 800 μV maximum input offset voltage 2 μV/°C typical offset voltage drift 25 pA maximum input bias current Low noise 13 nV/√Hz @ 10 kHz No phase inversion CONNECTION DIAGRAM OUT1 1 –IN1 2 +IN1 3 V– 4 8 V+ 7 OUT2 6 –IN2 AD822 5 +IN2 Figure 1. 8-Lead PDIP (N Suffix); 8-Lead MSOP (RM Suffix); and 8-Lead SOIC (R Suffix) GENERAL DESCRIPTION The AD822 is a dual precision, low power FET input op amp that can operate from a single supply of 3.0 V to 36 V or dual supplies of ±1.5 V to ±18 V. It has true single-supply capability with an input voltage range extending below the negative rail, allowing the AD822 to accommodate input signals below ground in the single-supply mode. Output voltage swing extends to within 10 mV of each rail, providing the maximum output dynamic range. 100 Battery-powered precision instrumentation Photodiode preamps Active filters 12-bit to 14-bit data acquisition systems Medical instrumentation Low power references and regulators INPUT VOLTAGE NOISE (nV/√Hz) APPLICATIONS 10 100 1k FREQUENCY (Hz) 10k Figure 2. Input Voltage Noise vs. Frequency Offset voltage of 800 μV maximum, offset voltage drift of 2 μV/°C, input bias currents below 25 pA, and low input voltage noise provide dc precision with source impedances up to a gigaohm. The 1.8 MHz unity gain bandwidth, –93 dB THD at 10 kHz, and 3 V/μs slew rate are provided with a low supply current of 800 μA per amplifier. (continued on Page 3) Rev. G Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved. 00874-002 1 10 00874-001 AD822 TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 4 Absolute Maximum Ratings.......................................................... 12 Maximum Power Dissipation ................................................... 12 ESD Caution................................................................................ 12 Typical Performance Characteristics ........................................... 13 Application Notes ........................................................................... 20 Input Characteristics.................................................................. 20 Output Characteristics............................................................... 20 Applications..................................................................................... 22 Single-Supply Voltage-to-Frequency Converter .................... 22 Single-Supply Programmable Gain Instrumentation Amplifier ..................................................................................... 22 3 V, Single-Supply Stereo Headphone Driver ......................... 23 Low Dropout Bipolar Bridge Driver........................................ 23 Outline Dimensions ....................................................................... 24 Ordering Guide............................................................................... 25 REVISION HISTORY 6/06—Rev. F to Rev. G Changes to Features.......................................................................... 1 Changes to Table 4.......................................................................... 10 Changes to Table 5.......................................................................... 12 Changes to Table 6.......................................................................... 22 10/05—Rev. E to Rev. F Updated Format..................................................................Universal Changes to Outline Dimensions................................................... 24 Updated Ordering Guide............................................................... 24 1/03—Data sheet changed from Rev. D to Rev. E Edits to Specifications ...................................................................... 2 Edits to Figure 10............................................................................ 16 Updated Outline Dimensions ....................................................... 17 10/02—Data sheet changed from Rev. C to Rev. D Edits to Features................................................................................ 