0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD9171BBPZ

AD9171BBPZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    BGA144_10X10MM_EP

  • 描述:

    DUAL, SINGLE BAND, 16-BIT, 6GSPS

  • 数据手册
  • 价格&库存
AD9171BBPZ 数据手册
Dual, 16-Bit, 6.2 GSPS RF DAC with Single Channelizer AD9171 Data Sheet FEATURES GENERAL DESCRIPTION Supports single-band wireless applications 1 complex data input channel per RF DAC 516 MSPS maximum complex input data rate per input channel 1 independent NCO per input channel Proprietary, low spurious and distortion design 2-tone IMD = −83 dBc at 1.8 GHz, −7 dBFS/tone RF output SFDR < −80 dBc at 1.8 GHz, −7 dBFS RF output Flexible 8-lane, 15.4 Gbps JESD204B interface Supports single-band use cases Supports 12-bit high density mode for increased data throughput Multiple chip synchronization Supports JESD204B Subclass 1 Selectable interpolation filter for a complete set of input data rates 2×, 3×, 4×, and 6× configurable data channel interpolation 6× and 8× configurable final interpolation Final 48-bit NCO that operates at the DAC rate to support frequency synthesis up to 3.1 GHz Transmit enable function allows extra power saving and downstream circuitry protection High performance, low noise PLL clock multiplier Supports 6.2 GSPS DAC update rate Observation ADC clock driver with selectable divide ratios Low power 1.45 W at 6 GSPS, single-channel mode 10 mm × 10 mm, 144-ball BGA_ED with metal enhanced thermal lid, 0.80 mm pitch The AD9171 is a high performance, dual, 16-bit digital-to-analog converter (DAC) that supports DAC sample rates to 6.2 GSPS. The device features an 8-lane, 15.4 Gbps JESD204B data input port, a high performance, on-chip DAC clock multiplier, and digital signal processing capabilities targeted at single-band direct to radio frequency (RF) wireless applications. The AD9171 features one complex data input channels per RF DAC. Each data input channel includes a configurable gain stage, an interpolation filter, and a channel numerically controlled oscillator (NCO) for flexible, frequency planning. The device supports up to a 516 MSPS complex data rate per input channel. The AD9171 is available in a 144-ball BGA_ED package. PRODUCT HIGHLIGHTS 1. 2. Supports one complex data input channel per RF DAC at a maximum complex input data rate of 513 MSPS with 12-bit resolution and 516 MSPS with 16-bit resolution options. There is one independent NCO per input channel. Low power dual converter decreases the amount of power consumption needed in high bandwidth and multichannel applications. APPLICATIONS Wireless communications infrastructure Single-band base station radios Instrumentation, automatic test equipment (ATE) Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD9171 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 JESD204B Serial Data Interface .................................................... 23 Applications ....................................................................................... 1 JESD204B Overview .................................................................. 23 General Description ......................................................................... 1 Physical Layer ............................................................................. 25 Product Highlights ........................................................................... 1 Data Link Layer .......................................................................... 27 Revision History ............................................................................... 2 Syncing LMFC Signals ............................................................... 30 Functional Block Diagram .............................................................. 3 Transport Layer .......................................................................... 35 Specifications..................................................................................... 4 JESD204B Test Modes ............................................................... 36 DC Specifications ......................................................................... 4 JESD204B Error Monitoring..................................................... 38 Digital Specifications ................................................................... 5 Digital Datapath ............................................................................. 41 Power Supply DC Specifications ................................................ 5 Total Datapath Interpolation .................................................... 41 Serial Port and CMOS Pin Specifications ................................. 6 Channel Digital Datapath ......................................................... 42 Digital Input Data Timing Specifications ................................. 7 Main Digital Datapath ............................................................... 45 JESD204B Interface Electrical and Speed Specifications ........ 8 Interrupt Request Operation ........................................................ 