0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD823

AD823

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    AD823 - Dual, 16 MHz, Rail-to-Rail FET Input Amplifier - Analog Devices

  • 数据手册
  • 价格&库存
AD823 数据手册
Dual, 16 MHz, Rail-to-Rail FET Input Amplifier AD823 FEATURES Single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 3 V to 36 V High load drive Capacitive load drive of 500 pF, G = +1 Output current of 15 mA, 0.5 V from supplies Excellent ac performance on 2.6 mA/amplifier −3 dB bandwidth of 16 MHz, G = +1 350 ns settling time to 0.01% (2 V step) Slew rate of 22 V/μs Good dc performance 800 μV maximum input offset voltage 2 μV/°C offset voltage drift 25 pA maximum input bias current Low distortion: −108 dBc worst harmonic @ 20 kHz Low noise: 16 nV/√Hz @ 10 kHz No phase inversion with inputs to the supply rails CONNECTION DIAGRAM OUT1 1 –IN1 2 +IN1 3 –VS 4 8 7 6 +VS OUT2 +IN2 00901-001 –IN2 AD823 5 Figure 1. 8-Lead PDIP and SOIC 3V RL = 100kΩ CL = 50pF +VS = +3V G = +1 GND 500mV 200µs 00901-002 APPLICATIONS Battery-powered precision instrumentation Photodiode preamps Active filters 12-bit to 16-bit data acquisition systems Medical instrumentation OUTPUT (dB) Figure 2. Output Swing, +VS = +3 V, G = +1 2 1 0 –1 +VS = +5V G = +1 GENERAL DESCRIPTION The AD823 is a dual precision, 16 MHz, JFET input op amp that can operate from a single supply of 3.0 V to 36 V or from dual supplies of ±1.5 V to ±18 V. It has true single-supply capability with an input voltage range extending below ground in single-supply mode. Output voltage swing extends to within 50 mV of each rail for IOUT ≤ 100 μA, providing outstanding output dynamic range. An offset voltage of 800 μV maximum, an offset voltage drift of 2 μV/°C, input bias currents below 25 pA, and low input voltage noise provide dc precision with source impedances up to a Gigaohm. It provides 16 MHz, −3 dB bandwidth, −108 dB THD @ 20 kHz, and a 22 V/μs slew rate with a low supply current of 2.6 mA per amplifier. The AD823 drives up to 500 pF of direct capacitive load as a follower and provides an output current of 15 mA, 0.5 V from the supply rails. This allows the amplifier to handle a wide range of load conditions. –2 –3 –4 –5 –6 –7 10k 100k 1M FREQUENCY (Hz) 10M 00901-003 –8 1k Figure 3. Small Signal Bandwidth, G = +1 This combination of ac and dc performance, plus the outstanding load drive capability, results in an exceptionally versatile amplifier for applications such as A/D drivers, high speed active filters, and other low voltage, high dynamic range systems. The AD823 is available over the industrial temperature range of −40°C to +85°C and is offered in both 8-lead PDIP and 8-lead SOIC packages. Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©1995–2007 Analog Devices, Inc. All rights reserved. AD823 TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 General Description ......................................................................... 1 Connection Diagram ....................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Absolute Maximum Ratings............................................................ 6 Thermal Resistance ...................................................................... 