0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD8364-EVALZ

AD8364-EVALZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    EVAL BOARD FOR AD8364

  • 数据手册
  • 价格&库存
AD8364-EVALZ 数据手册
VPSR ACOM TEMP ACOM CLPA FUNCTIONAL BLOCK DIAGRAM COMA 24 23 22 21 20 19 18 17 TEMP VGA CONTROL VPSA 25 INHA 26 CHANNEL A TruPwr™ INLA 27 APPLICATIONS PWDN 28 Wireless infrastructure power amplifier linearization/control Antenna VSWR monitor Gain and power control and measurement Transmitter signal strength indication (TSSI) Dual-channel wireless infrastructure radios COMR 29 ITGT2 OUTA OUTB INLB 30 INHB 31 ISIG2 CHANNEL B TruPwr™ ISIG2 ITGT2 VPSB 32 2 3 4 5 6 7 8 COMB ADJB ADJA VREF VLVL CLPB CHPB VSTA 15 OUTA 14 FBKA 13 OUTP 12 OUTN 11 FBKB 10 OUTB 9 VSTB VGA CONTROL DECB BIAS 1 16 05334-001 RMS measurement of high crest-factor signals Dual-channel and channel difference outputs ports Integrated accurately scaled temperature sensor Wide dynamic range ±1 dB over 60 dB ±0.5 dB temperature-stable linear-in-dB response Low log conformance ripple +5 V operation at 70 mA, –40°C to +85°C Small footprint, 5 mm × 5 mm, LFCSP DECA FEATURES CHPA Data Sheet LF to 2.7 GHz Dual 60 dB TruPwr™ Detector AD8364 Figure 1. Functional Block Diagram GENERAL DESCRIPTION The AD8364 is a true rms, responding, dual-channel RF power measurement subsystem for the precise measurement and control of signal power. The flexibility of the AD8364 allows communications systems, such as RF power amplifiers and radio transceiver AGC circuits, to be monitored and controlled with ease. Operating on a single 5 V supply, each channel is fully specified for operation up to 2.7 GHz over a dynamic range of 60 dB. The AD8364 provides accurately scaled, independent, rms outputs of both RF measurement channels. Difference output ports, which measure the difference between the two channels, are also available. The on-chip channel matching makes the rms channel difference outputs extremely stable with temperature and process variations. The device also includes a useful temperature sensor with an accurately scaled voltage proportional to temperature, specified over the device operating temperature range. The AD8364 can be used with input signals having rms values from −55 dBm to +5 dBm referred to 50 Ω and large crest factors with no accuracy degradation. Integrated in the AD8364 are two matched AD8362 channels (see the AD8362 data sheet for more information) with improved temperature performance and reduced log conformance ripple. Enhancements include improved temperature performance and reduced log-conformance ripple compared to the AD8362. Onchip wide bandwidth output op amps are connected to accommodate flexible configurations that support many system solutions. The device can easily be configured to provide four rms measurements simultaneously. Linear-in-dB rms measurements are supplied at OUTA and OUTB, with conveniently scaled slopes of 50 mV/dB. The rms difference between OUTA and OUTB is available as differential or single-ended signals at OUTP and OUTN. An optional voltage applied to VLVL provides a common mode reference level to offset OUTP and OUTN above ground. The AD8364 is supplied in a 32-lead, 5 mm × 5 mm LFCSP, for the operating temperature of –40°C to +85°C. Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2005-2012 Analog Devices, Inc. All rights reserved. AD8364 Data Sheet TABLE OF CONTENTS Specifications..................................................................................... 3  Constant Output Power Operation.......................................... 