51 Input Data Rates and Signal Bandwidth Specifications .......... 8 Interrupt Service Routine .......................................................... 51 AC Specifications.......................................................................... 9 Applications Information .............................................................. 52 Absolute Maximum Ratings.......................................................... 11 Hardware Considerations ......................................................... 52 Reflow Profile .............................................................................. 11 Analog Interface Considerations .................................................. 55 Thermal Characteristics ............................................................ 11 DAC Input Clock Configurations ............................................ 55 ESD Caution ................................................................................ 11 Clock Output Driver .................................................................. 57 Pin Configuration and Function Descriptions ........................... 12 Analog Outputs .......................................................................... 57 Typical Performance Characteristics ........................................... 15 Start-Up Sequence .......................................................................... 58 Terminology .................................................................................... 19 Register Summary .......................................................................... 65 Theory of Operation ...................................................................... 20 Register Details ............................................................................... 73 Serial Port Operation ..................................................................... 21 Outline Dimensions ..................................................................... 134 Data Format ................................................................................ 21 Ordering Guide ........................................................................ 134 Serial Port Pin Descriptions ...................................................... 21 Serial Port Options ..................................................................... 21 REVISION HISTORY 8/2019—Rev. A to Rev. B Changes to Figure 12 ...................................................................... 16 Added Figure 13; Renumbered Sequentially .............................. 16 Changes to Figure 48 and Table 32............................................... 43 Changes to Figure 49 ...................................................................... 44 Change to Table 38 ......................................................................... 47 Changes to Figure 54 ...................................................................... 48 Changes to Figure 65 ...................................................................... 55 Changes to Table 49 ........................................................................ 60 Changes to Table 50 ........................................................................ 61 Changes to Table 55 ........................................................................ 84 5/2019—Rev. 0 to Rev. A Changes to Noise Spectral Density Parameters, Table 8 ............. 9 Changes to L12 Pin Description, Table 11 .................................. 14 Changes to SYSREF± Sampling Section ...................................... 29 Changes to Subclass 1 Section ...................................................... 30 Change to Figure 37 ....................................................................... 31 Changes to Table 32 ....................................................................... 42 Change to SPI_CHIPGRADE Register, Table 54 ....................... 64 Change to DATAPATH_NCO_SYNC_CFG Register, Table 54 ............................................................................................ 97 Change to SPI_CHIPGRADE Register, Table 55 ....................... 72 Change to DATAPATH_NCO_SYNC_CFG Register, Table 54 ............................................................................................ 92 Changes to Ordering Guide ........................................................ 