0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD8512

AD8512

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    AD8512 - Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifie...

  • 数据手册
  • 价格&库存
AD8512 数据手册
Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD8510/AD8512/AD8513 FEATURES Fast settling time: 500 ns to 0.1% Low offset voltage: 400 μV maximum Low TCVOS: 1 μV/°C typical Low input bias current: 25 pA typical at VS = ±15 V Dual-supply operation: ±5 V to ±15 V Low noise: 8 nV/√Hz typical at f = 1 kHz Low distortion: 0.0005% No phase reversal Unity gain stable NULL 1 –IN 2 +IN 3 PIN CONFIGURATIONS 8 NC V+ AD8510 NULL 1 –IN 2 +IN 3 02729-003 8 NC 7 NC = NO CONNECT NC = NO CONNECT Figure 1. 8-Lead MSOP (RM Suffix) OUT A 1 –IN A 2 +IN A 3 8 Figure 2. 8-Lead SOIC_N (R Suffix) OUT A 1 –IN A 2 8 V+ OUT B 02729-001 V+ OUT B 02729-002 02729-006 AD8512 7 AD8512 7 APPLICATIONS Instrumentation Multipole filters Precision current measurement Photodiode amplifiers Sensors Audio TOP VIEW 6 –IN B (Not to Scale) V– 4 5 +IN B +IN A 3 V– 4 TOP VIEW 6 –IN B (Not to Scale) 5 +IN B Figure 3. 8-Lead MSOP (RM Suffix) OUT A 1 –IN A 2 +IN A 3 V+ 4 14 13 Figure 4. 8-Lead SOIC_N (R Suffix) OUT A 1 –IN A 2 +IN A 3 V+ 4 14 13 OUT D –IN D +IN D OUT D –IN D +IN D 11 V– TOP VIEW +IN B 5 (Not to Scale) 10 +IN C 02729-005 AD8513 12 11 V– TOP VIEW +IN B 5 (Not to Scale) 10 +IN C AD8513 12 –IN B 6 OUT B 7 9 8 –IN C OUT C –IN B 6 OUT B 7 9 8 –IN C OUT C Figure 5. 14-Lead SOIC_N (R Suffix) Figure 6. 14-Lead TSSOP (RU Suffix) GENERAL DESCRIPTION The AD8510/AD8512/AD8513 are single-, dual-, and quadprecision JFET amplifiers that feature low offset voltage, input bias current, input voltage noise, and input current noise. The combination of low offsets, low noise, and very low input bias currents makes these amplifiers especially suitable for high impedance sensor amplification and precise current measurements using shunts. The combination of dc precision, low noise, and fast settling time results in superior accuracy in medical instruments, electronic measurement, and automated test equipment. Unlike many competitive amplifiers, the AD8510/ AD8512/AD8513 maintain their fast settling performance even with substantial capacitive loads. Unlike many older JFET amplifiers, the AD8510/AD8512/AD8513 do not suffer from output phase reversal when input voltages exceed the maximum common-mode voltage range. Fast slew rate and great stability with capacitive loads make the AD8510/AD8512/AD8513 a perfect fit for high performance filters. Low input bias currents, low offset, and low noise result in a wide dynamic range of photodiode amplifier circuits. Low noise and distortion, high output current, and excellent speed make the AD8510/AD8512/AD8513 great choices for audio applications. The AD8510/AD8512 are both available in 8-lead narrow SOIC_N and 8-lead MSOP packages. MSOP-packaged parts are only available in tape and reel. The AD8513 is available in 14-lead SOIC_N and TSSOP packages. The AD8510/AD8512/AD8513 are specified over the −40°C to +125°C extended industrial temperature range. Rev. H Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2002–2007 Analog Devices, Inc. All rights reserved. 02729-004 TOP VIEW 6 OUT (Not to Scale) V– 4 5 NULL V+ TOP VIEW 6 OUT (Not to Scale) 5 NULL V– 4 7 AD8510 AD8510/AD8512/AD8513 TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 Pin Configurations ........................................................................... 