VPSR
ACOM
TEMP
ACOM
CLPA
FUNCTIONAL BLOCK DIAGRAM
COMA
24
23
22
21
20
19
18
17
TEMP
VGA
CONTROL
VPSA 25
INHA 26
CHANNEL A
TruPwr™
INLA 27
APPLICATIONS
PWDN 28
Wireless infrastructure power amplifier linearization/control
Antenna VSWR monitor
Gain and power control and measurement
Transmitter signal strength indication (TSSI)
Dual-channel wireless infrastructure radios
COMR 29
ITGT2
OUTA
OUTB
INLB 30
INHB 31
ISIG2
CHANNEL B
TruPwr™
ISIG2
ITGT2
VPSB 32
2
3
4
5
6
7
8
COMB
ADJB
ADJA
VREF
VLVL
CLPB
CHPB
VSTA
15
OUTA
14
FBKA
13
OUTP
12
OUTN
11
FBKB
10
OUTB
9
VSTB
VGA
CONTROL
DECB
BIAS
1
16
05334-001
RMS measurement of high crest-factor signals
Dual-channel and channel difference outputs ports
Integrated accurately scaled temperature sensor
Wide dynamic range ±1 dB over 60 dB
±0.5 dB temperature-stable linear-in-dB response
Low log conformance ripple
+5 V operation at 70 mA, –40°C to +85°C
Small footprint, 5 mm × 5 mm, LFCSP
DECA
FEATURES
CHPA
Data Sheet
LF to 2.7 GHz
Dual 60 dB TruPwr™ Detector
AD8364
Figure 1. Functional Block Diagram
GENERAL DESCRIPTION
The AD8364 is a true rms, responding, dual-channel RF power
measurement subsystem for the precise measurement and control
of signal power. The flexibility of the AD8364 allows communications systems, such as RF power amplifiers and radio transceiver
AGC circuits, to be monitored and controlled with ease. Operating
on a single 5 V supply, each channel is fully specified for operation
up to 2.7 GHz over a dynamic range of 60 dB. The AD8364
provides accurately scaled, independent, rms outputs of both RF
measurement channels. Difference output ports, which measure
the difference between the two channels, are also available. The
on-chip channel matching makes the rms channel difference
outputs extremely stable with temperature and process variations.
The device also includes a useful temperature sensor with an
accurately scaled voltage proportional to temperature, specified
over the device operating temperature range. The AD8364 can
be used with input signals having rms values from −55 dBm to
+5 dBm referred to 50 Ω and large crest factors with no
accuracy degradation.
Integrated in the AD8364 are two matched AD8362 channels
(see the AD8362 data sheet for more information) with improved
temperature performance and reduced log conformance ripple.
Enhancements include improved temperature performance and
reduced log-conformance ripple compared to the AD8362. Onchip wide bandwidth output op amps are connected to accommodate flexible configurations that support many system
solutions.
The device can easily be configured to provide four rms
measurements simultaneously. Linear-in-dB rms measurements
are supplied at OUTA and OUTB, with conveniently scaled
slopes of 50 mV/dB. The rms difference between OUTA and
OUTB is available as differential or single-ended signals at
OUTP and OUTN. An optional voltage applied to VLVL
provides a common mode reference level to offset OUTP and
OUTN above ground.
The AD8364 is supplied in a 32-lead, 5 mm × 5 mm LFCSP, for
the operating temperature of –40°C to +85°C.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2005-2012 Analog Devices, Inc. All rights reserved.