132 1/2018—Revision 0: Initial Version Rev. B | Page 2 of 134 Data Sheet AD9171 FUNCTIONAL BLOCK DIAGRAM NCO N SERDIN0± SERDES JESD204B RAMP UP/ DOWN GAIN AD9171 CHANNEL 0 GAIN PA PROTECT M NCO DAC 0 DAC0± DAC 1 DAC1± RAMP UP/ DOWN GAIN CHANNEL 1 GAIN SERDIN7± NCO N PA PROTECT M NCO SYNCOUT0± SYNCOUT1± Figure 1. Functional Block Diagram Rev. B | Page 3 of 134 PLL ÷2, ÷3 16262-001 CLOCK RECEIVER CLKIN+ CLOCK DRIVER CLKOUT– CLOCK RECEIVER CLKOUT+ CLOCK DIVIDER ÷1, ÷2, ÷3, ÷4 SYSREF– CS SCLK SPI SDIO ISET TXEN0 TXEN1 IRQ0 IRQ1 VREF SDO RESET DAC ALIGN DETECT SYSREF+ CLOCK DISTRIBUTION AND CONTROL LOGIC SYNCHRONIZATION LOGIC AD9171 Data Sheet SPECIFICATIONS DC SPECIFICATIONS AVDD1.0 = 1.0 V, AVDD1.8 = 1.8 V, DVDD1.0 = 1.0 V, DVDD1.8 = 1.8 V, SVDD1.0 = 1.0 V, and DAC output full-scale current (IOUTFS) = 20 mA, unless otherwise noted. For the minimum and maximum values, TJ = −40°C to +118°C. For the typical values, TA = 25°C, which corresponds to TJ = 51°C. Table 1. Parameter RESOLUTION ACCURACY Integral Nonlinearity (INL) Differential Nonlinearity (DNL) ANALOG OUTPUTS (DAC0+, DAC0−, DAC1+, DAC1−) Gain Error (with Internal ISET Reference) Full-Scale Output Current Minimum Maximum Common-Mode Voltage Differential Impedance DAC DEVICE CLOCK INPUT (CLKIN+, CLKIN−) Differential Input Power Minimum Maximum Differential Input Impedance 1 Common-Mode Voltage CLOCK OUTPUT DRIVER (CLKOUT+, CLKOUT−) Differential Output Power Minimum Maximum Differential Output Impedance Common-Mode Voltage Output Frequency TEMPERATURE DRIFT Gain REFERENCE Internal Reference Voltage ANALOG SUPPLY VOLTAGES AVDD1.0 AVDD1.8 DIGITAL SUPPLY VOLTAGES DVDD1.0 DAVDD1.0 DVDD1.8 SERDES SUPPLY VOLTAGES SVDD1.0 1 Test Conditions/Comments RSET = 5 kΩ RSET = 5 kΩ Min 16 14.2 23.6 Typ Max Unit Bit ±7 ±7 LSB LSB ±15 % 16 26 0 100 17.8 28.8 mA mA V Ω RLOAD = 100 Ω differential on-chip AC-coupled 0 6 100 0.5 dBm dBm Ω V AC-coupled −9 0 100 0.5 dBm dBm Ω V MHz 727.5 See the DAC Input Clock Configurations section for more details. Rev. B | Page 4 of 134 3000 10 ppm/°C 0.495 V 0.95 1.71 1.0 1.8 1.05 1.89 V V 0.95 0.95 1.71 1.0 1.0 1.8 1.05 1.05 1.89 V V V 0.95 1.0 1.05 V Data Sheet AD9171 DIGITAL SPECIFICATIONS AVDD1.0 = 1.0 V, AVDD1.8 = 1.8 V, DVDD1.0 = 1.0 V, DVDD1.8 = 1.8 V, SVDD1.0 = 1.0 V, and DAC IOUTFS = 20 mA, unless otherwise noted. For the minimum and maximum values, TJ = −40°C to +118°C. For the typical values, TA = +25°C, which corresponds to TJ = 51°C. Table 2. Parameter DAC UPDATE RATE Minimum Maximum 1 Adjusted 2 DAC PHASE-LOCKED LOOP (PLL) VOLTAGE CONTROLLED OSCILLATOR (VCO) FREQUENCY RANGES VCO Output Divide by 2 VCO Output Divide by 3 PHASE FREQUENCY DETECT INPUT FREQUENCY RANGES 9.96 GHz ≤ VCO Frequency ≤ 10.87 GHz VCO Frequency < 9.96 GHz or VCO Frequency > 10.87 GHz DAC DEVICE CLOCK INPUT (CLKIN+, CLKIN−) FREQUENCY RANGES PLL Off PLL On Test Conditions/Comments Min Typ Max Unit 2.91 GSPS GSPS MSPS 4.37 2.91 6.2 4.14 GSPS GSPS 25 25 225 770 MHz MHz 2.91 25 50 75 100 6.2 770 1540 2310 3080 GHz MHz MHz MHz MHz 6.2 516 M divider set to divide by 1 M divider set to divide by 2 M divider set to divide by 3 M divider set to divide by 4 The maximum DAC update rate varies depending on the selected JESD204B mode and the lane rate for the given configuration used. The maximum DAC rate according to lane rate and voltage supply levels is listed in Table 3. 2 The adjusted DAC update rate is calculated as fDAC, divided by the minimum required interpolation factor for a given mode or the maximum channel data rate for a given mode. Different modes have different maximum DAC update rates, minimum interpolation factors, and maximum channel data rates, as shown in Table 12. 1 POWER SUPPLY DC SPECIFICATIONS AVDD1.0 = 1.0 V, AVDD1.8 = 1.8 V, DVDD1.0 = 1.0 V, DVDD1.8 = 1.8 V, SVDD1.0 = 1.0 V, and DAC IOUTFS = 20 mA, unless otherwise noted. For the minimum and maximum values, TJ = −40°C to +118°C. For the typical values, TA = 25°C, which corresponds to TJ = 51°C. Table 3. Parameter DUAL-LINK MODE, Mode 0 (L = 1, M = 2, NP = 16, N = 16) AVDD1.0 AVDD1.8 DVDD1.0 Test Conditions/Comments 5.89824 GSPS DAC rate, 184.32 MHz PLL reference clock, 16× total interpolation (2×, 8×), 40 MHz tone at −3 dBFS, channel NCO disabled, main NCO = 1.8425 GHz, SYNCOUTx± in LVDS mode All supply levels set to nominal values All supplies at 5% tolerance Combined current consumption with the DAVDD1.0 supply All supply levels set to nominal values All supplies at 5% tolerance DVDD1.8 SVDD1.0 Total Power Dissipation Rev. B | Page 5 of 134 Min Typ Max Unit 400 425 110 670 745 130 mA mA mA 625 670 35 175 1.45 960 1070 50 340 2.15 mA mA mA mA W AD9171 Parameter DUAL-LINK, MODE 3 (NCO ONLY, SINGLE-CHANNEL MODE, NO SERDES) AVDD1.0 Data Sheet Test Conditions/Comments 6 GSPS DAC rate, 300 MHz PLL reference clock, 8× total interpolation (1×, 8×), no input tone (dc internal level = 0x50FF), channel NCO = 40 MHz, main NCO = 1.8425 GHz Min All supply levels set to nominal values All supplies at 5% tolerance AVDD1.8 DVDD1.0 DVDD1.8 SVDD1.0 Combined current consumption with the DAVDD1.0 supply All supply levels set to nominal values All supplies at 5% tolerance All supply levels set to nominal values All supplies at 5% tolerance Total Power Dissipation Typ Max Unit 410 435 110 660 750 130 mA mA mA 500 515 0.3 5 3 1.1 780 950 1 100 120 1.671 mA mA mA mA mA W SERIAL PORT AND CMOS PIN SPECIFICATIONS AVDD1.0 = 1.0 V, AVDD1.8 = 1.8 V, DVDD1.0 = 1.0 V, DVDD1.8 = 1.8 V, SVDD1.0 = 1.0 V, and DAC IOUTFS = 20 mA, unless otherwise noted. For the minimum and maximum values, TJ = −40°C to +118°C. For the typical values, TA = 25°C, which corresponds to TJ = 51°C. Table 4. Parameter WRITE OPERATION Maximum SCLK Clock Rate SCLK Clock High SCLK Clock Low SDIO to SCLK Setup Time SCLK to SDIO Hold Time CS