0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD9627ABCPZ-105

AD9627ABCPZ-105

  • 厂商:

    AD(亚德诺)

  • 封装:

    VFQFN64

  • 描述:

    IC ADC 12BIT PIPELINED 64LFCSP

  • 数据手册
  • 价格&库存
AD9627ABCPZ-105 数据手册
12-Bit, 80 MSPS/105 MSPS/125 MSPS/150 MSPS, 1.8 V Dual Analog-to-Digital Converter AD9627 FUNCTIONAL BLOCK DIAGRAM AVDD DVDD SDIO/ SCLK/ DCS DFS CSB FD(0:3)A FD BITS/THRESHOLD DETECT DRVDD SPI PROGRAMMING DATA VIN+A SHA ADC VIN–A SIGNAL MONITOR VREF D11A D0A CLK+ CLK– CML DIVIDE 1 TO 8 REF SELECT DCO GENERATION DUTY CYCLE STABILIZER RBIAS VIN–B SHA ADC VIN+B SIGNAL MONITOR DATA AD9627 MULTICHIP SYNC AGND SYNC FD BITS/THRESHOLD DETECT FD(0:3)B DCOA DCOB D11B D0B SIGNAL MONITOR INTERFACE SMI SMI SMI DRGND SDFS SCLK/ SDO/ PDWN OEB NOTES 1. PIN NAMES ARE FOR THE CMOS PIN CONFIGURATION ONLY; SEE FIGURE 7 FOR LVDS PIN NAMES. 06571-001 SENSE CMOS OUTPUT BUFFER SNR = 69.4 dBc (70.4 dBFS) to 70 MHz @ 125 MSPS SFDR = 85 dBc to 70 MHz @ 125 MSPS Low power: 750 mW @ 125 MSPS SNR = 69.2 dBc (70.2 dBFS) to 70 MHz @ 150 MSPS SFDR = 84 dBc to 70 MHz @ 150 MSPS Low power: 820 mW @ 150 MSPS 1.8 V analog supply operation 1.8 V to 3.3 V CMOS output supply or 1.8 V LVDS output supply Integer 1-to-8 input clock divider IF sampling frequencies to 450 MHz Internal ADC voltage reference Integrated ADC sample-and-hold inputs Flexible analog input range: 1 V p-p to 2 V p-p Differential analog inputs with 650 MHz bandwidth ADC clock duty cycle stabilizer 95 dB channel isolation/crosstalk Serial port control User-configurable, built-in self-test (BIST) capability Energy-saving power-down modes Integrated receive features Fast detect/threshold bits Composite signal monitor CMOS OUTPUT BUFFER FEATURES Figure 1. APPLICATIONS Communications Diversity radio systems Multimode digital receivers (3G) GSM, EDGE, WCDMA, CDMA2000, WiMAX, TD-SCDMA I/Q demodulation systems Smart antenna systems General-purpose software radios Broadband data applications PRODUCT HIGHLIGHTS 1. 2. 3. 4. 5. 6. 7. Integrated dual, 12-bit, 80 MSPS/105 MSPS/125 MSPS/ 150 MSPS ADC. Fast overrange detect and signal monitor with serial output. Signal monitor block with dedicated serial output mode. Proprietary differential input that maintains excellent SNR performance for input frequencies up to 450 MHz. Operation from a single 1.8 V supply and a separate digital output driver supply to accommodate 1.8 V to 3.3 V logic families. Standard serial port interface (SPI) that supports various product features and functions, such as data formatting (offset binary, twos complement, or gray coding), enabling the clock DCS, power-down, test modes, and voltage reference mode. Pin compatibility with the AD9640, AD9627-11, and AD9600 for a simple migration from 12 bits to 14 bits, 11 bits, or 10 bits. Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007–2010 Analog Devices, Inc. All rights reserved. AD9627 TABLE OF CONTENTS Features .............................................................................................. 1  Signal Monitor ................................................................................ 36  Applications ....................................................................................... 1  Peak Detector Mode................................................................... 36  Functional Block Diagram .............................................................. 1  RMS/MS Magnitude Mode ......................................................... 36  Product Highlights ........................................................................... 1  Threshold Crossing Mode ......................................................... 37  Revision History ............................................................................... 3  Additional Control Bits ............................................................. 37  General Description ......................................................................... 4  DC Correction ............................................................................ 37  Specifications..................................................................................... 5  Signal Monitor SPORT Output ................................................ 38  ADC DC Specifications—AD9627-80/AD9627-105 .................. 5  Built-In Self-Test (BIST) and Output Test .................................. 39  ADC DC Specifications—AD9627-125/AD9627-150 ................ 