0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD9142ABCPZRL

AD9142ABCPZRL

  • 厂商:

    AD(亚德诺)

  • 封装:

    VFQFN-72

  • 描述:

    IC DAC 16BIT A-OUT 72LFCSP

  • 数据手册
  • 价格&库存
AD9142ABCPZRL 数据手册
Dual, 16-Bit, 1600 MSPS, TxDAC+ Digital-to-Analog Converter AD9142A Data Sheet FEATURES GENERAL DESCRIPTION Supports input data rate up to 575 MHz Very small inherent latency variation: 85 dBc (bandwidth = 300 MHz) at ZIF Flexible 16-bit LVDS interface Supports word and byte load Data interface DLL Sample error detection and parity Multiple chip synchronization Fixed latency and data generator latency compensation Selectable 2×, 4×, 8× interpolation filter Low power architecture fS/4 power saving coarse mixer Input signal power detection Emergency stop for downstream analog circuitry protection FIFO error detection On-chip numeric control oscillator allows carrier placement anywhere in the DAC Nyquist bandwidth Transmit enable function for extra power saving High performance, low noise PLL clock multiplier Digital gain and phase adjustment for sideband suppression Digital inverse sinc filter Low power: 1.8 W at 1.6 GSPS, 1.5 W at 1.25 GSPS, full operating conditions 72-lead LFCSP The AD9142A is a dual, 16-bit, high dynamic range digital-toanalog converter (DAC) that provides a sample rate of 1600 MSPS, permitting a multicarrier generation up to the Nyquist frequency. The AD9142A TxDAC+® includes features optimized for direct conversion transmit applications, including complex digital modulation, input signal power detection, and gain, phase, and offset compensation. The DAC outputs are optimized to interface seamlessly with analog quadrature modulators, such as the ADL537x F-MOD series and the ADRF670x series from Analog Devices, Inc. A 3-wire serial port interface provides for the programming/ readback of many internal parameters. Full-scale output current can be programmed over a range of 9 mA to 33 mA. The AD9142A is available in a 72-lead LFCSP. PRODUCT HIGHLIGHTS 1. 2. 3. 4. 5. 6. APPLICATIONS Wide signal bandwidth (BW) enables emerging wideband and multiband wireless applications. Advanced low spurious and distortion design techniques provide high quality synthesis of wideband signals from baseband to high intermediate frequencies. Very small inherent latency variation simplifies both software and hardware design in the system. It allows easy multichip synchronization for most applications. New low power architecture improves power efficiency (mW/MHz/channel) by 30%. Input signal power and FIFO error detection simplify designs for downstream analog circuitry protection. Programmable transmit enable function allows easy design balance between power consumption and wakeup time. Wireless communications: 3G/4G and MC-GSM base stations, wideband repeaters, software defined radios Wideband communications: point-to-point, LMDS/MMDS Transmit diversity/MIMO Instrumentation Automated test equipment Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2013–2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD9142A Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Datapath Configuration ............................................................ 35 Applications ....................................................................................... 1 Digital Quadrature Gain and Phase Adjustment ................... 35 General Description ......................................................................... 1 DC Offset Adjustment ............................................................... 35 Product Highlights ........................................................................... 1 Inverse Sinc Filter ....................................................................... 36 Revision History ............................................................................... 4 Input Signal Power Detection and Protection ........................ 36 Functional Block Diagram .............................................................. 5 Transmit Enable Function ......................................................... 37 Specifications..................................................................................... 6 Digital Function Configuration ............................................... 37 DC Specifications ......................................................................... 6 Multidevice Synchronization and Fixed Latency ....................... 38 Digital Specifications ................................................................... 8 Very Small Inherent Latency Variation ................................... 38 DAC Latency Specifications ........................................................ 9 Further Reducing the Latency Variation................................. 38 Latency Variation Specifications ................................................ 9 Synchronization Implementation ............................................ 39 AC Specifications........................................................................ 10 Synchronization Procedures ..................................................... 39 Operating Speed Specifications ................................................ 10 Interrupt Request Operation ........................................................ 40 Absolute Maximum Ratings ..................................................... 11 Interrupt Working Mechanism ................................................ 40 Thermal Resistance .................................................................... 11 Interrupt Service Routine .......................................................... 40 ESD Caution ................................................................................ 11 Temperature Sensor ....................................................................... 41 Pin Configuration and Function Descriptions ........................... 12 DAC Input Clock Configurations ................................................ 42 Typical Performance Characteristics ........................................... 15 Driving the DACCLK and REFCLK Inputs ........................... 42 Terminology .................................................................................... 20 Direct Clocking .......................................................................... 42 Serial Port Operation ..................................................................... 21 Clock Multiplication .................................................................. 42 Data Format ................................................................................ 21 PLL Settings ................................................................................ 43 Serial Port Pin Descriptions ...................................................... 