1 Edits to Ordering Guide ...................................................................6 Updated SOIC Package Outline ................................................... 17 8/02—Data sheet changed from Rev. B to Rev. C All Figures Updated ................................................................Global Edits to Features.................................................................................1 Updated All Package Outlines ...................................................... 17 7/01—Data sheet changed from Rev. A to Rev. B All Figures Updated ................................................................Global CERDIP References Removed.......................................1, 6, and 18 Additions to Product Description...................................................1 8-Lead SOIC and 8-Lead MSOP Diagrams Added ......................1 Deletion of AD822S Column...........................................................2 Edits to Absolute Maximum Ratings and Ordering Guide .........6 Removed Metalization Photograph ................................................6 Rev. G | Page 2 of 28 AD822 GENERAL DESCRIPTION (continued from Page 1) The AD822 drives up to 350 pF of direct capacitive load as a follower and provides a minimum output current of 15 mA. This allows the amplifier to handle a wide range of load conditions. Its combination of ac and dc performance, plus the outstanding load drive capability, results in an exceptionally versatile amplifier for the single-supply user. The AD822 is available in two performance grades. The A grade and B grade are rated over the industrial temperature range of −40°C to +85°C. The AD822 is offered in three varieties of 8-lead packages: PDIP, MSOP, and SOIC. 1V 100 1V 20µs .... .... .... .... .... .... .... .... .... .... . 5V 90 VOUT 10 Figure 3. Gain-of-2 Amplifier; VS = 5, 0, VIN = 2.5 V Sine Centered at 1.25 V, RL = 100 Ω Rev. G | Page 3 of 28 00874-003 0V (GND) 0% .... .... .... .... .... .... .... .... .... .... 1V AD822 SPECIFICATIONS VS = 0, 5 V @ TA = 25°C, VCM = 0 V, VOUT = 0.2 V, unless otherwise noted. Table 1. Parameter DC PERFORMANCE Initial Offset Maximum Offset Over Temperature Offset Drift Input Bias Current at TMAX Input Offset Current at TMAX Open-Loop Gain TMIN to TMAX RL = 10 kΩ TMIN to TMAX RL = 1 kΩ TMIN to TMAX NOISE/HARMONIC PERFORMANCE Input Voltage Noise 0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz Input Current Noise 0.1 Hz to 10 Hz f = 1 kHz Harmonic Distortion f = 10 kHz DYNAMIC PERFORMANCE Unity Gain Frequency Full Power Response Slew Rate Settling Time to 0.1% to 0.01% MATCHING CHARACTERISTICS Initial Offset Maximum Offset Over Temperature Offset Drift Input Bias Current Crosstalk @ f = 1 kHz f = 100 kHz INPUT CHARACTERISTICS Input Voltage Range 1 TMIN to TMAX Common-Mode Rejection Ratio (CMRR) TMIN to TMAX Conditions Min AD822 A Grade Typ Max 0.1 0.5 2 2 0.5 2 0.5 500 400 80 80 15 10 1000 150 30 0.8 1.2 25 5 20 Min AD822 B Grade Typ Max 0.1 0.5 2 2 0.5 2 0.5 500 400 80 80 15 10 1000 150 30 0.4 0.9 10 2.5 10 Unit mV mV μV/°C pA nA pA nA V/mV V/mV V/mV V/mV V/mV V/mV VCM = 0 V to 4 V VO = 0.2 V to 4 V RL = 100 kΩ 2 25 21 16 13 18 0.8 RL = 10 kΩ to 2.5 V VO = 0.25 V to 4.75 V −93 1.8 210 3 1.4 1.8 1.0 1.6 3 20 RL = 5 kΩ −130 −93 −0.2 −0.2 66 66 +4 +4 80 −0.2 −0.2 69 66 2 25 21 16 13 18 0.8 −93 1.8 210 3 1.4 1.8 0.5 1.3 3 10 –130 –93 +4 +4 80 μV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz fA p-p fA/√Hz dB MHz kHz V/μs μs μs mV mV μV/°C pA dB dB V V dB dB VO p-p = 4.5 V VO = 0.2 V to 4.5 V VCM = 0 V to 2 V VCM = 0 V to 2 V Rev. G | Page 4 of 28 AD822 Parameter Input Impedance Differential Common Mode OUTPUT CHARACTERISTICS Output Saturation Voltage 2 VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX VOL – VEE TMIN to TMAX VCC − VOH TMIN to TMAX Operating Output Current TMIN to TMAX Capacitive Load Drive POWER SUPPLY Quiescent Current TMIN to TMAX Power Supply Rejection TMIN to TMAX 1 Conditions Min AD822 A Grade Typ Max 1013||0.5 1013||2.8 Min AD822 B Grade Typ Max 1013||0.5 1013||2.8 Unit Ω||pF Ω||pF ISINK = 