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Electrical Characteristics............................................................. 4 Absolute Maximum Ratings............................................................ 6 ESD Caution.................................................................................. 6 Typical Performance Characteristics ............................................. 7 General Application Information................................................. 13 Input Overvoltage Protection ................................................... 13 Output Phase Reversal............................................................... 13 Total Harmonic Distortion (THD) + Noise .............................. 13 Total Noise Including Source Resistors ................................... 13 Settling Time............................................................................... 14 Overload Recovery Time .......................................................... 14 Capacitive Load Drive ............................................................... 14 Open-Loop Gain and Phase Response.................................... 15 Precision Rectifiers..................................................................... 16 I-V Conversion Applications.................................................... 17 Outline Dimensions ....................................................................... 19 Ordering Guide .......................................................................... 20 REVISION HISTORY 10/07—Rev. G to Rev. H Changes to Crosstalk Section........................................................ 18 Added Figure 58 ............................................................................. 18 6/07—Rev. F to Rev. G Changes to Figure 1 and Figure 2 .................................................. 1 Changes to Table 1 and Table 2...................................................... 3 Updated Outline Dimensions....................................................... 19 Changes to Ordering Guide.......................................................... 20 6/06—Rev. E to Rev. F Changes to Figure 23 ....................................................................... 9 Updated Outline Dimensions....................................................... 19 Changes to Ordering Guide .......................................................... 20 6/04—Rev. D to Rev. E Changes to Format .............................................................Universal Changes to Specifications ................................................................ 3 Updated Outline Dimensions ....................................................... 19 10/03—Rev. C to Rev. D Added AD8513 Model .......................................................Universal Changes to Specifications ................................................................ 3 Added Figure 36 through Figure 40............................................. 10 Added Figure 55 and Figure 57..................................................... 17 Changes to Ordering Guide .......................................................... 20 9/03—Rev. B to Rev. C Changes to Ordering Guide ........................................................... 4 Updated Figure 2 ............................................................................ 10 Changes to Input Overvoltage Protection Section .................... 10 Changes to Figure 10 and Figure 11............................................. 12 Changes to Photodiode Circuits Section..................................... 