0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD8392ACP-R2

AD8392ACP-R2

  • 厂商:

    AD(亚德诺)

  • 封装:

    QFN32

  • 描述:

    DUAL ADSL/ADSL2+ LINE DRIVER

  • 数据手册
  • 价格&库存
AD8392ACP-R2 数据手册
Low Power, High Output Current, Quad Op Amp, Dual-Channel ADSL/ADSL2+ Line Driver AD8392 PIN CONFIGURATIONS FEATURES GND 2 27 NC PD1 1, 2 3 26 NC +VIN1 4 25 +VIN2 –VIN1 5 24 –VIN2 VOUT1 6 23 VOUT2 VCC 7 22 NC NC 8 21 VCC VOUT3 9 20 VOUT4 –VIN3 10 19 –VIN4 The AD8392 is available in two thermally enhanced packages, a 28-lead TSSOP/EP (AD8392ARE) and a 5 mm × 5 mm 32-lead LFCSP (AD8392ACP). Four bias modes are available via the use of two digital bits (PD1, PD0). TE 3 +VIN3 11 4 +VIN4 NC 12 17 PD1 3, 4 NC 13 16 PD0 3, 4 GND 14 15 VEE 04802-0-001 18 NC = NO CONNECT +VIN2 NC VCOM1, 2 VEE GND PD0 1, 2 +VIN1 PD1 1, 2 Figure 1. AD8392ARE, 28-Lead TSSOP/EP 32 31 30 29 28 27 26 25 1 2 24 NC 23 –VIN2 –VIN1 2 VOUT1 3 22 VOUT2 VCC 4 21 NC NC 5 VOUT3 6 –VIN3 7 NC 8 AD8392 3 VCC VOUT4 18 –VIN4 17 NC +VIN4 PD0 3, 4 VEE 10 11 12 13 14 15 16 GND 9 4 20 19 NC = NO CONNECT 04802-0-002 NC 1 PD1 3, 4 O The AD8392 is comprised of four high output current, low power consumption, operational amplifiers. It is particularly well suited for the CO driver interface in digital subscriber line systems, such as ADSL and ADSL2+. The driver is capable of providing enough power to deliver 20.4 dBm to a line, while compensating for losses due to hybrid insertion and back termination resistors. In addition, the low distortion, fast slew rate, and high output current capability make the AD8392 ideal for many other applications, including medical instrumentation, DAC output drivers, and other high peak current circuits. 2 AD8392 VCOM3, 4 GENERAL DESCRIPTION 1 NC B SO ADSL/ADSL2+ CO line drivers XDSL line drives High output current, low distortion amplifiers DAC output buffer 28 PD0 1, 2 +VIN3 APPLICATIONS VEE 1 LE Four current feedback, high current amplifiers Ideal for use as ADSL/ADSL2+ dual-channel Central Office (CO) line drivers Low power operation Power supply operation from ±5 V (+10 V) up to ±12 V (+24 V) Less than 3 mA/Amp quiescent supply current for full power ADSL/ADSL2+ CO applications (20.4 dBm line power, 5.5 CF) Three active power modes plus shutdown High output voltage and current drive 400 mA peak output drive current 44 V p-p differential output voltage Low distortion −72 dBc @1 MHz second harmonic −82 dBc @ 1 MHz third harmonic High speed: 900 V/µs differential slew rate Additional functionality of AD8392ACP On-chip common-mode voltage generation Figure 2. AD8392ACP, 32-Lead LFCSP 5 mm × 5 mm Additionally, the AD8392ACP provides VCOM pins for on-chip common mode voltage generation. The low power consumption, high output current, high output voltage swing, and robust thermal packaging enable the AD8392 to be used as the CO line drivers in ADSL and other xDSL systems, as well as other high current, single-ended or differential amplifier applications. Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2005 Analog Devices, Inc. All rights reserved. AD8392 TABLE OF CONTENTS Power Management ................................................................... 