20 μA ISOURCE = 20 μA ISINK = 2 mA ISOURCE = 2 mA ISINK = 15 mA ISOURCE = 15 mA 15 12 5 10 40 80 300 800 7 10 14 20 55 80 110 160 500 1000 1500 1900 15 12 5 10 40 80 300 800 7 10 14 20 55 80 110 160 500 1000 1500 1900 350 1.24 80 1.6 70 70 350 1.24 80 1.6 mV mV mV mV mV mV mV mV mV mV mV mV mA mA pF mA dB dB VS+ = 5 V to 15 V 66 66 2 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (+VS − 1 V) to +VS. Common-mode effort voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply. VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference between the highest possible output voltage (VOH) and the positive supply voltage (VCC). Rev. G | Page 5 of 28 AD822 VS = ±5 V @ TA = 25°C, VCM = 0 V, VOUT = 0 V, unless otherwise noted. Table 2. Parameter DC PERFORMANCE Initial Offset Maximum Offset Over Temperature Offset Drift Input Bias Current at TMAX Input Offset Current at TMAX Open-Loop Gain TMIN to TMAX RL = 10 kΩ TMIN to TMAX RL = 1 kΩ TMIN to TMAX NOISE/HARMONIC PERFORMANCE Input Voltage Noise 0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz Input Current Noise 0.1 Hz to 10 Hz f = 1 kHz Harmonic Distortion f = 10 kHz DYNAMIC PERFORMANCE Unity Gain Frequency Full Power Response Slew Rate Settling Time to 0.1% to 0.01% MATCHING CHARACTERISTICS Initial Offset Maximum Offset Over Temperature Offset Drift Input Bias Current Crosstalk @ f = 1 kHz f = 100 kHz INPUT CHARACTERISTICS Input Voltage Range 1 TMIN to TMAX Common-Mode Rejection Ratio (CMRR) TMIN to TMAX Input Impedance Differential Common Mode Conditions Min AD822 A Grade Typ Max 0.1 0.5 2 2 0.5 2 0.5 400 400 80 80 20 10 1000 150 30 0.8 1.5 25 5 20 Min AD822 B Grade Typ Max 0.1 0.5 2 2 0.5 2 0.5 400 400 80 80 20 10 1000 150 30 0.4 1 10 2.5 10 Unit mV mV μV/°C pA nA pA nA V/mV V/mV V/mV V/mV V/mV V/mV VCM = −5 V to +4 V VO = −4 V to +4 V RL = 100 kΩ 2 25 21 16 13 18 0.8 RL = 10 kΩ VO = ±4.5 V −93 1.9 105 3 1.4 1.8 1.0 3 3 25 RL = 5 kΩ −130 −93 −5.2 −5.2 66 66 +4 +4 80 −5.2 −5.2 69 66 2 25 21 16 13 18 0.8 −93 1.9 105 3 1.4 1.8 0.5 2 3 10 −130 −93 +4 +4 80 μV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz fA p-p fA/√Hz dB MHz kHz V/μs μs μs mV mV μV/°C pA dB dB V V dB dB Ω||pF Ω||pF VO p-p = 9 V VO = 0 V to ±4.5 V VCM = –5 V to +2 V VCM = –5 V to +2 V 1013||0.5 1013||2.8 Rev. G | Page 6 of 28 1013||0.5 1013||2.8 AD822 Parameter OUTPUT CHARACTERISTICS Output Saturation Voltage 2 VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX Operating Output Current TMIN to TMAX Capacitive Load Drive POWER SUPPLY Quiescent Current TMIN to TMAX Power Supply Rejection TMIN to TMAX 1 Conditions Min AD822 A Grade Typ Max Min AD822 B Grade Typ Max Unit ISINK = 20 μA ISOURCE = 20 μA ISINK = 2 mA ISOURCE = 2 mA ISINK = 15 mA ISOURCE = 15 mA 15 12 5 10 40 80 300 800 7 10 14 20 55 80 110 160 500 1000 1500 1900 15 12 5 10 40 80 300 800 7 10 14 20 55 80 110 160 500 1000 1500 1900 350 1.3 80 1.6 70 70 350 1.3 80 1.6 mV mV mV mV mV mV mV mV mV mV mV mV mA mA pF mA dB dB VS+ = 5 V to 15 V 66 66 2 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (+VS − 1 V) to +VS. Common-mode effort voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply. VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference between the highest possible output voltage (VOH) and the positive supply voltage (VCC). Rev. G | Page 7 of 28 AD822 VS = ±15 V @ TA = 25°C, VCM = 0 V, VOUT = 0 V, unless otherwise noted. Table 3. Parameter DC PERFORMANCE Initial Offset Maximum Offset Over Temperature Offset Drift Input Bias Current at TMAX Input Offset Current at TMAX Open-Loop Gain TMIN to TMAX RL = 10 kΩ TMIN to TMAX RL = 1 kΩ TMIN to TMAX NOISE/HARMONIC PERFORMANCE Input Voltage Noise 0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz Input Current Noise 0.1 Hz to 10 Hz f = 1 kHz Harmonic Distortion f = 10 kHz DYNAMIC PERFORMANCE Unity Gain Frequency Full Power Response Slew Rate Settling Time to 0.1% to 0.01% MATCHING CHARACTERISTICS Initial Offset Maximum Offset Over Temperature Offset Drift Input Bias Current Crosstalk @ f = 1 kHz f = 100 kHz INPUT CHARACTERISTICS Input