to SCLK Setup Time SCLK to CS Hold Time READ OPERATION SCLK Clock Rate SCLK Clock High SCLK Clock Low SDIO to SCLK Setup Time SCLK to SDIO Hold Time CS to SCLK Setup Time SCLK to SDIO Data Valid Time SCLK to SDO Data Valid Time CS to SDIO Output Valid to High-Z CS to SDO Output Valid to High-Z INPUTS (SDIO, SCLK, CS, RESET, TXEN0, and TXEN1) Voltage Input High Low Current Input High Low Symbol fSCLK, 1/tSCLK tPWH tPWL tDS tDH tS tH Test Comments/Conditions See Figure 26 SCLK = 20 MHz SCLK = 20 MHz Min Typ Max 80 5.03 1.6 1.154 0.577 1.036 −5.3 Unit MHz ns ns ns ns ns ps See Figure 25 fSCLK, 1/tSCLK tPWH tPWL tDS tDH tS tDV tDV 48.58 Not shown in Figure 25 or Figure 26 Not shown in Figure 25 or Figure 26 VIH VIL 5.03 1.6 1.158 0.537 1.036 9.6 13.7 5.4 9.59 1.48 0.425 IIH IIL ±100 ±100 Rev. B | Page 6 of 134 MHz ns ns ns ns ns ns ns ns ns V V nA nA Data Sheet Parameter OUTPUTS (SDIO, SDO) Voltage Output High 0 mA load 4 mA load Low 0 mA load 4 mA load Current Output High Low INTERRUPT OUTPUTS (IRQ0, IRQ1) Voltage Output High Low AD9171 Symbol Test Comments/Conditions Min Typ Max Unit VOH 1.69 1.52 V V VOL 0.045 0.175 IOH IOL 4 4 VOH VOL V V mA mA 1.71 0.075 V V DIGITAL INPUT DATA TIMING SPECIFICATIONS AVDD1.0 = 1.0 V, AVDD1.8 = 1.8 V, DVDD1.0 = 1.0 V, DVDD1.8 = 1.8 V, SVDD1.0 = 1.0 V, and DAC IOUTFS = 20 mA, unless otherwise noted. For the minimum and maximum values, TJ = −40°C to +118°C. For the typical values, TA = 25°C, which corresponds to TJ = 51°C. Table 5. Parameter LATENCY 1 Channel Interpolation Factor, Main Datapath Interpolation Factor 2×, 6× 2×, 8× 3×, 6× 3×, 8× 4×, 6× 4×, 8× 6×, 6× 6×, 8× DETERMINISTIC LATENCY Fixed Variable SYSREF± TO LOCAL MULTIFRAME CLOCK (LMFC) DELAY 1 2 Test Conditions/Comments LMFC_VAR_x = 12, LMFC_DELAY_x = 12, unless otherwise noted JESD204B Mode 3 JESD204B Mode 5 JESD204B Mode 0 JESD204B Mode 3 JESD204B Mode 3 JESD204B Mode 5 JESD204B Mode 3 JESD204B Mode 5 JESD204B Mode 0 JESD204B Mode 0 JESD204B Mode 0 JESD204B Mode 0 Min Typ Max 1970 1770 2020 2500 2880 2630 3310 2980 2410 3090 3190 4130 DAC clock cycle DAC clock cycle DAC clock cycle DAC clock cycle DAC clock cycle DAC clock cycle DAC clock cycle DAC clock cycle DAC clock cycle DAC clock cycle DAC clock cycle DAC clock cycle 13 2 Indicates the relationship between the SYSREF± signal and the LMFC Clock Phase 0 0 Unit PCLK 2 PCLK cycles DAC clock cycles Total latency (or pipeline delay) through the device is calculated as follows: total latency = interface latency + fixed latency + variable latency + pipeline delay. PCLK is the internal processing clock for the AD9171 and equals the lane rate ÷ 40. Rev. B | Page 7 of 134 AD9171 Data Sheet JESD204B INTERFACE ELECTRICAL AND SPEED SPECIFICATIONS AVDD1.0 = 1.0 V, AVDD1.8 = 1.8 V, DVDD1.0 = 1.0 V, DVDD1.8 = 1.8 V, SVDD1.0 = 1.0 V, and DAC IOUTFS = 20 mA, unless otherwise noted. For the minimum and maximum values, TJ = −40°C to +118°C. For the typical values, TA = 25°C, which corresponds to TJ = 51°C. Table 6. Parameter JESD204B SERIAL INTERFACE RATE (SERIAL LANE RATE) JESD204B DATA INPUTS Input Leakage Current Logic High Logic Low Unit Interval Common-Mode Voltage Differential Voltage Differential Impedance SYSREF± INPUT Differential Impedance DIFFERENTIAL OUTPUTS (SYNCOUT0±, SYNCOUT1±) 1 Output Differential Voltage Output Offset Voltage SINGLE-ENDED OUTPUTS (SYNCOUT0±, SYNCOUT1±) Output Voltage High Low Current Output High Low 1 Symbol Test Conditions/Comments Min 3 TA = 25°C Input level = 1.0 V ± 0.25 V Input level = 0 V UI VRCM R_VDIFF ZRDIFF AC-coupled At dc Typ Max 15.4 Unit Gbps 66.7 +1.1 1050 120 µA µA ps V mV Ω 10 −4 333 −0.05 110 80 100 100 Ω Driving 100 Ω differential load VOD VOS 320 1.08 390 1.12 460 1.15 mV V 0.045 V V Driving 100 Ω differential load VOH VOL 1.69 IOH IOL 0 0 mA mA IEEE Standard 1596.3 LVDS compatible. INPUT DATA RATES AND SIGNAL BANDWIDTH SPECIFICATIONS AVDD1.0 = 1.0 V, AVDD1.8 = 1.8 V, DVDD1.0 = 1.0 V, DVDD1.8 = 1.8 V, SVDD1.0 = 1.0 V, and DAC output full-scale current (IOUTFS) = 20 mA, unless otherwise noted. For the minimum and maximum values, TJ = −40°C to +118°C. For the typical values, TA = 25°C, which corresponds to TJ = 51°C. Table 7. Parameter 1 INPUT DATA RATE PER INPUT CHANNEL COMPLEX SIGNAL BANDWIDTH PER INPUT CHANNEL MAXIMUM NCO CLOCK RATE Channel NCO Main NCO MAXIMUM NCO SHIFT FREQUENCY RANGE Channel NCO Main NCO MAXIMUM FREQUENCY SPACING ACROSS INPUT CHANNELS 1 Test Conditions/Comments 1 complex channel enabled Min Max 516 Unit MSPS 413.34 MHz −258 +258 6.2 MHz GHz −258.34 −3.1 +258.34 +3.1 412.8 MHz GHz MHz 1 complex channel enabled (0.8 × fDATA) Maximum NCO output frequency × 0.8 Typ Values listed for these parameters are the maximum possible when considering all JESD204B modes of operation. Some modes are more limiting, based on other parameters. Rev. B | Page 8 of 134 Data Sheet AD9171 AC SPECIFICATIONS AVDD1.0 = 1.0 V, AVDD1.8 = 1.8 V, DVDD1.0 = 1.0 V, DVDD1.8 = 1.8 V, SVDD1.0 = 1.0 V, and DAC IOUTFS = 20 mA, unless otherwise noted. For the minimum and maximum, TJ = −40°C to +118°C. For the