0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD9054ABST-135

AD9054ABST-135

  • 厂商:

    AD(亚德诺)

  • 封装:

    LQFP44

  • 描述:

    IC ADC 8BIT 44LQFP

  • 数据手册
  • 价格&库存
AD9054ABST-135 数据手册
a FEATURES 200 MSPS Guaranteed Conversion Rate 135 MSPS Low Cost Version Available 350 MHz Analog Bandwidth 1 V p-p Analog Input Range Internal +2.5 V Reference and T/H Low Power: 500 mW +5 V Single Supply Operation TTL Output Interface Single or Demultiplexed Output Ports APPLICATIONS RGB Graphics Processing High Resolution Video Digital Data Storage Read Channels Digital Communications Digital Instrumentation Medical Imaging VREF IN 8-Bit, 200 MSPS A/D Converter AD9054A FUNCTIONAL BLOCK DIAGRAM VREF OUT AD9054A AIN AIN ENCODE ENCODE T/H QUANTIZER 2.5V REFERENCE 8 ENCODE LOGIC 8 DEMULTIPLEXER DA7 –DA0 DB7 –DB0 TIMING VDD GND DEMUX DS DS GENERAL DESCRIPTION The AD9054A is an 8-bit monolithic analog-to-digital converter optimized for high speed, low power, small size and ease of use. With a 200 MSPS encode rate capability and full-power analog bandwidth of 350 MHz, the component is ideal for applications requiring the highest possible dynamic performance. To minimize system cost and power dissipation, the AD9054A includes an internal +2.5 V reference and track-and-hold circuit. The user provides only a +5 V power supply and an encode clock. No external reference or driver components are required for many applications. The AD9054A’s encode input interfaces directly to TTL, CMOS or positive-ECL logic and will operate with single-ended or differential inputs. The user may select dual-channel or singlechannel digital outputs. The dual (demultiplexed) mode interleaves ADC data through two 8-bit channels at one-half the clock rate. Operation in demultiplexed mode reduces the speed and cost of external digital interfaces while allowing the ADC to be clocked to the full 200 MSPS conversion rate. In the singlechannel (nondemultiplexed) mode, all data is piped at the full clock rate to the Channel A outputs. Fabricated with an advanced BiCMOS process, the AD9054A is provided in a space-saving 44-lead LQFP surface mount plastic package (ST-44) and specified over the full industrial (–40°C to +85°C) temperature range. R EV. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2000 AD9054A–SPECIFICATIONS ELECTRICAL CHARACTERISTICS (V Parameter RESOLUTION DC ACCURACY Differential Nonlinearity Integral Nonlinearity No Missing Codes Gain Error1 Gain Tempco1 ANALOG INPUT Input Voltage Range (With Respect to AIN) Compliance Range AIN or AIN Input Offset Voltage Input Resistance Input Capacitance Input Bias Current Analog Bandwidth, Full Power 2 REFERENCE OUTPUT Output Voltage Temperature Coefficient SWITCHING PERFORMANCE Maximum Conversion Rate (f S) Minimum Conversion Rate (f