Voltage Range 1 TMIN to TMAX Common-Mode Rejection Ratio (CMRR) TMIN to TMAX Conditions Min AD822 A Grade Typ Max 0.4 0.5 2 2 40 0.5 2 0.5 500 500 100 100 30 20 2000 500 45 2 3 25 5 20 Min AD822 B Grade Typ Max 0.3 0.5 2 2 40 0.5 2 0.5 500 500 100 100 30 20 2000 500 45 1.5 2.5 12 2.5 12 Unit mV mV μV/°C pA pA nA pA nA V/mV V/mV V/mV V/mV V/mV V/mV VCM = 0 V VCM = −10 V VCM = 0 V VO = +10 V to −10 V RL = 100 kΩ 2 25 21 16 13 18 0.8 RL = 10 kΩ VO = ±10 V −85 1.9 45 3 4.1 4.5 3 4 3 25 RL = 5 kΩ −130 −93 −15.2 −15.2 70 70 +14 +14 80 −15.2 −15.2 74 74 2 25 21 16 13 18 0.8 −85 1.9 45 3 4.1 4.5 2 2.5 3 12 −130 −93 +4 +4 90 μV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz fA p-p fA/√Hz dB MHz kHz V/μs μs μs mV mV μV/°C pA dB dB V V dB dB VO p-p = 20 V VO = 0 V to ±10 V VCM = −15 V to +12 V VCM = −15 V to +12 V Rev. G | Page 8 of 28 AD822 Parameter Input Impedance Differential Common Mode OUTPUT CHARACTERISTICS Output Saturation Voltage 2 VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX Operating Output Current TMIN to TMAX Capacitive Load Drive POWER SUPPLY Quiescent Current TMIN to TMAX Power Supply Rejection TMIN to TMAX 1 Conditions Min AD822 A Grade Typ Max 1013||0.5 1013||2.8 Min AD822 B Grade Typ Max 1013||0.5 1013||2.8 Unit Ω||pF Ω||pF ISINK = 20 μA ISOURCE = 20 μA ISINK = 2 mA ISOURCE = 2 mA ISINK = 15 mA ISOURCE = 15 mA 20 15 5 10 40 80 300 800 7 10 14 20 55 80 110 160 500 1000 1500 1900 20 15 5 10 40 80 300 800 7 10 14 20 55 80 110 160 500 1000 1500 1900 350 1.4 80 1.8 70 70 350 1.4 80 1.8 mV mV mV mV mV mV mV mV mV mV mV mV mA mA pF mA dB dB VS+ = 5 V to 15 V 70 70 2 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (+VS − 1 V) to +VS. Common-mode effort voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply. VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference between the highest possible output voltage (VOH) and the positive supply voltage (VCC). Rev. G | Page 9 of 28 AD822 VS = 0, 3 V @ TA = 25°C, VCM = 0 V, VOUT = 0.2 V, unless otherwise noted. Table 4. Parameter DC PERFORMANCE Initial Offset Maximum Offset Over Temperature Offset Drift Input Bias Current at TMAX Input Offset Current at TMAX Open-Loop Gain TMIN to TMAX TMIN to TMAX TMIN to TMAX NOISE/HARMONIC PERFORMANCE Input Voltage Noise 0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz Input Current Noise 0.1 Hz to 10 Hz f = 1 kHz Harmonic Distortion f = 10 kHz DYNAMIC PERFORMANCE Unity Gain Frequency Full Power Response Slew Rate Settling Time to 0.1% to 0.01% MATCHING CHARACTERISTICS Offset Drift Crosstalk @ f = 1 kHz f = 100 kHz INPUT CHARACTERISTICS Common-Mode Rejection Ratio (CMRR) TMIN to TMAX Input Impedance Differential Common Mode Conditions Typ 0.2 0.5 1 2 0.5 2 0.5 1000 150 30 Unit mV mV μV/°C pA nA pA nA V/mV V/mV V/mV VCM = 0 V to 2 V VO = 0.2 V to 2 V RL = 100 kΩ RL = 10 kΩ RL = 1 kΩ 2 25 21 16 13 18 0.8 RL = 10 kΩ to 1.5 V VO = ±1.25 V −92 1.5 240 3 1 1.4 2 −130 −93 74 μV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz fA p-p fA/√Hz dB MHz kHz V/μs μs μs μV/°C dB dB dB VO p-p = 2.5 V VO = 0.2 V to 2.5 V RL = 5 kΩ VCM = 0 V to 1 V 1013||0.5 1013||2.8 Ω||pF Ω||pF Rev. G | Page 10 of 28 AD822 Parameter OUTPUT CHARACTERISTICS Output Saturation Voltage 1 VOL − VEE VCC − VOH VOL − VEE VCC − VOH VOL − VEE VCC − VOH Capacitive Load Drive POWER SUPPLY Quiescent Current TMIN to TMAX Power Supply Rejection TMIN to TMAX 1 Conditions Typ Unit ISINK = 20 μA ISOURCE = 20 μA ISINK = 2 mA ISOURCE = 2 mA ISINK = 10 mA ISOURCE = 10 mA 5 10 40 80 200 500 350 1.24 mV mV mV mV mV mV pF mA dB VS+ = 3 V to 15 V 80 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference between the highest possible output voltage (VOH) and the positive supply voltage (VCC). Specifications are TMIN to TMAX. Rev. G | Page 11 of 28 AD822 ABSOLUTE MAXIMUM RATINGS Table 5. Parameter Supply Voltage Internal Power Dissipation1 PDIP (N) SOIC (R) Input Voltage Output Short Circuit Duration Differential Input Voltage Storage Temperature Range (N) Storage Temperature Range (R, RM) Operating Temperature Range AD822 A Grade