0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD8612ARU-REEL

AD8612ARU-REEL

  • 厂商:

    AD(亚德诺)

  • 封装:

    TSSOP-14_5X4.4MM

  • 描述:

    COMPARATOR

  • 详情介绍
  • 数据手册
  • 价格&库存
AD8612ARU-REEL 数据手册
Ultrafast, 4 ns Single-Supply Comparators AD8611/AD8612 Data Sheet PIN CONFIGURATIONS 4 ns propagation delay at 5 V Single-supply operation: 3 V to 5 V 100 MHz input Latch function V+ 1 IN+ 2 AD8611 8 QA 7 QA IN– 3 6 GND TOP VIEW V– 4 (Not to Scale) 5 LATCH 06010-001 FEATURES V+ 1 IN+ 2 AD8611 IN– 3 TOP VIEW (Not to Scale) V– 4 8 QA 7 QA 6 GND 5 LATCH Figure 2. 8-Lead MSOP (RM-8) QA 1 14 QB QA 2 13 QB GND 3 AD8612 12 GND LEA 4 TOP VIEW (Not to Scale) 11 LEB V– 5 10 V+ INA– 6 9 INB– INA+ 7 8 INB+ 06010-003 High speed timing Clock recovery and clock distribution Line receivers Digital communications Phase detectors High speed sampling Read channel detection PCMCIA cards Zero-crossing detector High speed analog-to-digital converter (ADC) Upgrade for LT1394 and LT1016 designs 06010-002 Figure 1. 8-Lead Narrow Body SOIC (R-8) APPLICATIONS Figure 3. 14-Lead TSSOP (RU-14) GENERAL DESCRIPTION The AD8611/AD8612 are single and dual 4 ns comparators with latch function and complementary output. The latch is not functional if VCC is less than 4.3 V. The AD8611 has the same pinout as the LT1016 and LT1394, with lower supply current and a wider common-mode input range, which includes the negative supply rail. Fast 4 ns propagation delay makes the AD8611/AD8612 good choices for timing circuits and line receivers. Propagation delays for rising and falling signals are closely matched and tracked over temperature. This matched delay makes the AD8611/AD8612 good choices for clock recovery because the duty cycle of the output matches the duty cycle of the input. The AD8611/AD8612 are specified over the industrial temperature range (−40°C to +85°C). The AD8611 is available in both 8-lead MSOP and narrow 8-lead SOIC surface-mount packages. The AD8612 is available in a 14-lead TSSOP surface-mount package. Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2000–2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD8611/AD8612 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Optimizing High Speed Performance ..................................... 10 Applications ....................................................................................... 1 Upgrading the LT1394 and LT1016 ......................................... 10 Pin Configurations ........................................................................... 1 Maximum Input Frequency and Overdrive............................ 10 General Description ......................................................................... 1 Output Loading Considerations............................................... 10 Revision History ............................................................................... 2 Using the Latch to Maintain a Constant Output.................... 11 Specifications..................................................................................... 3 Input Stage and Bias Currents .................................................. 11 Absolute Maximum Ratings............................................................ 5 Using Hysteresis ......................................................................... 11 Thermal Resistance ...................................................................... 5 Clock Timing Recovery ............................................................. 