6 ESD Caution.................................................................................. 6 Typical Performance Characteristics ..............................................7 Theory of Operation ...................................................................... 13 Output Impedance ..................................................................... 14 Application Notes ........................................................................... 15 Input Characteristics.................................................................. 15 Output Characteristics............................................................... 15 Outline Dimensions ....................................................................... 18 Ordering Guide .......................................................................... 19 REVISION HISTORY 2/07—Rev. A to Rev. B Updated Format..................................................................Universal Changes to DC Performance .......................................................... 5 Updated Outline Dimensions ....................................................... 18 Changes to Ordering Guide ......................................................... 19 5/04—Rev. 0 to Rev. A Changes to Specifications ................................................................ 2 Changes to Ordering Guide ......................................................... 17 Updated Outline Dimensions ....................................................... 17 5/95—Revision 0: Initial Version Rev. B | Page 2 of 20 AD823 SPECIFICATIONS At TA = 25°C, +VS = +5 V, RL = 2 kΩ to 2.5 V, unless otherwise noted. Table 1. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth, VO ≤ 0.2 V p-p Full Power Response Slew Rate Settling Time to 0.1% to 0.01% NOISE/DISTORTION PERFORMANCE Input Voltage Noise Input Current Noise Harmonic Distortion Crosstalk f = 1 kHz f = 1 MHz DC PERFORMANCE Initial Offset Maximum Offset Over temperature Offset Drift Input Bias Current at TMAX Input Offset Current at TMAX Open-Loop Gain TMIN to TMAX INPUT CHARACTERISTICS Input Common-Mode Voltage Range Input Resistance Input Capacitance Common-Mode Rejection Ratio OUTPUT CHARACTERISTICS Output Voltage Swing IL = ±100 μA IL = ±2 mA IL = ±10 mA Output Current Short-Circuit Current Capacitive Load Drive POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio Conditions G = +1 VO = 2 V p-p G = −1, VO = 4 V Step G = −1, VO = 2 V Step G = −1, VO = 2 V Step f = 10 kHz f = 1 kHz RL = 600 Ω to 2.5 V, VO = 2 V p-p, f = 20 kHz RL = 5 kΩ RL = 5 kΩ Min 12 14 Typ 16 3.5 22 320 350 16 1 −108 −105 −63 0.2 0.3 2 3 0.5 2 0.5 45 0.8 2.0 25 5 20 Max Unit MHz MHz V/μs ns ns nV/√Hz fA/√Hz dBc dB dB mV mV μV/°C pA nA pA nA V/mV V/mV V Ω pF dB VCM = 0 V to 4 V VCM = 0 V to 4 V VO = 0.2 V to 4 V, RL = 2 kΩ 20 20 −0.2 to +3 VCM = 0 V to 3 V 60 −0.2 to +3.8 1013 1.8 76 VOUT = 0.5 V to 4.5 V Sourcing to 2.5 V Sinking to 2.5 V G = +1 3 TMIN to TMAX, total VS = 5 V to 15 V, TMIN to TMAX 70 0.025 to 4.975 0.08 to 4.92 0.25 to 4.75 16 40 30 500 36 5.6 V V V mA mA mA pF V mA dB 5.2 80 Rev. B | Page 3 of 20 AD823 At TA = 25°C, +VS = +3.3 V, RL = 2 kΩ to 1.65 V, unless otherwise noted. Table 2. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth, VO ≤ 0.2 V p-p Full Power Response Slew Rate Settling Time to 0.1% to 0.01% NOISE/DISTORTION PERFORMANCE Input Voltage Noise Input Current Noise Harmonic Distortion Crosstalk f = 1 kHz f = 1 MHz DC PERFORMANCE Initial Offset Maximum Offset Over temperature Offset Drift Input Bias Current at TMAX Input Offset Current at TMAX Open-Loop Gain TMIN to TMAX INPUT CHARACTERISTICS Input Common-Mode Voltage Range Input Resistance Input Capacitance Common-Mode Rejection Ratio OUTPUT CHARACTERISTICS Output Voltage Swing IL = ±100 μA IL = ±2 mA IL = ±10 mA Output Current Short-Circuit Current Capacitive Load Drive POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio Conditions G = +1 VO = 2 V p-p G = −1, VO = 2 V Step G = −1, VO = 2 V Step G = −1, VO = 2 V Step f = 10 kHz f = 1 kHz RL = 100 Ω, VO = 2 V p-p, f = 20 kHz RL = 5 kΩ RL = 5 kΩ Min 12 13 Typ 15 3.2 20 250 300 16 1 −93 −105 −63 0.2 0.5 2 3 0.5 2 0.5 30 1.5 2.5 25 5 20 Max Unit MHz MHz V/μs ns ns nV/√Hz fA/√Hz dBc dB dB mV mV μV/°C pA nA pA nA V/mV V/mV V Ω pF dB VCM = 0 V to 2 V VCM = 0 V to 2 V VO = 0.2 V to 2 V, RL = 2 kΩ 15 12 −0.2 to +1 VCM = 0 V to 1 V 54 −0.2 to +1.8 1013 1.8 70 VOUT = 0.5 V to 2.5 V Sourcing to 1.5 V Sinking to 1.5 V G = +1 3 TMIN to TMAX, total VS = 3.3 V to 15 V, TMIN to TMAX 70 0.025 to 3.275 0.08 to 3.22 0.25 to 3.05 15 40 30 500 36 5.7 V V V mA mA mA pF V mA dB 5.0 80 Rev. B | Page 4 of 20 AD823 At TA = 25°C, VS = ±15 V, RL = 2 kΩ to 0 V, unless otherwise noted. Table 3. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth, VO ≤ 0.2 V p-p Full Power Response Slew Rate Settling Time to 0.1% to 0.01% NOISE/DISTORTION PERFORMANCE Input Voltage Noise Input Current Noise Harmonic Distortion Crosstalk f = 1 kHz f = 1 MHz DC PERFORMANCE Initial Offset Maximum Offset Over temperature Offset Drift Input Bias Current at TMAX Input Offset Current at TMAX Open-Loop Gain TMIN to TMAX INPUT CHARACTERISTICS Input Common-Mode Voltage Range Input Resistance Input Capacitance Common-Mode Rejection Ratio OUTPUT CHARACTERISTICS Output Voltage Swing IL = ±100 μA IL = ±2 mA IL = ±10 mA Output Current Short-Circuit Current Capacitive Load Drive POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio Conditions G = +1 VO = 2 V p-p G = −1, VO = 10 V Step G = −1, VO = 10 V Step G = −1, VO = 10 V Step f = 10 kHz f = 1 kHz RL = 600 Ω, VO = 10 V p-p, f = 20 kHz RL= 5 kΩ RL= 5 kΩ Min 12 17 Typ 16 4 25 550 650 16 1 −90 −105 −63 0.7 1.0 2 5 60 0.5 2 0.5 60 3.5 7 30 5 20 Max Unit MHz MHz V/μs ns ns nV/√Hz fA/√Hz dBc dB dB mV mV μV/°C pA pA nA pA nA V/mV V/mV V Ω pF dB VCM = 0 V VCM = −10 V VCM = 0 V VO = +10 V to −10 V, RL = 2 kΩ 30 30 −15.2 to +13 VCM = −15 V to +13 V 66 −15.2 to +13.8 1013 1.8 82 VOUT = −14.5 V to +14.5 V Sourcing to 0 V Sinking to 0 V G = +1 3 TMIN to TMAX, total VS = 5 V to 15 V, TMIN to TMAX 70 −14.95 to +14.95 −14.92 to +14.92 −14.75 to +14.75 17 80 60 500 36 8.4 V V V mA mA mA pF V mA dB 7.0 80 Rev. B | Page 5 of 20 AD823 ABSOLUTE MAXIMUM RATINGS Table 4 Parameter Supply Voltage Internal Power Dissipation PDIP (N) SOIC (R) Input Voltage (Common Mode) Differential Input Voltage Output Short-Circuit Duration