13 Changes to Figure 13 and Figure 14............................................. 13 Deleted Precision Current Monitoring Section.......................... 14 Updated Outline Dimensions ....................................................... 15 3/03—Rev. A to Rev. B Updated Figure 5 ............................................................................ 11 Updated Outline Dimensions....................................................... 15 8/02—Rev. 0 to Rev. A Added AD8510 Model.......................................................Universal Added Pin Configurations ...............................................................1 Changes to Specifications.................................................................2 Changes to Ordering Guide .............................................................4 Changes to TPC 2 and TPC 3 ..........................................................5 Added TPC 10 and TPC 12..............................................................6 Replaced TPC 20 ...............................................................................8 Replaced TPC 27 ...............................................................................9 Changes to General Application Information Section .............. 10 Changes to Figure 5........................................................................ 11 Changes to I-V Conversion Applications Section ..................... 13 Changes to Figure 13 and Figure 14............................................. 13 Changes to Figure 17...................................................................... 14 Rev. H | Page 2 of 20 AD8510/AD8512/AD8513 SPECIFICATIONS @ VS = ±5 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage (B Grade) 1 Offset Voltage (A Grade) Input Bias Current Symbol VOS −40°C < TA < +125°C VOS −40°C < TA < +125°C IB −40°C < TA < +85°C −40°C < TA < +125°C Input Offset Current IOS −40°C < TA < +85°C −40°C < TA < +125°C Input Capacitance Differential Common Mode Input Voltage Range Common-Mode Rejection Ratio Large-Signal Voltage Gain Offset Voltage Drift (B Grade)1 Offset Voltage Drift (A Grade) OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Voltage High Output Voltage Low Output Voltage High Output Voltage Low Output Current POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier AD8510/AD8512/AD8513 AD8510/AD8512 AD8513 DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Settling Time Total Harmonic Distortion (THD) + Noise Phase Margin NOISE PERFORMANCE Voltage Noise Density 12.5 11.5 CMRR AVO ΔVOS/ΔT ΔVOS/ΔT VOH VOL VOH VOL VOH VOL IOUT PSRR ISY VCM = −2.0 V to +2.5 V RL = 2 kΩ, VO = −3 V to +3 V −2.0 86 65 +2.5 100 107 0.9 1.7 4.3 −4.9 4.2 −4.9 4.1 −4.8 ±54 130 2.0 2.3 2.5 2.75 5 21 0.1 Conditions Min Typ 0.08 Max 0.4 0.8 0.9 1.8 75 0.7 7.5 50 0.3 0.5 Unit mV mV mV mV pA nA nA pA nA nA pF pF V dB V/mV μV/°C μV/°C V V V V V V mA dB mA mA mA V/μs MHz μs % Degrees nV/√Hz nV/√Hz nV/√Hz nV/√Hz μV p-p 5 12 RL = 10 kΩ RL = 10 kΩ, −40°C < TA < +125°C R L = 2 kΩ RL = 2 kΩ, −40°C < TA < +125°C RL = 600 Ω RL = 600 Ω, −40°C < TA < +125°C 4.1 3.9 3.7 ±40 −4.7 −4.5 −4.2 VS = ±4.5 V to ±18 V VO = 0 V −40°C < TA < +125°C −40°C < TA < +125°C 86 SR GBP tS THD + N φM en RL = 2 kΩ To 0.1%, 0 V to 4 V step, G = +1 1 kHz, G = +1, RL = 2 kΩ 20 8 0.4 0.0005 44.5 34 12 8.0 7.6 2.4 Peak-to-Peak Voltage Noise 1 en p-p f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz 0.1 Hz to 10 Hz bandwidth 10 5.2 AD8510/AD8512 only. Rev. H | Page 3 of 20 AD8510/AD8512/AD8513 ELECTRICAL