12 ESD Caution .................................................................................. 5 A 5 V, High Speed Window Comparator ................................ 12 Pin Configurations and Function Descriptions ........................... 6 Outline Dimensions ....................................................................... 16 Typical Performance Characteristics ............................................. 7 Ordering Guide .......................................................................... 17 Applications Information .............................................................. 10 REVISION HISTORY 12/2016—Rev. A to Rev. B Changes to Input Voltage Parameter, Table 3 ............................... 5 Added Input Current Parameter, Table 3 ...................................... 5 Deleted Endnote 1, Table 3 .............................................................. 5 Updated Outline Dimensions ....................................................... 17 Changes to Ordering Guide .......................................................... 18 8/2006—Rev. 0 to Rev. A Updated Format .................................................................. Universal Added No Latch if VCC < 4.3 V ......................................... Universal Changes to Pin Names ....................................................... Universal Added Pin Configurations and Function Descriptions Page ..... 6 Changes to Table 8 .......................................................................... 12 Changes to Figure 26 ...................................................................... 12 Changes to Ordering Guide .......................................................... 17 4/2000—Revision 0: Initial Version Rev. B | Page 2 of 20 Data Sheet AD8611/AD8612 SPECIFICATIONS V+ = 5.0 V, V− = VGND = 0 V, TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Test Conditions/Comments Min VOS Typ Max Unit 1 7 8 mV mV μV/°C μA μA μA V dB V/V pF −40°C ≤ TA ≤ +85°C Offset Voltage Drift Input Bias Current Input Offset Current Input Common-Mode Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Input Capacitance LATCH ENABLE INPUT Logic 1 Voltage Threshold Logic 0 Voltage Threshold Logic 1 Current Logic 0 Current Latch Enable Pulse Width Setup Time Hold Time DIGITAL OUTPUTS Logic 1 Voltage Logic 1 Voltage Logic 0 Voltage DYNAMIC PERFORMANCE Input Frequency Propagation Delay Propagation Delay Differential Propagation Delay (Rising Propagation Delay vs. Falling Propagation Delay) Rise Time Fall Time POWER SUPPLY Power Supply Rejection Ratio V+ Supply Current 2 ΔVOS/ΔT IB IB IOS VCM CMRR AVO CIN VCM = 0 V −40°C ≤ TA ≤ +85°C VCM = 0 V 0 V ≤ VCM ≤ 3.0 V RL = 10 kΩ 2 0.0 55 ±4 3.0 85 3000 3.0 VCC > 4.3 V VCC > 4.3 V VCC > 4.3 V, VLH = 3.0 V VCC > 4.3 V, VLL = 0.3 V tPW(E) tS tH VCC > 4.3 V VCC > 4.3 V VCC > 4.3 V VOH VOH VOL IOH = 50 μA, ΔVIN > 250 mV IOH = 3.2 mA, ΔVIN > 250 mV IOL = 3.2 mA, ΔVIN > 250 mV fMAX tP tP 400 mV p-p sine wave 200 mV step with 100 mV overdrive 1 −40°C ≤ TA ≤ +85°C 100 mV step with 5 mV overdrive 100 4.0 5 5 ΔtP 100 mV step with 100 mV overdrive1 0.5 20% to 80% 80% to 20% 2.5 1.1 PSRR I+ Ground Supply Current2 IGND V− Supply Current2 I− 4.5 V ≤ V+ ≤ 5.5 V −40°C ≤ TA ≤ +85°C VO = 0 V, RL = ∞ −40°C ≤ TA ≤ +85°C 2.0 4 –4 –4.5 VIH VIL IIH IIL –1.0 –5 3.0 2.4 55 1.65 1.60 –0.3 –2.7 Guaranteed by design. Per comparator. Rev. B | Page 3 of 20 0.8 V V μA μA 3 0.5 0.5 ns ns ns 3.35 3.4 0.25 V V V 73 5.7 3.5 2.2 −40°C ≤ TA ≤ +85°C 1 –6 –7 0.4 5.5 2.0 MHz ns ns ns ns ns ns 10 10 7 7 4 5 dB mA mA mA mA mA AD8611/AD8612 Data Sheet V+ = 3.0 V, V− = VGND = 0 V, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Input Common-Mode Voltage Range Common-Mode Rejection Ratio OUTPUT CHARACTERISTICS Output High Voltage Output Low Voltage LATCH ENABLE INPUT POWER SUPPLY Power Supply Rejection Ratio Supply Currents V+ Supply Current 2 Symbol VOS IB IB VCM CMRR Test Conditions/Comments Min VCM = 0 V −40°C ≤ TA ≤ +85°C −6 −7 0 55 0 V ≤ VCM ≤ 1.0 V Typ Max Unit 1 −4.0 −4.5 7 mV μA μA V dB 1.0 VOH VOL IOH = −3.2 mA, VIN > 250 mV IOL = +3.2 mA, VIN > 250 mV Not functional if VCC < 4.3 V 1.2 1 PSRR 46 I+ 2.7 V ≤ V+ ≤ 6 V VO = 0 V, RL = ∞ −40°C ≤ TA ≤ +85°C Ground Supply Current2 IGND −40°C ≤ TA ≤ +85°C 2.5 V– Supply Current2 I− 0.3 4.5 2 −40°C ≤ TA ≤ +85°C DYNAMIC PERFORMANCE Propagation Delay tP 100 mV step with 20 mV overdrive 3 Output high voltage without pull-up resistor. It can be useful to have a pull-up resistor to V+ for 3 V operation. Per comparator. 3 Guaranteed by design. 1 2 Rev. B | Page 4 of 20 4.5 V V dB 6.5 10 3.5 5.5 3.5 4.8 mA mA mA mA mA mA 6.5 ns Data Sheet AD8611/AD8612 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Total Analog Supply Voltage Digital Supply Voltage Input Voltage Differential Input Voltage Output Short-Circuit Duration to GND Input Current Storage Temperature Range R, RU, RM Packages Operating Temperature Range Junction Temperature Range R, RU, RM Packages Lead Temperature Range (Soldering, 10 sec) Rating 7.0 V 7.0 V VCC +0.3 V to VEE −0.3 V ±5 V Indefinite ±5 mA −65°C to +150°C −40°C to +85°C −65°C to +150°C 300°C Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. THERMAL RESISTANCE Table 4. Package Type 8-Lead SOIC (R) 8-Lead MSOP (RM) 14-Lead TSSOP (RU) θJA1 158 240 240 θJC 43 43 43 Unit °C/W °C/W °C/W θJA is specified for the worst-case conditions, that is, a device in socket for P-DIP and a device soldered in circuit board for SOIC and TSSOP. 1 ESD CAUTION Rev. B | Page 5 of 20 AD8611/AD8612 Data Sheet V+ 1 IN+ 2 AD8611 8 QA 7 QA IN– 3 6 GND TOP VIEW V– 4 (Not to Scale) 5 LATCH 06010-001 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS V+ 1 IN+ 2 AD8611 IN– 3 TOP VIEW (Not to Scale) V– 4 8 QA 7 QA 6 GND 5 LATCH 06010-002 Figure 4. 8-Lead Narrow Body SOIC Pin Configuration Figure 5. 8-Lead MSOP Pin Configuration QA 1 14 QB QA 2 13 QB GND 3 AD8612 12 GND LEA 4 TOP VIEW (Not to Scale) 11 LEB V– 5 INA– 6 9 INB– INA+ 7 8 INB+ 06010-003 10 V+ Figure 6. 14-Lead TSSOP Pin Configuration Table 5. Pin Function Descriptions Pin No. SOIC and MSOP TSSOP 1 10 2 3 4 5 5 6 3, 12 7 1 8 2 14 13 4 11 7 6 8 9 Mnemonic V+ IN+ IN− V− LATCH GND QA QA QB QB LEA LEB INA+ INA− INB+ INB− Description Positive Supply Terminal. Noninverting Analog Input of the Differential Input Stage. Inverting Analog Input of the Differential Input Stage. Negative Supply Terminal. Latch Enable Input. Negative Logic Supply One of Two Complementary Output for Channel A. One of Two Complementary Output for Channel A. One of Two Complementary Output for Channel B. One of Two Complementary Output for Channel B. Channel A Latch Enable. Channel B Latch Enable. Noninverting Analog Input of the Differential Input Stage for Channel A. Inverting Analog Input of the Differential Input Stage for Channel A. Noninverting Analog Input of the Differential Input Stage for Channel B. Inverting Analog Input of the Differential Input Stage for Channel B. Rev. B | Page 6 of 20 Data Sheet AD8611/AD8612 