21 Configuring the VCO Tuning Band ........................................ 43 Serial Port Options ..................................................................... 21 Automatic VCO Band Select .................................................... 43 Data Interface .................................................................................. 23 Manual VCO Band Select ......................................................... 43 LVDS Input Data Ports .............................................................. 23 PLL Enable Sequence ................................................................. 43 Word Interface Mode ................................................................. 23 Analog Outputs............................................................................... 44 Byte Interface Mode ................................................................... 23 Transmit DAC Operation.......................................................... 44 Data Interface Configuration Options .................................... 23 Interfacing to Modulators ......................................................... 45 DLL Interface Mode ................................................................... 23 Reducing LO Leakage and Unwanted Sidebands .................. 46 Parity ............................................................................................ 26 Example Start-Up Routine ............................................................ 47 SED Operation ............................................................................ 26 Device Configuration and Start-Up Sequence 1 .................... 47 SED Example ............................................................................... 27 Device Configuration and Start-Up Sequence 2 .................... 47 Delay Line Interface Mode ........................................................ 27 Device Configuration Register Map and Description ............... 49 FIFO Operation .............................................................................. 29 SPI Configure Register .............................................................. 52 Resetting the FIFO ..................................................................... 30 Power-Down Control Register ................................................. 52 Serial Port Initiated FIFO Reset ............................................... 30 Interrupt Enable0 Register ........................................................ 52 Frame Initiated FIFO Reset ....................................................... 30 Interrupt Enable1 Register ........................................................ 53 Digital Datapath.............................................................................. 32 Interrupt Flag0 Register............................................................. 53 Interpolation Filters ................................................................... 32 Interrupt Flag1 Register............................................................. 53 Digital Modulation ..................................................................... 34 Interrupt Select0 Register .......................................................... 54 Rev. A | Page 2 of 72 Data Sheet AD9142A Interrupt Select1 Register...........................................................54 NCO Frequency Tuning Word 3 Register ............................... 64 Frame Mode Register..................................................................54 NCO Phase Offset 0 Register .................................................... 64 Data Control 0 Register ..............................................................55 NCO Phase Offset 1 Register .................................................... 64 Data Control 1 Register ..............................................................55 IQ Phase Adjust 0 Register ........................................................ 64 Data Control 2 Register ..............................................................55 IQ Phase Adjust 1 Register ........................................................ 64 Data Control 3 Register ..............................................................55 Power Down Data Input 0 Register .......................................... 65 Data Status 0 Register .................................................................55 IDAC DC Offset 0 Register ....................................................... 65 DAC Clock Receiver Control Register .....................................56 IDAC DC Offset 1 Register ....................................................... 65 Ref Clock Receiver Control Register ........................................56 QDAC DC Offset 0 Register ...................................................... 65 PLL Control 0 Register ...............................................................56 QDAC DC Offset 1 Register ...................................................... 65 PLL Control 2 Register ...............................................................57 IDAC Gain Adjust Register ....................................................... 65 PLL Control 3 Register ...............................................................57 QDAC Gain Adjust Register...................................................... 66 PLL Status 0 Register ..................................................................57 Gain Step Control 0 Register ..................................................... 66 PLL Status 1 Register ..................................................................58 Gain Step Control 1 Register ..................................................... 66 IDAC FS Adjust LSB Register ....................................................58 Tx Enable Control Register ....................................................... 66 IDAC FS Adjust MSB Register ..................................................58 DAC Output Control Register .................................................. 67 QDAC FS Adjust LSB Register ..................................................58 DLL Cell Enable 0 Register ........................................................ 67 QDAC FS Adjust MSB Register ................................................58 DLL Cell Enable 1 Register ........................................................ 67 Die Temperature Sensor Control Register ...............................59 SED Control Register ................................................................. 67 Die Temperature LSB Register ..................................................59 SED Pattern I0 Low Bits Register.............................................. 68 Die Temperature MSB Register .................................................59 SED Pattern I0 High Bits Register ............................................ 