6  Built-In Self-Test (BIST) ............................................................ 39  ADC AC Specifications—AD9627-80/AD9627-105................... 7  Output Test Modes ..................................................................... 39  ADC AC Specifications—AD9627-125/AD9627-150................. 8  Channel/Chip Synchronization .................................................... 40  Digital Specifications ................................................................... 9  Serial Port Interface (SPI) .............................................................. 41  Switching Specifications—AD9627-80/AD9627-105................ 11  Configuration Using the SPI ..................................................... 41  Switching Specifications—AD9627-125/AD9627-150.............. 12  Hardware Interface..................................................................... 41  Timing Specifications ................................................................ 13  Configuration Without the SPI ................................................ 42  Absolute Maximum Ratings.......................................................... 15  SPI Accessible Features .............................................................. 42  Thermal Characteristics ............................................................ 15  Memory Map .................................................................................. 43  ESD Caution ................................................................................ 15  Reading the Memory Map Register Table............................... 43  Pin Configurations and Function Descriptions ......................... 16  Memory Map Register Table ..................................................... 44  Equivalent Circuits ......................................................................... 20  Memory Map Register Descriptions ........................................ 47  Typical Performance Characteristics ........................................... 21  Applications Information .............................................................. 50  Theory of Operation ...................................................................... 26  Design Guidelines ...................................................................... 50  ADC Architecture ...................................................................... 26  Evaluation Board ............................................................................ 51  Analog Input Considerations.................................................... 26  Power Supplies ............................................................................ 51  Voltage Reference ....................................................................... 28  Input Signals................................................................................ 51  Clock Input Considerations ...................................................... 29  Output Signals ............................................................................ 51  Power Dissipation and Standby Mode ..................................... 31  Default Operation and Jumper Selection Settings ................. 52  Digital Outputs ........................................................................... 32  Alternative Clock Configurations ............................................ 52  Timing .......................................................................................... 32  Alternative Analog Input Drive Configuration...................... 53  ADC Overrange and Gain Control .............................................. 33  Schematics ................................................................................... 54  Fast Detect Overview ................................................................. 33  Evaluation Board Layouts ......................................................... 64  ADC Fast Magnitude ................................................................. 33  Bill of Materials ........................................................................... 72  ADC Overrange (OR) ................................................................ 34  Outline Dimensions ....................................................................... 74  Gain Switching ............................................................................ 34  Ordering Guide .......................................................................... 