S) Encode Pulsewidth High (t EH) Encode Pulsewidth Low (t EL) Aperture Delay (tA) Aperture Uncertainty (Jitter) Data Sync Setup Time (t SDS) Data Sync Hold Time (t HDS) Data Sync Pulsewidth (t PWDS) Output Valid Time (t V)3 Output Propagation Delay (t PD)3 DIGITAL INPUTS HIGH Level Current (I IH)4 LOW Level Current (I IL)4 Input Capacitance DIFFERENTIAL INPUTS Differential Signal Amplitude (VID) HIGH Input Voltage (V IHD) LOW Input Voltage (V ILD) Common-Mode Input (V ICM) DEMUX INPUT HIGH Input Voltage (V IH) LOW Input Voltage (V IL) DIGITAL OUTPUTS HIGH Output Voltage (V OH) LOW Output Voltage (V OL) Output Coding +25°C Full +25°C Full Full +25°C Full I VI I VI VI I V Temp DD = +5 V, external reference, fS = max unless otherwise noted) Test Level AD9054ABST-200 Min Typ Max 8 ± 0.9 ± 1.0 ± 0.6 ± 0.9 Guaranteed ±2 160 +1.5/–1.0 +2.0/–1.0 ± 1.5 ± 2.0 ±7 AD9054ABST-135 Min Typ Max 8 ± 0.9 ± 1.0 ± 0.6 ± 0.9 Guaranteed ±2 160 +1.5/–1.0 +2.0/–1.0 ± 1.5 ± 2.0 ±7 Unit Bits LSB LSB LSB LSB % FS ppm/°C Full Full +25°C Full +25°C Full +25°C +25°C Full +25°C Full Full Full Full +25°C +25°C +25°C +25°C +25°C +25°C +25°C Full Full Full Full +25°C Full Full Full Full Full Full Full Full V V I VI I VI V I VI V VI V VI IV IV IV V V IV IV IV VI VI VI VI V IV IV IV IV IV IV VI VI ± 512 1.8 ±4 ±8 62 4 25 350 2.4 2.5 110 2.6 2.4 3.2 ± 16 ± 19 1.8 ± 512 ±4 ±8 62 4 25 350 2.5 110 2.6 3.2 ± 16 ± 19 36 23 36 23 50 75 50 75 mV p-p V mV mV kΩ kΩ pF µA µA MHz V ppm/°C MSPS MSPS ns ns ns ps rms ns ns ns ns ns µA µA pF mV V V V V V V V 200 2.0 2.0 0.5 2.3 0 0.5 2.0 2.7 25 22 22 135 3.0 3.0 0.5 2.3 0 0.5 2.0 2.7 7.9 625 625 25 22 22 5.1 5.9 500 500 3 5.7 7.5 500 500 3 8.5 625 625 400 1.5 0 1.5 2.0 0 2.4 VDD VDD – 0.4 400 1.5 0 1.5 2.0 0 2.4 VDD VDD – 0.4 VDD 0.8 VDD 0.8 0.4 Binary Binary 0.4 – 2– REV. B AD9054A Parameter POWER SUPPLY VDD Supply Current (IDD) Power Dissipation5, 6 Power Supply Sensitivity 7 DYNAMIC PERFORMANCE 8 Transient Response Overvoltage Recovery Time Signal-to-Noise Ratio (SNR) (Without Harmonics) fIN = 19.7 MHz fIN = 49.7 MHz fIN = 70.1 MHz Signal-to-Noise Ratio (SINAD) (With Harmonics) fIN = 19.7 MHz fIN = 49.7 MHz fIN = 70.1 MHz Effective Number of Bits fIN = 19.7 MHz fIN = 49.7 MHz fIN = 70.1 MHz 2nd Harmonic Distortion fIN = 19.7 MHz fIN = 49.7 MHz fIN = 70.1 MHz 3rd Harmonic Distortion fIN = 19.7 MHz fIN = 49.7 MHz fIN = 70.1 MHz Two-Tone Intermod Distortion (IMD) fIN = 19.7 MHz fIN = 49.7 MHz fIN = 70.1 MHz Temp Full Full +25°C +25°C +25°C +25°C Full +25°C Full +25°C Full Test Level VI VI I V V AD9054ABST-200 Min Typ Max 128 640 0.005 1.5 1.5 145 725 0.015 AD9054ABST-135 Min Typ Max 120 600 0.005 1.5 1.5 140 700 0.015 Unit mA mW V/V ns ns IV V I V I V 42 42 42 45 45 45 45 45 45 42 42 45 45 45 45 dB dB dB dB dB dB +25°C Full +25°C Full +25°C Full +25°C +25°C +25°C +25°C +25°C +25°C +25°C +25°C +25°C +25°C +25°C +25°C IV V I V I V IV I I IV I I IV I I 40 40 39 43 43 43 43 42 42 6.85 6.85 6.85 63 59 55 56 54 50 40 40 43 43 43 43 dB dB dB dB dB dB Bits Bits Bits dBc dBc dBc dBc dBc dBc 6.35 6.35 6.18 58 54 49 48 48 43 6.35 6.35 6.85 6.85 58 54 63 59 48 48 56 54 V V V 60 55 50 60 55 dBc dBc dBc NOTES 1 Gain error and gain temperature coefficient are based on the ADC only (with a fixed +2.5 V external reference). 2 3 dB bandwidth with full-power input signal. 3 tV and tPD are measured from the threshold crossing of the ENCODE input to valid TTL levels of the digital outputs. The output ac load during test is 5 pF (Refer to equivalent circuits Figures 5 and 6). 4 IIH and IIL are valid for differential input voltages of less than 1.5 V. At higher differential voltages, the input current will increase to a maximum of 1.5 mA. 5 Power dissipation is measured under the following conditions: analog input is –1 dBFS at 19.7 MHz. 6 Typical thermal impedance for the ST-44 (LQFP) 44-lead package (in still air): θJC = 20°C/W, θCA = 35°C/W, θJA = 55°C/W. 7 A change in input offset voltage with respect to a change in V DD. 8 SNR/harmonics based on an analog input voltage of –1.0 dBFS referenced to a 1.024 V full-scale input range. Specifications subject to change without notice. EXPLANATION OF TEST LEVELS Test Level IV. Parameter is guaranteed by design and characterization testing. V. Parameter is a typical value only. VI. 100% production tested at +25°C; guaranteed by design and characterization testing for industrial temperature range. I. 100% production tested. II. 100% production tested at +25°C and sample tested at specified temperatures. III. Sample tested only. REV. B – 3– AD9054A ABSOLUTE MAXIMUM RATINGS* Table I. Output Coding VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 V Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . VDD to 0.0 V Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . VDD to 0.0 V VREF IN, VREF OUT . . . . . . . . . . . . . . . . . . . VDD to 0.0 V Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA Operating Temperature . . . . . . . . . . . . . . . . –55°C to +125°C Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C Maximum Junction Temperature . . . . . . . . . . . . . . . +175°C Maximum Case Temperature . . . . . . . . . . . . . . . . . . +150°C *Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. Step 255 254 253 • • • 129 128 127 126 • • • 2 1 0 AIN–AIN ≥0.512 V 0.508 V 0.504 V • • • 0.006 V 0.002 V –0.002 V –0.006 V • • • –0.504 V –0.508 V ≤–0.512 V Code 255 254 253 • • • 129 128 127 126 • • • 2 1 0 Binary 1111 1111 1111 1110 1111 1101 • • • 1000 0001 1000 0000 0111 1111 0111 1110 • • • 0000 0010 0000 0001 0000 0000 ORDERING GUIDE Model AD9054ABST-200 AD9054ABST-135 