68 Chip ID Register..........................................................................59 SED Pattern Q0 Low Bits Register ............................................ 68 Interrupt Configuation Register ...............................................59 SED Pattern Q0 High Bits Register .......................................... 68 Sync Control Register .................................................................60 SED Pattern I1 Low Bits Register.............................................. 68 Frame Reset Control Register ....................................................60 SED Pattern I1 High Bits Register ............................................ 68 FIFO Level Configuration Register ..........................................60 SED Pattern Q1 Low Bits Register ............................................ 68 FIFO Level Readback Register ..................................................61 SED Pattern Q1 High Bits Register .......................................... 69 FIFO Control Register ................................................................61 Parity Control Register ............................................................... 69 Data Format Select Register.......................................................61 Parity Error Rising Edge Register ............................................. 69 Datapath Control Register .........................................................61 Parity Error Falling Edge Register ............................................ 69 Interpolation Control Register ..................................................62 Version Register .......................................................................... 69 Over Threshold Control 0 Register ..........................................62 DAC Latency and System Skews ................................................... 70 Over Threshold Control 1 Register ..........................................62 DAC Latency Variations............................................................. 70 Over Threshold Control 2 Register ..........................................62 FIFO Latency Variation.............................................................. 70 Input Power Readback LSB Register ........................................62 Clock Generation Latency Variation ........................................ 71 Input Power Readback MSB Register .......................................63 Correcting System Skews ........................................................... 71 NCO Control Register ................................................................63 Packaging and Ordering Information .......................................... 72 NCO Frequency Tuning Word 0 Register ...............................63 Outline Dimensions ................................................................... 72 NCO Frequency Tuning Word 1 Register ...............................63 Ordering Guide ........................................................................... 72 NCO Frequency Tuning Word 2 Register ...............................63 Rev. A | Page 3 of 72 AD9142A Data Sheet REVISION HISTORY 5/14—Rev. 0 to Rev. A Change to Table 25 ......................................................................... 51 Changes to Table 103...................................................................... 69 12/13—Revision 0: Initial Version Rev. A | Page 4 of 72 Data Sheet AD9142A FUNCTIONAL BLOCK DIAGRAM INPUT POWER DETECTION HB2 2× NCO HB3 2× fDAC /4 MOD IOUT1P IOUT1N DAC CLK 16 DAC 2 16-BIT IOUT2P IOUT2N GAIN 1 DAC_CLK INTERP MODE CTRL3 INTERP MODE CTRL2 INTERP MODE CTRL1 FIFO CTRL SED CTRL INTERFACE CTRL FRAMEP/PARITYP FRAMEN/PARITYN DAC 1 16-BIT 10 GAIN 2 HB1 2× 16 OVERTHRESHOLD PROTECTION FIFO 8-SAMPLE SED LVDS DATA RECEIVER D0P/D0N INV SINC COMPLEX MODULATION D15P/D15N DC OFFSET CONTROL AD9142A GAIN AND PHASE CONTROL DLL 13-TAP DCIP/DCIN 10 REF AND BIAS VREF FSADJ INTERNAL CLOCK TIMING AND CONTROL LOGIC SERIAL INPUT/OUTPUT PORT POWER-ON RESET MULTICHIP SYNCHRONIZATION DAC_CLK CLOCK MULTIPLIER CLK RCVR DACCLKP DACCLKN REF RCVR REFP/SYNCP REFN/SYNCN 11901-001 IRQ2 RESET TXEN CS IRQ1 SCLK SYNC SDIO PROGRAMMING REGISTERS Figure 1. Rev. A | Page 5 of 72 AD9142A Data Sheet SPECIFICATIONS DC SPECIFICATIONS TMIN to TMAX, AVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, maximum sample rate, unless otherwise noted. Table 1. Parameter RESOLUTION ACCURACY Differential Nonlinearity (DNL) Integral Nonlinearity (INL) MAIN DAC OUTPUTS Offset Error Gain Error Full-Scale Output Current Output Compliance Range Output Resistance Gain DAC Monotonicity Settling Time to Within ±0.5 LSB MAIN DAC TEMPERATURE DRIFT Offset Gain Reference Voltage REFERENCE Internal Reference Voltage Output Resistance ANALOG SUPPLY VOLTAGES AVDD33 CVDD18 DIGITAL SUPPLY VOLTAGES DVDD18 DVDD18 Variation over Operating Conditions 1 POWER CONSUMPTION 2× Mode NCO OFF NCO ON 2× Mode NCO OFF NCO ON 4× Mode NCO OFF NCO ON 4× Mode NCO OFF NCO ON 4× Mode NCO OFF NCO ON 4× Mode NCO OFF NCO ON Test Conditions/Comments Min Typ 16 Max ±2.1 ±3.7 With internal reference Based on a 10 kΩ external resistor between FSADJ and AVSS −0.001 −3.2 19.06 −1.0 0 +2 19.8 LSB LSB +0.001 +4.7 20.6 +1.0 10 Guaranteed 20 % FSR % FSR mA V MΩ ns 0.04 100 30 1.17 Unit Bits ppm/°C ppm/°C ppm/°C 1.19 V kΩ 5 3.13 1.7 3.3 1.8 3.47 1.9 V V 1.7 −2.5% 1.8 1.9 +2.5% V V fDAC = 737.28 MSPS 925 1217 mW mW 1135 1520 mW mW 852 1144 mW mW 1040 1425 mW mW 1230 1725 mW mW 1405 1990 mW mW fDAC = 983.04 MSPS fDAC = 737.28 MSPS fDAC = 983.04 MSPS fDAC = 1228.8 MSPS fDAC = 1474.56 MSPS Rev. A | Page 6 of 72 Data Sheet Parameter 8× Mode NCO OFF NCO ON Phase-Lock Loop (PLL) Inverse Sinc Reduced Power Mode (Power-Down) AVDD33 CVDD18 DVDD18 OPERATING RANGE 1 AD9142A Test Conditions/Comments fDAC = 1600 MSPS Min Typ Max Unit 96.6 1.5 42.3 8.6 +85 mW mW mW mW mW mA mA mA °C 1350 1984 70 113 fDAC = 1474.56 MSPS −40 +25 This term specifies the maximum allowable variation of DVDD18 over operating conditions compared with the DVDD18 presented to the device at the time the data interface DLL is enabled. Rev. A | Page 7 of 72 AD9142A Data Sheet DIGITAL SPECIFICATIONS TMIN to TMAX, AVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, maximum sample rate, unless otherwise noted. Table 2. Parameter CMOS INPUT LOGIC LEVEL Input Logic High Logic Low CMOS OUTPUT LOGIC LEVEL Output Logic High Logic Low LVDS RECEIVER INPUTS Input Voltage Range Input Differential Threshold Input Differential Hysteresis Receiver Differential Input Impedance DLL SPEED RANGE DAC UPDATE RATE DAC Adjusted Update Rate DAC CLOCK INPUT (DACCLKP, DACCLKN) Differential Peak-to-Peak Voltage Common-Mode Voltage REFCLK/SYNCCLK INPUT (REFP/SYNCP, REFN/SYNCN) Differential Peak-to-Peak Voltage Common-Mode Voltage Input Clock Frequency SERIAL PORT INTERFACE Maximum Clock Rate Minimum Pulse Width High Low SDIO to SCLK Setup Time SDIO to SCLK Hold Time CS to SCLK Setup Time CS to SCLK Hold Time SDIO to SCLK Delay Symbol Min DVDD18 = 1.8 V DVDD18 = 1.8 V 1.2 DVDD18 = 1.8 V DVDD18 = 1.8 V Data, frame signal, and DCI inputs 1.4 VIA or VIB VIDTH VIDTHH to VIDTHL RIN Typ 825 −175 0.6 V V 0.4 V V 575 1600 575 500 1.25 2000 mV V 100 500 1.25 2000 mV V MHz 1.03 GHz ≤ fVCO ≤ 2.07 GHz SCLK 450 40 MHz 12.5 12.5 Wait time for valid output from SDIO Time for SDIO to relinquish the output bus 1.5 0.68 2.38 9.6 11 Rev. A | Page 8 of 72 1.4 8.5 1.2 With 2 mA loading With 2 mA loading mV mV mV Ω MHz MSPS MSPS 100 Self biased input, ac-coupled VIH VIL IIH IIL Unit 20 100 2× interpolation tPWH tPWL tDS tDH tDCSB tDCSB tDV Max 1675 +175 250 SDIO High-Z to CS SDIO LOGIC LEVEL Voltage Input High Voltage Input Low Voltage Output High Voltage Output Low Test Conditions/Comments 1.36 0 ns ns ns ns ns ns ns ns 1.8 0 0.5 2 0.45 V V V V Data Sheet AD9142A DAC LATENCY SPECIFICATIONS TMIN to TMAX, AVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, FIFO level is set to 4 (half of the FIFO depth), unless otherwise noted. Table 3. Parameter WORD INTERFACE MODE 2× Interpolation 4× Interpolation 8× Interpolation BYTE INTERFACE MODE 2× Interpolation 4× Interpolation 8× Interpolation INDIVIDUAL FUNCTION BLOCKS Modulation Fine Coarse Inverse Sinc Phase Compensation Gain Compensation Test Conditions/Comments Fine/coarse modulation, inverse sinc, gain/phase compensation off Min Typ Max 134 244 481 DACCLK cycles DACCLK cycles DACCLK cycles 145 271 506 DACCLK cycles DACCLK cycles DACCLK cycles 17 10 20 12 16 DACCLK cycles DACCLK cycles DACCLK cycles DACCLK cycles DACCLK cycles Fine/coarse modulation, inverse sinc, gain/phase compensation off LATENCY VARIATION SPECIFICATIONS Table 4. Parameter DAC LATENCY VARIATION 1 SYNC Off SYNC On 1 Unit Min Typ Max Unit 1 0 2 1 DACCLK cycles DACCLK cycles DAC latency is defined as the elapsed time from a data sample clocked at the input to the AD9142A until the analog output begins to change. Rev. A | Page 9 of 72 AD9142A Data Sheet AC SPECIFICATIONS TMIN to TMAX, AVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, maximum sample rate, unless otherwise noted. Table 5. Parameter SPURIOUS-FREE DYNAMIC RANGE (SFDR) fDAC = 737.28 MSPS BW = 125 MHz BW = 270 MHz fDAC = 983.04 MSPS BW = 360 MHz fDAC = 1228.8 MSPS BW = 200 MHz BW = 500 MHz fDAC = 1474.56 MSPS BW = 737 MHz BW = 400 MHz TWO-TONE INTERMODULATION DISTORTION (IMD) fDAC = 737.28 MSPS fDAC = 983.04 MSPS fDAC = 1228.8 MSPS fDAC = 1474.56 MSPS NOISE SPECTRAL DENSITY (NSD) fDAC = 737.28 MSPS fDAC = 983.04 MSPS fDAC = 1228.8 MSPS fDAC = 1474.56 MSPS W-CDMA ADJACENT CHANNEL LEAKAGE RATIO (ACLR) fDAC = 983.04 MSPS fDAC = 1228.8 MSPS fDAC = 1474.56 MSPS W-CDMA SECOND (ACLR) fDAC = 983.04 MSPS fDAC = 1228.8 MSPS fDAC = 1474.56 MSPS Test Conditions/Comments −14 dBFS single tone fOUT = 200 MHz Min Typ Max Unit 85 80 dBc dBc 85 dBc 85 75 dBc dBc 85 80 dBc dBc 80 82 80 85 79 dBc dBc dBc dBc dBc −160 −161.5 −164.5 −166 −162.5 dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz 81 83 80 81 80 dBc dBc dBc dBc dBc 85 86 86 86 85 dBc dBc dBc dBc dBc fOUT = 200 MHz fOUT = 280 MHz fOUT = 10 MHz fOUT = 280 MHz −12 dBFS each tone fOUT = 200 MHz fOUT = 200 MHz fOUT = 280 MHz fOUT = 10 MHz fOUT = 280 MHz Eight-tone, 500 kHz tone spacing fOUT = 200 MHz fOUT = 200 MHz fOUT = 280 MHz fOUT = 10 MHz fOUT = 280 MHz Single carrier fOUT = 200 MHz fOUT = 20 MHz fOUT = 280 MHz fOUT = 20 MHz fOUT = 280 MHz Single carrier fOUT = 200 MHz fOUT = 20 MHz fOUT = 280 MHz fOUT = 20 MHz fOUT = 280 MHz OPERATING SPEED SPECIFICATIONS Table 6. Interpolation Factor 2× 4× 8× DVDD18, CVDD18 = 1.8 V ± 5% fDCI (MSPS) fDAC (MSPS) Maximum Maximum 575 1150 350 1400 175 1400 DVDD18, CVDD18 = 1.9 V ± 5% or 1.8 V ± 2% fDCI (MSPS) fDAC (MSPS) Maximum Maximum 575 1150 375 1500 187.5 1500 Rev. A | Page 10 of 72 DVDD18, CVDD18 = 1.9 V ± 2% fDCI (MSPS) fDAC (MSPS) Maximum Maximum 575 1150 400 1600 200 1600 Data Sheet AD9142A ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 7. Parameter AVDD33 to GND DVDD18, CVDD18 to GND FSADJ, VREF, IOUT1P, IOUT1N, IOUT2P, IOUT2N to GND D15P to D0P, D15N to D0N, FRAMEP/PARITYP, FRAMEN/PARITYN, DCIP, DCIN to GND DACCLKP, DACCLKN, REFP, SYNCP, REFN, SYNCN to GND RESET, IRQ1, IRQ2, CS, SCLK, SDIO to GND Junction Temperature Storage Temperature Range Rating −0.3 V to +3.6 V −0.3 V to +2.1 V −0.3 V to AVDD33 + 0.3 V −0.3 V to DVDD18 + 0.3 V −0.3 V to CVDD18 + 0.3 V The exposed pad (EPAD) must be soldered to the ground plane (AVSS) for the 72-lead LFCSP. The EPAD provides an electrical, thermal, and mechanical connection to the board. Typical θJA, θJB, and θJC values are specified for a 4-layer board in still air. Airflow increases heat dissipation, effectively reducing θJA and θJB. Table 8. Thermal Resistance −0.3 V to DVDD18 + 0.3 V Package 72-Lead LFCSP 125°C −65°C to +150°C ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. A | Page 11 of 72 θJA 20.7 θJB 10.9 θJC 1.1 Unit °C/W Conditions EPAD soldered to ground plane AD9142A Data Sheet 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 CVDD18 CVDD18 VREF FSADJ AVDD33 IOUT1P IOUT1N AVDD33 CVDD18 CVDD18 DACCLKP DACCLKN CVDD18 CVDD18 AVDD33 IOUT2N IOUT2P AVDD33 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 AD9142A TOP VIEW (Not to Scale) 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 CS SCLK SDIO IRQ1 IRQ2 DVDD18 DVDD18 D0N D0P D1N D1P DVDD18 D2N D2P D3N D3P D4N D4P NOTES 1. EXPOSED PAD (EPAD) MUST BE SOLDERED TO THE GROUND PLANE (AVSS, DVSS, CVSS). THE EPAD PROVIDES AN ELECTRICAL, THERMAL, AND MECHANICAL CONNECTION TO THE BOARD. 11901-002 DVDD18 D11P D11N D10P D10N D9P D9N D8P D8N DCIP DCIN D7P D7N D6P D6N D5P D5N DVDD18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 CVDD18 REFP/SYNCP REFN/SYNCN CVDD18 RESET TXEN DVDD18 FRAMEP/PARITYP FRAMEN/PARITYN D15P D15N DVDD18 D14P D14N D13P D13N D12P D12N Figure 2. Pin Configuration Table 9. Pin Function Descriptions Pin No. 1 2 3 4 5 6 Mnemonic CVDD18 REFP/SYNCP REFN/SYNCN CVDD18 RESET TXEN 7 DVDD18 8 9 10 11 12 FRAMEP/PARITYP FRAMEN/PARITYN D15P D15N DVDD18 13 14 15 16 17 18 19 D14P D14N D13P D13N D12P D12N DVDD18 20 21 22 23 D11P D11N D10P D10N Description 1.8 V PLL Supply. CVDD18 supplies the clock receivers, clock multiplier, and clock distribution. PLL Reference Clock/Synchronization Clock Input, Positive. PLL Reference Clock/Synchronization Clock Input, Negative. 1.8 V PLL Supply. CVDD18 supplies the clock receivers, clock multiplier, and clock distribution. Reset, Active Low. CMOS levels with respect to DVDD18. Recommended reset pulse length is 1 µs. Active High Transmit Path Enable. CMOS levels with respect to DVDD18. A low level on this pin triggers three selectable actions in the DAC. See Table 87 for details. 