CHARACTERISTICS @ VS = ±15 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage (B Grade) 1 Symbol VOS −40°C < TA < +125°C Offset Voltage (A Grade) Input Bias Current VOS −40°C < TA < +125°C IB −40°C < TA < +85°C −40°C < TA < +125°C Input Offset Current IOS −40°C < TA < +85°C −40°C < TA < +125°C Input Capacitance Differential Common Mode Input Voltage Range Common-Mode Rejection Ratio Large-Signal Voltage Gain Offset Voltage Drift (B Grade)1 Offset Voltage Drift (A Grade) OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Voltage High Output Voltage Low Output Voltage High Output Voltage Low Output Current POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier AD8510/AD8512/AD8513 AD8510/AD8512 AD8513 DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Settling Time Total Harmonic Distortion (THD) + Noise Phase Margin 12.5 11.5 CMRR AVO ΔVOS/ΔT ΔVOS/ΔT VOH VOL VOH VOL VOH VOL IOUT PSRR ISY VS = ±4.5 V to ±18 V VO = 0 V −40°C < TA < +125°C −40°C < TA < +125°C SR GBP tS THD + N φM RL = 2 kΩ To 0.1%, 0 V to 10 V step, G = +1 To 0.01%, 0 V to 10 V step, G = +1 1 kHz, G = +1, RL = 2 kΩ 86 2.2 2.5 2.6 3.0 RL = 10 kΩ RL = 10 kΩ, −40°C < TA < +125°C RL = 2 kΩ RL = 2 kΩ, −40°C < TA < +125°C RL = 600 Ω RL = 600 Ω, −40°C < TA < +125°C RL = 600 Ω RL = 600 Ω, −40°C < TA < +125°C +14.0 +13.8 +13.5 +11.4 VCM = −12.5 V to +12.5 V RL = 2 kΩ, VCM = 0 V, VO = −13.5 V to +13.5 V −13.5 86 115 +13.0 108 196 1.0 1.7 +14.2 −14.9 +14.1 –14.8 +13.9 −14.3 ±70 5 12 6 25 0.1 Conditions Min Typ 0.08 Max 0.4 0.8 1.0 1.8 80 0.7 10 75 0.3 0.5 Unit mV mV mV mV pA nA nA pA nA nA pF pF V dB V/mV μV/°C μV/°C V V V V V V V V mA dB mA mA mA V/μs MHz μs μs % Degrees −14.6 −14.5 −13.8 −12.1 20 8 0.5 0.9 0.0005 52 Rev. H | Page 4 of 20 AD8510/AD8512/AD8513 Parameter NOISE PERFORMANCE Voltage Noise Density Symbol en Conditions f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz 0.1 Hz to 10 Hz bandwidth Min Typ 34 12 8.0 7.6 2.4 Max Unit nV/√Hz nV/√Hz nV/√Hz nV/√Hz μV p-p 10 5.2 Peak-to-Peak Voltage Noise 1 en p-p AD8510/AD8512 only. Rev. H | Page 5 of 20 AD8510/AD8512/AD8513 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Supply Voltage Input Voltage Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 10 sec) Electrostatic Discharge (Human Body Model) Rating ±18 V ±VS Observe derating curves −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C 2000 V Table 4. Thermal Resistance Package Type 8-Lead MSOP (RM) 8-Lead SOIC_N (R) 14-Lead SOIC_N (R) 14-Lead TSSOP (RU) 1 θJA1 210 158 120 180 θJC 45 43 36 35 Unit °C/W °C/W °C/W °C/W θJA is specified for worst-case conditions, that is, θJA is specified for device soldered in circuit board for surface-mount packages. ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. H | Page 6 of 20 AD8510/AD8512/AD8513 TYPICAL PERFORMANCE CHARACTERISTICS 120 VSY = ±15V TA = 25°C 100k VSY = ±5V, ±15V 100 NUMBER OF AMPLIFIERS 80 INPUT BIAS CURRENT (pA) 02729-007 10k 1k 60 40 100 20 10 02729-010 0 –0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 INPUT OFFSET VOLTAGE (mV) 1 –40 –25 –10 5 20 35 50 65 TEMPERATURE (°C) 80 95 110 125 Figure 7. Input Offset Voltage Distribution Figure 10. Input Bias Current vs. Temperature 30 VSY = ±15V B GRADE 25 INPUT OFFSET CURRENT (pA) 1000 NUMBER OF AMPLIFIERS 100 ±15V 10 ±5V 20 15 10 1 02729-011 5 02729-008 0 0 1 2 3 TCVOS (µV/°C) 4 5 6 0.1 –40 –25 –10 5 20 35 50 65 TEMPERATURE (°C) 80 95 110 125 Figure 8. AD8510/AD8512 TCVOS Distribution Figure 11. Input Offset Current vs. Temperature 30 VSY = ±15V A GRADE 25 NUMBER OF AMPLIFIERS 40 