typical values, TA = 25°C, which corresponds to TJ = 51°C. Table 8. Parameter SPURIOUS-FREE DYNAMIC RANGE (SFDR) Single Tone, fDAC = 6000 MSPS, Mode 0 (L = 1, M = 2) fOUT = 100 MHz fOUT = 500 MHz fOUT = 950 MHz fOUT = 1840 MHz fOUT = 2650 MHz Single-Band Application—Band 3 (1805 MHz to 1880 MHz) SFDR Harmonics In-Band Digital Predistortion (DPD) Band Second Harmonic Third Harmonic Fourth and Fifth Harmonic SFDR Nonharmonics In-Band DPD Band ADJACENT CHANNEL LEAKAGE RATIO 4C-WCDMA fDAC = 6000 MSPS, Mode 0 (L = 1, M = 2) THIRD-ORDER INTERMODULATION DISTORTION (IMD) fDAC = 6000 MSPS, Mode 0 (L = 1, M = 2) NOISE SPECTRAL DENSITY (NSD) Single Tone, fDAC = 6000 MSPS fOUT = 200 MHz fOUT = 500 MHz fOUT = 950 MHz fOUT = 1850 MHz fOUT = 2150 MHz Single Tone, fDAC = 3000 MSPS fOUT = 200 MHz fOUT = 500 MHz fOUT = 950 MHz SINGLE-SIDEBAND PHASE NOISE OFFSET Test Conditions/Comments Min Typ Max Unit −7 dBFS, shuffle enabled −85 −85 −78 −75 −69 dBc dBc dBc dBc dBc −82 −80 −82 −80 −95 dBc dBc dBc dBc dBc −74 −74 dBc dBc −71 −66 dBc dBc −74 −72 dBc dBc −164 −163 −161 −157 −155 dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz -163 -159 -155 dBc/Hz dBc/Hz dBc/Hz −97 −105 −114 −126 −133 −137 −148 dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz Mode 0, 2× to 8×, fDAC = 6000 MSPS, 368.64 MHz reference clock −7 dBFS, shuffle enabled DPD bandwidth = data rate × 0.8 −7 dBFS, shuffle enabled −1 dBFS digital backoff fOUT = 1840 MHz fOUT = 2650 MHz Two-tone test, −7 dBFS/tone, 1 MHz spacing fOUT = 1840 MHz fOUT = 2650 MHz 0 dBFS, NSD measurement taken at 10% away from fOUT, shuffle on Loop filter component values according to Figure 66 are as follows: C1 = 22 nF, R1 = 232 Ω, C2 = 2.4 nF, C3 = 33 nF; PFD frequency = 500 MHz, fOUT = 1.8 GHz, fDAC = 6 GHz 1 kHz 10 kHz 100 kHz 600 kHz 1.2 MHz 1.8 MHz 6 MHz Rev. B | Page 9 of 134 AD9171 Parameter DAC TO DAC OUTPUT ISOLATION Data Sheet Test Conditions/Comments Taken using the AD9171-FMC-EBZ evaluation board Min Typ Max Unit Single-Band—fDAC = 6000 MSPS, Mode 0 (L = 1, M = 2) fOUT = 1840 MHz fOUT = 2100 MHz fOUT = 2650 MHz Rev. B | Page 10 of 134 −81 −78 −73 dBc dBc dBc Data Sheet AD9171 ABSOLUTE MAXIMUM RATINGS THERMAL CHARACTERISTICS Table 9. Parameter ISET, FILT_COARSE, FILT_BYP, FILT_VCM SERDINx± SYNCOUT0±, SYNCOUT1±, RESET, TXEN0, TXEN1, IRQ0, IRQ1, CS, SCLK, SDIO, SDO DAC0±, DAC1±, CLKIN±, CLKOUT±, FILT_FINE SYSREF± AVDD1.0, DVDD1.0, SVDD1.0 to GND AVDD1.8, DVDD1.8 to GND Maximum Junction Temperature (TJ)1 Storage Temperature Range Reflow 1 Rating −0.3 V to AVDD1.8 + 0.3 V −0.2 V to SVDD1.0 + 0.2 V −0.3 V to DVDD1.8 + 0.3 V −0.2 V to AVDD1.0 + 0.2 V −0.2 V to DVDD1.0 + 0.2 V −0.2 V to +1.2 V −0.3 V to 2.2 V 118°C −65°C to +150°C 260°C Some operating modes of the device may cause the device to approach or exceed the maximum junction temperature during operation at supported ambient temperatures. Removal of heat from the device may require additional measures such as active airflow, heat sinks, or other measures. Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. REFLOW PROFILE Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. θJA is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θJC is the junction to case thermal resistance. Thermal resistances and thermal characterization parameters are specified vs. the number of PCB layers in different airflow velocities (in m/sec). The use of appropriate thermal management techniques is recommended to ensure that the maximum junction temperature does not exceed the limits shown in Table 9. Use the values in Table 10 in compliance with JEDEC 51-12. Table 10. Simulated Thermal Resistance vs. PCB Layers1 PCB Type JEDEC 2s2p Board 12-Layer PCB2 N/A means not applicable. Non JEDEC thermal resistance. 3 1SOP PCB with no vias in PCB. 4 1SOP PCB with 7 × 7 standard JEDEC vias. 1 2 The AD9171 reflow profile is in accordance with the JEDEC JESD20 criteria for Pb-free devices. The maximum reflow temperature is 260°C. Airflow Velocity (m/sec) 0.0 1.0 2.5 0.0 1.0 2.5 ESD CAUTION Rev. B | Page 11 of 134 θJA 25.3 22.6 21.0 15.4 13.1 11.6 θJC_TOP 2.43 N/A N/A 2.4 N/A N/A θJC_BOT 3.04 N/A N/A 2.6 N/A N/A Unit °C/W °C/W °C/W °C/W °C/W °C/W AD9171 Data Sheet 1 2 3 4 5 6 7 8 9 10 11 12 A GND SERDIN7+ SERDIN6+ SERDIN5+ SERDIN4+ GND GND SERDIN3+ SERDIN2+ SERDIN1+ SERDIN0+ GND B GND SERDIN7– SERDIN6– SERDIN5– SERDIN4– GND GND SERDIN3– SERDIN2– SERDIN1– SERDIN0– GND C SVDD1.0 SVDD1.0 GND GND SVDD1.0 DVDD1.8 SVDD1.0 SVDD1.0 GND GND SVDD1.0 SVDD1.0 D SYNCOUT1+ SYNCOUT1– DVDD1.8 TXEN1 GND SVDD1.0 GND TXEN0 IRQ0 DVDD1.8 SYNCOUT0– SYNCOUT0+ E DNC DNC DVDD1.8 SDO SCLK CS SDIO RESET IRQ1 DVDD1.8 DNC DNC F GND GND GND DAVDD1.0 DVDD1.0 DVDD1.0 DVDD1.0 DVDD1.0 DAVDD1.0 GND GND GND G GND GND GND GND GND GND GND GND GND GND GND GND H SYSREF+ SYSREF– AVDD1.0 AVDD1.0 AVDD1.0 FILT_FINE FILT_ COARSE AVDD1.0 AVDD1.0 AVDD1.0 GND CLKIN– J GND DNC GND GND GND AVDD1.0 FILT_BYP GND GND GND GND CLKIN+ K CLKOUT+ GND AVDD1.8 DNC AVDD1.8 FILT_VCM AVDD1.8 GND GND AVDD1.8 GND GND L CLKOUT– GND AVDD1.8 GND GND AVDD1.8 AVDD1.8 GND GND AVDD1.8 