74  Rev. B | Page 2 of 76 AD9627 REVISION HISTORY 5/10—Rev. A to Rev. B Deleted CP-64-3 Package .................................................. Universal Added CP-64-6 Package .................................................... Universal Changed AD9627BCPZ-80 to AD9267-80 and AD9627BCPZ-105 to AD9627-105 Throughout.......................... 5 Changed AD9627BCPZ-125 to AD9267-125 and AD9627BCPZ-150 to AD9627-150 Throughout.......................... 6 Changes to Figure 6.........................................................................16 Changes to Figure 7.........................................................................18 Updated Outline Dimensions ........................................................74 Changes to Ordering Guide ...........................................................74 6/09—Rev. 0 to Rev. A Changes to Table 6 ..........................................................................11 Changes to Table 7 ..........................................................................12 Changes to Figure 3.........................................................................14 Changes to Figure 11, Figure 12, and Figure 14 ..........................20 Changes to Table 15 ........................................................................32 Changes to Configuration Using the SPI Section .......................41 Change to Table 25 ..........................................................................46 Change to Signal Monitor Period (Register 0x113 to Register 0x115) Section..............................................................49 Updated Outline Dimensions ........................................................74 10/07—Revision 0: Initial Version Rev. B | Page 3 of 76 AD9627 GENERAL DESCRIPTION The AD9627 is a dual, 12-bit, 80 MSPS/105 MSPS/125 MSPS/ 150 MSPS analog-to-digital converter (ADC). The AD9627 is designed to support communications applications where low cost, small size, and versatility are desired. exceeds the programmable threshold, the coarse upper threshold indicator goes high. Because this threshold indicator has very low latency, the user can quickly turn down the system gain to avoid an overrange condition. The dual ADC core features a multistage, differential pipelined architecture with integrated output error correction logic. Each ADC features wide bandwidth differential sample-and-hold analog input amplifiers supporting a variety of user-selectable input ranges. An integrated voltage reference eases design considerations. A duty cycle stabilizer is provided to compensate for variations in the ADC clock duty cycle, allowing the converters to maintain excellent performance. The second AGC-related function is the signal monitor. This block allows the user to monitor the composite magnitude of the incoming signal, which aids in setting the gain to optimize the dynamic range of the overall system. The AD9627 has several functions that simplify the automatic gain control (AGC) function in the system receiver. The fast detect feature allows fast overrange detection by outputting four bits of input level information with very short latency. In addition, the programmable threshold detector allows monitoring of the incoming signal power, using the four fast detect bits of the ADC with very low latency. If the input signal level The ADC output data can be routed directly to the two external 12-bit output ports. These outputs can be set from 1.8 V to 3.3 V CMOS or 1.8 V LVDS. Flexible power-down options allow significant power savings, when desired. Programming for setup and control is accomplished using a 3-bit SPI-compatible serial interface. The AD9627 is available in a 64-lead LFCSP and is specified over the industrial temperature range of −40°C to +85°C. Rev. B | Page 4 of 76 AD9627 SPECIFICATIONS ADC DC SPECIFICATIONS—AD9627-80/AD9627-105 AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, fast detect output pins disabled, and signal monitor disabled, unless otherwise noted. Table 1. Parameter RESOLUTION ACCURACY No Missing Codes Offset Error Gain Error Differential Nonlinearity (DNL)1 Integral Nonlinearity (INL)1 MATCHING CHARACTERISTIC Offset Error Gain Error TEMPERATURE DRIFT Offset Error Gain Error INTERNAL VOLTAGE REFERENCE Output Voltage Error (1 V Mode) Load Regulation @ 1.0 mA INPUT REFERRED NOISE VREF = 1.0 V ANALOG INPUT Input Span, VREF = 1.0 V Input Capacitance2 VREF INPUT RESISTANCE POWER SUPPLIES Supply Voltage AVDD, DVDD DRVDD (CMOS Mode) DRVDD (LVDS Mode) Supply Current