TA = 25°C 35 30 25 20 15 10 02729-012 20 15 10 5 02729-009 INPUT BIAS CURRENT (pA) 5 0 0 0 1 2 3 TCVOS (µV/°C) 4 5 6 8 13 18 23 SUPPLY VOLTAGE (V+ – V– ) 28 30 Figure 9. AD8510/AD8512 TCVOS Distribution Figure 12. Input Bias Current vs. Supply Voltage Rev. H | Page 7 of 20 AD8510/AD8512/AD8513 2.0 SUPPLY CURRENT PER AMPLIFIER (mA) 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 TA = 25°C 2.8 2.6 2.4 SUPPLY CURRENT (mA) TA = 25°C 2.2 2.0 1.8 1.6 1.4 02729-013 1.1 1.0 8 13 18 23 SUPPLY VOLTAGE (V+ – V–) 28 1.2 1.0 8 13 18 23 SUPPLY VOLTAGE (V+ – V–) 28 30 33 Figure 13. AD8512 Supply Current per Amplifier vs. Supply Voltage Figure 16. AD8510 Supply Current vs. Supply Voltage 16 VOL 14 VOH OUTPUT VOLTAGE (V) 70 VSY = ±15V 315 VSY = ±15V RL = 2.5kΩ CSCOPE = 20pF ΦM = 52° 270 225 180 135 90 45 0 PHASE (Degrees) 02729-018 02729-017 60 50 40 12 10 8 6 4 VOH 02729-014 GAIN (dB) 30 20 10 0 VOL VSY = ±5V –10 –20 –30 10k 100k 1M FREQUENCY (Hz) 10M –45 –90 –135 50M 2 0 0 10 20 30 40 50 LOAD CURRENT (mA) 60 70 80 Figure 14. AD8510/AD8512 Output Voltage vs. Load Current Figure 17. Open-Loop Gain and Phase vs. Frequency 2.50 SUPPLY CURRENT PER AMPLIFIER (mA) 2.50 2.25 SUPPLY CURRENT (mA) 2.25 ±15V 2.00 ±15V 2.00 ±5V 1.75 1.75 ±5V 1.50 1.50 1.25 02729-015 1.25 1.00 –40 –25 –10 5 35 50 20 65 TEMPERATURE (°C) 80 95 110 125 1.00 –40 –25 –10 5 35 50 20 65 TEMPERATURE (°C) 80 95 110 125 Figure 15. AD8512 Supply Current per Amplifier vs. Temperature Figure 18. AD8510 Supply Current vs. Temperature Rev. H | Page 8 of 20 02729-016 AD8510/AD8512/AD8513 70 60 50 CLOSED-LOOP GAIN (dB) OUTPUT IMPEDANCE (Ω) 300 VSY = ±15V, ±5V 270 240 210 180 150 120 90 60 02729-019 VSY = ±15V VIN = 50mV 40 30 20 10 0 –10 –20 –30 1k AV = 100 AV = 10 AV = 1 AV = 100 AV = 10 02729-022 AV = 1 30 0 100 1k 10k 1M 100k FREQUENCY (Hz) 10M 100M 10k 100k 1M FREQUENCY (Hz) 10M 50M Figure 19. Closed-Loop Gain vs. Frequency Figure 22. Output Impedance vs. Frequency 120 VSY = ±15V 100 1k VSY = ±5V TO ±15V VOLTAGE NOISE DENSITY (nV/ Hz) 02729-020 80 CMRR (dB) 100 60 40 10 20 0 100 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M 1 1 10 100 FREQUENCY (Hz) 1k 10k Figure 20. CMRR vs. Frequency Figure 23. Voltage Noise Density vs. Frequency 120 VSY = ±5V, ±15V 100 80 –PSRR VSY = ±15V 60 40 +PSRR 20 0 –20 100 VOLTAGE (1µV/DIV) PSRR (dB) 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M 02729-021 TIME (1s/DIV) Figure 21. PSRR vs. Frequency Figure 24. 0.1 Hz to 10 Hz Input Voltage Noise Rev. H | Page 9 of 20 02729-024 02729-023 AD8510/AD8512/AD8513 280 VSY = ±5V TO ±15V 245 VOLTAGE NOISE DENSITY (nV Hz) SMALL-SIGNAL OVERSHOOT (%) 90 80 70 60 50 40 30 20 10 0 10 02729-028 VSY = ±15V RL = 2kΩ 210 175 140 105 70 02729-025 +OS –OS 35 0 0 10 20 30 40 50 60 70 80 90 100 1 FREQUENCY (Hz) 100 1k LOAD CAPACITANCE (pF) 10k Figure 25. Voltage Noise Density vs. Frequency Figure 28. Small-Signal Overshoot vs. Load Capacitance 70 315 VSY = ±5V RL = 2.5kΩ CSCOPE = 20pF ΦM = 44.5° 270 225 VSY = ±15V RL = 2kΩ CL = 100pF AV = 1 60 50 OPEN-LOOP GAIN (dB) VOLTAGE (5V/DIV) 40 30 20 10 0 –10 135 90 45 0 –45 –90 100k 1M FREQUENCY (Hz) 10M –135 50M 02729-029 02729-026 –20 –30 10k TIME (1µs/DIV) Figure 26. Large-Signal Transient Response Figure 29. Open-Loop Gain and Phase vs. Frequency 120 VSY = ±15V RL = 2kΩ CL = 100pF AV = 1 VSY = ±5V 100 VOLTAGE (50mV/DIV) 80 CMRR (dB) 60 40 20 02729-027 02729-030 0 100 1k 10k TIME (100ns/DIV) 100k 1M FREQUENCY (Hz) 10M 100M Figure 27. Small-Signal Transient Response Figure 30. CMRR vs. Frequency Rev. H | Page 10 of 20 