and B Grade Lead Temperature Range (Soldering, 60 sec) 1 Rating ±18 V Observe derating curves Observe derating curves (+VS + 0.2 V) to −(20 V + VS) Indefinite ±30 V –65°C to +125°C –65°C to +150°C –40°C to +85°C 260°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. MAXIMUM POWER DISSIPATION The maximum power that can be safely dissipated by the AD822 is limited by the associated rise in junction temperature. For plastic packages, the maximum safe junction temperature is 145°C. If these maximums are exceeded momentarily, proper circuit operation is restored as soon as the die temperature is reduced. Leaving the device in the overheated condition for an extended period can result in device burnout. To ensure proper operation, it is important to observe the derating curves shown in Figure 27. While the AD822 is internally short-circuit protected, this may not be sufficient to guarantee that the maximum junction temperature is not exceeded under all conditions. With power supplies ±12 V (or less) at an ambient temperature of 25°C or less, if the output node is shorted to a supply rail, then the amplifier is not destroyed, even if this condition persists for an extended period. 8-lead PDIP package: θJA = 90°C/W. 8-lead SOIC package: θJA = 160°C/W. 8-lead MSOP package: θJA = 190°C/W. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. G | Page 12 of 28 AD822 TYPICAL PERFORMANCE CHARACTERISTICS 70 60 50 40 30 20 10 0 –0.5 VS = 0V, 5V 5 INPUT BIAS CURRENT (pA) NUMBER OF UNITS 0 VS = 0V, +5V AND ±5V VS = ±5V –0.4 –0.3 –0.2 0.1 0.2 OFFSET VOLTAGE (mV) –0.1 0 00874-004 0.3 0.4 0.5 –4 –3 –2 –1 0 1 2 COMMON-MODE VOLTAGE (V) 3 4 5 Figure 4. Typical Distribution of Offset Voltage (390 Units) 16 14 12 10 % IN BIN Figure 7. Input Bias Current vs. Common-Mode Voltage; VS = 5 V, 0 V, and VS = ± 5 V 1k VS = ±5V VS = ±15V INPUT BIAS CURRENT (pA) 100 8 6 4 2 00874-005 10 1 –8 –6 –4 –2 0 2 4 6 OFFSET VOLTAGE DRIFT (µV/°C) 8 10 –12 –8 –4 0 4 8 COMMON-MODE VOLTAGE (V) 12 16 Figure 5. Typical Distribution of Offset Voltage Drift (100 Units) 50 45 40 NUMBER OF UNITS Figure 8. Input Bias Current vs. Common-Mode Voltage; VS = ±15 V 100k 10k 35 30 25 20 15 10 5 00874-006 INPUT BIAS CURRENT (pA) 1k 100 10 1 40 60 80 100 TEMPERATURE (°C) 120 140 Figure 6. Typical Distribution of Input Bias Current (213 Units) Figure 9. Input Bias Current vs. Temperature; VS = 5 V, VCM = 0 Rev. G | Page 13 of 28 00874-009 0 0 1 2 3 4 5 6 7 INPUT BIAS CURRENT (pA) 8 9 10 0.1 20 00874-008 0 –12 –10 0.1 –16 00874-007 –5 –5 AD822 10M 40 OPEN-LOOP GAIN (V/V) VS = ±15V 1M VS = 0V, +5V 20 RL = 20kΩ RL = 2kΩ POS RAIL INPUT VOLTAGE (µV) NEG RAIL 0 POS RAIL 100k VS = 0V, +3V POS RAIL –20 NEG RAIL RL = 100kΩ 00874-010 1k 10k LOAD RESISTANCE (Ω) 100k 0 60 120 180 240 OUTPUT VOLTAGE FROM SUPPLY RAILS (mV) 300 Figure 10. Open-Loop Gain vs. Load Resistance 10M Figure 13. Input Effort Voltage with Output Voltage Within 300 mV of Either Supply Rail for Various Resistive Loads; VS = ±5 V 1k OPEN-LOOP GAIN (V/V) VS = ±15V VS = 0V, +5V RL = 10kΩ VS = ±15V VS = 0V, +5V 1M INPUT VOLTAGE NOISE (nV/√Hz) RL = 100kΩ 100 100k RL = 600Ω VS = ±15V 10 VS = 0V, +5V 00874-011 –40 –20 0 20 40 60 80 TEMPERATURE (°C) 100 120 140 1 10 100 FREQUENCY (Hz) 1k 10k Figure 11. Open-Loop Gain vs. Temperature 300 Figure 14. Input Voltage Noise vs. Frequency –40 –50 –60 RL = 10kΩ ACL = –1 200 INPUT VOLTAGE (V) 100 RL = 10kΩ THD (dB) RL = 100kΩ 0 –70 –80 –90 VS = 0V, +3V; VOUT = 2.5V p-p –100 VS = ±15V; VOUT = 20V p-p VS = ±5V; VOUT = 9V p-p RL = 600Ω –200 –100 VS = 0V, +5V; VOUT = 4.5V p-p 00874-012 –12 –8 –4 0 4 OUTPUT VOLTAGE (V) 8 12 16 1k 10k FREQUENCY (Hz) 100k Figure 12. Input Error Voltage vs. Output Voltage for Resistive Loads Figure 15. Total Harmonic Distortion (THD) vs. Frequency Rev. G | Page 14 of 28 00874-015 –300 –16 –110 100 00874-014 10k –60 1 00874-013 10k 100 –40 NEG RAIL AD822 100 100 90 80 COMMON-MODE REJECTION (dB) 80 80 PHASE MARGIN (Degrees) OPEN-LOOP GAIN (dB) PHASE 60 GAIN 40 40 60 70 60 50 40 30 20 10 VS = ±15V VS = 0V, +3V VS = 0V, +5V 20 RL = 2kΩ CL = 