27  Absolute Maximum Ratings............................................................ 7  Gain-Stable Transmitter/Receiver ............................................ 29  ESD Caution .................................................................................. 7  Temperature Compensation Adjustment................................ 31  Pin Configuration and Function Descriptions ............................. 8  Device Calibration and Error Calculation .............................. 31  Typical Performance Characteristics ............................................. 9  Selecting Calibration Points to Improve Accuracy over a Reduced Range ........................................................................... 32  General Description and Theory.................................................. 18  Square Law Detector and Amplitude Target ............................. 19  RF Input Interface ...................................................................... 19  Offset Compensation ................................................................. 19  Temperature Sensor Interface ................................................... 20  VREF Interface ........................................................................... 20  Power-Down Interface ............................................................... 20  VST[A, B] Interface .................................................................... 20  OUT[A, B, P, N] Outputs .......................................................... 21  Measurement Channel Difference Output Using OUT[P, N] ................................................................................... 22  Altering the Slope ....................................................................... 34  Channel Isolation ....................................................................... 34  Choosing the Right Value for CHP[A, B] and CLP[A, B] .... 36  RF Burst Response Time ........................................................... 36  Single-Ended Input Operation ................................................. 36  Printed Circuit Board Considerations..................................... 37  Package Considerations ............................................................. 37  Description of Characterization ............................................... 38  Basis for Error Calculations ...................................................... 38  Evaluation Board ........................................................................ 40  Controller Mode ......................................................................... 22  Outline Dimensions ....................................................................... 41  RF Measurement Mode Basic Connections............................ 23  Ordering Guide .......................................................................... 41  Controller Mode Basic Connections ....................................... 24  REVISION HISTORY 1/12—Rev. A to Rev. B Change to Figure 84 ....................................................................... 40 11/11—Rev. 0 to Rev. A Changes to Figure 2 .......................................................................... 8 Changes to Automatic Power Control Section ........................... 24 Replaced Evaluation and Characterization Circuit Board Layouts Section with Evaluation Board Section ......................... 40 Changes to Figure 84 ...................................................................... 40 Deleted Figure 85 and Figure 86; Renumbered Sequentially ... 41 Updated Outline Dimensions ....................................................... 