PHASE (Degrees) 180 AD8510/AD8512/AD8513 300 270 240 OUTPUT IMPEDANCE (Ω) VSY = ±5V VIN = 50mV 210 180 150 120 90 60 30 0 100 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M AV = 100 AV = 1 VOLTAGE (50mV/DIV) 02729-031 VSY = ±5V RL = 2kΩ CL = 100pF AV = 1 AV = 10 TIME (100ns/DIV) Figure 31. Output Impedance vs. Frequency Figure 34. Small-Signal Transient Response 100 VSY = ±5V 90 SMALL-SIGNAL OVERSHOOT (%) VSY = ±5V RL = 2kΩ 80 70 60 50 40 30 20 10 0 1 10 100 1k LOAD CAPACITANCE (pF) 02729-035 VOLTAGE (1µV/DIV) +OS –OS 02729-032 TIME (1s/DIV) 10k Figure 32. 0.1 Hz to 10 Hz Input Voltage Noise Figure 35. Small-Signal Overshoot vs. Load Capacitance 100 NUMBER OF AMPLIFIERS VSY = ±5V RL = 2kΩ CL = 100pF AV = 1 90 80 70 60 50 40 30 20 10 02729-033 VS = ±15V VOLTAGE (2V/DIV) 02729-034 0 0 1 2 3 TCVOS (µV/°C) 4 5 6 TIME (1µs/DIV) Figure 33. Large-Signal Transient Response Figure 36. AD8513 TCVOS Distribution Rev. H | Page 11 of 20 02729-036 AD8510/AD8512/AD8513 120 VS = ±5V 100 NUMBER OF AMPLIFIERS OUTPUT VOLTAGE (V) 16 14 12 10 8 6 VOL 4 VOH 02729-039 VOL VOH VSY = ±15V 80 60 40 VSY = ±5V 20 02729-037 2 0 0 0 1 2 3 TCVOS (µV/°C) 4 5 6 0 10 20 30 40 50 60 70 80 LOAD CURRENT (mA) Figure 37. AD8513 TCVOS Distribution Figure 39. AD8513 Output Voltage vs. Load Current 2.5 SUPPLY CURRENT PER AMPLIFIER (mA) 3.0 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 8 SUPPLY CURRENT PER AMPLIFIER (mA) TA = 25°C 2.5 ±15V 2.0 ±5V 1.5 1.0 0.5 02729-040 02729-038 13 18 23 28 33 0 –40 –25 –10 5 20 35 50 65 80 95 110 125 SUPPLY VOLTAGE (V+ – V–) TEMPERATURE (°C) Figure 38. AD8513 Supply Current per Amplifier vs. Supply Voltage Figure 40. AD8513 Supply Current per Amplifier vs. Temperature Rev. H | Page 12 of 20 AD8510/AD8512/AD8513 GENERAL APPLICATION INFORMATION INPUT OVERVOLTAGE PROTECTION The AD8510/AD8512/AD8513 have internal protective circuitry that allows voltages as high as 0.7 V beyond the supplies to be applied at the input of either terminal without causing damage. For higher input voltages, a series resistor is necessary to limit the input current. The resistor value can be determined from the formula 0.01 VSY = ±5V RL = 100kΩ BW = 22kHz DISTORTION (%) 0.001 VIN − VS RS ≤ 5 mA 02729-056 With a very low offset current of > R2, the circuit behavior is not impacted by the effect of the junction resistance. The maximum signal bandwidth is f MAX = ft 2πR2Ct where ft is the unity gain frequency of the amplifier. Cf can be calculated by Cf = Ct 2πR2 ft where ft is the unity gain frequency of the op amp, and it achieves a phase margin, φM, of approximately 45°. A higher phase margin can be obtained by increasing the value of Cf. Setting Cf to twice the previous value yields approximately φM = 65° and a maximal flat frequency response, but it reduces the maximum signal bandwidth by 50%. Using the previous parameters with a Cf ≈ 1 pF, the signal bandwidth is approximately 2.6 MHz. VEE Signal Transmission Applications 2 4 AD8510 Rd Ct 3 7 6 VCC 02729-048 One popular signal transmission method uses pulse-width modulation. High data rates may require a fast comparator rather than an op amp. However, the need for sharp, undistorted signals may favor using a linear amplifier. The AD8510/AD8512/AD8513 make excellent voltage comparators. In addition to a high slew rate, the AD8510/ AD8512/AD8513 have a very fast saturation recovery time. In the absence of feedback, the amplifiers are in open-loop mode (very high gain). In this mode of operation, they spend much of their time in saturation. The