100pF 20 0 0 00874-016 100 1k 10k 100k FREQUENCY (Hz) 1M 100 1k 10k 100k FREQUENCY (Hz) 1M 10M Figure 16. Open-Loop Gain and Phase Margin vs. Frequency 1k 5 Figure 19. Common-Mode Rejection vs. Frequency COMMON-MODE ERROR VOLTAGE (mV) ACL = +1 VS = ±15V 100 OUTPUT IMPEDANCE (Ω) 4 NEGATIVE RAIL POSITIVE RAIL 10 3 +25°C 2 +125°C –55°C +125°C 0 1 2 COMMON-MODE VOLTAGE FROM SUPP LY RAILS (V) 3 00874-020 00874-021 1 0.1 1 –55°C 1k 10k 100k FREQUENCY (Hz) 1M 10M 00874-017 0.01 100 0 –1 Figure 17. Output Impedance vs. Frequency 16 Figure 20. Absolute Common-Mode Error vs. Common-Mode Voltage from Supply Rails (VS − VCM) 1000 8 4 1% OUTPUT SATURATION VOLTAGE (mV) OUTPUT SWING FROM 0 TO ±VOLTS 12 100 VS – VOH 0.01% 0 –4 –8 –12 00874-018 0.1% 0.01% ERROR 10 VOL – VS 1% –16 0 1 2 3 SETTLING TIME (µs) 4 5 0 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10 100 Figure 18. Output Swing and Error vs. Settling Time Figure 21. Output Saturation Voltage vs. Load Current Rev. G | Page 15 of 28 00874-019 –20 10 –20 10M 0 10 AD822 1000 I SOURCE = 10mA 100 90 OUTPUT SATURATION VOLTAGE (mV) POWER SUPPLY REJECTION (dB) 80 70 60 50 40 30 20 10 –PSRR +PSRR I SINK = 10mA 100 I SOURCE = 1mA I SINK = 1mA 10 I SOURCE = 10µA I SINK = 10µA 00874-022 –40 –20 0 60 20 40 80 TEMPERATURE (°C) 100 120 140 100 1k 10k 100k FREQUENCY (Hz) 1M 10M Figure 22. Output Saturation Voltage vs. Temperature 80 SHORT CIRCUIT CURRENT LIMIT (mA) Figure 25. Power Supply Rejection vs. Frequency 30 70 60 VS = ±15V OUTPUT VOLTAGE (V) 25 VS = ±15V 20 –OUT RL = 2kΩ 50 VS = ±15V 40 VS = 0V, +5V 15 30 20 10 0 –60 + VS = 0V, +3V – – VS = 0V, +3V 10 VS = 0V, +5V VS = 0V, +3V VS = 0V, +5V + + 5 00874-023 –40 –20 0 20 40 60 80 TEMPERATURE (°C) 100 120 140 100k 1M FREQUENCY (Hz) 10M Figure 23. Short Circuit Current Limit vs. Temperature 1600 T = +125°C 1400 Figure 26. Large Signal Frequency Response 2.4 2.2 TOTAL POWER DISSIPATION (W) T = +25°C 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 8-LEAD MSOP 8-LEAD SOIC QUIESCENT CURRENT (µA) 1200 1000 800 600 400 200 8-LEAD PDIP T = –55°C 00874-024 0 4 8 12 16 20 24 28 TOTAL SUPPLY VOLTAGE (V) 32 36 –40 –20 0 20 40 AMBIENT TEMPERATURE (°C) 60 80 Figure 24. Quiescent Current vs. Supply Voltage vs. Temperature Figure 27. Maximum Power Dissipation vs. Temperature for Packages Rev. G | Page 16 of 28 00874-027 0 0 –60 00874-026 0 10k 00874-025 1 –60 0 10 AD822 –70 5V –80 100 5µs –90 CROSSTALK (dB) 90 –100 –110 –120 –130 –140 300 10 0% 00874-032 1k 3k 10k 30k FREQUENCY (Hz) 100k 300k 1M 00874-028 Figure 32. Large Signal Response Unity Gain Follower; VS = ±15 V, RL = 10 kΩ Figure 28. Crosstalk vs. Frequency +VS 8 VIN 10mV 0.01µF 100 90 500ns + – AD822 RL 4 0.01µF 1/2 100pF VOUT 00874-029 Figure 29. Unity Gain Follower 10 0% 00874-033 5V 100 90 10µs Figure 33. Small Signal Response Unity Gain Follower; VS =±15 V, RL = 10 kΩ 1V 100 90 2µs 10 0% 00874-030 10 VOUT +Vs 20kΩ 0.1µF 1µF 6 2.2kΩ Figure 34. VS = 5 V, 0 V; Unity Gain Follower Response to 0 V to 4 V Step +VS 8 VIN 0.01µF 20V p-p 5kΩ VIN CROSS TALK = 20 log 00874-031 VOUT 10V IN 0.1µF –Vs 1µF Figure 35. Unity Gain Follower Figure 31. Crosstalk Test Circuit Rev. G | Page 17 of 28 00874-035 + + 3 AD822 1/2 1 5kΩ 7 AD822 1/2 – – 2 8 + – 5 AD822 RL 4 1/2 100pF VOUT 00874-034 Figure 30. 20 V p-p, 25 kHz Sine Wave Input; Unity Gain Follower; VS = ±15 V, RL = 600 Ω GND 0% AD822 VIN 10kΩ +VS 20kΩ VOUT 0.01µF 100 10mV 2µs 8 90 4 Figure 36. Gain-of-T2 Inverter GND 00874-036 1V 100 90 2µs Figure 39. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 20 mV Step, Centered 20 mV below Ground, RL = 10 kΩ 1V 100 90 2µs 10 GND 0% 00874-037 Figure 37. VS = 5 V, 0 V; Unity Gain Follower Response to 0 V to 5 V Step 10 GND 0% 00874-040 10mV 100 90 2µs Figure 40. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 2.5 V Step, Centered −1.25 V below Ground, RL = 10 kΩ 500mV 100 90 10µs 10 GND 0% 00874-038 10 Figure 41. VS = 3 V, 0 V; Gain-of-2 Inverter, VIN = 1.25 V, 25 kHz, Sine Wave Centered at −0.75 V, RL = 600 Ω Rev. G | Page 18 of 28 00874-041 Figure 38. VS = 5 V, 0 V; Unity Gain Follower Response to 40 mV Step, Centered 40 mV above Ground, RL = 10 kΩ GND 0% 00874-039 + – AD822 RL 1/2 100pF 10 0% AD822 1V 100 90 10µs .... .... .... .... .... .... .... .... .... .... 