AD8364
Data Sheet
TABLE OF CONTENTS
Specifications..................................................................................... 3
Constant Output Power Operation.......................................... 27
Absolute Maximum Ratings............................................................ 7
Gain-Stable Transmitter/Receiver ............................................ 29
ESD Caution .................................................................................. 7
Temperature Compensation Adjustment................................ 31
Pin Configuration and Function Descriptions ............................. 8
Device Calibration and Error Calculation .............................. 31
Typical Performance Characteristics ............................................. 9
Selecting Calibration Points to Improve Accuracy over a
Reduced Range ........................................................................... 32
General Description and Theory.................................................. 18
Square Law Detector and Amplitude Target ............................. 19
RF Input Interface ...................................................................... 19
Offset Compensation ................................................................. 19
Temperature Sensor Interface ................................................... 20
VREF Interface ........................................................................... 20
Power-Down Interface ............................................................... 20
VST[A, B] Interface .................................................................... 20
OUT[A, B, P, N] Outputs .......................................................... 21
Measurement Channel Difference Output Using
OUT[P, N] ................................................................................... 22
Altering the Slope ....................................................................... 34
Channel Isolation ....................................................................... 34
Choosing the Right Value for CHP[A, B] and CLP[A, B] .... 36
RF Burst Response Time ........................................................... 36
Single-Ended Input Operation ................................................. 36
Printed Circuit Board Considerations..................................... 37
Package Considerations ............................................................. 37
Description of Characterization ............................................... 38
Basis for Error Calculations ...................................................... 38
Evaluation Board ........................................................................ 40
Controller Mode ......................................................................... 22
Outline Dimensions ....................................................................... 41
RF Measurement Mode Basic Connections............................ 23
Ordering Guide .......................................................................... 41
Controller Mode Basic Connections ....................................... 24
REVISION HISTORY
1/12—Rev. A to Rev. B
Change to Figure 84 ....................................................................... 40
11/11—Rev. 0 to Rev. A
Changes to Figure 2 .......................................................................... 8
Changes to Automatic Power Control Section ........................... 24
Replaced Evaluation and Characterization Circuit Board
Layouts Section with Evaluation Board Section ......................... 40
Changes to Figure 84 ...................................................................... 40