IAVDD1, 3 IDVDD1, 3 IDRVDD1 (3.3 V CMOS) IDRVDD1 (1.8 V CMOS) IDRVDD1 (1.8 V LVDS) POWER CONSUMPTION DC Input Sine Wave Input1 (DRVDD = 1.8 V) Sine Wave Input1 (DRVDD = 3.3 V) Standby Power4 Power-Down Power Temperature Full Full Full Full Full 25°C Full 25°C AD9627-80 Typ Max Min 12 +0.1 Guaranteed ±0.2 ±0.6 −1.8 −3.7 ±0.4 ±0.2 ±0.9 ±0.4 Min 12 −0.5 Unit Bits Guaranteed ±0.3 ±0.7 −2.2 −3.7 ±0.4 ±0.2 ±0.9 ±0.4 % FSR % FSR LSB LSB LSB LSB ±0.3 ±0.2 % FSR % FSR Full Full ±0.2 ±0.2 Full Full ±15 ±95 Full Full ±5 7 25°C 0.3 0.3 LSB rms Full Full Full 2 8 6 2 8 6 V p-p pF kΩ Full Full Full 1.7 1.7 1.7 1.8 3.3 1.8 Full Full Full Full Full 233 26 23 11 47 Full Full Full Full Full 452 495 550 52 2.5 1 ±0.6 ±0.75 AD9627-105 Typ Max ±0.7 ±0.75 ±15 ±95 ±16 1.9 3.6 1.9 278 490 6 ±5 7 1.7 1.7 1.7 1.8 3.3 1.8 310 34 34 15 47 600 657 740 68 2.5 ppm/°C ppm/°C ±16 1.9 3.6 1.9 365 650 6 mV mV V V V mA mA mA mA mA mW mW mW mW mW Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit. Input capacitance refers to the effective capacitance between one differential input pin and AGND. See Figure 8 for the equivalent analog input structure. 3 The maximum limit applies to the combination of IAVDD and IDVDD currents. 4 Standby power is measured with a dc input and with the CLK pins inactive (set to AVDD or AGND). 2 Rev. B | Page 5 of 76 AD9627 ADC DC SPECIFICATIONS—AD9627-125/AD9627-150 AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, fast detect output pins disabled, and signal monitor disabled, unless otherwise noted. Table 2. Parameter RESOLUTION ACCURACY No Missing Codes Offset Error Gain Error Differential Nonlinearity (DNL)1 Integral Nonlinearity (INL) 1 MATCHING CHARACTERISTIC Offset Error Gain Error TEMPERATURE DRIFT Offset Error Gain Error INTERNAL VOLTAGE REFERENCE Output Voltage Error (1 V Mode) Load Regulation @ 1.0 mA INPUT REFERRED NOISE VREF = 1.0 V ANALOG INPUT Input Span, VREF = 1.0 V Input Capacitance2 VREF INPUT RESISTANCE POWER SUPPLIES Supply Voltage AVDD, DVDD DRVDD (CMOS Mode) DRVDD (LVDS Mode) Supply Current IAVDD1, 3 IDVDD1, 3 IDRVDD1 (3.3 V CMOS) IDRVDD1 (1.8 V CMOS) IDRVDD1 (1.8 V LVDS) POWER CONSUMPTION DC Input Sine Wave Input1 (DRVDD = 1.8 V) Sine Wave Input1 (DRVDD = 3.3 V) Standby Power4 Power-Down Power Temperature Full Full Full Full Full 25°C Full 25°C Min 12 −0.7 AD9627-125 Typ Max Guaranteed ±0.3 −2.7 ±0.6 −3.9 ±0.4 Min 12 −0.9 ±0.2 AD9627-150 Typ Max Guaranteed ±0.2 −3.2 ±0.6 −5.2 ±0.9 ±0.2 ±0.9 ±1.3 ±0.4 ±0.5 ±0.3 ±0.1 Full Full ±15 ±95 Full Full ±5 7 25°C 0.3 0.3 LSB rms Full Full Full 2 8 6 2 8 6 V p-p pF kΩ 1.7 1.7 1.7 1.8 3.3 1.8 Full Full Full Full Full 385 42 36 18 48 Full Full Full Full Full 750 814 900 77 2.5 1 ±0.2 ±0.2 ±0.7 ±0.8 % FSR % FSR LSB LSB LSB LSB 25°C 25°C Full Full Full ±0.6 ±0.75 Unit Bits ±15 ±95 ±16 1.9 3.6 1.9 455 800 6 ±5 7 1.7 1.7 1.7 1.8 3.3 1.8 419 50 42 22 49 820 895 995 77 2.5 ppm/°C ppm/°C ±16 1.9 3.6 1.9 495 890 6 Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit. Input capacitance refers to the effective capacitance between one differential input pin and AGND. See Figure 8 for the equivalent analog input structure. The maximum limit applies to the combination of IAVDD and IDVDD currents. 4 Standby power is measured with a dc input and with the CLK pins inactive (set to AVDD or AGND). 2 3 Rev. B | Page 6 of 76 % FSR % FSR mV mV V V V mA mA mA mA mA mW mW mW mW mW AD9627 ADC AC SPECIFICATIONS—AD9627-80/AD9627-105 AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, fast detect output pins disabled, and signal monitor disabled, unless otherwise noted. Table 3. Parameter1 SIGNAL-TO-NOISE RATIO (SNR) fIN = 2.3 MHz fIN = 70 MHz fIN = 140 MHz fIN = 220 MHz SIGNAL-TO-NOISE AND DISTORTION (SINAD) fIN = 2.3 MHz fIN = 70 MHz fIN = 140 MHz fIN = 220 MHz EFFECTIVE NUMBER OF BITS (ENOB) fIN = 2.3 MHz fIN = 70 MHz fIN = 140 MHz fIN = 220 MHz WORST SECOND OR THIRD HARMONIC fIN = 2.3 MHz fIN = 70 MHz fIN = 140 MHz fIN = 220 MHz SPURIOUS-FREE DYNAMIC RANGE (SFDR) fIN = 2.3 MHz fIN = 70 MHz fIN = 140 MHz fIN = 220 MHz WORST OTHER HARMONIC OR SPUR fIN = 2.3 MHz fIN = 70 MHz fIN = 140 MHz fIN = 220 MHz TWO-TONE SFDR fIN = 29.1 MHz, 32.1 MHz (−7 dBFS ) fIN = 169.1 MHz, 172.1 MHz (−7 dBFS ) CROSSTALK2 ANALOG INPUT BANDWIDTH 1 2 Temperature 25°C 25°C Full 25°C 25°C 25°C 25°C Full 25°C 25°C Min AD9627-80 Typ Max Min 69.7 69.5 AD9627-105 Typ Max 69.6 69.4 68.1 dB dB dB dB dB 68.6 69.2 68.5 69.1 68.4 69.6 69.4 69.5 69.3 Unit 69.0 68.3 69.0 68.1 dB dB dB dB dB 25°C 