1.8 V Digital Supply. Pin 7 supplies power to the digital core, digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. Frame/Parity Input, Positive. Frame/Parity Input, Negative. Data Bit 15 (MSB), Positive. Data Bit 15 (MSB), Negative. 1.8 V Digital Supply. Pin 12 supplies the power to the digital core and digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. Data Bit 14, Positive. Data Bit 14, Negative. Data Bit 13, Positive. Data Bit 13, Negative. Data Bit 12, Positive. Data Bit 12, Negative. 1.8 V Digital Supply. Pin 19 supplies power to the digital core, digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. Data Bit 11, Positive. Data Bit 11, Negative. Data Bit 10, Positive. Data Bit 10, Negative. Rev. A | Page 12 of 72 Data Sheet Pin No. 24 25 26 27 28 29 30 31 32 33 34 35 36 Mnemonic D9P D9N D8P D8N DCIP DCIN D7P D7N D6P D6N D5P D5N DVDD18 37 38 39 40 41 42 43 D4P D4N D3P D3N D2P D2N DVDD18 44 45 46 47 48 D1P D1N D0P D0N DVDD18 49 DVDD18 50 IRQ2 51 IRQ1 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 SDIO SCLK CS AVDD33 IOUT2P IOUT2N AVDD33 CVDD18 CVDD18 DACCLKN DACCLKP CVDD18 CVDD18 AVDD33 IOUT1N IOUT1P AVDD33 FSADJ VREF AD9142A Description Data Bit 9, Positive. Data Bit 9, Negative. Data Bit 8, Positive. Data Bit 8, Negative. Data Clock Input, Positive. Data Clock Input, Negative. Data Bit 7, Positive. Data Bit 7, Negative. Data Bit 6, Positive. Data Bit 6, Negative. Data Bit 5, Positive. Data Bit 5, Negative. 1.8 V Digital Supply. Pin 36 supplies power to the digital core, digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. Data Bit 4, Positive. Data Bit 4, Negative. Data Bit 3, Positive. Data Bit 3, Negative. Data Bit 2, Positive. Data Bit 2, Negative. 1.8 V Digital Supply. Pin 43 supplies power to the digital core, digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. Data Bit 1, Positive. Data Bit 1, Negative. Data Bit 0, Positive. Data Bit 0, Negative. 1.8 V Digital Supply. Pin 48 supplies power to the digital core, digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. 1.8 V Digital Supply. Pin 49 supplies power to the digital core, digital data ports, serial port input/output pins, RESET, IRQ1, and IRQ2. Second Interrupt Request. Open-drain, active low output. Connect an external pull-up to DVDD18 through a 10 kΩ resistor. First Interrupt Request. Open-drain, active low output. Connect an external pull-up to DVDD18 through a 10 kΩ resistor. Serial Port Data Input/Output. CMOS levels with respect to DVDD18. Serial Port Clock Input. CMOS levels with respect to DVDD18. Serial Port Chip Select. Active low (CMOS levels with respect to DVDD18). 3.3 V Analog Supply. QDAC Positive Current Output. QDAC Negative Current Output. 3.3 V Analog Supply. 1.8 V Clock Supply. Supplies clock receivers and clock distribution. 1.8 V Clock Supply. Supplies clock receivers and clock distribution. DAC Clock Input, Negative. DAC Clock Input, Positive. 1.8 V Clock Supply. Supplies clock receivers and clock distribution. 1.8 V Clock Supply. Supplies clock receivers and clock distribution. 3.3 V Analog Supply. IDAC Negative Current Output. IDAC Positive Current Output. 3.3 V Analog Supply. Full-Scale Current Output Adjust. Place a 10 kΩ resistor from this pin to GND. Voltage Reference. Nominally 1.2 V output. Decouple VREF to GND. Rev. A | Page 13 of 72 AD9142A Pin No. 71 72 Mnemonic CVDD18 CVDD18 EPAD Data Sheet Description 1.8 V Clock Supply. Pin 71 supplies the clock receivers, clock multiplier, and clock distribution. 1.8 V Clock Supply. Pin 72 supplies the clock receivers, clock multiplier, and clock distribution. Exposed Pad. The exposed pad (EPAD) must be soldered to the ground plane (AVSS, DVSS, CVSS). The EPAD provides an electrical, thermal, and mechanical connection to the board. Rev. A | Page 14 of 72 Data Sheet AD9142A TYPICAL PERFORMANCE CHARACTERISTICS 0 –60 fDAC = 737.28MHz fDAC = 983.04MHz fDAC = 1228.8MHz fDAC = 1474.56MHz –10 –65 IN-BAND SFDR (dBc) –20 –30 SFDR (dBc) BW BW BW BW –40 –50 –60 = 80MHz, –6dBFS = 80MHz, –12dBFS = 300MHz, –6dBFS = 300MHz, –12dBFS –70 –75 –80 –70 –85 –80 100 200 300 400 500 600 700 800 fOUT (MHz) 11901-003 0 < –85 Figure 3. Single Tone (0 dBFS) SFDR vs. fOUT in the First Nyquist Zone over fDAC 0 –60 IN-BAND SFDR (dBc) –40 –50 –60 –70 –80 100 120 140 160 180 200 = 80MHz, –6dBFS = 80MHz, –12dBFS = 300MHz, –6dBFS = 300MHz, –12dBFS –70 –75 –80 –85 0 100 200 300 400 500 600 700 800 fOUT (MHz) < –85 11901-005 –100 Figure 4. Single Tone Second Harmonic vs. fOUT in the First Nyquist Zone over Digital Back Off, fDAC = 1474.56 MHz 0 –60 BW BW BW BW –65 IN-BAND SFDR (dBc) –30 –40 –50 –60 –70 150 200 250 300 Figure 7. In-Band, Single Tone SFDR (Excluding Second Harmonic) vs. fOUT in 80 MHz and 300 MHz BW, fDAC = 983.04 MHz 0dBFS –6dBFS –12dBFS –16dBFS –20 100 fOUT (MHz) 0 –10 50 11901-006 –85 MEANS ≤ –85 –90 THIRD HARMONIC (dBc) 80 –80 = 80MHz, –6dBFS = 80MHz, –12dBFS = 300MHz, –6dBFS = 300MHz, –12dBFS –70 –75 –80 –85 –85 MEANS ≤ –85 –90 0 100 200 300 400 fOUT (MHz) 500 600 700 800 < –85 11901-007 –100 Figure 5. Single Tone Third Harmonic vs. fOUT in the First Nyquist Zone over Digital Back Off, fDAC = 1474.56 MHz 0 50 100 150 200 fOUT (MHz) 250 300 350 11901-008 SECOND HARMONIC (dBc) BW BW BW BW –65 –30 60 Figure 6. In-Band, Single Tone SFDR (Excluding Second Harmonic) vs. fOUT in 80 MHz and 300 MHz Bandwidths, fDAC = 737.28 MHz 0dBFS –6dBFS –12dBFS –16dBFS –20 40 fOUT (MHz) 0 –10 20 11901-004 –85 MEANS ≤ –85 –90 Figure 8. In-Band, Single Tone SFDR (Excluding Second Harmonic) vs. fOUT in 80 MHz and 300 MHz Bandwidths, fDAC = 1228.8 MHz Rev. A | Page 15 of 72 AD9142A –60 BW BW BW BW –65 0 = 80MHz, –6dBFS = 80MHz, –12dBFS = 300MHz, –6dBFS = 300MHz, –12dBFS 0.6MHz TONE SPACING 16MHz TONE SPACING 35MHz TONE SPACING –20 –70 –40 IMD (dBc) IN-BAND SFDR (dBc) Data Sheet –75 –80 –60 –80 –85 –100 0 50 100 150 200 250 300 350 fOUT (MHz) –120 11901-009 < –85 0 –20 300 400 500 600 700 800 Figure 12. Two Tone, Third IMD vs. fOUT over Tone Spacing, fDAC = 1474.56 MHz –152 fDAC = 737.28MHz fDAC = 983.04MHz fDAC = 1228.8MHz fDAC = 1474.56MHz –10 200 fOUT (MHz) Figure 9. In-Band, Single Tone SFDR (Excluding Second Harmonic) vs. fOUT in 80 MHz and 300 MHz Bandwidths, fDAC = 1474.56 MHz 0 100 11901-010 –85 MEANS ≤ –85 fDAC = 737.28MHz fDAC = 983.04MHz fDAC = 1228.8MHz fDAC = 1474.56MHz –154 –156 NSD (dBm/Hz) IMD (dBc) –30 –40 –50 –158 –160 –162 –60 –164 –70 –166 –80 –90 300 400 500 600 700 800 fOUT (MHz) 0 300 400 500 600 700 800 800 Figure 13. Single Tone (0 dBFS) NSD vs. fOUT over fDAC –152 0dBFS –6dBFS –9dBFS –20 200 fOUT (MHz) Figure 10. Two Tone, Third IMD vs. fOUT over fDAC 0 100 11901-012 200 11901-014 100 11901-011 –168 0 0dBFS –6dBFS –12dBFS –16dBFS –154 –156 NSD (dBm/Hz) –60 –158 –160 –162 –80 –164 –100 –166 –168 –120 0 100 200 300 400 500 600 700 800 fOUT (MHz) 11901-013 IMD (dBc) –40 0 100 200 300 400 500 600 700 fOUT (MHz) Figure 14. Single Tone NSD vs. fOUT over Digital Back Off, fDAC = 1474.56 MHz Figure 11. Two Tone, Third IMD vs. fOUT over Digital Back Off, fDAC = 1474.56 MHz Rev. A | Page 16 of 72 Data Sheet –150 AD9142A –60 737.2MHz 983.04MHz 1228.8MHz 1474.56MHz –152 –154 –65 –156 –70 –158 ACLR (dBc) NSD (dBm/Hz) fDAC = 1474.56MHz, PLL OFF, 0dBFS fDAC = 1474.56MHz, PLL ON, 0dBFS fDAC = 1228.8MHz, PLL OFF, 0dBFS fDAC = 1228.8MHz, PLL ON, 0dBFS –160 –162 –75 –80 –164 –166 –85 0 100 200 300 400 500 600 700 800 fOUT (MHz) Figure 15. 