GND ISET M GND AVDD1.0 GND DAC1+ DAC1– GND GND DAC0– DAC0+ GND AVDD1.0 GND GROUND SERDES INPUT 1.0V DIGITAL SUPPLY DAC PLL LOOP FILTER PINS CMOS I/O 1.0V ANALOG SUPPLY SYSREF±/SYNCOUTx± 1.0V DIGITAL-TO-ANALOG SUPPLY DAC RF OUTPUTS REFERENCE 1.8V ANALOG SUPPLY 1.0V SERDES SUPPLY 1.8V DIGITAL SUPPLY RF CLOCK PINS DNC = DO NOT CONNECT 16262-002 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 2. Pin Configuration Table 11. Pin Function Descriptions Pin No. 1.0 V Supply H3 to H5, H8 to H10, J6, M2, M11 Mnemonic Description AVDD1.0 1.0 V Clock and Analog Supplies. These pins supply the clock receivers, clock distribution, the on-chip DAC clock multiplier, and the DAC analog core. Clean power supply rail sources are required on these pins. 1.0 V Digital Supplies. These pins supply power to the DAC digital circuitry. Clean power supply rail sources are required on these pins. 1.0 V Digital to Analog Supplies. These pins can share a supply rail with the DVDD1.0 supply (electrically connected) but must have separate supply plane and decoupling capacitors for the PCB layout to improve isolation for these two pins. Clean power supply rail sources are required on these pins. 1.0 V SERDES Supplies to the JESD204B Data Interface. Clean power supply rail sources are required on these pins. F5 to F8 DVDD1.0 F4, F9 DAVDD1.0 C1, C2, C5, C7, C8, C11, C12, D6 SVDD1.0 1.8 V Supply K3, K5, K7, K10, L3, L6, L7, L10 C6, D3, D10, E3, E10 AVDD1.8 DVDD1.8 1.8 V Analog Supplies to the On-Chip DAC Clock Multiplier and the DAC Analog Core. Clean power supply rail sources are required on these pins. 1.8 V Digital Supplies to the JESD204B Data Interface and the Other Input/Output Circuitry, Such as the Serial Port Interface (SPI). Clean power supply rail sources are required on these pins. Rev. B | Page 12 of 134 Data Sheet Pin No. Ground A1, A6, A7, A12, B1, B6, B7, B12, C3, C4, C9, C10, D5, D7, F1 to F3, F10 to F12, G1 to G12, H11, J1, J3 to J5, J8 to J11, K2, K8, K9, K11, K12, L2, L4, L5, L8, L9, L11, M1, M3, M6, M7, M10, M12 RF Clock J12 H12 K1 L1 System Reference H1 H2 On-Chip DAC PLL Loop Filter H6 H7 J7 K6 SERDES Data Bits A2 B2 A3 B3 A4 B4 A5 B5 A8 B8 A9 B9 A10 B10 A11 B11 Sync Output D12 AD9171 Mnemonic Description GND Device Common Ground. CLKIN+ Positive Device Clock Input. This pin is the clock input for the on-chip DAC clock multiplier, REFCLK, when the DAC PLL is on. This pin is also the clock input for the DAC sample clock or device clock (DACCLK) when the DAC PLL is off. AC couple this input. There is an internal 100 Ω resistor between this pin and CLKIN−. Negative Device Clock Input. Positive Device Clock Output. This pin is the clock output of a divided down DACCLK and is available with the DAC PLL on and off. The divide down ratios are by 1, 2, or 4. Negative Device Clock Output. CLKIN− CLKOUT+ CLKOUT− SYSREF+ SYSREF− Positive System Reference Input. It is recommended to ac couple this pin, but dc coupling is also acceptable. See Table 6 for the dc common-mode voltage. Negative System Reference Input. It is recommended to ac couple this pin, but dc coupling is also acceptable. See Table 6 for the dc common-mode voltage. FILT_FINE FILT_COARSE FILT_BYP FILT_VCM On-Chip DAC Clock Multiplier and PLL Fine Loop Filter Input. On-Chip DAC Clock Multiplier and PLL Coarse Loop Filter Input. On-Chip DAC Clock Multiplier and LDO Bypass. On-Chip DAC Clock Multiplier and VCO Common-Mode Input. SERDIN7+ SERDIN7− SERDIN6+ SERDIN6− SERDIN5+ SERDIN5− SERDIN4+ SERDIN4− SERDIN3+ SERDIN3− SERDIN2+ SERDIN2− SERDIN1+ SERDIN1− SERDIN0+ SERDIN0− SERDES Data Bit 7, Positive. SERDES Data Bit 7, Negative. SERDES Data Bit 6, Positive. SERDES Data Bit 6, Negative. SERDES Data Bit 5, Positive. SERDES Data Bit 5, Negative. SERDES Data Bit 4, Positive. SERDES Data Bit 4, Negative. SERDES Data Bit 3, Positive. SERDES Data Bit 3, Negative. SERDES Data Bit 2, Positive. SERDES Data Bit 2, Negative. SERDES Data Bit 1, Positive. SERDES Data Bit 1, Negative. SERDES Data Bit 0, Positive. SERDES Data Bit 0, Negative. SYNCOUT0+ Positive Sync (Active Low) Output Signal, Channel Link 0. This pin is LVDS or CMOS selectable. Negative Sync (Active Low) Output Signal, Channel Link 0. This pin is LVDS or CMOS selectable. Positive Sync (Active Low) Output Signal, Channel Link 1. This pin is LVDS or CMOS selectable. Negative Sync (Active Low) Output Signal, Channel Link 1. This pin is LVDS or CMOS selectable. D11 SYNCOUT0− D1 SYNCOUT1+ D2 SYNCOUT1− Rev. B | Page 13 of 134 AD9171 Pin No. Serial Port Interface E4 E7 E5 E6 E8 Interrupt Request D9 E9 CMOS Input/Outputs D8 D4 DAC Analog Outputs M9 M8 M4 M5 Reference L12 Do Not Connect E1, E2, E11, E12, J2, K4 Data Sheet Mnemonic Description SDO SDIO SCLK CS RESET Serial Port Data Output (CMOS Levels with Respect to DVDD1.8). Serial Port Data Input/Output (CMOS Levels with Respect to DVDD1.8). Serial Port Clock Input (CMOS Levels with Respect to DVDD1.8). Serial Port Chip Select, Active Low (CMOS Levels with Respect to DVDD1.8). Reset, Active Low (CMOS Levels with Respect to DVDD1.8). IRQ0 