circuit shown in Figure 54 was used to compare two signals of different frequencies, namely a 100 Hz sine wave and a 1 kHz triangular wave. Figure 55 shows a scope plot of the resulting output waveforms. A pull-up resistor (typically 5 kΩ) can be connected from the output to VCC if the output voltage needs to reach the positive rail. The trade-off is that power consumption is higher. +15V Figure 53. Equivalent Preamplifier Photodiode Circuit A larger signal bandwidth can be attained at the expense of additional output noise. The total input capacitance (Ct) consists of the sum of the diode capacitance (typically 3 pF to 4 pF) and the amplifier’s input capacitance (12 pF), which includes external parasitic capacitance. Ct creates a pole in the frequency response that can lead to an unstable system. To ensure stability and optimize the bandwidth of the signal, a capacitor is placed in the feedback loop of the circuit shown in Figure 53. It creates a zero and yields a bandwidth whose corner frequency is 1/(2π(R2Cf)). The value of R2 can be determined by the ratio V/ID where: V is the desired output voltage of the op amp. ID is the diode current. For example, if ID is 100 μA and a 10 V output voltage is desired, R2 should be 100 kΩ. Rd (see Figure 53) is a junction resistance that drops typically by a factor of 2 for every 10°C increase in temperature. V1 3 7 6 VOUT 2 4 V2 Figure 54. Pulse-Width Modulator Rev. H | Page 17 of 20 02729-049 –15V AD8510/AD8512/AD8513 The AD8510 single has two additional active terminals that are not present on the AD8512 dual or AD8513 quad parts. These pins are labeled “null” and are used for fine adjustment of the input offset voltage. Although the guaranteed maximum offset voltage at room temperature is 400 μV and over the −40°C to +125°C range is 800 mV maximum, this offset voltage can be reduced by adding a potentiometer to the null pins as shown in Figure 58. With the 20 kΩ potentiometer shown, the adjustment range is approximately ±3.5 mV. The potentiometer parallels low value resistors in the drain circuit of the JFET differential input pair and allows unbalancing of the drain currents to change the offset voltage. If offset adjustment is not required, these pins should be left unconnected. Caution should be used when adding adjusting potentiometers to any op amp with this capability for several reasons. First, there is gain from these nodes to the output; therefore, capacitive coupling from noisy traces to these nodes will inject noise into the signal path. Second, the temperature coefficient of the potentiometer will not match the temperature coefficient of the internal resistors, so the offset voltage drift with temperature will be slightly affected. Third, this provision is for adjusting the offset voltage of the op amp, not for adjusting the offset of the overall system. Although it is tempting to decrease the value of the potentiometer to attain more range, this will adversely affect the dc and ac parameters. Instead, increase the potentiometer to 50 kΩ to decrease the range if needed. 