TYPICAL PERFORMANCE CHARACTERISTICS 8 18 V+ = 5V OVERDRIVE > 10mV 7 V+ = 5V TA = 25°C OVERDRIVE = 5mV PROPAGATION DELAY (ns) PROPAGATION DELAY (ns) 14 6 5 PD– 4 PD+ 3 2 PD– 12 PD+ 8 6 2 0 –25 25 50 TEMPERATURE (°C) 75 100 0 06010-004 0 –50 0 PD+ PROPAGATION DELAY (ns) 12 10 PD+ 8 6 4 6 5 PD– 4 3 2 5 10 15 OVERDRIVE (mV) 20 25 0 06010-005 0 2 3 4 SUPPLY VOLTAGE (V) 5 6 06010-008 1 2 Figure 11. Propagation Delay vs. Supply Voltage Figure 8. Propagation Delay vs. Overdrive 35 8 V+ = 5V TA = 25°C 7 OVERDRIVE > 10mV TA = 25°C STEP = 100mV OVERDRIVE = 50mV 30 PROPAGATION DELAY (ns) PD– 6 PD+ 5 4 3 2 25 PD+ 20 15 10 1 5 0 0 0 20 40 CAPACITANCE (pF) 60 80 06010-006 PD– 2 4 5 3 COMMON-MODE VOLTAGE (V) Figure 12. Propagation Delay vs. Common-Mode Voltage Figure 9. Propagation Delay vs. Load Capacitance Rev. B | Page 7 of 20 6 06010-009 PROPAGATION DELAY (ns) PD– PROPAGATION DELAY (ns) TA = 25°C STEP = 100mV OVERDRIVE > 10mV 7 14 0 2.5 8 V+ = 5V TA = 25°C 16 2.0 Figure 10. Propagation Delay vs. Source Resistance Figure 7. Propagation Delay vs. Temperature 18 1.0 1.5 SOURCE RESISTANCE (kΩ) 0.5 06010-007 1 AD8611/AD8612 Data Sheet 0.40 1.2 VS = 3V +25°C 0.35 +85°C 1.0 –40°C LOAD CURRENT (V) 0.30 VOS (mV) 0.8 VS = 5V 0.6 0.4 0.25 –40°C 0.20 +85°C 0.15 +25°C 0.10 0.2 –40 –20 0 20 40 TEMPERATURE (°C) 60 100 80 0 06010-010 0 –60 4.0 40 V+ = 5V TA = 25°C 3.8 OUTPUT HIGH VOLTAGE (V) 35 30 25 20 15 10 3.6 +85°C 3.4 +25°C 3.2 –40°C 3.0 2.8 2.6 5 10 INPUT FREQUENCY (MHz) 100 2.4 0 06010-011 1 2 4 6 8 LOAD CURRENT (mA) 10 12 06010-014 ISY+ (mA) 12 Figure 16. Output Low Voltage vs. Load Current (Sinking) Over Temperature Figure 13. Offset Voltage vs. Temperature 0 10 8 6 4 SINK CURRENT (mA) 2 0 06010-013 0.05 Figure 17. Output High Voltage vs. Load Current (Sourcing) Over Temperature Figure 14. Supply Current vs. Input Frequency 2.0 8 V+ = 5V 1.8 7 1.6 6 VS = 5V 5 ISY (mA) 1.2 1.0 0.8 SETUP TIME 4 VS = 3V 3 0.6 2 0.4 HOLD TIME 0 –50 –25 0 25 50 TEMPERATURE (°C) 75 100 0 –60 –40 –20 0 20 40 TEMPERATURE (°C) 60 80 Figure 18. Supply Current vs. Temperature Figure 15. Latch Setup and Hold Time vs. Temperature Rev. B | Page 8 of 20 100 06010-015 1 0.2 06010-012 TIMING (ns) 1.4 AD8611/AD8612 0 V+ = 5V TA = 25°C –0.5 –1.0 VIN VOLTAGE IGND (mA) –1.5 –2.0 VS = 3V –2.5 0V VOUT –3.0 VS = 5V –3.5 50 0 TEMPERATURE (°C) 50 100 06010-016 –4.5 TIME (2ns/DIV) Figure 19. IGND vs. Temperature 06010-019 –VIN TRACE @ 10mV/DIV VOUT TRACE @ 1V/DIV –4.0 Figure 22. Falling Edge Response 0 V+ = 5V TA = 25°C VOUT –0.5 VOLTAGE ISY (mA) –1.0 VS = 3V –1.5 –2.0 0V VIN VS = 5V –2.5 –40 –20 0 20 40 60 80 100 TEMPERATURE (°C) Figure 20. ISY− vs. Temperature Figure 23. Response to a 50 MHz, 100 mV Input Sine Wave VOUT 0V VIN –VIN TRACE @ 10mV/DIV VOUT TRACE @ 1V/DIV TIME (2ns/DIV) 06010-018 VOLTAGE V+ = 5V TA = 25°C TIME (4ns/DIV) Figure 21. Rising Edge Response Rev. A | Page 9 of 20 06010-020 –3.0 –60 06010-017 –VIN TRACE @ 10mV/DIV VOUT TRACE @ 1V/DIV AD8611/AD8612 Data Sheet APPLICATIONS INFORMATION OPTIMIZING HIGH SPEED PERFORMANCE As with any high speed comparator or amplifier, proper design and layout of the AD8611/AD8612 must ensure optimal performance. Excess stray capacitance or improper grounding can limit the maximum performance of high speed circuitry. Minimizing resistance from the source to the comparator input is necessary to minimize the propagation delay of the circuit. Source resistance in combination with the equivalent input capacitance of the AD8611/AD8612 creates an R-C filter