25°C 25°C 25°C 11.5 11.4 11.4 11.3 11.4 11.4 11.4 11.2 Bits Bits Bits Bits 25°C 25°C Full 25°C 25°C −87 −85 −87 −85 −84 −83 −84 −83 dBc dBc dBc dBc dBc 25°C 25°C Full 25°C 25°C 87 85 87 85 67.4 68.0 −74 74 −74 dBc dBc dBc dBc dBc 74 84 83 84 83 25°C 25°C Full 25°C 25°C −92 −89 −92 −88 −89 −89 −87 −86 dBc dBc dBc dBc dBc 25°C 25°C Full 25°C 85 82 −95 650 85 82 −95 650 dBc dBc dB MHz −82 See Application Note AN-835, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions. Crosstalk is measured at 100 MHz with −1 dBFS on one channel and with no input on the alternate channel. Rev. B | Page 7 of 76 −82 AD9627 ADC AC SPECIFICATIONS—AD9627-125/AD9627-150 AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, fast detect output pins disabled, and signal monitor disabled, unless otherwise noted. Table 4. Parameter1 SIGNAL-TO-NOISE RATIO (SNR) fIN = 2.3 MHz fIN = 70 MHz fIN = 140 MHz fIN = 220 MHz SIGNAL-TO-NOISE AND DISTORTION (SINAD) fIN = 2.3 MHz fIN = 70 MHz fIN = 140 MHz fIN = 220 MHz EFFECTIVE NUMBER OF BITS (ENOB) fIN = 2.3 MHz fIN = 70 MHz fIN = 140 MHz fIN = 220 MHz WORST SECOND OR THIRD HARMONIC fIN = 2.3 MHz fIN = 70 MHz fIN = 140 MHz fIN = 220 MHz SPURIOUS-FREE DYNAMIC RANGE (SFDR) fIN = 2.3 MHz fIN = 70 MHz fIN = 140 MHz fIN = 220 MHz WORST OTHER HARMONIC OR SPUR fIN = 2.3 MHz fIN = 70 MHz fIN = 140 MHz fIN = 220 MHz TWO-TONE SFDR fIN = 29.1 MHz, 32.1 MHz (−7 dBFS ) fIN = 169.1 MHz, 172.1 MHz (−7 dBFS ) CROSSTALK2 ANALOG INPUT BANDWIDTH 1 2 Temperature 25°C 25°C Full 25°C 25°C 25°C 25°C Full 25°C 25°C Min AD9627-125 Typ Max Min 69.5 69.4 AD9627-150 Typ Max 69.4 69.2 68.1 dB dB dB dB dB 67.1 69.1 68.8 68.8 68.2 69.4 69.3 69.3 69.1 Unit 69.0 68.3 68.7 67.8 dB dB dB dB dB 25°C 25°C 25°C 25°C 11.4 11.4 11.3 11.3 11.4 11.4 11.3 11.2 Bits Bits Bits Bits 25°C 25°C Full 25°C 25°C −86.5 −85 −86.5 −84 −84 −83 −83.5 −77 dBc dBc dBc dBc dBc 25°C 25°C Full 25°C 25°C 86.5 85 86.5 84 67.9 65.9 −74 74 −73 dBc dBc dBc dBc dBc 73 84 83 83.5 77 25°C 25°C Full 25°C 25°C −92 −89 −92 −88 −89 −89 −88 −88 dBc dBc dBc dBc dBc 25°C 25°C Full 25°C 85 82 −95 650 85 82 −95 650 dBc dBc dB MHz −81 See Application Note AN-835, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions. Crosstalk is measured at 100 MHz with −1 dBFS on one channel and with no input on the alternate channel. Rev. B | Page 8 of 76 −80 AD9627 DIGITAL SPECIFICATIONS AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, and DCS enabled, unless otherwise noted. Table 5. Parameter DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−) Logic Compliance Internal Common-Mode Bias Differential Input Voltage Input Voltage Range Input Common-Mode Range High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current Input Capacitance Input Resistance SYNC INPUT Logic Compliance Internal Bias Input Voltage Range High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current Input Capacitance Input Resistance LOGIC INPUT (CSB)1 High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current Input Resistance Input Capacitance LOGIC INPUT (SCLK/DFS)2 High Level Input Voltage Low Level Input Voltage High Level Input Current (VIN = 3.3 V) Low Level Input Current Input Resistance Input Capacitance LOGIC INPUTS/OUTPUTS (SDIO/DCS, SMI SDFS)1 High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current Input Resistance Input Capacitance LOGIC INPUTS/OUTPUTS (SMI SDO/OEB, SMI SCLK/PDWN)2 High Level Input Voltage Low Level Input Voltage High Level Input Current (VIN = 3.3 V) Low Level Input Current Temperature Min Full Full Full Full Full Full Full Full Full Full CMOS/LVDS/LVPECL 1.2 0.2 6 GND − 0.3 AVDD + 1.6 1.1 AVDD 1.2 3.6 0 0.8 −10 +10 −10 +10 4 8 10 12 Full Full Full Full Full Full Full Full Max CMOS 1.2 GND − 0.3 1.2 0 −10 −10 8 Full Full Full Full Full Full 1.22 0 −10 40 Full Full Full Full Full Full 1.22 0 −92 −10 Full Full Full Full Full Full 1.22 0 −10 38 Full Full Full Full 1.22 0 −90 −10 Rev. B | Page 9 of 76 Typ AVDD + 1.6 3.6 0.8 +10 +10 4 10 12 Unit V V p-p V V V V μA μA pF kΩ V V V V μA μA pF kΩ 3.6 0.6 +10 132 V V μA μA kΩ pF 3.6 0.6 −135 +10 V V μA μA kΩ pF 3.6 0.6 +10 128 V V μA μA kΩ pF 3.6 0.6 −134 +10 V V μA μA 26 2 26 2 26 5 AD9627 Parameter Input Resistance Input Capacitance DIGITAL OUTPUTS CMOS Mode—DRVDD = 3.3 V High Level Output Voltage IOH = 50 μA IOH = 0.5 mA Low Level Output Voltage IOL = 1.6 mA IOL = 50 μA CMOS Mode—DRVDD = 1.8 V High Level Output Voltage IOH = 50 μA IOH = 0.5 mA Low Level Output Voltage IOL = 1.6 mA IOL = 50 μA