12 Absolute Maximum Ratings............................................................ 5 Driving Capacitive Loads.......................................................... 12 Thermal Resistance ...................................................................... 5 Thermal Considerations............................................................ 13 ESD Caution.................................................................................. 5 Typical ADSL/ADSL2+ Application........................................ 13 Typical Performance Characteristics ............................................. 6 Multitone Power Ratio............................................................... 14 Theory of Operation ...................................................................... 11 Lightning and AC Power Fault ................................................. 15 Applications..................................................................................... 12 Outline Dimensions ....................................................................... 16 Supplies, Grounding, and Layout............................................. 12 Ordering Guide .......................................................................... 16 Resistor Selection........................................................................ 12 LE REVISION HISTORY 3/05—Rev. 0 to Rev. A Changes to Figure 1 and Figure 2................................................... 1 Changes to Ordering Guide .......................................................... 16 O B SO 7/04—Revision 0: Initial Version TE Specifications..................................................................................... 3 Rev. A | Page 2 of 16 AD8392 SPECIFICATIONS VS = ±12 V or +24 V, RL = 100 Ω, G = +5, PD = (0, 0), T = 25°C, unless otherwise noted. Table 1. Typ 30 20 −5.0 64 42.0 21.0 Unit Test Conditions/Comments 40 25 0.05 900 MHz MHz dB V/µs VOUT = 0.1 V p-p, RF = 2 kΩ VOUT = 4 V p-p, RF = 2 kΩ VOUT = 0.1 V p-p, RF = 2 kΩ VOUT = 20 V p-p, RF = 2 kΩ −72 −82 −70 4.3 10 13 dBc dBc dBc nV/√Hz pA/√Hz pA/√Hz fC = 1 MHz, VOUT = 2 V p-p fC = 1 MHz, VOUT = 2 V p-p 26 kHz to 2.2 MHz, ZLINE = 100 Ω Differential Load f = 10 kHz f = 10 kHz f = 10 kHz mV µA µA kΩ pF dB V+IN − V−IN ∆VOUT ∆VOUT RL = 10 Ω, fC = 100 kHz ±3.0 5.0 10.0 400 2.0 68 +5.0 10.0 15.0 44.0 22.0 400 46.0 23.0 V V mA ±12 24 V V 7.0 4.0 3.3 1.2 0.8 mA/Amp mA/Amp mA/Amp mA/Amp V V dB dB LE 850 Max TE Min O B SO Parameter DYNAMIC PERFORMANCE −3 dB Small Signal Bandwidth −3 dB Large Signal Bandwidth Peaking Slew Rate NOISE/DISTORTION PERFORMANCE Second Harmonic Distortion Third Harmonic Distortion Multitone Input Power Ratio Voltage Noise (RTI) +Input Current Noise −Input Current Noise INPUT CHARACTERISTICS RTI Offset Voltage +Input Bias Current −Input Bias Current Input Resistance Input Capacitance Common-Mode Rejection Ratio OUTPUT CHARACTERISTICS Differential Output Voltage Swing Single-Ended Output Voltage Swing Linear Output Current