41 Changes to Ordering Guide .......................................................... 41 Deleted Table 7, AD8364-EVAL-500 Evaluation Board Configuration Options and AD8364-EVAL-2140 Evaluation Board Configuration Options; Renumbered Sequentially ....... 42 Deleted Evaluation Boards Section and Figure 87 ..................... 44 Deleted Figure 88............................................................................ 45 Deleted Assembly Drawings Section, Figure 89, and Figure 90 .......................................................................................... 46 4/05—Revision 0: Initial Version Rev. B | Page 2 of 44 Data Sheet AD8364 SPECIFICATIONS VS = VPSA = VPSB = VPSR = 5 V, TA = 25°C, Channel A frequency = Channel B frequency, VLVL = VREF, VST[A, B] = OUT[A, B], OUT[P, N] = FBK[A, B], differential input via Balun, CW input f ≤ 2.7 GHz, unless otherwise noted. Table 1. Parameter OVERALL FUNCTION Signal Input Interface Specified Frequency Range DC Common-Mode Voltage Signal Output Interface Wideband Noise MEASUREMENT MODE, 450 MHz OPERATION ±1 dB Dynamic Range 1 ±0.5 dB Dynamic Range1 Maximum Input Level Minimum Input Level Slope Intercept Output Voltage—High Power In Output Voltage—Low Power In Temperature Sensitivity Input A to Input B Isolation Input A to OUTB Isolation Input B to OUTA Isolation 2 Input Impedance Input Return Loss MEASUREMENT MODE, 880 MHz OPERATION ±1 dB Dynamic Range1 ±0.5 dB Dynamic Range1 Maximum Input Level Minimum Input Level Slope Intercept Output Voltage—High Power In Output Voltage—Low Power In Conditions Channel A and Channel B, CW sine wave input INH[A, B] (Pins 26, 31) INL[A, B] (Pins 27, 30) Min Typ Max Unit 2.7 2.5 GHz V 40 nV/√Hz 69 65 62/59 50/52 12 −58 51.6 −59 2.53 0.99 dB dB dB dB dBm dBm mV/dB dBm V V −0.1, +0.2 −0.2, +0.3 −0.3, +0.4 dB dB dB ±0.25 ±0.2 ±0.2 71 dB dB dB dB 54 54 dB dB 210||0.1 −12 Ω||pF dB 66/57 58/40 62/54 20/20 8/0 −58/−57 51.6 −59.2 2.54 0.99 dB dB dB dB dBm dBm mV/dB dBm V V LF OUT[A, B] (Pins 15, 10) CLP[A, B] = 0.1µF, fSPOT = 100 kHz, RF input = 2140 MHz, ≥−40 dBm ADJA = ADJB = 0 V, error referred to best fit line using linear regression @ PINH[A, B] = −40 dBm and −20 dBm, TA = 25°C, balun = M/A-Com ETK4-2T Pins OUT[A, B] −40°C < TA < +85°C Pins OUT[A, B], (Channel A/Channel B) −40°C < TA < +85°C, (Channel A/Channel B) ±1 dB error ±1 dB error Pins OUT[A, B] @ PINH[A, B] = −10 dBm Pins OUT[A, B] @ PINH[A, B] = −40 dBm Deviation from OUT[A, B] @ 25°C −40°C < TA < 85°C; PINH[A, B] = −10 dBm −40°C < TA < 85°C; PINH[A, B] = −25 dBm −40°C < TA < 85°C; PINH[A, B] = −40 dBm Deviation from OUTP to OUTN @ 25°C −40°C < TA < 85°C; PINH[A, B] = −10 dBm, −25 dBm −40°C < TA < 85°C; PINH[A, B] = −25 dBm, −25 dBm −40°C < TA < 85°C; PINH[A, B] = −40 dBm, −25 dBm Baluns = Macom ETC1.6-4-2-3 (both channels) Freq separation = 1 kHz PINHB = −50 dBm, OUTB = OUTBPINHB ± 1 dB PINHA = −50 dBm, OUTA = OUTAPINHA ± 1 dB INHA/INLA, INHB/INLB differential drive With recommended balun ADJA = ADJB = 0 V, error referred to best fit line using linear regression @ PINH[A, B] = −40 dBm and −20 dBm, TA = 25°C, balun = Mini-Circuits® JTX-4-10T Pins OUT[A, B], (Channel A/Channel B) −40°C < TA < +85°C Pins OUT[A, B], (Channel A/Channel B) −40°C < TA < +85°C ±1 dB error, (Channel A/Channel B) ±1 dB error, (Channel A/Channel B) Pins OUT[A, B] @ PINH[A, B] = −10 dBm Pins OUT[A, B] @ PINH[A, B] = −40 dBm Rev. B | Page 3 of 44 AD8364 Parameter Temperature Sensitivity Input A to Input B Isolation Input A to OUTB Isolation Input B to OUTA Isolation2 Input Impedance Input Return Loss