Deleted Figure 85 and Figure 86; Renumbered Sequentially ... 41
Updated Outline Dimensions ....................................................... 41
Changes to Ordering Guide .......................................................... 41
Deleted Table 7, AD8364-EVAL-500 Evaluation Board
Configuration Options and AD8364-EVAL-2140 Evaluation
Board Configuration Options; Renumbered Sequentially ....... 42
Deleted Evaluation Boards Section and Figure 87 ..................... 44
Deleted Figure 88............................................................................ 45
Deleted Assembly Drawings Section, Figure 89, and
Figure 90 .......................................................................................... 46
4/05—Revision 0: Initial Version
Rev. B | Page 2 of 44
Data Sheet
AD8364
SPECIFICATIONS
VS = VPSA = VPSB = VPSR = 5 V, TA = 25°C, Channel A frequency = Channel B frequency, VLVL = VREF, VST[A, B] = OUT[A, B],
OUT[P, N] = FBK[A, B], differential input via Balun, CW input f ≤ 2.7 GHz, unless otherwise noted.
Table 1.
Parameter
OVERALL FUNCTION
Signal Input Interface
Specified Frequency Range
DC Common-Mode Voltage
Signal Output Interface
Wideband Noise
MEASUREMENT MODE,
450 MHz OPERATION
±1 dB Dynamic Range 1
±0.5 dB Dynamic Range1
Maximum Input Level
Minimum Input Level
Slope
Intercept
Output Voltage—High Power In
Output Voltage—Low Power In
Temperature Sensitivity
Input A to Input B Isolation
Input A to OUTB Isolation
Input B to OUTA Isolation 2
Input Impedance
Input Return Loss
MEASUREMENT MODE,
880 MHz OPERATION
±1 dB Dynamic Range1
±0.5 dB Dynamic Range1
Maximum Input Level
Minimum Input Level
Slope
Intercept
Output Voltage—High Power In
Output Voltage—Low Power In
Conditions
Channel A and Channel B, CW sine wave input
INH[A, B] (Pins 26, 31) INL[A, B] (Pins 27, 30)
Min
Typ
Max
Unit
2.7
2.5
GHz
V
40
nV/√Hz
69
65
62/59
50/52
12
−58
51.6
−59
2.53
0.99
dB
dB
dB
dB
dBm
dBm
mV/dB
dBm
V
V
−0.1, +0.2
−0.2, +0.3
−0.3, +0.4
dB
dB
dB
±0.25
±0.2
±0.2
71
dB
dB
dB
dB
54
54
dB
dB
210||0.1
−12
Ω||pF
dB
66/57
58/40
62/54
20/20
8/0
−58/−57
51.6
−59.2
2.54
0.99
dB
dB
dB
dB
dBm
dBm
mV/dB
dBm
V
V
LF
OUT[A, B] (Pins 15, 10)
CLP[A, B] = 0.1µF, fSPOT = 100 kHz,
RF input = 2140 MHz, ≥−40 dBm
ADJA = ADJB = 0 V, error referred to best fit line using
linear regression @ PINH[A, B] = −40 dBm and −20 dBm,
TA = 25°C, balun = M/A-Com ETK4-2T
Pins OUT[A, B]
−40°C < TA < +85°C
Pins OUT[A, B], (Channel A/Channel B)
−40°C < TA < +85°C, (Channel A/Channel B)
±1 dB error
±1 dB error
Pins OUT[A, B] @ PINH[A, B] = −10 dBm
Pins OUT[A, B] @ PINH[A, B] = −40 dBm
Deviation from OUT[A, B] @ 25°C
−40°C < TA < 85°C; PINH[A, B] = −10 dBm
−40°C < TA < 85°C; PINH[A, B] = −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −40 dBm
Deviation from OUTP to OUTN @ 25°C
−40°C < TA < 85°C; PINH[A, B] = −10 dBm, −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −25 dBm, −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −40 dBm, −25 dBm
Baluns = Macom ETC1.6-4-2-3 (both channels)
Freq separation = 1 kHz
PINHB = −50 dBm, OUTB = OUTBPINHB ± 1 dB
PINHA = −50 dBm, OUTA = OUTAPINHA ± 1 dB
INHA/INLA, INHB/INLB differential drive
With recommended balun
ADJA = ADJB = 0 V, error referred to best fit line using
linear regression @ PINH[A, B] = −40 dBm and −20 dBm,
TA = 25°C, balun = Mini-Circuits® JTX-4-10T
Pins OUT[A, B], (Channel A/Channel B)
−40°C < TA < +85°C
Pins OUT[A, B], (Channel A/Channel B)
−40°C < TA < +85°C
±1 dB error, (Channel A/Channel B)
±1 dB error, (Channel A/Channel B)
Pins OUT[A, B] @ PINH[A, B] = −10 dBm
Pins OUT[A, B] @ PINH[A, B] = −40 dBm
Rev. B | Page 3 of 44
AD8364
Parameter
Temperature Sensitivity
Input A to Input B Isolation