1C WCDMA NSD vs. fOUT, over fDAC –150 –90 11901-200 –170 0 100 200 300 400 500 600 700 fOUT (MHz) 800 11901-101 –168 Figure 18. 1C WCDMA, Second Adjacent ACLR vs. fOUT, PLL On and Off PLL OFF PLL ON –152 –154 NSD (dBm/Hz) –156 –158 –160 –162 –164 0 100 200 300 400 500 600 700 800 fOUT (MHz) 11901-015 –168 11901-016 –166 Figure 16. Single Tone NSD vs. fOUT, fDAC = 1474.28 MHz, PLL On and Off –60 fDAC = 1474.56MHz, PLL OFF, 0dBFS fDAC = 1474.56MHz, PLL ON, 0dBFS fDAC = 1228.8MHz, PLL OFF, 0dBFS fDAC = 1228.8MHz, PLL ON, 0dBFS –65 –70 –75 –85 0 100 200 300 400 500 600 700 800 fOUT (MHz) Figure 17. 1C WCDMA, First Adjacent ACLR vs. fOUT, PLL On and Off 11901-017 –80 11901-100 ACLR (dBc) Figure 19. Two Tone, Third IMD Performance, IF = 280 MHz, fDAC = 1474.28 MHz Figure 20. 1C WCDMA ACLR Performance, IF = 280 MHz, fDAC = 1474.28 MHz Rev. A | Page 17 of 72 Data Sheet Figure 21. Single Tone fDAC = 1474.56 MHz, fOUT = 280 MHz, −14 dBFS 1600 1400 2× 4× 8× 1200 1000 800 600 400 200 400 600 800 1000 1200 1400 1600 fDAC (MHz) 11901-021 11901-018 TOTAL BASELINE POWER CONSUMPTION (mW) AD9142A Figure 24. Total Power Baseline Consumption vs. fDAC over Interpolation 600 DVDD SUPPLY CURRENT (mA) 500 2× 4× 8× 400 300 200 11901-019 0 200 400 600 800 1000 1200 1400 1600 fDAC (MHz) 11901-024 100 Figure 25. DVDD18 Supply Current vs. fDAC over Interpolation Figure 22. 4C WCDMA ACLR Performance, IF = 280 MHz, fDAC = 1474.28 MHz 350 DVDD18 SUPPLY CURRENT (mA) 300 NCO INVERSE SINC DIGITAL GAIN AND PHASE fS/4 MODULATION 250 200 150 100 Figure 23. Single Tone SFDR fDAC = 1474.56 MHz, 4× Interpolation, fOUT = 10 MHz, −14 dBFS 0 200 400 600 800 1000 1200 1400 1600 fDAC (MHz) Figure 26. DVDD18 Supply Current vs. fDAC over Digital Functions Rev. A | Page 18 of 72 11901-022 11901-020 50 Data Sheet CVDD18, PLL ON CVDD18, PLL OFF AVDD33 200 150 100 50 200 400 600 800 1000 1200 1400 fDAC (MHz) 1600 11901-023 SUPPLY CURRENT (mA) 250 AD9142A Figure 27. CVDD18, AVDD33 Supply Current vs. fDAC Rev. A | Page 19 of 72 AD9142A Data Sheet TERMINOLOGY Integral Nonlinearity (INL) INL is the maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero scale to full scale. Settling Time Settling time is the time required for the output to reach and remain within a specified error band around its final value, measured from the start of the output transition. Differential Nonlinearity (DNL) DNL is the measure of the variation in analog value, normalized to full scale, associated with a 1 LSB change in digital input code. Spurious-Free Dynamic Range (SFDR) SFDR is the difference, in decibels, between the peak amplitude of the output signal and the peak spurious signal within the dc to Nyquist frequency of the DAC. Typically, the interpolation filters reject energy in this band. This specification, therefore, defines how well the interpolation filters work and the effect of other parasitic coupling paths on the DAC output. Offset Error Offset error is the deviation of the output current from the ideal of 0 mA. For IOUT1P, 0 mA output is expected when all inputs are set to 0. For IOUT1N, 0 mA output is expected when all inputs are set to 1. Gain Error Gain error is the difference between the actual and ideal output span. The actual span is determined by the difference between the output when all inputs are set to 1 and the output when all inputs are set to 0. Output Compliance Range The output compliance range is the range of allowable voltage at the output of a current output DAC. Operation beyond the maximum compliance limits can cause either output stage saturation or breakdown, resulting in nonlinear performance. Temperature Drift Temperature drift is specified as the maximum change from the ambient (25°C) value to the value at either TMIN or TMAX. For offset and gain drift, the drift is reported in ppm of fullscale range (FSR) per degree Celsius. For reference drift, the drift is reported in ppm per degree Celsius. Power Supply Rejection (PSR) PSR is the maximum change in the full-scale output as the supplies are varied from minimum to maximum specified voltages. Signal-to-Noise Ratio (SNR) SNR is the ratio of the rms value of the measured output signal to the rms sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. The value for SNR is expressed in decibels. Interpolation Filter If the digital inputs to the DAC are sampled at a multiple rate of fDATA (interpolation rate), a digital filter can be constructed that has a sharp transition band near fDATA/2. Images that typically appear around fDAC (output data rate) can be greatly suppressed. Adjacent Channel Leakage Ratio (ACLR) ACLR is the ratio in decibels relative to the carrier (dBc) between the measured power within a channel relative to its adjacent channel. Complex Image Rejection In a traditional two-part upconversion, two images are created around the second IF frequency. These images have the effect of wasting transmitter power and system bandwidth. By placing the real part of a second complex modulator in series with the first complex modulator, either the upper or lower frequency image near the second IF can be rejected. Rev. A | Page 20 of 72 Data Sheet AD9142A SERIAL PORT OPERATION 54 CS SPI PORT 53 SCLK 52 SDIO 11901-025 The serial port is a flexible, synchronous serial communications port that allows easy interfacing to many industry standard microcontrollers and microprocessors. The serial I/O is compatible with most synchronous transfer formats, including both the Motorola® SPI and Intel® SSR protocols. The interface allows read/write access to all registers that configure the AD9142A. MSB-first or LSB-first transfer formats are supported. The serial port interface is a 3-wire only interface. The input and output share a single pin input/output (SDIO). SERIAL PORT PIN DESCRIPTIONS Serial Clock (SCLK) The serial clock pin synchronizes data to and from the device and runs the internal state machines. The maximum frequency of SCLK