MEASUREMENT MODE, 1880 MHz OPERATION ±1 dB Dynamic Range1 ±0.5 dB Dynamic Range1 Maximum Input Level Minimum Input Level Slope Intercept Output Voltage—High Power In Output Voltage—Low Power In Temperature Sensitivity Input A to Input B Isolation Input A to OUTB Isolation Input B to OUTA Isolation2 Input Impedance Input Return Loss MEASUREMENT MODE, 2.14 GHz OPERATION ±1 dB Dynamic Range1 ±0.5 dB Dynamic Range1 Maximum Input Level Minimum Input Level Slope Intercept Output Voltage—High Power In Output Voltage—Low Power In Data Sheet Conditions Deviation from OUT[A, B] @ 25°C −40°C < TA < 85°C; PINH[A, B] = −10 dBm −40°C < TA < 85°C; PINH[A, B] = −25 dBm −40°C < TA < 85°C; PINH[A, B] = −40 dBm Deviation from OUTP to OUTN @ 25°C −40°C < TA < 85°C; PINH[A, B] = −10 dBm, −25 dBm −40°C < TA < 85°C; PINH[A, B] = −25 dBm, −25 dBm −40°C < TA < 85°C; PINH[A, B] = −40 dBm, −25 dBm Baluns = Macom ETC1.6-4-2-3 (both channels) PINHB = −50 dBm, OUTB = OUTBPINHB ± 1 dB PINHA = −50 dBm, OUTA = OUTAPINHA ± 1 dB INHA/INLA, INHB/INLB differential drive With recommended balun ADJA = ADJB = 0.75 V, error referred to best fit line using linear regression @ PINH[A, B] = −40 dBm and −20 dBm, TA = 25°C, balun = Murata LDB181G8820C-110 Pins OUT[A, B], (Channel A/Channel B) −40°C < TA < +85°C Pins OUT[A, B], (Channel A/Channel B) −40°C < TA < +85°C ±1 dB error, (Channel A/Channel B) ±1 dB error Pins OUT[A, B] @ PINH[A,B] = −10 dBm Pins OUT[A, B] @ PINH[A,B] = −40 dBm Deviation from OUT[A, B] @ 25°C −40°C < TA < 85°C; PINH[A, B] = −10 dBm −40°C < TA < 85°C; PINH[A, B] = −25 dBm −40°C < TA < 85°C; PINH[A, B] = −40 dBm Deviation from OUTP to OUTN @ 25°C −40°C < TA < 85°C; PINH[A, B] = −10 dBm, −25 dBm −40°C < TA < 85°C; PINH[A, B] = −25 dBm, −25 dBm −40°C < TA < 85°C; PINH[A, B] = −40 dBm, −25 dBm Baluns = Macom ETC1.6-4-2-3 (both channels) PINHB = −50 dBm, OUTB = OUTBPINHB ± 1 dB PINHA = −50 dBm, OUTA = OUTAPINHA ± 1 dB INHA/INLA, INHB/INLB differential drive With recommended balun ADJA = ADJB = 1.02 V, error referred to best fit line using linear regression @ PINH[A, B] = −40 dBm and −20 dBm, TA = 25°C, balun = Murata LDB212G1020C-001 Pins OUT[A, B], (Channel A/Channel B) −40°C < TA < +85°C Pins OUT[A, B], (Channel A/Channel B) −40°C < TA < +85°C ±1 dB Error, (Channel A/Channel B) ±1 dB Error, (Channel A/Channel B) Channel A/Channel B Channel A/Channel B Pins OUT[A, B] @ PINH[A, B] = −10 dBm Pins OUT[A, B] @ PINH[A, B] = −40 dBm Rev. B | Page 4 of 44 Min Typ Max Unit +0.5 +0.5 +0.5 dB dB dB +0.1, −0.2 +0.1, −0.2 +0.1, −0.2 64 35 35 dB dB dB dB dB dB 200||0.3 −9 Ω||pF dB 69/61 60/50 62/51 58/51 11/3 −58 50 −62 2.49 0.98 dB dB dB dB dBm dBm mV/dB dBm V V +0.5, −0.2 +0.5, −0.2 +0.5, −0.2 dB dB dB ±0.3 ±0.3 ±0.3 61 33 33 dB dB dB dB dB dB 167||0.14 −8 Ω||pF dB 66/57 58/40 62/54 30/30 −2/−4 −57−51 49.5/52.1 −58.3/−57.1 2.42 0.90 dB dB dB dB dBm dBm mV/dB dBm V V Data Sheet Parameter Temperature Sensitivity Deviation from CW Response Input A to Input B Isolation Input A to OUTB Isolation Input B to OUTA Isolation2 Input Impedance Input Return Loss MEASUREMENT MODE, 2.5 GHz OPERATION ± 1 dB Dynamic Range1 ±0.5 dB Dynamic Range1 Maximum Input Level Minimum Input Level Slope Intercept Output Voltage—High Power In Output Voltage—Low Power In Temperature Sensitivity Input A to Input B Isolation Input A to OUTB Isolation Input B to OUTA Isolation2 Input Impedance Input Return Loss OUTPUT INTERFACE Voltage Range Min Voltage Range Max Source/Sink Current AD8364 Conditions Deviation from OUT[A, B] @ 25°C −40°C < TA < 85°C; PINH[A, B] = −10 dBm −40°C < TA < 85°C; PINH[A, B] = −25 dBm −40°C < TA < 85°C; PINH[A, B] = −40 dBm Deviation from OUTP to OUTN @ 25°C −40°C < TA < 85°C; PINH[A, B] = −10 dBm, −25 dBm −40°C < TA < 85°C; PINH[A, B] = −25 dBm, −25 dBm −40°C < TA < 85°C; PINH[A, B] = −40 dBm, −25 dBm 5.5 dB peak-to-rms ratio (WCDMA one channel) 12 dB peak-to-rms ratio (WCDMA three channels) 18 dB peak-to-rms ratio (WCDMA four channels) Baluns = Macom ETC1.6-4-2-3 (both channels) PINHB = −50 dBm, OUTB = OUTBPINHB ± 1 dB PINHA = −50 dBm, OUTA = OUTAPINHA ± 1 dB INHA/INLA, INHB/INLB differential drive With recommended balun ADJA = ADJB = 1.14 V, error referred to best fit line using linear regression @ PINH[A, B] = −40 dBm and −20 dBm, TA = 25°C, balun = Murata LDB182G4520C-110 Pins OUT[A, B], (Channel A/Channel B) −40°C < TA < +85°C Pins OUT[A, B], (Channel A/Channel B) −40°C < TA < +85°C ±1 dB error, (Channel A/Channel B) ±1 dB error Pins OUT[A, B] @ PINH[A, B] = −10 dBm Pins OUT[A, B] @ PINH[A, B] = −40 dBm Deviation from OUT[A, B] @ 25°C −40°C < TA < 85°C; PINH[A, B] = −10 dBm −40°C < TA < 85°C; PINH[A, B] = −25 dBm −40°C < TA < 85°C; PINH[A, B] = −40 dBm Deviation from OUTP to OUTN @ 25°C −40°C < TA < 85°C; PINH[A, B] = −10 dBm, −25 dBm −40°C < TA < 85°C; PINH[A, B] = −25 dBm, −25 dBm −40°C < TA < 85°C; PINH[A, B] = −40 dBm, −25 dBm Baluns = Macom ETC1.6-4-2-3 (both channels) PINHB = −50 dBm, OUTB = OUTBPINHB ± 1 dB PINHA = −50 dBm, OUTA = OUTAPINHA ± 1 dB INHA/INLA, INHB/INLB differential drive With recommended balun Pin OUTA and OUTB RL ≥ 200 Ω to ground RL ≥ 200 Ω to ground OUTA and OUTB held at VS/2, to 1% change Rev. B | Page 5 of 44 Min Typ Max Unit +0.1, −0.4 +0.1, −0.4 +0.1, −0.4 dB dB dB +0.1, −0.4 +0.2, −0.2 +0.1, −0.2 0.2 0.3 0.3 58 33 33 150||1.9 −10 dB dB dB dB dB dB dB dB dB Ω||pF dB 69/63 58 55/50 25 17/11 −52 50 −52.7 2.14 0.65 dB dB dB dB dBm dBm mV/dB dBm V V ±0.5 ±0.5 ±0.5 dB dB dB ±0.3 ±0.3 ±0.3 54 31 31 150||1.7 −11.5 dB dB dB dB dB 0.09 VS − 0.15 70 V V mA Ω||pF dB AD8364 Parameter SETPOINT INPUT Voltage Range Input Resistance Logarithmic Scale Factor Logarithmic Intercept CHANNEL DIFFERENCE OUTPUT Voltage Range Min Voltage Range Max Source/Sink Current DIFFERENCE LEVEL ADJUST Voltage Range 3 OUT[P,N] Voltage Range Input Resistance TEMPERATURE COMPENSATION Input Voltage Range Input Resistance VOLTAGE REFERENCE Output Voltage Temperature Sensitivity Current Limit Source/Sink TEMPERATURE REFERENCE Output Voltage Temperature Coefficient Current Source/Sink POWER-DOWN INTERFACE Logic Level to Enable Logic Level to Disable Input Current Enable Time Disable Time POWER INTERFACE Supply Voltage Quiescent Current Supply Current 1 2 3 Data Sheet Conditions Pin VSTA and VSTB Law conformance error ≤1 dB f = 450 MHz, −40°C ≤ TA ≤ +85°C f = 450 MHz, −40°C ≤ TA ≤ +85°C, referred to 50 Ω Pin OUTP and OUTN RL ≥ 200 Ω to ground RL ≥ 200 Ω to ground OUTP and OUTN held at VS/2, to 1% change Pin VLVL OUT[P, N] = FBK[A, B] OUT[P, N] = FBK[A, B] Min Typ Max Unit 3.75 68 50 −55 V kΩ mV/dB dBm 0.1 VS − 0.15 70 V V mA 0.5 0 0 5 VS − 0.15 1 V V kΩ Pin ADJA and ADJB 0 Pin VREF RF in = −55 dBm −40°C ≤ TA ≤ +85°C 1% change Pin TEMP TA = 25°C, RL ≥ 10 kΩ −40°C ≤ TA ≤ +85°C, RL ≥ 10 kΩ TA = 25°C to 1% change Pin PWDN Logic LO enables Logic HI disables Logic HI PWDN = 5 V Logic LO PWDN = 0 V PWDN LO to OUTA/OUTB at 100% final value, CLPA/B = Open, CHPA/B = 10 nF, RF in = 0 dBm PWDN HI to OUTA/OUTB at 10% final value, CLPA/B = Open, CHPA/B = 10nF, RF in = 0 dBm Pin VPS[A, B], VPSR >1 2.5 V MΩ 2.5 0.4 10/3 V mV/°C mA 0.62 2 1.6/2 V mV/°C mA 1 95
AD8364-EVALZ 价格&库存

很抱歉,暂时无法提供与“AD8364-EVALZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货