Storage Temperature Range N, R Operating Temperature Range Lead Temperature Range (Soldering, 10 sec) MAXIMUM POWER DISSIPATION (W) Rating 36 V 1.3 W 0.9 W ±VS ±1.2 V See Figure 4 −65°C to +125°C −40°C to +85°C 300°C 2.0 8-LEAD PDIP TJ = 150°C 1.5 1.0 8-LEAD SOIC 0.5 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 70 80 90 Figure 4. Maximum Power Dissipation vs. Temperature THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Specification is for device in free air. Table 5. Thermal Resistance Package Type 8-Lead PDIP 8-Lead SOIC θJA 90 160 Unit °C/W °C/W ESD CAUTION Rev. B | Page 6 of 20 00901-004 0 –50 –40 –30 –20 –10 0 10 20 30 40 50 60 AMBIENT TEMPERATURE (°C) AD823 TYPICAL PERFORMANCE CHARACTERISTICS 80 70 60 50 UNITS +VS = +5V 314 UNITS σ = 40µV 100 90 80 70 60 UNITS +VS = +5V 317 UNITS σ = 0.4pA 40 30 20 10 00901-005 50 40 30 20 10 –150 –100 –50 0 50 100 INPUT OFFSET VOLTAGE (µV) 150 200 0 1 2 3 4 5 6 7 INPUT BIAS CURRENT (pA) 8 9 10 Figure 5. Typical Distribution of Input Offset Voltage Figure 8. Typical Distribution of Input Bias Current 22 20 18 16 14 UNITS +VS = +5V –55°C TO +125°C 103 UNITS 10000 +VS = +5V VCM = 0V INPUT BIAS CURRENT (pA) 1000 100 12 10 8 6 4 2 00901-006 10 1 –5 –4 –3 –2 –1 0 3 4 5 1 2 INPUT OFFSET VOLTAGE DRIFT (µV/°C) 6 7 25 50 75 TEMPERATURE (°C) 100 125 Figure 6. Typical Distribution of Input Offset Voltage Drift Figure 9. Input Bias Current vs. Temperature 3 2 +VS = +5V 1000 VS = ±15V INPUT BIAS CURRENT (pA) INPUT BIAS CURRENT (pA) 1 0 –1 –2 –3 –4 –5 100 10 1 00901-007 –4 –3 –2 –1 0 1 2 3 COMMON-MODE VOLTAGE (V) 4 5 –12 –8 –4 0 4 8 COMMON-MODE VOLTAGE (V) 12 16 Figure 7. Input Bias Current vs. Common-Mode Voltage Figure 10. Input Bias Current vs. Common-Mode Voltage Rev. B | Page 7 of 20 00901-010 0.1 –16 00901-009 0 –6 0.1 0 00901-008 0 –200 0 AD823 110 VS = ±2.5V 95 94 100 93 RL = 2kΩ +VS = +5V OPEN-LOOP GAIN (dB) OPEN-LOOP GAIN (dB) 00901-011 92 91 90 89 88 87 90 80 70 1k 10k LOAD RESISTANCE (Ω) 100k 500k –25 5 35 65 TEMPERATURE (°C) 95 125 Figure 11. Open-Loop Gain vs. Load Resistance 1000 RL = 10kΩ OPEN-LOOP GAIN (k V ) V Figure 14. Open-Loop Gain vs. Temperature 100 100 RL = 2kΩ CL = 20pF 100 OPEN-LOOP GAIN (dB) RL = 1kΩ 10 RL = 100Ω 1 60 PHASE 60 40 GAIN 20 40 20 0 00901-012 0 1k 10k 100k 1M 10M FREQUENCY (Hz) Figure 12. Open-Loop Gain vs. Output Voltage, VS = ±2.5 V –40 –50 –60 THD (dB) Figure 15. Open-Loop Gain and Phase Margin vs. Frequency 100 +VS = +5V –70 –80 –90 –100 –110 100 +VS = +3V VOUT = 2V p-p RL = 100Ω VS = ±2.5V VOUT = 2V p-p VS = ±15V RL = 1kΩ VOUT = 10V p-p RL = 600Ω INPUT VOLTAGE NOISE (nV/√Hz) 30 ALL OTHERS +VS = +3V VOUT = 2V p-p RL = 5kΩ +VS = +5V VOUT = 2V p-p RL = 5kΩ 00901-013 10 1k 10k FREQUENCY (Hz) 100k 1M 10 100 1k 10k FREQUENCY (Hz) 100k 1M Figure 13. Total Harmonic Distortion vs. Frequency Figure 16. Input Voltage Noise vs. Frequency Rev. B | Page 8 of 20 00901-016 3 00901-015 0.1 0.5 1.0 –2.5 –2.0 –1.5 –1.0 –0.5 0 OUTPUT VOLTAGE (V) 1.5 2.0 2.5 –20 100 –20 100M PHASE MARGIN (Degrees) 80 80 00901-014 60 100 86 –55 AD823 5 4 CL = 20pF RL = 2kΩ G = +1 90 80 70 CMRR (dB) VS = ±15V +VS = +5V CLOSED-LOOP GAIN (dB) 3 2 1 0 –1 –2 –3 –4 00901-017 60 50 40 30 20 10 +27°C +125°C –55°C 100 