AD9054A/PCB Temperature Range –40°C to +85°C –40°C to +85°C +25°C Package Option* ST-44 ST-44 Evaluation Board *ST = Plastic Thin Quad Flatpack (LQFP). CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD9054A features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. WARNING! ESD SENSITIVE DEVICE –4– REV. B AD9054A PIN FUNCTION DESCRIPTIONS Pin Number 1 Name ENCODE Function Encode Clock for ADC (ADC Samples on Rising Edge of ENCODE). Encode Clock Complement (ADC Samples on Falling Edge of ENCODE). Power Supply (+5 V). Ground. VREF OUT PIN CONFIGURATION DB7 (MSB) GND GND GND VDD VDD VDD DB6 DB5 DB4 2 ENCODE VREF IN GND VDD GND AIN AIN GND VDD DEMUX DS DS PIN 1 IDENTIFIER DB3 DB2 DB1 DB0 (LSB) 3, 5, 15, 18, 28, VDD 30, 31, 36, 41 4, 6, 16, 17, 27, GND 29, 32, 35, 37, 40 14–7 DA0–DA7 19–26 33 AD9054A TOP VIEW (PINS DOWN) VDD GND GND VDD DA0 (LSB) DA1 DA2 34 38 39 42 43 44 Digital Outputs of ADC Channel A. DA7 is the MSB, DA0 the LSB. DB0–DB7 Digital Outputs of ADC Channel B. DB7 is the MSB, DB0 the LSB. VREF OUT Internal Reference Output (+2.5 V typical); Bypass with 0.1 µF to Ground. VREF IN Reference Input for ADC (+2.5 V typical, ± 4%). AIN Analog Input—Complement. Connect to input signal midscale reference. AIN Analog Input—True. DEMUX Format Select. LOW = Dual. Channel Mode, HIGH = Single. Channel Mode (Channel A Only). DS Data Sync Complement. DS Data Sync—Aligns output channels in Dual-Channel Mode. VDD ENCODE ENCODE GND VDD DA7 (MSB) GND DA6 DA5 DA4 SAMPLE N–1 SAMPLE N SAMPLE N+3 SAMPLE N+4 AIN SAMPLE N+1 SAMPLE N+2 tA tEH ENCODE tEL 1/fS ENCODE tPD DA3 tV D7 – D 0 DATA N–5 DATA N–4 DATA N–3 DATA N–2 DATA N–1 DATA N Figure 1. Timing—Single Channel Mode REV. B –5– AD9054A SAMPLE N–1 SAMPLE N SAMPLE N+3 SAMPLE N+4 SAMPLE N+5 AIN SAMPLE N–2 SAMPLE N+1 1/fS SAMPLE N+2 SAMPLE N+6 tA tEH tEL ENCODE ENCODE tHDS tSDS DS DS tPWDS PORT A D7 – D 0 DATA N–7 OR N–8 tHDS tSDS tPD DATA N–7 OR N–6 INVALID IF OUT OF SYNC DATA N–4 IF IN SYNC tV DATA N–2 DATA N PORT B D7 – D 0 DATA N–8 OR N–7 DATA N–6 OR N–7 INVALID IF OUT OF SYNC DATA N–5 IF IN SYNC DATA N–3 DATA N–1 DATA N+1 Figure 2a. Timing—Dual Channel Mode (One-Shot Data Sync) SAMPLE N–1 SAMPLE N SAMPLE N+3 SAMPLE N+4 SAMPLE N+5 AIN SAMPLE N–2 SAMPLE N+1 1/fS SAMPLE N+2 SAMPLE N+6 tA tEH tEL ENCODE ENCODE tHDS DS DS tPWDS tSDS tHDS tSDS tPD DATA N–7 OR N–6 INVALID IF OUT OF SYNC DATA N–4 IF IN SYNC tV PORT A D7 – D 0 DATA N–7 OR N–8 DATA N–2 DATA N PORT B D7 – D 0 DATA N–8 OR N–7 DATA N–6 OR N–7 INVALID IF OUT OF SYNC DATA N–5 IF IN SYNC DATA N–3 DATA N–1 DATA N+1 Figure 2b. Timing—Dual Channel Mode (Continuous Data Sync) –6– REV. B AD9054A EQUIVALENT CIRCUITS VDD 300 17.5k DEMUX 300 VDD AIN AIN 7.5k Figure 3. Equivalent Analog Input Circuit Figure 6. Equivalent DEMUX Input Circuit VDD VDD VREF IN