is 40 MHz. All data input is registered on the rising edge of SCLK. All data is driven out on the falling edge of SCLK. Chip Select (CS) Figure 28. Serial Port Interface Pins There are two phases to a communication cycle with the AD9142A. Phase 1 is the instruction cycle (the writing of an instruction byte into the device), coincident with the first 16 SCLK rising edges. The instruction word provides the serial port controller with information regarding the data transfer cycle, Phase 2, of the communication cycle. The Phase 1 instruction word defines whether the upcoming data transfer is a read or write, along with the starting register address for the next data transfer in the cycle. A logic high on the CS pin, followed by a logic low, resets the serial port timing to the initial state of the instruction cycle. From this state, the next 16 rising SCLK edges represent the instruction bits of the current I/O operation. The remaining SCLK edges are for Phase 2 of the communication cycle. Phase 2 is the actual data transfer between the device and the system controller. Phase 2 of the communication cycle is a transfer of one data byte. Registers change immediately upon writing to the last bit of each transfer byte, except for the frequency tuning word and NCO phase offsets, which change only when the frequency tuning word (FTW) update bit is set. DATA FORMAT The instruction byte contains the information shown in Table 10. Table 10. Serial Port Instruction Word I15 (MSB) R/W A14 to A0 (Bit 14 to Bit 0 of the instruction word) determine the register that is accessed during the data transfer portion of the communication cycle. For multibyte transfers, A14 is the starting address; the device generates the remaining register addresses based on the SPI_LSB_FIRST bit. I[14:0] A[14:0] R/W (Bit 15 of the instruction word) determines whether a read or a write data transfer occurs after the instruction word write. Logic 1 indicates a read operation and Logic 0 indicates a write operation. CS is an active low input that starts and gates a communication cycle. It allows more than one device to be used on the same serial communications line. The SDIO pins enter a high impedance state when the CS input is high. During the communication cycle, CS should stay low. Serial Data I/O (SDIO) The SDIO pin is a bidirectional data line. SERIAL PORT OPTIONS The serial port can support both MSB-first and LSB-first data formats. This functionality is controlled by the SPI_LSB_FIRST bit (Register 0x00, Bit 6). The default is MSB first (LSB_FIRST = 0). When SPI_LSB_FIRST = 0 (MSB first), the instruction and data bits must be written from MSB to LSB. Multibyte data transfers in MSB-first format start with an instruction word that includes the register address of the most significant data byte. Subsequent data bytes must follow from high address to low address. In MSB-first mode, the serial port internal word address generator decrements for each data byte of the multibyte communication cycle. When SPI_LSB_FIRST = 1 (LSB first), the instruction and data bits must be written from LSB to MSB. Multibyte data transfers in LSB-first format start with an instruction word that includes the register address of the least significant data byte. Subsequent data bytes must follow from low address to high address. In LSB-first mode, the serial port internal word address generator increments for each data byte of the multibyte communication cycle. If the MSB-first mode is active, the serial port controller data address decrements from the data address written toward 0x00 for multibyte I/O operations. If the LSB-first mode is active, the serial port controller data address increments from the data address written toward 0xFF for multibyte I/O operations. Rev. A | Page 21 of 72 AD9142A Data Sheet tDCSB INSTRUCTION CYCLE tSCLK DATA TRANSFER CYCLE CS CS tPWH SCLK R/W A14 A13 A3 A2 A1 A0 D7N D6N D5N D30 D20 D10 D00 tDS SDIO INSTRUCTION BIT 14 Figure 31. Timing Diagram for Serial Port Register Write Figure 29. Serial Register Interface Timing, MSB First INSTRUCTION CYCLE tDH INSTRUCTION BIT 15 11901-028 SCLK 11901-026 SDIO tPWL CS DATA TRANSFER CYCLE CS A0 A1 A2 A12 A13 A14 R/W D00 D10 D20 D4N D5N D6N D7N 11901-027 SDIO tDV SDIO DATA BIT n DATA BIT n – 1 Figure 32. Timing Diagram for Serial Port Register Read Figure 30. Serial Register Interface Timing, LSB First Rev. A | Page 22 of 72 11901-029 SCLK SCLK Data Sheet AD9142A DATA INTERFACE LVDS INPUT DATA PORTS Table 12. Data Interface Configuration Options The AD9142A has a 16-bit LVDS bus that accepts 16-bit I and Q data either in word (16-bit) or byte (8-bit) formats. In the word interface mode, the data is sent over the entire 16-bit data bus. In the byte interface mode, the data is sent over the lower 8-bit (D7 to D0) LVDS bus. Table 11 lists the pin assignment of the bus and the SPI register configuration for each mode. Register 0x26 DATA_FORMAT (Bit 7) DATA_PAIRING (Bit 6) DATA_BUS_INVERT (Bit 5) Table 11. LVDS Input Data Modes Interface Mode Word Byte Pin Assignment D15 to D0 D7 to D0 SPI Register Configuration Register 0x26, Bit 0 = 0 Register 0x26, Bit 0 = 1 WORD INTERFACE MODE In word interface mode, the digital clock input (DCI) signal is a reference bit that generates a double data rate (DDR) data sampling clock. Time align the DCI signal with the data. The IDAC data follows the rising edge of the DCI, and the QDAC data follows the falling edge of the DCI, as shown in Figure 33. WORD INTERFACE MODE I0 Q0 I1 Q1 11901-030 INPUT DATA[15:0] DCI Figure 33. Timing Diagram for Word Interface Mode BYTE INTERFACE MODE In byte interface mode, the required sequence of the input data stream is I[15:8], I[7:0], Q[15:8], Q[7:0]. A frame signal is required to align the order of input data bytes properly. Time align both the DCI signal and frame signal with the data. The rising edge of the frame indicates the start of the sequence. The frame can be either a one shot or periodical signal as long as its first rising edge is correctly captured by the device. For a one shot frame, the frame pulse must be held at high for at least one DCI cycle. For a periodical frame, the frequency needs to be fDCI/(2 × n) Figure 34 is an example of signal timing in byte mode. BYTE INTERFACE MODE I0[15:8] I0[7:0] Q0[15:8] Q0[7:0] Figure 34. Timing Diagram for Byte Interface Mode DATA INTERFACE CONFIGURATION OPTIONS To provide more flexibility for the data interface, some additional options are listed in Table 12. 