Interrupt Request 0. This pin is an open-drain, active low output (CMOS levels with respect to DVDD1.8). Connect a pull-up resistor to DVDD1.8 to prevent this pin from floating when inactive. Interrupt Request 1. This pin is an open-drain, active low output (CMOS levels with respect to DVDD1.8). Connect a pull-up resistor to DVDD1.8 to prevent this pin from floating when inactive. IRQ1 TXEN0 TXEN1 Transmit Enable for DAC0. The CMOS levels are determined with respect to DVDD1.8. Transmit Enable for DAC1. The CMOS levels are determined with respect to DVDD1.8. DAC0+ DAC0− DAC1+ DAC1− DAC0 Positive Current Output. DAC0 Negative Current Output. DAC1 Positive Current Output. DAC1 Negative Current Output. ISET Device Bias Current Setting Pin. Connect a 5 kΩ resistor from this pin to GND, preferably with 4/SYSREF± frequency. In addition, the edge rate must be sufficiently fast to allow SYSREF± sampling clocks to correctly sample the rising SYSREF± edge before the next sample clock. When ac coupling the SYSREF± inputs, ensure that the SYSREF_INPUTMODE bit (Register 0x084, Bit 6) is set to 0, ac-coupled, to enable the internal receiver biasing circuitry and prevent overstress on the SYSREF± receiver pins. AC coupling allows a differential voltage swing from 200 mV to 1 V on the SYSREF± pins. SYSREF± Sampling The SYSREF± signal is sampled by a divide by 4 version of the DAC clock. Thus, the minimum pulse width of the SYSREF± signal must exceed 4 DAC clock periods to ensure accurate sampling. The delay between the SYSREF± and DAC clock input signal does not need to be timing constrained. By default, the first SYSREF± rising edge at the SYSREF± inputs that is detected after asserting the SYSREF_MODE_ONESHOT bit (Register 0x03A, Bit 1) begins the synchronization and aligns the internal LMFC signal with the sampled SYSREF± edge. Register 0x036 (SYSREF_COUNT) indicates how many captured SYSREF± edges are ignored after the SYSREF_MODE_ ONESHOT bit is asserted before the synchronization takes place. For example, if SYSREF_COUNT is set to 3, the AD9171 does not sync after the SYSREF_MODE_ONESHOT bit is asserted until the arrival of the 4th SYSREF± edge. In Subclass 1, after the one-shot synchronization occurs, the SYSREF± signal is monitored to ensure that the subsequent SYSREF± edges do not deviate from the internal LMFC clock by more than a target amount. 240F 100Ω SYSREF+ SYSREF± Jitter IRQ DC SYSREF± MODE SYSREF+ 240F 104Ω 16262-036 The AD9171 requires a synchronization (sync) to align the LMFC and other internal clocks before the SERDES links are brought online. The synchronization is a one-shot sync, where the synchronization process begins on the next edge of the alignment signal following the assertion of the SYSREF_MODE_ ONESHOT control in Register 0x03A, Bit 1. Register 0x039 (SYSREF_ERR_WINDOW) indicates the size of the error window allowed, in DAC clock units. If a SYSREF± edge varies from the internal LMFC clock by more than the number of DAC clock units set in SYSREF_ERR_WINDOW, the IRQ_SYSREF_JITTER is asserted. Rev. B | Page 30 of 134 Data Sheet AD9171 Table 20. SYSREF± Jitter Window Tolerance SYSREF± Jitter Window Tolerance (DAC Clock Cycles) ±½ ±4 ±8 ±12 ±16 ±20 +24 ±28 1 SYSREF_ERR_WINDOW (Register 0x039, Bits[5:0])1 0x00 0x04 0x08 0x0C 0x10 0x14 0x18 0x1C The two least significant digits are ignored because the SYSREF± signal is sampled with a divide by 4 version of the DAC clock. As a result, the jitter window is set by this divide by 4 clock rather than the DAC clock. It is recommended that at least a four DAC clock SYSREF± jitter window be chosen. The IRQ_SYSREF_JITTER can be configured as described in the Interrupt Request Operation section to indicate the SYSREF± signal has varied, and to request the SPI sequence for a sync be performed again. Sync Procedure The procedure for enabling the sync is as follows: 1. 2. 3. 4. 5. 6. Set up the DAC and the SERDES PLL, and enable the CDR (see the Start-Up Sequence section). Set Register 0x03B to 0xF1 to enable the synchronization circuitry. If using the soft on/off feature, set Register 0x03B to Register 0xF3 to ramp the datapath data before and after the synchronization. If Subclass 1, configure the SYSREF± settings as follows: a. Set Register 0x039 (SYSREF± jitter window). See Table 20 for settings. b. Set Register 0x036 = SYSREF_COUNT; leave as 0 to bypass. Perform a one-shot sync. a. Set Register 0x03A = 0x00. Clear one-shot mode if already enabled. b. Set Register 0x03A = 0x02. Enable one-shot sync mode. If Subclass 1, send a SYSREF± edge. If pulse counting, multiple SYSREF± edges are required. Sending SYSREF± edges triggers the synchronization. Read back the SYNC_ROTATION_DONE bit (Register 0x03A, Bit 4) to confirm the rotation occurred. Step 6, described in the Sync Procedure section. When the one-shot sync is triggered (writing Register 0x03A = 0x02), the SYNCOUTx± signals deassert to drop the JESD204B links and reassert the links after the rotation completes. E Deterministic Latency JESD204B systems contain