LVDS Mode—DRVDD = 1.8 V Differential Output Voltage (VOD), ANSI Mode Output Offset Voltage (VOS), ANSI Mode Differential Output Voltage (VOD), Reduced Swing Mode Output Offset Voltage (VOS), Reduced Swing Mode 1 2 Temperature Full Full Min Full Full 3.29 3.25 Typ 26 5 0.2 0.05 1.79 1.75 Pull up. Pull down. Rev. B | Page 10 of 76 250 1.15 150 1.15 V V V V Full Full Full Full Full Full Unit kΩ pF V V Full Full Full Full Max 350 1.25 200 1.25 0.2 0.05 V V 450 1.35 280 1.35 mV V mV V AD9627 SWITCHING SPECIFICATIONS—AD9627-80/AD9627-105 AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, and DCS enabled, unless otherwise noted. Table 6. Parameter CLOCK INPUT PARAMETERS Input Clock Rate Conversion Rate DCS Enabled1 DCS Disabled1 CLK Period—Divide-by-1 Mode (tCLK) CLK Pulse Width High Divide-by-1 Mode, DCS Enabled Divide by-1-Mode, DCS Disabled Divide-by-2 Mode, DCS Enabled Divide-by-3 Through Divide-by-8 Modes, DCS Enabled DATA OUTPUT PARAMETERS (DATA, FD) CMOS Mode—DRVDD = 3.3 V Data Propagation Delay (tPD)2 DCO Propagation Delay (tDCO) Setup Time (tS) Hold Time (tH) CMOS Mode—DRVDD = 1.8 V Data Propagation Delay (tPD)2 DCO Propagation Delay (tDCO) Setup Time (tS) Hold Time (tH) LVDS Mode—DRVDD = 1.8 V Data Propagation Delay (tPD)2 DCO Propagation Delay (tDCO) CMOS Mode Pipeline Delay (Latency) LVDS Mode Pipeline Delay (Latency) Channel A/Channel B Aperture Delay (tA) Aperture Uncertainty (Jitter, tJ) Wake-Up Time3 OUT-OF-RANGE RECOVERY TIME 1 2 3 Temperature Min AD9627-80 Typ Max Full Min AD9627-105 Typ Max 625 Full Full Full 20 10 12.5 Full Full Full Full 3.75 5.63 1.6 0.8 Full Full Full Full Unit 625 MHz 105 105 MSPS MSPS ns 80 80 20 10 9.5 6.25 6.25 8.75 6.88 2.85 4.28 1.6 0.8 4.75 4.75 6.65 5.23 ns ns ns ns 2.2 3.8 4.5 5.0 6.25 5.75 6.4 6.8 2.2 3.8 4.5 5.0 5.25 4.25 6.4 6.8 ns ns ns ns Full Full Full Full 2.4 4.0 5.2 5.6 6.65 5.85 6.9 7.3 2.4 4.0 5.2 5.6 5.15 4.35 6.9 7.3 ns ns ns ns Full Full Full Full 2.0 5.2 4.8 7.3 12 12/12.5 6.3 9.0 2.0 5.2 4.8 7.3 12 12/12.5 6.3 9.0 ns ns Cycles Cycles Full Full Full Full 1.0 0.1 350 2 Conversion rate is the clock rate after the divider. Output propagation delay is measured from CLK 50% transition to DATA 50% transition, with 5 pF load. Wake-up time is dependent on the value of the decoupling capacitors. Rev. B | Page 11 of 76 1.0 0.1 350 2 ns ps rms μs Cycles AD9627 SWITCHING SPECIFICATIONS—AD9627-125/AD9627-150 AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, and DCS enabled, unless otherwise noted. Table 7. Parameter CLOCK INPUT PARAMETERS Input Clock Rate Conversion Rate DCS Enabled1 DCS Disabled1 CLK Period—Divide-by-1 Mode (tCLK) CLK Pulse Width High Divide-by-1 Mode, DCS Enabled Divide-by-1 Mode, DCS Disabled Divide-by-2 Mode, DCS Enabled Divide-by-3-Through-8 Mode, DCS Enabled DATA OUTPUT PARAMETERS (DATA, FD) CMOS Mode—DRVDD = 3.3 V Data Propagation Delay (tPD)2 DCO Propagation Delay (tDCO) Setup Time (tS) Hold Time (tH) CMOS Mode—DRVDD = 1.8 V Data Propagation Delay (tPD)2 DCO Propagation Delay (tDCO) Setup Time (tS) Hold Time (tH) LVDS Mode—DRVDD = 1.8 V Data Propagation Delay (tPD)2 DCO Propagation Delay (tDCO) CMOS Mode Pipeline Delay (Latency) LVDS Mode Pipeline Delay (Latency) Channel A/Channel B Aperture Delay (tA) Aperture Uncertainty (Jitter, tJ) Wake-Up Time3 OUT-OF-RANGE RECOVERY TIME Temperature Min AD9627-125 Typ Max Full Min AD9627-150 Typ Max 625 Full Full Full 20 10 8 Full Full Full Full 2.4 3.6 1.6 0.8 Full Full Full Full Unit 625 MHz 150 150 MSPS MSPS ns 125 125 20 10 6.66 4 4 5.6 4.4 2.0 3.0 1.6 0.8 3.33 3.33 4.66 3.66 ns ns ns ns 2.2 3.8 4.5 5.0 4.5 3.5 6.4 6.8 2.2 3.8 4.5 5.0 3.83 2.83 6.4 6.8 ns ns ns ns Full Full Full Full 2.4 4.0 5.2 5.6 4.4 3.6 6.9 7.3 2.4 4.0 5.2 5.6 3.73 2.93 6.9 7.3 ns ns ns ns Full Full Full Full 2.0 5.2 4.8 7.3 12 12/12.5 6.3 9.0 2.0 5.2 4.8 7.3 12 12/12.5 6.3 9.0 ns ns Cycles Cycles Full Full Full Full 1.0 0.1 350 3 1 Conversion rate is the clock rate after the divider. Output propagation delay is measured from CLK 50% transition to DATA 50% transition, with 5 pF load. 3 Wake-up time is dependent on the value of the decoupling capacitors. 