POWER SUPPLY Operating Range (Dual Supply) Operating Range (Single Supply) Total Quiescent Current PD1, PD0 = (0, 0) PD1, PD0 = (0, 1) PD1, PD0 = (1, 0) PD1, PD0 = (1, 1) (Shutdown State) PD = 0 Threshold PD = 1 Threshold +Power Supply Rejection Ratio −Power Supply Rejection Ratio ±5 10 6.0 3.6 2.8 0.4 1.8 64 76 68 79 Rev. A | Page 3 of 16 (∆VOS, DM (RTI))/(∆VIN, CM) ∆VOS, DM (RTI)/∆VCC, ∆VCC = ±1 V ∆VOS, DM (RTI)/∆VEE, ∆VEE = ±1 V AD8392 VS = ±5 V or +10 V, RL = 100 Ω, G = +5, PD = (0, 0), T = 25°C, unless otherwise noted. Table 2. Typ 30 20 300 400 Unit Test Conditions/Comments 40 25 0.05 350 450 MHz MHz dB V/µs V/µs VOUT = 0.1 V p-p, RF = 2 kΩ VOUT = 4 V p-p, RF = 2 kΩ VOUT = 0.1 V p-p, RF = 2 kΩ VOUT = 7 V p-p, RF = 2 kΩ VOUT = 7 V p-p, RF = 2 kΩ −72 −82 4.3 10 13 dBc dBc nV/√Hz pA/√Hz pA/√Hz fC = 1 MHz, VOUT = 2 V p-p fC = 1 MHz, VOUT = 2 V p-p f = 10 kHz f = 10 kHz f = 10 kHz mV µA µA kΩ pF dB V+IN − V−IN V V mA ∆VOUT ∆VOUT RL = 10 Ω, fC = 100 kHz ±3.0 5.0 10.0 400 2.0 66 +5.0 10.0 15.0 16.0 8.0 400 18.0 9.0 LE −5.0 Max TE Min 62 14.0 7.0 O B SO Parameter DYNAMIC PERFORMANCE −3 dB Small Signal Bandwidth −3 dB Large signal Bandwidth Peaking Slew Rate (Rise) Slew Rate (Fall) NOISE/DISTORTION PERFORMANCE Second Harmonic Distortion Third Harmonic Distortion Voltage Noise (RTI) +Input Current Noise −Input Current Noise INPUT CHARACTERISTICS RTI Offset Voltage +Input Bias Current −Input Bias Current Input Resistance Input Capacitance Common-Mode Rejection Ratio OUTPUT CHARACTERISTICS Differential Output Voltage Swing Single-Ended Output Voltage Swing Linear Output Current POWER SUPPLY Operating Range (Dual Supply) Operating Range (Single Supply) Total Quiescent Current PD1, PD0 = (0, 0) PD1, PD0 = (0, 1) PD1, PD0 = (1, 0) PD1, PD0 = (1, 1) (Shutdown State) PD = 0 Threshold PD = 1 Threshold +Power Supply Rejection Ratio −Power Supply Rejection Ratio ±5 +10 5.4 3.5 2.6 0.4 1.8 72 64 ±12 +24 V V 6.0 4.0 3.0 1.0 0.8 mA/Amp mA/Amp mA/Amp mA/Amp V V dB dB 76 68 Rev. A | Page 4 of 16 (∆VOS, DM (RTI))/(∆VIN, CM) ∆VOS, DM (RTI)/∆VCC, ∆VCC = ±1 V ∆VOS, DM (RTI)/∆VEE, ∆VEE = ±1 V AD8392 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE In single supply with RL to VS−, worst case is VOUT = VS/2. Airflow increases heat dissipation, effectively reducing θJA. Also, more metal directly in contact with the package leads from metal traces, through holes, ground, and power planes reduces the θJA. Figure 3 shows the maximum safe power dissipation in the package versus the ambient temperature for the LFCSP-32 and TSSOP-28/EP packages on a JEDEC standard 4-layer board. θJA values are approximations. 7 θJA is specified for the worst-case conditions, i.e., θJA is specified for device soldered in circuit board for surface-mount packages. Table 4. Thermal Resistance θJA 27.27 35.33 Unit °C/W °C/W SO Package Type LFCSP-32 (CP) TSSOP-28/EP (RE) LFCSP-32 4 TSSOP-28/EP 3 2 1 0 10 20 30 40 50 TEMPERATURE (°C) 60 70 80 90 Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board See the Thermal Considerations section for additional thermal design guidance. O B The power dissipated in the package (PD) is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive for all outputs. The quiescent power is the voltage between the supply pins (VS) times the quiescent current (IS). Assuming that the load (RL) is midsupply, the total drive power is VS/2 × IOUT, some of which is dissipated in the package and some in the load (VOUT × IOUT). 