DIGITAL OUTPUTS Figure 4. Equivalent Reference Input Circuit Figure 7. Equivalent Digital Output Circuit VDD VDD 17.5k ENCODE OR DS 300 300 ENCODE OR DS VREF OUT 7.5k Figure 5. Equivalent ENCODE and Data Select Input Circuit Figure 8. Equivalent Reference Output Circuit REV. B –7– AD9054A 55 45.4 45.2 50 SNR SNR – dB SNR – dB 45 SINAD 40 NYQUIST FREQUENCY (100MHz) 45.0 50MHz 44.8 44.6 70MHz 44.4 44.2 44.0 –45 20MHz 35 30 0 20 40 60 80 fIN – MHz 100 120 140 0 25 TC – C 70 90 Figure 9. SNR vs. fIN: fS = 200 MSPS Figure 12. SNR vs. Temperature, fS = 135 MSPS 50 49 48 47 46.0 45.8 45.6 20MHz 45.4 50MHz SNR – dB SNR – dB 46 45 44 43 42 41 40 25 50 75 100 125 150 175 200 225 250 270 fS – MSPS 300 SNR 45.2 45.0 44.8 44.6 44.4 44.2 44.0 –60 –40 –20 0 20 TC – C 40 60 80 100 70MHz SINAD Figure 10. SNR vs. fS: fIN = 19.7 MHz Figure 13. SNR vs. Temperature, fS = 200 MSPS 50 SNR 50 48 46 SINAD 45 fS = 135MSPS fIN = 10.3MHz 40 44 SNR – dB SNR – dB 42 SNR 40 38 SINAD 36 34 32 35 30 25 20 25 50 75 100 125 150 175 200 225 250 270 300 fS – MSPS 30 0.0 1.0 2.0 3.0 4.0 5.0 6.0 ENCODE PULSEWIDTH – ns 7.0 8.0 Figure 11. SNR vs. fS: fIN = 70.1 MHz Figure 14. SNR vs. Clock Pulsewidth, (tPWH): fS = 135 MSPS –8– REV. B AD9054A 50 48 46 –64 –70 fS = 200MSPS fIN = 10.3MHz –68 2ND HARMONIC SNR –66 44 SINAD SNR – dB –62 –60 42 dBc 40 38 36 34 32 30 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 ENCODE PULSEWIDTH – ns 4.5 5.0 –58 –56 –54 –52 –50 –48 –46 25 50 75 3RD HARMONIC 100 125 150 175 200 225 250 fS – MSPS 270 300 Figure 15. SNR vs. Clock Pulsewidth, (tPWH): fS = 200 MSPS Figure 18. Harmonic Distortion vs. fS: fIN = 19.7 MHz 46 45 44 20MHz –60 2ND HARMONIC –50 –40 3RD HARMONIC SINAD – dB 43 42 41 40 –10 39 38 –60 0 25 70MHz 50MHz –20 –30 –40 –20 0 20 40 TC – C 60 80 100 50 75 100 125 150 175 200 225 250 270 300 fS – MSPS Figure 16. SINAD vs. Temperature: fS = 135 MSPS Figure 19. Harmonic Distortion vs. fS: fIN = 70.1 MHz 46 45 44 20MHz –40 –45 –50 SINAD – dB 43 50MHz dB 42 70MHz 41 40 –55 70MHz –60 50MHz –65 20MHz 39 38 –60 –40 –20 0 20 TC – C 40 60 80 100 –70 –60 –40 –20 0 20 TC – C 40 60 80 100 Figure 17. SINAD vs. Temperature: fS = 200 MSPS Figure 20. 2nd Harmonic vs. Temperature: fS = 135 MSPS REV. B –9– AD9054A –40 0 –45 –1 –50 70MHz dB –55 50MHz –60 20MHz –65 dB –2 –3 –4 NYQUIST FREQUENCY 100MHz –5 –70 –60 –40 –20 0 20 TC – C 40 60 80 100 –6 0 50 100 150 200 250 300 fIN – M Hz 350 400 450 500 Figure 21. 2nd Harmonic vs. Temperature: fS = 200 MSPS Figure 24. Frequency Response: fS = 200 MSPS –40 0 –10 FUNDAMENTAL = –0.5dBFS SNR = 45.8dB SINAD = 45.2dB 2ND HARMONIC = 69.8dB 3RD HARMONIC = 61.6dB –45 –20 –50 70MHz 50MHz –30 –40 dB dB –55 20MHz –60 –50 –60 –70 –65 –80 –70 –60 –40 –20 0 20 TC – C 40 60 80 100 –90 0 10 20 30 40 50 60 MHz 70 80 90 100 Figure 22. 