2 Rev. B | Page 12 of 76 1.0 0.1 350 3 ns ps rms μs Cycles AD9627 TIMING SPECIFICATIONS Table 8. Parameter SYNC TIMING REQUIREMENTS tSSYNC tHSYNC SPI TIMING REQUIREMENTS tDS tDH tCLK tS tH tHIGH tLOW tEN_SDIO Conditions Min Typ SYNC to rising edge of CLK setup time SYNC to rising edge of CLK hold time tDIS_SDIO SPORT TIMING REQUIREMENTS tCSSCLK tSSCLKSDO tSSCLKSDFS Max 0.24 0.40 Unit ns ns Setup time between the data and the rising edge of SCLK Hold time between the data and the rising edge of SCLK Period of the SCLK Setup time between CSB and SCLK Hold time between CSB and SCLK SCLK pulse width high SCLK pulse width low Time required for the SDIO pin to switch from an input to an output relative to the SCLK falling edge Time required for the SDIO pin to switch from an output to an input relative to the SCLK rising edge 2 2 40 2 2 10 10 10 ns ns ns ns ns ns ns ns 10 ns Delay from rising edge of CLK+ to rising edge of SMI SCLK Delay from rising edge of SMI SCLK to SMI SDO Delay from rising edge of SMI SCLK to SMI SDFS 3.2 −0.4 −0.4 4.5 0 0 6.2 0.4 0.4 Timing Diagrams N+2 N+1 N+3 N N+4 tA N+8 N+5 N+6 N+7 tCLK CLK+ CLK– N – 13 N – 12 N – 11 N – 10 N–9 N–8 N–7 N–6 N–5 N–4 CH A/CH B FAST DETECT N–3 N–2 N–1 N N+1 N+2 N+3 N+4 N+5 N+6 tS tH tDCO tCLK DCOA/DCOB Figure 2. CMOS Output Mode Data and Fast Detect Output Timing (Fast Detect Mode Select Bits = 000) Rev. B | Page 13 of 76 06571-002 tPD CH A/CH B DATA ns ns ns AD9627 N+1 N+2 N+3 N N+4 N+8 tA N+5 N+6 N+7 tCLK CLK+ CLK– tPD CH A/CH B DATA A CH A/CH B FAST DETECT A B N – 13 B N–7 A B N – 12 A B N – 11 B N–6 A A B N–5 A B N – 10 A B N–4 A B N–9 A B N–3 A B A N–8 A N–7 B A N–2 tDCO B B N–1 A B A N–6 A B B N–5 A N B N+1 A N–4 A N+2 tCLK 06571-003 DCO+ DCO– Figure 3. LVDS Mode Data and Fast Detect Output Timing (Fast Detect Mode Select Bits = 001 Through Fast Detect Mode Select Bits = 100) CLK+ tHSYNC 06571-004 tSSYNC SYNC Figure 4. SYNC Input Timing Requirements CLK+ CLK– tCSSCLK SMI SCLK tSSCLKSDFS tSSCLKSDO SMI SDO DATA Figure 5. Signal Monitor SPORT Output Timing (Divide-by-2 Mode) Rev. B | Page 14 of 76 DATA 06571-005 SMI SDFS AD9627 ABSOLUTE MAXIMUM RATINGS THERMAL CHARACTERISTICS Table 9. Parameter ELECTRICAL AVDD, DVDD to AGND DRVDD to DRGND AGND to DRGND AVDD to DRVDD VIN+A/VIN+B, VIN−A/VIN−B to AGND CLK+, CLK− to AGND SYNC to AGND VREF to AGND SENSE to AGND CML to AGND RBIAS to AGND CSB to AGND SCLK/DFS to DRGND SDIO/DCS to DRGND SMI SDO/OEB SMI SCLK/PDWN SMI SDFS D0A/D0B through D11A/D11B to DRGND FD0A/FD0B through FD3A/FD3B to DRGND DCOA/DCOB to DRGND ENVIRONMENTAL Operating Temperature Range (Ambient) Maximum Junction Temperature Under Bias Storage Temperature Range (Ambient) Rating The exposed paddle must be soldered to the ground plane for the LFCSP package. Soldering the exposed paddle to the customer board increases the reliability of the solder joints and maximizes the thermal capability of the package. −0.3 V to +2.0 V −0.3 V to +3.9 V −0.3 V to +0.3 V −3.9 V to +2.0 V −0.3 V to AVDD + 0.2 V −0.3 V to +3.9 V −0.3 V to +3.9 V −0.3 V to AVDD + 0.2 V −0.3 V to AVDD + 0.2 V −0.3 V to AVDD + 0.2 V −0.3 V to AVDD + 0.2 V −0.3 V to +3.9 V −0.3 V to +3.9 V −0.3 V to DRVDD + 0.3 V −0.3 V to DRVDD + 0.3 V −0.3 V to DRVDD + 0.3 V −0.3 V to DRVDD + 0.3 V −0.3 V to DRVDD + 0.3 V Typical θJA is specified for a 4-layer PCB with a solid ground plane. As shown, airflow improves heat dissipation, which reduces θJA. In addition, metal in direct contact with the package leads from metal traces, through holes, ground, and power planes, reduces the θJA. −0.3 V to DRVDD + 0.3 V ESD CAUTION Table 10. Thermal Resistance Package Type 64-Lead LFCSP 9 mm × 9 mm (CP-64-6) Airflow Velocity (m/s) 0 1.0 2.0 θJA1, 2 18.8 16.5 15.8 θJC1, 3 0.6 θJB1, 4 6.0 Unit °C/W °C/W °C/W 1 Per JEDEC 51-7, plus JEDEC 25-5 2S2P test board. Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air). 3 Per MIL-Std 883, Method 1012.1. 4 Per JEDEC JESD51-8 (still air). 2 −0.3 V to DRVDD + 0.3 V −40°C to +85°C 150°C −65°C to +150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. B | Page 15 of 76 AD9627 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 DRGND D3B D2B D1B D0B (LSB) DNC DNC DVDD FD3B FD2B FD1B FD0B SYNC CSB CLK– CLK+ PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PIN 1 INDICATOR EXPOSED PADDLE, PIN 0 (BOTTOM OF PACKAGE) AD9627 PARALLEL CMOS TOP VIEW (Not to Scale) 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 SCLK/DFS SDIO/DCS AVDD AVDD VIN+B VIN–B RBIAS CML SENSE VREF VIN–A VIN+A AVDD SMI SDFS SMI SCLK/PDWN SMI SDO/OEB NOTES 1. DNC = DO NOT CONNECT. 2. THE EXPOSED PAD MUST BE CONNECTED TO ANALOG GROUND. 