1k 10k 100k FREQUENCY (Hz) 1M 10M Figure 17. Closed-Loop Gain vs. Frequency 100 Figure 20. Common-Mode Rejection Ratio vs. Frequency 10 +VS = +5V GAIN = +1 +VS = +5V 10 OUTPUT SATURATION VOLTAGE (V) OUTPUT RESISTANCE ( Ω) 1 VS – VOH 25°C 1 0.1 0.1 VOL 25°C 00901-018 1k 10k 100k FREQUENCY (Hz) 1M 10M 1 10 LOAD CURRENT (mA) 100 Figure 18. Output Resistance vs. Frequency, +VS = +5 V, Gain = +1 10 8 6 4 2 0 –2 –4 –6 –8 00901-019 Figure 21. Output Saturation Voltage vs. Load Current 10 OUTPUT STEP SIZE FROM 0V TO VSHOWN (V) VS = ±15V CL = 20pF 1% 0.1% 0.01% QUIESCENT CURRENT (mA) 8 +125°C +25°C 6 –55°C 4 1% 0.1% 0.01% 2 200 300 400 500 600 700 0 5 SETTLING TIME (ns) 10 15 SUPPLY VOLTAGE (±V) 20 Figure 19. Output Step Size vs. Settling Time (Inverter) Figure 22. Quiescent Current vs. Supply Voltage Rev. B | Page 9 of 20 00901-022 –10 100 0 00901-021 0.01 100 0.01 0.1 00901-020 –5 0.30 3.27 6.24 9.21 12.18 15.15 18.12 21.09 24.06 27.03 30.00 FREQUENCY (MHz) AD823 100 90 +VS = +5V 21 18 SERIES RESISTANCE ( Ω) +VS = +5V VIN RS CL POWER SUPPLY REJECTION (dB) 80 70 60 50 40 30 20 10 00901-023 15 12 9 ФM = 45° 6 ФM = 20° 3 00901-026 +PSRR –PSRR 0 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 0 0 1 2 3 4 5 6 7 CAPACITOR (pF × 1000) 8 9 10 Figure 23. Power Supply Rejection vs. Frequency 30 Figure 26. Series Resistance vs. Capacitive Load –30 –40 –50 CROSSTALK (dB) RL = 2kΩ G = +1 +VS = +5V OUTPUT VOLTAGE (V p-p) 20 VS = ±15V –60 –70 –80 –90 –100 –110 –120 10 +VS = +5V +VS = +3V 00901-024 100k 1M FREQUENCY (Hz) 10M 10k 100k FREQUENCY (Hz) 1M 10M Figure 24. Large Signal Frequency Response VIN = 2.9V p-p +VS = +3V G = –1 Figure 27. Crosstalk vs. Frequency VIN = 20V p-p VS = ±15V G = +1 500mV 100k Ω 100k Ω VIN = 2.9V p-p 50Ω 100k Ω 3V 10µs 5V +15V 20µs VOUT 00901-025 20kHz, 20V p-p 00901-028 50pF –15V 604Ω 50pF Figure 25. Output Swing, +VS = +3 V, G = −1 Figure 28. Output Swing, VS = ±15 V, G = +1 Rev. B | Page 10 of 20 00901-027 0 10k –130 1k AD823 5V RL = 300Ω CL = 50pF RF = RG = 2kΩ +VS = +5V G = –1 RL = 100kΩ CL = 50pF +VS = +3V G = +1 3V GND 00901-029 500mV GND 200µs 500mV 200µs Figure 29. Output Swing, +VS = +5 V, G = −1 Figure 32. Output Swing, +VS = +3 V, G = +1 VIN = 100mV STEP +VS = +3V G = +1 5V RL = 2kΩ CL = 50pF +VS = +5V G = +1 1.55V 1.45V 00901-030 25mV 50ns 500mV GND 100ns Figure 30. Pulse Response, +VS = +3 V, G = +1 Figure 33. Pulse Response, +VS = +5 V, G = +1 5V RL = 2kΩ CL = 50pF +VS = +5V G = +2 RL = 2kΩ CL = 470pF +VS = +5V G = +1 00901-031 500mV GND 100ns 500mV 200ns Figure 31. Pulse Response, +VS = +5 V, G = +2 Figure 34. Pulse Response, +VS = +5 V, G = +1, CL = 470 pF Rev. B | Page 11 of 20 00901-034 00901-033 00901-032 AD823 RL = 100kΩ CL = 50pF VS = ±15V G = +1 +10V –10V 5V 500ns Figure 35. Pulse Response, VS = ±15 V, G = +1 00901-035 Rev. B | Page 12 of 20 AD823 THEORY OF OPERATION The AD823 is fabricated on the Analog Devices, Inc. proprietary complementary bipolar (CB) process that enables the construction of PNP and NPN transistors with similar fT’s in the 600 MHz to 800 MHz region. In addition, the process also features N-Channel JFETs that are used in the input stage of the AD823. These process features allow the construction of high