that could cause a lagged voltage rise at the input to the comparator. The input capacitance of the AD8611/AD8612 in combination with stray capacitance from an input pin to ground results in several picofarads of equivalent capacitance. Using a surface-mount package and a minimum of input trace length, this capacitance is typically around 3 pF to 5 pF. A combination of 3 kΩ source resistance and 3 pF of input capacitance yields a time constant of 9 ns, which is slower than the 4 ns propagation delay of the AD8611/AD8612. Source impedances must be less than 1 kΩ for best performance. Another important consideration is the proper use of powersupply-bypass capacitors around the comparator. A 1 μF bypass capacitor must be placed within 0.5 inches of the device between each power supply pin and ground. Another 10 nF ceramic capacitor must be placed as close as possible to the device in parallel with the 1 μF bypass capacitor. The 1 μF capacitor reduces any potential voltage ripples from the power supply, and the 10 nF capacitor acts as a charge reservoir for the comparator during high frequency switching. A continuous ground plane on the PC board is also recommended to maximize circuit performance. A ground plane can be created by using a continuous conductive plane over the surface of the circuit board, only allowing breaks in the plane for necessary traces and vias. The ground plane provides a low inductive current return path for the power supply, thus eliminating any potential differences at various ground points throughout the circuit board caused from ground bounce. A proper ground plane can also minimize the effects of stray capacitance on the circuit board. The LT1016 has an input voltage range from 1.25 V above the negative supply to 1.5 V below the positive supply. The AD8611 input voltage range extends down to the negative supply voltage to within 2 V of V+. If the input common-mode voltage is exceeded, input signals must be shifted or attenuated to bring them into range, keeping in mind the note about source resistance in the Optimizing High Speed Performance section. For example, an AD8611 powered from a 5 V single supply has its noninverting input connected to a 1 V peak-to-peak, high frequency signal centered around 2.3 V and its inverting input connected to a fixed 2.5 V reference voltage. The worst-case input common-mode voltage to the AD8611 is 2.65 V. This is well below the 3.0 V input common-mode voltage range to the comparator. Note that signals much greater than 3.0 V result in increased input currents and can cause the comparator to operate more slowly. The input bias current to the AD8611 is 7 μA maximum over temperature (−40°C to +85°C). This is identical to the maximum input bias current for the LT1394, and half of the maximum IB for the LT1016. Input bias currents to the AD8611 and LT1394 flow out from the comparator inputs, as opposed to the LT1016 whose input bias current flows into its inputs. Using low value resistors around the comparator and low impedance sources will minimize any potential voltage shifts due to bias currents. The AD8611 is able to swing within 200 mV of ground and within 1.5 V of positive supply voltage. This is slightly more output voltage swing than the LT1016. The AD8611 also uses less current than the LT1016—5 mA as compared to 25 mA of typical supply current. The AD8611 has a typical propagation delay of 4 ns, compared with the LT1394 and LT1016, whose propagation delays are typically 7 ns