10 GND 0% .... .... .... .... .... .... .... .... .... .... 1V (a) 1V +Vs 100 90 1V 10µs ... .... .... .... .... .... .... .... .... ... 10 GND 0% .... .... .... .... .... .... .... .... .... .... 1V (b) 5V RP VIN VOUT 00874-042 Figure 42. (a) Response with RP = 0; VIN from 0 to +VS (b) VIN = 0 to +VS + 200 mV VOUT = 0 to + VS RP = 49.9 kΩ Rev. G | Page 19 of 28 AD822 APPLICATION NOTES INPUT CHARACTERISTICS In the AD822, n-channel JFETs are used to provide a low offset, low noise, high impedance input stage. Minimum input common-mode voltage extends from 0.2 V below −VS to 1 V less than +VS. Driving the input voltage closer to the positive rail causes a loss of amplifier bandwidth (as can be seen by comparing the large signal responses shown in Figure 34 and Figure 37) and increased common-mode voltage error as illustrated in Figure 20. The AD822 does not exhibit phase reversal for input voltages up to and including +VS. Figure 42 shows the response of an AD822 voltage follower to a 0 V to 5 V (+VS) square wave input. The input and output are superimposed. The output tracks the input up to +VS without phase reversal. The reduced bandwidth above a 4 V input causes the rounding of the output waveform. For input voltages greater than +VS, a resistor in series with the AD822’s noninverting input prevents phase reversal, at the expense of greater input voltage noise. This is illustrated in Figure 42. Since the input stage uses n-channel JFETs, input current during normal operation is negative; the current flows out from the input terminals. If the input voltage is driven more positive than +VS – 0.4 V, then the input current reverses direction as internal device junctions become forward biased. This is illustrated in Figure 7. A current limiting resistor should be used in series with the input of the AD822 if there is a possibility of the input voltage exceeding the positive supply by more than 300 mV, or if an input voltage is applied to the AD822 when ±VS = 0. The amplifier is damaged if left in that condition for more than 10 seconds. A 1 kΩ resistor allows the amplifier to withstand up to 10 V of continuous overvoltage and increases the input voltage noise by a negligible amount. Input voltages less than –VS are a completely different story. The amplifier can safely withstand input voltages 20 V below the negative supply voltage as long as the total voltage from the positive supply to the input terminal is less than 36 V. In addition, the input stage typically maintains picoampere (pA) level input currents across that input voltage range. The AD822 is designed for 13 nV/√Hz wideband input voltage noise and maintains low noise performance to low frequencies (refer to Figure 14). This noise performance, along with the AD822’s low input current and current noise, means that the AD822 contributes negligible noise for applications with source resistances greater than 10 kΩ and signal bandwidths greater than 1 kHz. This is illustrated in Figure 43. 100k WHENEVER JOHNSON NOISE IS GREATER THAN AMPLIFIER NOISE, AMPLIFIER NOISE CAN BE CONSIDERED NEGLIGIBLE FOR APPLICATION. 1kHz 1k RESISTOR JOHNSON NOISE 100 10k INPUT VOLTAGE NOISE (µV) 10 10Hz 1 AMPLIFIER-GENERATED NOISE 100k 10M 100M 1M SOURCE IMPEDANCE (Ω) 1G 10G 00874-043 0.1 10k Figure 43. Total Noise vs. Source Impedance OUTPUT CHARACTERISTICS The AD822’s unique bipolar rail-to-rail output stage swings within 5 mV of the negative supply and 10 mV of the positive supply with no external resistive load. The AD822’s approximate output saturation resistance is 40 Ω sourcing and 20 Ω sinking. This can be used to estimate output saturation voltage when driving heavier current loads. For instance, when sourcing 5 mA, the saturation voltage to the positive supply rail is 200 mV; when sinking 5 mA, the saturation voltage to the negative rail is 100 mV. The