frequency, low distortion op amps with picoamp input currents. This design uses a differential output input stage to maximize bandwidth and headroom (see Figure 36). The smaller signal swings required on the S1P/S1N outputs reduce the effect of the nonlinear currents due to junction capacitances and improve the distortion performance. With this design, harmonic distortion of better than −91 dB @ 20 kHz into 600 Ω with VOUT = 4 V p-p on a single 5 V supply is achieved. The complementary common emitter design of the output stage provides excellent load drive without the need for emitter followers, thereby improving the output range of the device considerably with respect to conventional op amps. The AD823 can drive 20 mA with the outputs within 0.6 V of the supply rails. The AD823 also offers outstanding precision for a high speed op amp. Input offset voltages of 1 mV maximum and offset drift of 2 μV/°C are achieved through the use of the Analog Devices advanced thin film trimming techniques. VCC R42 R37 VBE + 0.3V V1 I5 Q43 Q55 I6 A nested integrator topology is used in the AD823 (see Figure 37). The output stage can be modeled as an ideal op amp with a single-pole response and a unity-gain frequency set by transconductance gm2 and Capacitor C2. R1 is the output impedance of the input stage; gm is the input transconductance. C1 and C5 provide Miller compensation for the overall op amp. The unity-gain frequency occurs at gm/C5. Solving the node equations for this circuit yields V OUT Vi where: = A0 (sR1[C1( A2 + 1)] + 1) × ⎛ s ⎡ ⎜⎢ ⎜ g m2 ⎤ ⎞ + 1⎟ ⎟ ⎣ C2 ⎥ ⎠ ⎦ ⎝ A0 = gmgm2 R2R1 (open-loop gain of op amp) A2 = gm2 R2 (open-loop gain of output stage). The first pole in the denominator is the dominant pole of the amplifier and occurs at ~18 Hz. This equals the input stage output impedance R1 multiplied by the Miller-multiplied value of C1. The second pole occurs at the unity-gain bandwidth of the output stage, which is 23 MHz. This type of architecture allows more open-loop gain and output drive to be obtained than a standard 2-stage architecture would allow. Q44 A=1 Q57 A = 19 Q72 VINP J1 J6 Q61 Q46 Q58 Q49 Q18 C2 R44 Q21 R28 Q54 VOUT VINN S1P S1N Q62 Q60 C1 VB VCC Q48 Q53 Q35 I1 C6 R33 I2 R43 I3 Q56 Q52 I4 Q17 A = 19 Q59 A=1 VEE Figure 36. Simplified Schematic Rev. B | Page 13 of 20 00901-036 AD823 OUTPUT IMPEDANCE The low frequency open-loop output impedance of the commonemitter output stage used in this design is approximately 30 kΩ. Although this is significantly higher than a typical emitter follower output stage, when it is connected with feedback, the output impedance is reduced by the open-loop gain of the op amp. With 109 dB of open-loop gain, the output impedance is reduced to
AD823 价格&库存

很抱歉,暂时无法提供与“AD823”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AD823ARZ-R7
  •  国内价格
  • 1+37.38023
  • 10+34.32828
  • 30+33.71789
  • 100+31.88673

库存:1

AD823ARZ-RL
  •  国内价格
  • 1+42.70542
  • 10+39.20242
  • 30+38.50182
  • 100+36.40002

库存:9

AD8231ACPZ-R7
  •  国内价格
  • 1+54.43098
  • 10+52.30477
  • 100+47.20187
  • 500+44.65042

库存:0

AD823AARZ-R7
  •  国内价格
  • 1+48.816
  • 10+46.556

库存:0

AD8232ACPZ-R7
  •  国内价格
  • 1+11.187
  • 10+10.6785

库存:34