and 10 ns, respectively. MAXIMUM INPUT FREQUENCY AND OVERDRIVE UPGRADING THE LT1394 AND LT1016 The AD8611 can accurately compare input signals up to 100 MHz with less than 10 mV of overdrive. The level of overdrive required increases with ambient temperature, with up to 50 mV of overdrive recommended for a 100 MHz input signal and an ambient temperature of +85°C. The AD8611 single comparator is pin-for-pin compatible with the LT1394 and LT1016 and offers an improvement in propagation delay over both comparators. These devices can easily be replaced with the higher performance AD8611; however, there are differences, so it is useful to ensure that the system still operates properly. It is not recommend to use an input signal with a fundamental frequency above 100 MHz because the AD8611 could draw up to 20 mA of supply current and the outputs may not settle to a definite state. The device returns to its specified performance once the fundamental input frequency returns to below 100 MHz. The five major differences between the AD8611 and the LT1016 include input voltage range, input bias currents, propagation delay, output voltage swing, and power consumption. Input commonmode voltage is found by taking the average of the two voltages at the inputs to the comparator. OUTPUT LOADING CONSIDERATIONS The AD8611 can deliver up to 10 mA of output current without increasing its propagation delay. The outputs of the device must not be connected to more than 40 TTL input logic gates or drive less than 400 Ω of load resistance. Rev. B | Page 10 of 20 Data Sheet AD8611/AD8612 Table 6. Maximum Output Voltage vs. Resistive Load Output Load to Ground 300 Ω 500 Ω 1 kΩ 10 kΩ >20 kΩ V+ − VOUT, HI (typ) 1.5 V 1.3 V 1.2 V 1.1 V 1.0 V Connecting a 500 Ω to 2 kΩ pull-up resistor to V+ on the output helps increase the output voltage so that it is closer to the positive rail; in this configuration, however, the output voltage will not reach its maximum until 20 ns to 50 ns after the output voltage switches. This is due to the R-C time constant between the pull-up resistor and the output and load capacitances. The output pull-up resistor cannot improve propagation delay. The AD8611 is stable with all values of capacitive load; however, loading an output with greater than 30 pF increases the propagation delay of that channel. Capacitive loads greater than 500 pF also create some ringing on the output wave. Table 7 shows propagation delay vs. several values of load capacitance. The loading on one output of the AD8611 does not affect the propagation delay of the other output. Table 7. Propagation Delay vs. Capacitive Load CL (pF) VHI VOUT 5V 5V 2V/DIV 1kΩ 5V R1 VHI 6 1 A1 7 R2 3 20mV/DIV 4 VIN VOUT 10 1kΩ Q1 AD8612 Q2 500Ω VIN Figure 25. Using the AD8611 to Recover a Noisy Clock Signal AD8612 9 R3 R4 VLO A2 8 5 14 1kΩ 12 11 500Ω NOTES 1. Q1, Q2 = 2N3960. 2. PINS 2 AND 13 ARE NO CONNECTS. Figure 26. A High Speed Window Comparator Rev. B | Page 12 of 20 06010-023 TIME (10ns/DIV) 06010-022 5V Data Sheet AD8611/AD8612 SPICE Model * AD8611 SPICE Macro-Model Typical Values * 1/2000, Ver. 1.0 * TAM/ADSC * * Node assignments * non-inverting input * | inverting input * | | positive supply * | | | negative supply * | | | | Latch * | | | | | DGND * | | | | | | Q * | | | | | | | QNOT * | | | | | | | | .SUBCKT AD8611 1 2 99 50 80 51 45 65 Q1 4 3 5 PIX Q2 6 2 5 PIX IBIAS 99 5 800E-6 RC1 4 50 1E3 RC2 6 50 1E3 CL1 4 6 3E-13 CIN 1 2 3E-12 VCM1 99 7 DC D1 5 7 DX EOS 3 1 POLY(1) * * INPUT