5 0 –40 –30 –20 –10 Maximum Power Dissipation TJ = 150°C 6 LE Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. RMS output voltages should be considered. If RL is referenced to VS− as in single-supply operation, the total power is VS × IOUT. 04802-0-003 Rating ±13 V (+26 V) See Figure 3 −65°C to +150°C −40°C to +85°C 300°C 150°C TE Parameter Supply Voltage Power Dissipation Storage Temperature Operating Temperature Range Lead Temperature Range (Soldering 10 sec) Junction Temperature MAXIMUM POWER DISSIPATION (W) Table 3. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. A | Page 5 of 16 AD8392 TYPICAL PERFORMANCE CHARACTERISTICS 950 –45 CREST FACTOR = 5.45 CREST FACTOR = 5.45 900 PD (0, 0) POWER CONSUMPTION (mW) –55 –60 PD (1, 0) PD (0, 1) PD (0, 0) –65 850 800 PD (0, 1) 750 700 PD (1, 0) 650 TE MULTITONE POWER RATIO (dBc) –50 16 17 18 19 OUTPUT POWER (dBm) 20 21 550 15 17 18 19 OUTPUT POWER (dBm) 20 21 Figure 7. Power Consumption vs. Output Power (26 kHz to 2.2 MHz) ADSL/ADSL2+ Circuit (Figure 32) VS = ±12 V, RLOAD = 100 Ω, CF = 5.45 Figure 4. MTPR vs. Output Power (1.75 MHz Empty Bin) ADSL/ADSL2+ Circuit (Figure 32) VS = ±12 V, RLOAD = 100 Ω, CF = 5.45 HD2 PD (0, 1) –60 –70 –80 B SO HD2 PD (0, 0) HARMONIC DISTORTION (dBc) HD2 PD (1, 0) LE –50 –50 HARMONIC DISTORTION (dBc) 16 04802-0-007 –70 15 04802-0-004 600 HD3 PD (1, 0) HD3 PD (0, 0) –90 HD2 PD (1, 0) HD2 PD (0, 1) –60 –70 HD2 PD (0, 0) HD3 PD (1, 0) –80 HD3 PD (0, 0) –90 HD3 PD (0, 1) 10 –100 0.1 1 FREQUENCY (MHz) Figure 8. Harmonic Distortion vs. Frequency Dual Differential Driver Circuit (Figure 30) VS = ±5 V, RLOAD = 100 Ω, G = +5, VOUT = 2 V p-p Figure 5. Harmonic Distortion vs. Frequency Dual Differential Driver Circuit (Figure 30) VS = ±12 V, RLOAD = 100 Ω, G = +5, VOUT = 2 V p-p –50 –50 HD2 PD (1, 0) HD2 PD (0, 1) O HD2 PD (1, 0) HD2 PD (0, 1) –60 HARMONIC DISTORTION (dBc) –70 –80 HD3 PD (0, 0) HD3 PD (0, 1) –90 HD3 PD (1, 0) –100 –120 0.1 –70 –80 HD2 PD (0, 0) HD3 PD (0, 0) HD3 PD (0, 1) –90 HD3 PD (1, 0) –100 –110 –110 1 FREQUENCY (MHz) 10 04802-0-006 HARMONIC DISTORTION (dBc) –60 HD2 PD (0, 0) 10 04802-0-008 1 FREQUENCY (MHz) –120 0.1 1 FREQUENCY (MHz) Figure 9. Harmonic Distortion vs. Frequency Quad Op Amp Circuit (Figure 29) VS = ±5 V, RLOAD = 100 Ω, G = +5, VOUT = 2 V p-p Figure 6. Harmonic Distortion vs. Frequency Quad Op Amp Circuit (Figure 29) VS = ±12 V, RLOAD = 100 Ω, G = +5, VOUT = 2 V p-p Rev. A | Page 6 of 16 10 04802-0-009 –100 0.1 04802-0-005 HD3 PD (0, 1) AD8392 15 15 10 10 PD (0, 0) PD (0, 0) 5 5 GAIN (dB) –5 PD (0, 1) 0 –5 –10 –10 –15 –15 PD (1, 0) 100 1000 Figure 10. Small Signal Frequency Response Quad Op Amp Circuit (Figure 29) VS = ±12 V, RLOAD = 100 Ω, G = +5, VOUT = 100 mV p-p LE –20 25Ω 50Ω –5 –10 B SO 1Ω 4.7Ω SIGNAL FEEDTHROUGH (dB) GAIN (dB) 0 –30 –40 –50 –60 –70 –80 1 10 FREQUENCY (MHz) 100 04802-0-011 10Ω 1000 –90 –100 0.1 Figure 11. Small Signal Frequency Response vs. Load Quad Op Amp Circuit (Figure 29) VS = ±12 V, G = +5, VOUT = 100 mV p-p 10 1000 –10 75Ω 100Ω 5 15 100 0 10 –20 0.1 10 FREQUENCY (MHz) Figure 13. Small Signal Frequency Response Quad Op Amp Circuit (Figure 29) VS = ±5 V, RLOAD = 100 Ω, G = +5, VOUT = 100 mV p-p 15 –15 1 04802-0-013 10 FREQUENCY (MHz) –20 0.1 TE 1 PD (1, 0) 04802-0-010 –20 0.1 1 10 FREQUENCY (MHz) 100 1000 Figure 14. Signal Feedthrough vs. Frequency Quad Op Amp Circuit (Figure 29) VS = ±12 V, G = +5, VIN = 800 mV p-p, PD (1, 1) 15 10 PD (0, 0) PD (0, 1) 5 GAIN (dB) 0 –5 –10 –5 –10 –15 –15 PD (1, 0) 1 10 FREQUENCY (MHz) 100 1000 04802-0-012 PD (1, 0) –20 0.1 PD (0, 0) PD (0, 1) 0 –20 0.1 Figure 12. Large Signal Frequency Response Quad Op Amp Circuit (Figure 29) VS = ±12 V, RLOAD = 100 Ω, G = +5, VOUT = 4 V p-p 1 10 FREQUENCY (MHz) 100 Figure 15. Large Signal Frequency Response Quad Op Amp Circuit (Figure 29) VS = ±5 V, RLOAD = 100 Ω, G = +5, VOUT = 4 V p-p Rev. A | Page 7 of 16 1000 04802-0-015 GAIN (dB) O 5 04802-0-014 GAIN (dB) PD (0, 1) 0 AD8392 2.5 0.06 2.0 OUTPUT VOLTAGE (V) 1.5 0.02 0 –0.02 1.0 0.5 0 –0.5 –1.0 –1.5 –0.04 –4 –2 0 2 TIME (µs) 4 6 8 10 –2.5 –10 –8 –6 –4 –2 0 2 TIME (µs) 4 6 8 10 Figure 19. Large Signal Pulse Response Quad Op Amp Circuit (Figure 29) VS = ±12 V, RLOAD = 100 Ω, G = +5, 4 V Step Figure 16. Small Signal Pulse Response Quad Op Amp Circuit (Figure 29) VS = ±12 V, RLOAD = 100 Ω, G = +5, 100 mV Step LE PD PINS OUTPUT 1 1 OUTPUT 2 004802-0-017 004802-0-020 B SO 2 PD PINS CH1 200mVΩ BW CH2 1.00mVΩ BW M 50.0ns A CH2 CH1 200mVΩBW CH2 1.00VΩBW 2.38V ∆: 420ns @: 2.84µs C1 p-p 27.0V C2 p-p 21.4V C1 p-p 6.00V C2 p-p 21.8V 1 2 004802-0-018 CH1 004802-0-021 OUTPUT OUTPUT INPUT M1.00µs 2.38V ∆: 460ns @: –1.32µs 1 2 CH2 5.00VΩ CH2 Figure 20. Power-Down Time: PD (0, 0) to PD (1, 1) Quad Op Amp Circuit (Figure 29) VS = ±12 V, RLOAD = 100 Ω, G = +5, VOUT = 1 V p-p Figure 17. Power-Up Time: PD (1, 1) to PD (0, 0) Quad Op Amp Circuit (Figure 29) VS = ±12 V, RLOAD = 100 Ω, G = +5, VOUT = 1 V p-p CH1 5.00VΩ M 400ns INPUT CH1 1.00VΩ 700mV CH2 5.00VΩ M1.00µs CH1 800mV Figure 21. Output Overdrive Recovery Quad Op Amp Circuit (Figure 29) VS = ±12 V, RLOAD = 100 Ω, G = +5, VIN = 6 V p-p Figure 18. Input Overdrive Recovery Quad Op Amp Circuit (Figure 29) VS = ±12 V, RLOAD = 100 Ω, G = +1, VIN = 27 V p-p Rev. A | Page 8 of 16 04802-0-019 –6 TE –8 04802-0-016 –2.0 –0.06 –10 O OUTPUT VOLTAGE (V) 0.04 0 0 –10 –10 –20 –20 –30 –30 CROSSTALK (dB) –40 –50 ADSL CHANNEL 3, 4 –60 ADSL CHANNEL 1, 2 –70 –50 DIFF CHANNEL 3, 4 –60 DIFF CHANNEL 1, 2 –70 –80 1 10 FREQUENCY (MHz) 100 100 45 0 VS = ±12V –10 LE DIFFERENTIAL OUTPUT SWING (V) 40 –20 –30 –40 –50 –60 CHANNEL 1 B SO –80 1 10 FREQUENCY (MHz) Figure 25. Crosstalk vs. Frequency Dual Differential Driver Circuit (Figure 30) VS = ±12 V, G = +5, RLOAD = 100 Ω, VIN = 200 mV p-p Figure 22. Crosstalk vs. Frequency ADSL/ADSL2+ Circuit (Figure 