11901-031 DCI FRAME DLL INTERFACE MODE A source synchronous LVDS interface is used between the data host and AD9142A to achieve high data rates while simplifying the interface. The FPGA or ASIC feeds the AD9142A with 16-bit input data. Along with the input data, the FPGA or ASIC provides a DDR (double data rate) data clock input (DCI). A delay locked loop (DLL) circuit designed to operate with DCI clock rates between 250 and 575 MHz is used to generate a phaseshifted version of the DCI, called DSC (data sampling clock), to register the input data on both the rising and falling edges. As shown in Figure 35, the DCI clock edges must be coincident with the data bit transitions with minimum skew and jitter. The nominal sampling point of the input data occurs in the middle of the DCI clock edges because this point corresponds to the center of the data eye. This is also equivalent to a nominal phase shift of 90°of the DCI clock. The data timing requirements are defined by a data valid window (DVW) that is dependent on the data clock input skew, input data jitter, and the variations of the DLL delay line across delay settings. The DVW is defined as DVW = tDATA PERIOD − tDATA SKEW – tDATA JITTER The available margin for data interface timing is given by tMARGIN = DVW − (tS + tH) The difference between the setup and hold times, which is also called the keep out window, or KOW, is the area where data transitions should not happen. The timing margin allows tuning of the DLL delay setting by the user, see Figure 36. where n is a positive integer, that is, 1, 2, 3, … INPUT DATA[7:0] Description Select between binary and twos complement formats. Indicate I/Q data pairing on data input. This allows the I and Q data that is received to be paired in various ways. Swaps the bit order of the data input port. Remaps the input data from D[15:0] to D[0:15]. From the figure, it can be seen that the ideal location for the DSC signal is 90° out of phase from the DCI input. However, due to skew of the DCI relative to the data, it may be necessary to change the DSC phase offset to sample the data at the center of its eye diagram. The sampling instance can be varied in discrete increments by offsetting the nominal DLL phase shift value of 90° via Register 0x0A, Bits[3:0]. This register is a signed value. The MSB is the sign and the LSBs are the magnitude. The following equation defines the phase offset relationship: Phase Offset = 90° ± n × 11.25°, |n| < 7 where n is the DLL phase offset setting. Rev. A | Page 23 of 72 AD9142A Data Sheet Table 13. DLL Phase Setup and Hold Times (Guaranteed) Figure 35 shows the DSC setup and hold times with respect to the DCI signal and data signals. Frequency, fDCI (MHz) 307 DATA DCI 368 11901-135 DSC tS tH 491 Time (ps) tS tH tS tH tS tH Data Port Setup and Hold Times (ps) at DLL Phase −3 0 +3 −125 −385 −695 834 1120 1417 −70 −305 −534 753 967 1207 −81 −245 −402 601 762 928 Figure 35. LVDS Data Port Setup and Hold Times Table 13 lists the values that are guaranteed over the operating conditions. These values were taken with a 50% duty cycle and a DCI swing of 450 mV p-p. For best performance, the duty cycle variation should be kept below ±5%, and the DCI input should be as high as possible, up to 1200 mV p-p. tDATA JITTER tH tS INPUT DATA DATA EYE tDATA PERIOD DCI DATA SAMPLE CLOCK tDATA JITTER tDCI SKEW INPUT DATA DLL PHASE DELAY tH AND tS DATA EYE tDATA PERIOD 11901-037 DCI DATA SAMPLE CLOCK Figure 36. LVDS Data Port Timing Requirements Rev. A | Page 24 of 72 Data Sheet AD9142A Table 14. DLL Phase Setup and Hold Times (Typical) Frequency, fDCI 1 (MHz) 250 275 300 325 350 375 400 425 450 475 500 525 550 575 1 Time (ps) tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH tS tH −6 −93 468 −87 451 −82 422 −46 405 −23 383 −7 401 −46 385 4 358 11 354 −15 355 9 313 −7 311 −5 300 8 312 −5 −196 579 −172 537 −166 500 −114 483 −92 451 −82 466 −98 445 −52 408 −34 406 −51 399 −28 354 −52 356 −39 340 −28 348 −4 −312 707 −264 646 −256 598 −190 563 −180 524 −150 504 −161 503 −110 465 −92 457 −95 451 −77 399 −100 395 −74 378 −66 379 −3 −416 825 −364 757 −341 703 −271 647 −252 607 −225 569 −243 546 −170 524 −147 516 −147 499 −128 445 −147 438 −107 423 −102 414 Data Port Setup and Hold Times (ps) at DLL Phase −2 −1 0 +1 +2 +3 −530 −658 −770 −878 −983 −1093 947 1067 1188 1315 1442 1570 −464 −556 −653 −756 −859 −956 878 977 1092 1218 1311 1423 −426 −515 −622 −715 −809 −900 803 897 1000 1105 1203 1303 −358 −447 −538 −612 −706 −806 740 832 914 1000 1100 1200 −328 −409 −491 −574 −654 −731 682 762 844 930 1011 1097 −315 −391 −461 −526 −595 −661 641 718 783 863 941 1025 −303 −384 −448 −513 −578 −643 604 674 748 826 890 965 −229 −297 −394 −449 −517 −579 595 625 692 762 829 900 −209 −269 −324 −386 −446 −509 573 637 693 731 792 852 −198 −255 −313 −366 −425 −480 556 613 675 727 779 815 −183 −233 −288 −333 −390 −438 500 555 615 668 726 783 −187 −237 −285 −335 −387 −436 489 537 592 645 692 746 −147 −192 −249 −302 −352 −397 468 510 560 610 659 710 −143 −181 −245 −280 −336 −366 453 496 544 599 654 708 +4 −1193 1697 −1053 1537 −1001 1411 −891 1292 −819 1186 −726 1106 −713 1039 −641 966 −564 917 −530 873 −495 825 −483 799 −440 756 −406 759 +5 −1289 1777 −1151 1653 −1097 1522 −966 1380 −889 1277 −786 1187 −771 1110 −704 1032 −622 983 −585 930 −545 881 −530 850 −486 810 −443 806 +6 −1412 1876 −1251 1728 −1184 1612 −1044 1476 −959 1358 −853 1264 −833 1178 −752 1097 −672 1042 −640 988 −594 934 −581 909 −529 865 −488 847 Table 14 shows characterization data for selected fDCI frequencies. Other frequencies are possible, and Table 14 can be used to estimate performance. Table 14 shows the typical times for various DCI clock frequencies that are required to calculate the data valid margin. The amount of margin that is available for tuning of the DSC sampling point can be determined using Table 14. Maximizing the opening of the eye in both the DCI and data signals improves the reliability of the data port interface. Differential controlled impedance traces of equal length (that is, delay) should be used between the host processor and the AD9142A input. To ensure coincident transitions with the data bits, the DCI signal should be implemented as an additional data line with an alternating (010101…) bit sequence from the same output drivers used for the data. The DCI signal is ac-coupled by default; thus, removing the DCI signal may cause DAC output chatter due to randomness on the DCI input. To avoid this, it is recommended that the DAC output is disabled whenever the DCI signal is not present. To do this, program the DAC output current power down bit in Register 0x01, Bit 7 and Bit 6 to 1. When the DCI signal is again present, the DAC output can be enabled by setting Register 0x01, Bit 7 and Bit 6 to 0. Register 0x0D optimizes the DLL stability over the operating frequency range. Table 15 shows the recommended setting. Table 15. DLL Configuration Options DCI Speed ≥350 MHz
AD9142ABCPZRL 价格&库存

很抱歉,暂时无法提供与“AD9142ABCPZRL”相匹配的价格&库存,您可以联系我们找货

免费人工找货