amplifier’s open-loop gain characteristic changes as a function of resistive load, as shown in Figure 10 to Figure 13. For load resistances over 20 kΩ, the AD822’s input error voltage is virtually unchanged until the output voltage is driven to 180 mV of either supply. If the AD822’s output is overdriven so as to saturate either of the output devices, the amplifier recovers within 2 μs of its input returning to the amplifier’s linear operating region. Direct capacitive loads interact with the amplifier’s effective output impedance to form an additional pole in the amplifier’s feedback loop, which can cause excessive peaking on the pulse response or loss of stability. Worst case is when the amplifier is used as a unity gain follower. Figure 44 shows the AD822’s pulse response as a unity gain follower driving 350 pF. This amount of overshoot indicates approximately 20° of phase margin—the system is stable, but nearing the edge. Configurations with less loop gain, and as a result less loop bandwidth, are much less sensitive to capacitance load effects. Rev. G | Page 20 of 28 AD822 20mV 100 90 2µs .... .... .... .... .... .... .... .... .... .... Figure 46 shows a method for extending capacitance load drive capability for a unity gain follower. With these component values, the circuit drives 5000 pF with a 10% overshoot. +VS 8 VIN 0.01µF + – AD822 4 –VS 0.01µF 1/2 100Ω VOUT CL 10 0% .... .... .... .... .... .... .... .... .... .... 00874-044 Figure 44. Small Signal Response of AD822 as Unity Gain Follower Driving 350 pF 20kΩ Figure 46. Extending Unity Gain Follower Capacitive Load Capability Beyond 350 pF Figure 45 is a plot of capacitive load that results in a 20° phase margin vs. noise gain for the AD822. Noise gain is the inverse of the feedback attenuation factor provided by the feedback network in use. 5 4 RF R1 NOISE GAIN 1+ 3 2 1 300 1k 3k 10k CAPACITIVE LOAD FOR 20° PHASE MARGIN (pF) 30k RF R1 CL 00874-045 Figure 45. Capacitive Load Tolerance vs. Noise Gain Rev. G | Page 21 of 28 00874-046 20pF AD822 APPLICATIONS SINGLE-SUPPLY VOLTAGE-TO-FREQUENCY CONVERTER The circuit shown in Figure 47 uses the AD822 to drive a low power timer that produces a stable pulse of width t1. The positive going output pulse is integrated by R1 − C1 and used as one input to the AD822 that is connected as a differential integrator. The other input (nonloading) is the unknown voltage, VIN. The AD822 output drives the timer trigger input, closing the overall feedback loop. 10V C5 0.1µF U4 REF02 VREF = 5V RSCALE ** 10kΩ CMOS 74HCO4 U3B 3 4 0.01µF, 2% Table 6. In-Amp Performance Parameters CMRR Common-Mode Voltage Range 3 dB BW, G = 10 G = 100 tSETTLING 2 V Step (VS = 0 V, 3 V) 5 V ( VS = ±5 V) Noise @ f = 1 kHz, G = 10 G = 100 ISUPPLY ( Total) VS = 3 V, 0 V 74 dB −0.2 V to +2 V 180 kHz 18 kHz 2 μs 270 nV/√Hz 2.2 μV/√Hz 1.10 mA 5 μs 270 nV/√Hz 2.2 μV/√Hz 1.15 mA VS = ±5 V 80 dB −5.2 V to +4 V 180 kHz 18 kHz 2 6 5 3 4 U3A 2 C3 0.1µF 1 U2 CMOS 555 4 6 2 7 R THR OUT2 OUT1 100 90 5µs .... .... .... .... ... ... .... .... .... .... R2 499kΩ 1% R1 499kΩ 1% U1 C1 R3* 116kΩ 8 V+ AD822B – + 1/2 OUT CV 3 5 TR DIS GND 1 VIN Figure 47. Single-Supply Voltage-to-Frequency Converter 00874-047 NOTES 1. fOUT = VIN/(VREF × t1), t1 = 1.1 × R3 × C6. = 25kHz FS AS SHOWN. 2. * = 1% METAL FILM
AD822 价格&库存

很抱歉,暂时无法提供与“AD822”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AD8226ARZ-R7
  •  国内价格
  • 1+8.89493
  • 10+8.1776
  • 30+8.03413

库存:55

AD822BRZ-REEL
  •  国内价格
  • 1+24.02663
  • 10+23.13675
  • 100+21.00105
  • 500+19.9332

库存:30

AD822ARZ-REEL7
  •  国内价格
  • 1+30.4874
  • 30+29.4139
  • 100+27.2669
  • 500+25.1199
  • 1000+24.0464

库存:93

AD8221BRZ-R7
  •  国内价格
  • 1+45.765
  • 10+44.07
  • 100+40.002
  • 500+37.968

库存:0

AD8221ARZ-R7
    •  国内价格
    • 1+18.46587
    • 10+17.78195
    • 100+15.73018
    • 500+15.31983

    库存:0

    AD8221ARMZ-R7
    •  国内价格
    • 1+32.70988
    • 30+31.55813
    • 100+29.25461
    • 500+26.9511
    • 1000+25.79934

    库存:14

    AD822BRZ-REEL7
    •  国内价格
    • 1+33.0525
    • 10+31.64

    库存:10