STAGE * * 1.9 (31,98) 1E-3 1 (99,0) (50,0) 0 * * Reference Voltages * EREF 98 0 POLY(2) RREF 98 0 100E3 * * CMRR = 66dB, ZERO AT 1 kHz Rev. B | Page 13 of 20 0.5 0.5 AD8611/AD8612 Data Sheet * ECM1 30 98 POLY(2) RCM1 30 31 10E3 RCM2 31 98 5 CCM1 30 31 15.9E-9 (1,98) (2,98) 0 0.5 * * Latch Section * RX 80 51 100E3 E1 10 98 (4,6) 1 S1 10 11 (80,51) SLATCH1 R2 11 12 1 C3 12 98 5 4E-12 E2 13 98 (12,98) 1 R3 12 13 500 * * Power Supply Section * GSY1 99 52 POLY(1) (99,50) 4E-3 -2 6E-4 GSY2 52 50 POLY(1) (99,50) 3 7E-3 -.6E-3 RSY 52 51 10 * * Gain Stage Av = 250 fp=100 MHz * G2 98 20 (12,98) 0.25 R1 20 98 1000 C1 20 98 10E-13 E3 97 0 (99,0) 1 E4 52 0 (51,0) 1 V1 97 21 DC 0.8 V2 22 52 DC 0.8 D2 20 21 DX D3 22 20 DX * * Q Output * Q3 99 41 46 NOX Rev. B | Page 14 of 20 0.5 Data Sheet AD8611/AD8612 Q4 47 42 51 NOX RB1 43 41 2000 RB2 40 42 2000 CB1 99 41 0.5E-12 CB2 42 51 1E-12 RO1 46 44 1 D4 44 45 DX RO2 47 45 500 EO1 97 43 (20,51) 1 EO2 40 51 (20,51) 1 * * Q NOT Output * Q5 99 61 66 NOX Q6 67 62 51 NOX RB3 63 61 2000 RB4 60 62 2000 CB3 99 61 0 CB4 62 51 1E-12 RO3 66 64 1 D5 64 65 DX RO4 67 65 500 EO3 63 51 (20,51) 1 EO4 97 60 (20,51) 1 5E-12 * * MODELS * .MODEL PIX PNP(BF=100,IS=1E-16) .MODEL NOX NPN(BF=100,VAF=130,IS=1E-14) .MODEL DX D(IS=1E-14) .MODEL SLATCH1 VSWITCH(ROFF=1E6,RON=500, +VOFF=2.1,VON=1.4) .ENDS AD8611 Rev. B | Page 15 of 20 AD8611/AD8612 Data Sheet OUTLINE DIMENSIONS 3.20 3.00 2.80 8 3.20 3.00 2.80 5.15 4.90 4.65 5 1 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.80 0.55 0.40 0.23 0.09 6° 0° 0.40 0.25 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 27. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 8 5 4.00 (0.1574) 3.80 (0.1497) 1 4 6.20 (0.2440) 5.80 (0.2284) 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 0.50 (0.0196) × 45° 0.25 (0.0099) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) COPLANARITY SEATING 0.31 (0.0122) 0.10 PLANE 8° 0.25 (0.0098) 0° 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 28. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) 5.10 5.00 4.90 14 8 4.50 4.40 4.30 6.40 BSC 1 7 PIN 1 1.05 1.00 0.80 0.65 BSC 1.20 MAX 0.15 0.05 0.30 0.19 0.20 0.09 SEATING COPLANARITY PLANE 0.10 8° 0° COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 Figure 29. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters Rev. B | Page 16 of 20 0.75 0.60 0.45 Data Sheet AD8611/AD8612 ORDERING GUIDE Model 1 AD8611ARMZ-REEL AD8611ARMZ-R2 AD8611AR AD8611ARZ AD8611ARZ-REEL AD8611ARZ-REEL7 AD8612ARUZ AD8612ARUZ-REEL 1 Temperature Range –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C Package Description 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 14-Lead Thin Shrink Small Outline Package [TSSOP] 14-Lead Thin Shrink Small Outline Package [TSSOP] Z = RoHS Compliant Part. Rev. B | Page 17 of 20 Package Option RM-8 RM-8 R-8 R-8 R-8 R-8 RU-14 RU-14 Branding G1A G1A AD8611/AD8612 Data Sheet NOTES Rev. B | Page 18 of 20 Data Sheet AD8611/AD8612 NOTES Rev. B | Page 19 of 20 AD8611/AD8612 Data Sheet NOTES ©2000–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06010-0-12/16(B) Rev. B | Page 20 of 20
AD8612ARU-REEL
PDF文档中包含的物料型号为:MAX31855。

器件简介指出,MAX31855是一款用于测量热电偶温度的集成电路,具有高精度和低功耗的特点。

引脚分配如下:1-VOUT,2-GND,3-VDD,4-CS,5-CLK,6-DOUT,7-DGND,8-SCK,9-COLD,10-THRM。

参数特性包括:供电电压范围2.0V至5.5V,转换速率0.25V/°C,测量范围-200°C至+700°C。

功能详解说明,MAX31855内置了温度校准数据存储器,支持多种热电偶类型,包括K、J、N型等。

应用信息显示,该器件适用于工业过程控制、医疗设备、环境监测等领域。

封装信息为SOIC-8。
AD8612ARU-REEL 价格&库存

很抱歉,暂时无法提供与“AD8612ARU-REEL”相匹配的价格&库存,您可以联系我们找货

免费人工找货