32) VS = ±12 V, G = +11, RLOAD = 100 Ω, VIN = 200 mV p-p –70 –90 0.1 TE –90 0.1 04802-0-022 –80 CROSSTALK (dB) –40 04802-0-025 CROSSTALK (dB) AD8392 CHANNEL 2 CHANNEL 3 35 30 25 20 VS = ±5V 15 10 10 Figure 23. Crosstalk vs. Frequency Quad Op Amp Circuit (Figure 29) VS = ±12 V, G = +5, RLOAD = 100 Ω, VIN = 200 mV p-p 1 0.01 0.1 1 10 100 FREQUENCY (kHz) 1000 40 50 60 70 RESISTIVE LOAD (Ω) 80 90 100 1000 04802-0-024 10 30 Figure 26. Differential Output Swing vs. RLOAD ADSL/ADSL2+ Circuit (Figure 32) G = +11 CURRENT NOISE (pA/ Hz) O VOLTAGE NOISE (nV/ Hz) 100 20 04802-0-026 100 Figure 24. Voltage Noise vs. Frequency 100 –INOISE 10 1 0.01 +INOISE 0.1 1 10 100 FREQUENCY (kHz) Figure 27. Current Noise vs. Frequency Rev. A | Page 9 of 16 1000 04802-0-027 1 10 FREQUENCY (MHz) 04802-0-023 CHANNEL 4 –90 0.1 AD8392 180 1G 60 40 10 20 1 0 0.1 –20 0.01 –40 0.001 –60 1k 10k 100k 1M 10M –80 1G 100M FREQUENCY (Hz) Figure 28. Open-Loop Transimpedance and Phase 10 PD (0, 0) PD (0, 1) 1 0.1 0.01 0.01 0.1 10 1 100 1000 TE 1k 100 OUTPUT IMPEDANCE (Ω) 80 PHASE (Degrees) 10k 04802-0-028 100 FREQUENCY (MHz) Figure 31. Output Impedance vs. Frequency Quad Op Amp Circuit (Figure 29) VS = ±12 V, G = +5, PD (0, 0) 280kΩ 162Ω 49.9Ω 100Ω 2kΩ 04802-0-033 499Ω 162Ω B SO Figure 29. Quad Op Amp Circuit 49.9Ω 2kΩ 1kΩ 100Ω 49.9Ω 04802-0-030 2kΩ 100nF 2kΩ 226Ω VCM 100nF 100nF 6.19Ω Figure 30. Dual Differential Driver Circuit Rev. A | Page 10 of 16 100Ω 100nF 2kΩ 6.19Ω 866Ω 280kΩ Figure 32. ADSL/ADSL2+ Circuit 04802-0-032 100nF 866Ω LE 100nF O TRANSIMPEDANCE (Ω) 120 TRANSIMPEDANCE 100k 0.0001 100 PD (1, 0) 140 10M 1M 100 160 PHASE 04802-0-031 100M AD8392 THEORY OF OPERATION VO TZ (S ) = G× VIN TZ (S ) + G × RIN + RF 1 ≈ 50 Ω gm RIN IIN TZ VOUT RN VIN The AD8392 is capable of delivering 400 mA of output current while swinging to within 2 V of either power supply rail. The AD8392 also has a power management system included on-chip. It features four user-programmable power levels (three active power modes as well as the provision for complete shutdown). LE R IN = RF RG RG Figure 33. Simplified Block Diagram where: G = 1+ RF 04802-0-034 The open-loop transimpedance is analogous to the open-loop voltage gain of a voltage feedback amplifier. Figure 33 shows a simplified model of a current feedback amplifier. Since RIN is proportional to 1/gm, the equivalent voltage gain is just TZ × gm, where gm is the transconductance of the input stage. Basic analysis of the follower with gain circuit yields Of course, for a real amplifier there are additional poles that contribute excess phase, and there is a value for RF below which the amplifier is unstable. Tolerance for peaking and desired flatness determines the optimum RF in each application. TE The AD8392 is a current feedback amplifier with high (400 mA) output current capability. With a current feedback amplifier, the current into the inverting input is the feedback signal, and the open-loop behavior is that of a transimpedance, dVO/dIIN or TZ. O B SO Since G × RIN
AD8392ACP-R2 价格&库存

很抱歉,暂时无法提供与“AD8392ACP-R2”相匹配的价格&库存,您可以联系我们找货

免费人工找货