various clock domains distributed throughout. Data traversing from one clock domain to a different clock domain can lead to ambiguous delays in the JESD204B link. These ambiguities lead to nonrepeatable latencies across the link from power cycle to power cycle with each new link establishment. Section 6 of the JESD204B specification addresses the issue of deterministic latency with mechanisms defined as Subclass 1 and Subclass 2. The AD9171 supports JESD204B Subclass 0 and Subclass 1 operation, but not Subclass 2. Write the subclass to Register 0x458, Bits[7:5]. Subclass 0 This mode gives deterministic latency to within several PCLK cycles. It does not require any signal on the SYSREF± pins, which can be left disconnected. Subclass 0 requires that all lanes arrive within the same LMFC cycle and the dual DACs must be synchronized to each other. Subclass 1 This mode gives deterministic latency and allows the link to be synchronized to within a few DAC clock cycles. Across the full operating range, for both supply and temperature, it is within ±2.5 DAC clock periods for a 6 GHz DAC clock rate or ±4 DAC clock periods for a 12.6 GHz DAC clock rate. If both supply and temperature stability are maintained, the link can be synchronized to within ±1.5 DAC clock periods for a 6 GHz DAC clock rate or ±2.5 DAC clock periods for a 12.6 GHz DAC clock rate. Achieving this latency requires an external, low jitter SYSREF± signal that is accurately phase aligned to the DAC clock. Deterministic Latency Requirements Several key factors are required for achieving deterministic latency in a JESD204B Subclass 1 system, as follows:   Resynchronizing LMFC Signals If desired, the sync procedure can be repeated to realign the LMFC clock to the reference signal by repeating Step 2 to Rev. B | Page 31 of 134 The SYSREF± signal distribution skew within the system must be less than the desired uncertainty. The total latency variation across all lanes, links, and devices must be ≤12 PCLK periods, which includes both variable delays and the variation in fixed delays from lane to lane, link to link, and device to device in the system. AD9171 Data Sheet LINK DELAY = DELAYFIXED + DELAYVARIABLE LOGIC DEVICE (JESD204B Tx) JESD204B Rx CHANNEL DAC DSP POWER CYCLE VARIANCE LMFC ILAS DATA ALIGNED DATA AT Rx OUTPUT ILAS DATA FIXED DELAY VARIABLE DELAY 16262-037 DATA AT Tx INPUT Figure 38. JESD204B Link Delay = Fixed Delay + Variable Delay Link Delay The method to select the LMFCDel (Register 0x304) and LMFCVar (Register 0x306) variables is described in the Link Delay Setup Example, with Known Delays section and the Link Delay Setup Example, Without Known Delay section. Note that the setting for LMFCDel must not equal or exceed the number of PCLK cycles per LMFC period in the current mode. The link delay of a JESD204B system is the sum of the fixed and variable delays from the transmitter, channel, and receiver as shown in Figure 38. For proper functioning, all lanes on a link must be read during the same LMFC period. Section 6.1 of the JESD204B specification states that the LMFC period must be larger than the maximum link delay. For the AD9171, this is not necessarily the case; instead, the AD9171 use a local LMFC for each link (LMFCRx) that can be delayed from the SYSREF± aligned LMFC. Because the LMFC is periodic, this delay can account for any amount of fixed delay. As a result, the LMFC period must only be larger than the variation in the link delays, and the AD9171 can achieve proper performance with a smaller total latency. Figure 39 and Figure 40 show a case where the link delay is greater than an LMFC period. Note that it can be accommodated by delaying LMFCRx. Similarly, LMFCVar must not exceed the number of PCLK cycles per LMFC period in the current mode or be set to LMFC Period Example Two examples follow that show how to determine LMFCVar and LMFCDel. After they are calculated, write LMFCDel into Register 0x304 for all devices in the system, and write LMFCVar to Register 0x306 for all devices in the system. POWER CYCLE VARIANCE LMFC ALIGNED DATA ILAS DATA LMFC_DELAY LMFC REFERENCE FOR ALL POWER CYCLES FRAME CLOCK 16262-0309 LMFCRX Figure 40. LMFC_DELAY_x to Compensate for Link Delay > LMFC Rev. B | Page 32 of 134 Data Sheet AD9171 LMFC PCLK FRAME CLOCK DATA AT Tx FRAMER ILAS DATA ALIGNED LANE DATA AT Rx DEFRAMER OUTPUT Tx VAR DELAY ILAS Rx VAR DELAY DATA PCB FIXED DELAY LMFCRX TOTAL FIXED LATENCY = 30 PCLK CYCLES TOTAL VARIABLE LATENCY = 4 PCLK CYCLES 16262-040 LMFC DELAY = 26 FRAME CLOCK CYCLES Figure 41. LMFC Delay Calculation Example 6. Link Delay Setup Example, with Known Delays All the known system delays can be used to calculate LMFCVar and LMFCDel. The example shown in Figure 41 is demonstrated in the following steps. Note that this example is in Subclass 1 to achieve deterministic latency, and the example uses the case for F = 2; therefore, the number of PCLK cycles per multiframe = 16. Because PCBFixed
AD9171BBPZ 价格&库存

很抱歉,暂时无法提供与“AD9171BBPZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货