20kΩ 6 5 5kΩ 5kΩ 4 02729-052 VOLTAGE (5V/DIV) TIME (2ms/DIV) Figure 55. Pulse-Width Modulation Crosstalk Crosstalk, also known as channel separation, is a measure of signal feedthrough from one channel to another on the same IC. The AD8512/AD8513 have a channel separation of better than −90 dB for frequencies up to 10 kHz and of better than −50 dB for frequencies up to 10 MHz. Figure 57 shows the typical channel separation behavior between Amplifier A (driving amplifier) and each of the following: Amplifier B, Amplifier C, and Amplifier D. VOUT 20kΩ +VS 2 18V p-p 3 VIN –VS 8 1 7 2.2kΩ 02729-050 V+ 1 – INPUT + 2 5 AD8510 3 4 7 6 OUTPUT VOUT CROSSTALK = 20 log 10V IN Figure 56. Crosstalk Test Circuit 0 –20 CHANNEL SEPARATION (dB) V– Figure 58. Optional Offset Nulling Circuit –40 –60 –80 –100 –120 02729-051 CH B CH D CH C –140 –160 100 1k 100k 10k FREQUENCY (Hz) 1M 10M Figure 57. Channel Separation Rev. H | Page 18 of 20 02729-058 VOS TRIM RANGE IS TYPICALLY ±3.5mV AD8510/AD8512/AD8513 OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 5.10 5.00 4.90 4.00 (0.1574) 3.80 (0.1497) 8 1 5 4 6.20 (0.2441) 5.80 (0.2284) 14 8 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 1.75 (0.0688) 1.35 (0.0532) 0.50 (0.0196) 0.25 (0.0099) 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 4.50 4.40 4.30 45° 1 7 6.40 BSC PIN 1 1.05 1.00 0.80 0.65 BSC 1.20 MAX 0.15 0.05 012407-A 0.51 (0.0201) 0.31 (0.0122) 0.20 0.09 COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. 0.30 0.19 SEATING COPLANARITY PLANE 0.10 8° 0° 0.75 0.60 0.45 COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 Figure 59. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) Figure 61. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters 3.20 3.00 2.80 8.75 (0.3445) 8.55 (0.3366) 14 1 8 7 3.20 3.00 2.80 PIN 1 8 5 1 5.15 4.90 4.65 4 4.00 (0.1575) 3.80 (0.1496) 6.20 (0.2441) 5.80 (0.2283) 0.65 BSC 0.95 0.85 0.75 0.15 0.00 0.38 0.22 SEATING PLANE 1.10 MAX 8° 0° 0.80 0.60 0.40 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 1.27 (0.0500) BSC 1.75 (0.0689) 1.35 (0.0531) SEATING PLANE 0.50 (0.0197) 0.25 (0.0098) 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 45° 0.23 0.08 0.51 (0.0201) 0.31 (0.0122) COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-AA COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 60. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Figure 62. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches) Rev. H | Page 19 of 20 060606-A AD8510/AD8512/AD8513 ORDERING GUIDE Model AD8510ARM-REEL AD8510ARM-R2 AD8510ARMZ-REEL 1 AD8510ARMZ-R21 AD8510AR AD8510AR-REEL AD8510AR-REEL7 AD8510ARZ1 AD8510ARZ-REEL1 AD8510ARZ-REEL71 AD8510BR AD8510BR-REEL AD8510BR-REEL7 AD8510BRZ1 AD8510BRZ-REEL1 AD8510BRZ-REEL71 AD8512ARM-REEL AD8512ARM-R2 AD8512ARMZ-REEL1 AD8512ARMZ-R21 AD8512AR AD8512AR-REEL AD8512AR-REEL7 AD8512ARZ1 AD8512ARZ-REEL1 AD8512ARZ-REEL71 AD8512BR AD8512BR-REEL AD8512BR-REEL7 AD8512BRZ1 AD8512BRZ-REEL1 AD8512BRZ-REEL71 AD8513AR AD8513AR-REEL AD8513AR-REEL7 AD8513ARZ1 AD8513ARZ-REEL1 AD8513ARZ-REEL71 AD8513ARU AD8513ARU-REEL AD8513ARUZ1 AD8513ARUZ-REEL1 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead TSSOP 14-Lead TSSOP 14-Lead TSSOP 14-Lead TSSOP Package Option RM-8 RM-8 RM-8 RM-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 RM-8 RM-8 RM-8 RM-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-14 R-14 R-14 R-14 R-14 R-14 RU-14 RU-14 RU-14 RU-14 Branding B7A B7A B7A# B7A# B8A B8A B8A# B8A# Z = RoHS Compliant Part, # denotes RoHS compliant product may be top or bottom marked. ©2002–2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D02729-0-10/07(H) Rev. H | Page 20 of 20
AD8512 价格&库存

很抱歉,暂时无法提供与“AD8512”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AD8512ARMZ
  •  国内价格
  • 1+15.93
  • 10+15.34
  • 100+13.924
  • 500+13.216

库存:97

AD8512ARMZ-REEL
  •  国内价格
  • 1+17.78753
  • 10+17.11883
  • 100+15.11271
  • 500+14.71149

库存:846

AD8512ARZ-REEL7
  •  国内价格
  • 1+13.83281
  • 10+12.70819
  • 30+12.48327

库存:13