3rd Harmonic vs. Temperature: fS = 135 MSPS Figure 25. Spectrum: fS = 200 MSPS, fIN = 19.7 MHz –40 0 –10 FUNDAMENTAL = –0.5dBFS SNR = 44.6dB SINAD = 37.6dB 2ND HARMONIC = –63.1dB 3RD HARMONIC = –39.1dB –45 70MHz –50 50MHz dB –20 –30 –40 dB –55 20MHz –60 –50 –60 –70 –65 –80 –70 –60 –40 –20 0 20 TC – C 40 60 80 100 –90 0 10 20 30 40 50 MHz 60 70 80 90 100 Figure 23. 3rd Harmonic vs. Temperature: fS = 200 MSPS Figure 26. Spectrum: fS = 200 MSPS, fIN = 70.1 MHz –10– REV. B AD9054A 0 –10 –20 –30 –40 F1 = 55.0MHz F2 = 56.0MHz F1 = F2 = –7.0dBFS 7 6 5 4 ns tPD tV dB –50 –60 –70 –80 3 2 1 –90 –100 0 10 20 30 40 50 MHz 60 70 80 90 100 0 –60 –40 –20 0 20 TC – C 40 60 80 100 Figure 27. Two-Tone Intermodulation Distortion Figure 30. Output Delay vs. Temperature 5.0 4.5 4.0 VREF OUT – Volts 2.55 2.54 2.53 2.52 2.51 2.50 2.49 2.48 2.47 2.46 2.45 –20 –18 –16 –14 –12 –10 –8 –6 IREF OUT – mA –4 –2 0 2 3.5 VOH – Volts 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.0 –1.0 –2.0 –3.0 –4.0 –5.0 –6.0 –7.0 –8.0 –9.0 –10.0 IOH – mA Figure 28. Output Voltage HIGH vs. Output Current Figure 31. Reference Voltage vs. Reference Load 1.0 0.9 0.8 VREF OUT – Volts 0.7 VOL – Volts 2.502 2.501 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 1.0 2.0 3.0 4.0 5.0 IOL – mA 6.0 7.0 8.0 2.500 2.499 2.498 3.0 3.5 4.0 4.5 5.0 VDD – Volts 5.5 6.0 6.5 Figure 29. Output Voltage LOW vs. Output Current Figure 32. Reference Voltage vs. Power Supply Voltage REV. B –11– AD9054A 2.502 2.501 VREF OUT – Volts 2.500 These applications require the converter to process inputs with frequency components well in excess of the sampling rate (often with subnanosecond rise times), after which the A/D must settle and sample the input in well under one pixel time. The architecture of the AD9054A is vastly superior to older flash architectures, that not only exhibit excessive input capacitance (which is very hard to drive), but can make major errors when fed a very rapidly slewing signal. The AD9054A’s extremely wide bandwidth Track/Hold circuit processes these signals without difficulty. Using the AD9054A 2.499 2.498 –40 –20 0 20 40 60 80 100 TAMB – C Figure 33. Reference Voltage vs. Temperature APPLICATION NOTES THEORY OF OPERATION Good high speed design practices must be followed when using the AD9054A. To obtain maximum benefit, decoupling capacitors should be physically as close to the chip as possible. We recommend placing a 0.1 µF capacitor at each power-ground pin pair (9 total) for high frequency decoupling, and including one 10 µF capacitor for local low frequency decoupling. The VREF IN pin should also be decoupled by a 0.1 µF capacitor. The part should be located on a solid ground plane and output trace lengths should be short (
AD9054ABST-135 价格&库存

很抱歉,暂时无法提供与“AD9054ABST-135”相匹配的价格&库存,您可以联系我们找货

免费人工找货