Input A to OUTB Isolation
Input B to OUTA Isolation2
Input Impedance
Input Return Loss
MEASUREMENT MODE,
1880 MHz OPERATION
±1 dB Dynamic Range1
±0.5 dB Dynamic Range1
Maximum Input Level
Minimum Input Level
Slope
Intercept
Output Voltage—High Power In
Output Voltage—Low Power In
Temperature Sensitivity
Input A to Input B Isolation
Input A to OUTB Isolation
Input B to OUTA Isolation2
Input Impedance
Input Return Loss
MEASUREMENT MODE,
2.14 GHz OPERATION
±1 dB Dynamic Range1
±0.5 dB Dynamic Range1
Maximum Input Level
Minimum Input Level
Slope
Intercept
Output Voltage—High Power In
Output Voltage—Low Power In
Data Sheet
Conditions
Deviation from OUT[A, B] @ 25°C
−40°C < TA < 85°C; PINH[A, B] = −10 dBm
−40°C < TA < 85°C; PINH[A, B] = −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −40 dBm
Deviation from OUTP to OUTN @ 25°C
−40°C < TA < 85°C; PINH[A, B] = −10 dBm, −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −25 dBm, −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −40 dBm, −25 dBm
Baluns = Macom ETC1.6-4-2-3 (both channels)
PINHB = −50 dBm, OUTB = OUTBPINHB ± 1 dB
PINHA = −50 dBm, OUTA = OUTAPINHA ± 1 dB
INHA/INLA, INHB/INLB differential drive
With recommended balun
ADJA = ADJB = 0.75 V, error referred to best fit line using
linear regression @ PINH[A, B] = −40 dBm and −20 dBm,
TA = 25°C, balun = Murata LDB181G8820C-110
Pins OUT[A, B], (Channel A/Channel B)
−40°C < TA < +85°C
Pins OUT[A, B], (Channel A/Channel B)
−40°C < TA < +85°C
±1 dB error, (Channel A/Channel B)
±1 dB error
Pins OUT[A, B] @ PINH[A,B] = −10 dBm
Pins OUT[A, B] @ PINH[A,B] = −40 dBm
Deviation from OUT[A, B] @ 25°C
−40°C < TA < 85°C; PINH[A, B] = −10 dBm
−40°C < TA < 85°C; PINH[A, B] = −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −40 dBm
Deviation from OUTP to OUTN @ 25°C
−40°C < TA < 85°C; PINH[A, B] = −10 dBm, −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −25 dBm, −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −40 dBm, −25 dBm
Baluns = Macom ETC1.6-4-2-3 (both channels)
PINHB = −50 dBm, OUTB = OUTBPINHB ± 1 dB
PINHA = −50 dBm, OUTA = OUTAPINHA ± 1 dB
INHA/INLA, INHB/INLB differential drive
With recommended balun
ADJA = ADJB = 1.02 V, error referred to best fit line using
linear regression @ PINH[A, B] = −40 dBm and −20 dBm,
TA = 25°C, balun = Murata LDB212G1020C-001
Pins OUT[A, B], (Channel A/Channel B)
−40°C < TA < +85°C
Pins OUT[A, B], (Channel A/Channel B)
−40°C < TA < +85°C
±1 dB Error, (Channel A/Channel B)
±1 dB Error, (Channel A/Channel B)
Channel A/Channel B
Channel A/Channel B
Pins OUT[A, B] @ PINH[A, B] = −10 dBm
Pins OUT[A, B] @ PINH[A, B] = −40 dBm
Rev. B | Page 4 of 44
Min
Typ
Max
Unit
+0.5
+0.5
+0.5
dB
dB
dB
+0.1, −0.2
+0.1, −0.2
+0.1, −0.2
64
35
35
dB
dB
dB
dB
dB
dB
200||0.3
−9
Ω||pF
dB
69/61
60/50
62/51
58/51
11/3
−58
50
−62
2.49
0.98
dB
dB
dB
dB
dBm
dBm
mV/dB
dBm
V
V
+0.5, −0.2
+0.5, −0.2
+0.5, −0.2
dB
dB
dB
±0.3
±0.3
±0.3
61
33
33
dB
dB
dB
dB
dB
dB
167||0.14
−8
Ω||pF
dB
66/57
58/40
62/54
30/30
−2/−4
−57−51
49.5/52.1
−58.3/−57.1
2.42
0.90
dB
dB
dB
dB
dBm
dBm
mV/dB
dBm
V
V
Data Sheet
Parameter
Temperature Sensitivity
Deviation from CW Response
Input A to Input B Isolation
Input A to OUTB Isolation
Input B to OUTA Isolation2
Input Impedance
Input Return Loss
MEASUREMENT MODE,
2.5 GHz OPERATION
± 1 dB Dynamic Range1
±0.5 dB Dynamic Range1
Maximum Input Level
Minimum Input Level
Slope
Intercept
Output Voltage—High Power In
Output Voltage—Low Power In
Temperature Sensitivity
Input A to Input B Isolation
Input A to OUTB Isolation
Input B to OUTA Isolation2
Input Impedance
Input Return Loss
OUTPUT INTERFACE
Voltage Range Min
Voltage Range Max
Source/Sink Current
AD8364
Conditions
Deviation from OUT[A, B] @ 25°C
−40°C < TA < 85°C; PINH[A, B] = −10 dBm
−40°C < TA < 85°C; PINH[A, B] = −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −40 dBm
Deviation from OUTP to OUTN @ 25°C
−40°C < TA < 85°C; PINH[A, B] = −10 dBm, −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −25 dBm, −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −40 dBm, −25 dBm
5.5 dB peak-to-rms ratio (WCDMA one channel)
12 dB peak-to-rms ratio (WCDMA three channels)
18 dB peak-to-rms ratio (WCDMA four channels)
Baluns = Macom ETC1.6-4-2-3 (both channels)
PINHB = −50 dBm, OUTB = OUTBPINHB ± 1 dB
PINHA = −50 dBm, OUTA = OUTAPINHA ± 1 dB
INHA/INLA, INHB/INLB differential drive
With recommended balun
ADJA = ADJB = 1.14 V, error referred to best fit line using
linear regression @ PINH[A, B] = −40 dBm and −20 dBm,
TA = 25°C, balun = Murata LDB182G4520C-110
Pins OUT[A, B], (Channel A/Channel B)
−40°C < TA < +85°C
Pins OUT[A, B], (Channel A/Channel B)
−40°C < TA < +85°C
±1 dB error, (Channel A/Channel B)
±1 dB error
Pins OUT[A, B] @ PINH[A, B] = −10 dBm
Pins OUT[A, B] @ PINH[A, B] = −40 dBm
Deviation from OUT[A, B] @ 25°C
−40°C < TA < 85°C; PINH[A, B] = −10 dBm
−40°C < TA < 85°C; PINH[A, B] = −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −40 dBm
Deviation from OUTP to OUTN @ 25°C
−40°C < TA < 85°C; PINH[A, B] = −10 dBm, −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −25 dBm, −25 dBm
−40°C < TA < 85°C; PINH[A, B] = −40 dBm, −25 dBm
Baluns = Macom ETC1.6-4-2-3 (both channels)
PINHB = −50 dBm, OUTB = OUTBPINHB ± 1 dB
PINHA = −50 dBm, OUTA = OUTAPINHA ± 1 dB
INHA/INLA, INHB/INLB differential drive
With recommended balun
Pin OUTA and OUTB
RL ≥ 200 Ω to ground
RL ≥ 200 Ω to ground
OUTA and OUTB held at VS/2, to 1% change
Rev. B | Page 5 of 44
Min
Typ
Max
Unit
+0.1, −0.4
+0.1, −0.4
+0.1, −0.4
dB
dB
dB
+0.1, −0.4
+0.2, −0.2
+0.1, −0.2
0.2
0.3
0.3
58
33
33
150||1.9
−10
dB
dB
dB
dB
dB
dB
dB
dB
dB
Ω||pF
dB
69/63
58
55/50
25
17/11
−52
50
−52.7
2.14
0.65
dB
dB
dB
dB
dBm
dBm
mV/dB
dBm
V
V
±0.5
±0.5
±0.5
dB
dB
dB
±0.3
±0.3
±0.3
54
31
31
150||1.7
−11.5
dB
dB
dB
dB
dB
0.09
VS − 0.15
70
V
V
mA
Ω||pF
dB
AD8364
Parameter
SETPOINT INPUT
Voltage Range
Input Resistance
Logarithmic Scale Factor
Logarithmic Intercept
CHANNEL DIFFERENCE OUTPUT
Voltage Range Min
Voltage Range Max
Source/Sink Current
DIFFERENCE LEVEL ADJUST
Voltage Range 3
OUT[P,N] Voltage Range
Input Resistance
TEMPERATURE COMPENSATION
Input Voltage Range
Input Resistance
VOLTAGE REFERENCE
Output Voltage
Temperature Sensitivity
Current Limit Source/Sink
TEMPERATURE REFERENCE
Output Voltage
Temperature Coefficient
Current Source/Sink
POWER-DOWN INTERFACE
Logic Level to Enable
Logic Level to Disable
Input Current
Enable Time
Disable Time
POWER INTERFACE
Supply Voltage
Quiescent Current
Supply Current
1
2
3
Data Sheet
Conditions
Pin VSTA and VSTB
Law conformance error ≤1 dB
f = 450 MHz, −40°C ≤ TA ≤ +85°C
f = 450 MHz, −40°C ≤ TA ≤ +85°C, referred to 50 Ω
Pin OUTP and OUTN
RL ≥ 200 Ω to ground
RL ≥ 200 Ω to ground
OUTP and OUTN held at VS/2, to 1% change
Pin VLVL
OUT[P, N] = FBK[A, B]
OUT[P, N] = FBK[A, B]
Min
Typ
Max
Unit
3.75
68
50
−55
V
kΩ
mV/dB
dBm
0.1
VS − 0.15
70
V
V
mA
0.5
0
0
5
VS −
0.15
1
V
V
kΩ
Pin ADJA and ADJB
0
Pin VREF
RF in = −55 dBm
−40°C ≤ TA ≤ +85°C
1% change
Pin TEMP
TA = 25°C, RL ≥ 10 kΩ
−40°C ≤ TA ≤ +85°C, RL ≥ 10 kΩ
TA = 25°C to 1% change
Pin PWDN
Logic LO enables
Logic HI disables
Logic HI PWDN = 5 V
Logic LO PWDN = 0 V
PWDN LO to OUTA/OUTB at 100% final value,
CLPA/B = Open, CHPA/B = 10 nF, RF in = 0 dBm
PWDN HI to OUTA/OUTB at 10% final value,
CLPA/B = Open, CHPA/B = 10nF, RF in = 0 dBm
Pin VPS[A, B], VPSR
>1
2.5
V
MΩ
2.5
0.4
10/3
V
mV/°C
mA
0.62
2
1.6/2
V
mV/°C
mA
1
95