06571-006 D3A D4A D5A DRGND DRVDD D6A D7A DVDD D8A D9A D10A D11A (MSB) FD0A FD1A FD2A FD3A 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 DRVDD D4B D5B D6B D7B D8B D9B D10B D11B (MSB) DCOB DCOA DNC DNC D0A (LSB) D1A D2A Figure 6. LFCSP Parallel CMOS Pin Configuration (Top View) Table 11. Pin Function Descriptions (Parallel CMOS Mode) Pin No. Mnemonic ADC Power Supplies 20, 64 DRGND 1, 21 DRVDD 24, 57 DVDD 36, 45, 46 AVDD 0 AGND 12, 13, 58, 59 DNC ADC Analog 37 VIN+A 38 VIN−A 44 VIN+B 43 VIN−B 39 VREF 40 SENSE 42 RBIAS 41 CML 49 CLK+ 50 CLK− ADC Fast Detect Outputs 29 FD0A 30 FD1A 31 FD2A 32 FD3A 53 FD0B 54 FD1B 55 FD2B 56 FD3B Type Description Ground Supply Supply Supply Ground Digital Output Ground. Digital Output Driver Supply (1.8 V to 3.3 V). Digital Power Supply (1.8 V Nominal). Analog Power Supply (1.8 V Nominal). Analog Ground. Pin 0 is the exposed thermal pad on the bottom of the package. Do Not Connect. Input Input Input Input Input/Output Input Input/Output Output Input Input Differential Analog Input Pin (+) for Channel A. Differential Analog Input Pin (−) for Channel A. Differential Analog Input Pin (+) for Channel B. Differential Analog Input Pin (−) for Channel B. Voltage Reference Input/Output. Voltage Reference Mode Select. See Table 14 for details. External Reference Bias Resistor. Common-Mode Level Bias Output for Analog Inputs. ADC Clock Input—True. ADC Clock Input—Complement. Output Output Output Output Output Output Output Output Channel A Fast Detect Indicator. See Table 17 for details. Channel A Fast Detect Indicator. See Table 17 for details. Channel A Fast Detect Indicator. See Table 17 for details. Channel A Fast Detect Indicator. See Table 17 for details. Channel B Fast Detect Indicator. See Table 17 for details. Channel B Fast Detect Indicator. See Table 17 for details. Channel B Fast Detect Indicator. See Table 17 for details. Channel B Fast Detect Indicator. See Table 17 for details. Rev. B | Page 16 of 76 AD9627 Pin No. Mnemonic Digital Input 52 SYNC Digital Outputs 14 D0A (LSB) 15 D1A 16 D2A 17 D3A 18 D4A 19 D5A 22 D6A 23 D7A 25 D8A 26 D9A 27 D10A 28 D11A (MSB) 60 D0B (LSB) 61 D1B 62 D2B 63 D3B 2 D4B 3 D5B 4 D6B 5 D7B 6 D8B 7 D9B 8 D10B 9 D11B (MSB) 11 DCOA 10 DCOB SPI Control 48 SCLK/DFS 47 SDIO/DCS 51 CSB Signal Monitor Port 33 SMI SDO/OEB 35 SMI SDFS 34 SMI SCLK/PDWN Type Description Input Digital Synchronization Pin. Slave mode only. Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Channel A CMOS Output Data. Channel A CMOS Output Data. Channel A CMOS Output Data. Channel A CMOS Output Data. Channel A CMOS Output Data. Channel A CMOS Output Data. Channel A CMOS Output Data. Channel A CMOS Output Data. Channel A CMOS Output Data. Channel A CMOS Output Data. Channel A CMOS Output Data. Channel A CMOS Output Data. Channel B CMOS Output Data. Channel B CMOS Output Data. Channel B CMOS Output Data. Channel B CMOS Output Data. Channel B CMOS Output Data. Channel B CMOS Output Data. Channel B CMOS Output Data. Channel B CMOS Output Data. Channel B CMOS Output Data. Channel B CMOS Output Data. Channel B CMOS Output Data. Channel B CMOS Output Data. Channel A Data Clock Output. Channel B Data Clock Output. Input Input/Output Input SPI Serial Clock/Data Format Select Pin in External Pin Mode. SPI Serial Data I/O/Duty Cycle Stabilizer Pin in External Pin Mode. SPI Chip Select (Active Low). Input/Output Output Input/Output Signal Monitor Serial Data Output/Output Enable Input (Active Low) in External Pin Mode. Signal Monitor Serial Data Frame Sync. Signal Monitor Serial Clock Output/Power-Down Input in External Pin Mode. Rev. B | Page 17 of 76 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 DRGND DNC DNC FD3+ FD3– FD2+ FD2– DVDD FD1+ FD1– FD0+ FD0– SYNC CSB CLK– CLK+ AD9627 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PIN 1 INDICATOR EXPOSED PADDLE, PIN 0 (BOTTOM OF PACKAGE) AD9627 PARALLEL LVDS TOP VIEW (Not to Scale) 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 SCLK/DFS SDIO/DCS AVDD AVDD VIN+B VIN–B RBIAS CML SENSE VREF VIN–A VIN+A AVDD SMI SDFS SMI SCLK/PDWN SMI SDO/OEB NOTES 1. DNC = DO NOT CONNECT. 2. THE EXPOSED PAD MUST BE CONNECTED TO ANALOG GROUND. 06571-007 D5+ D6– D6+ DRGND DRVDD D7– D7+ DVDD D8– D8+ D9– D9+ D10– D10+ D11– (MSB) D11+ (MSB) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 DRVDD DNC DNC D0– (LSB) D0+ (LSB) D1– D1+ D2– D2+ DCO– DCO+ D3– D3+ D4– D4+ D5– Figure 7. LFCSP Interleaved Parallel LVDS Pin Configuration (Top View) Table 12. Pin Function Descriptions (Interleaved Parallel LVDS Mode) Pin No. Mnemonic ADC Power Supplies 20, 64 DRGND 1, 21 DRVDD 24, 57 DVDD 36, 45, 46 AVDD 0 AGND DNC 2, 3, 62, 63 ADC Analog 37 VIN+A 38 VIN−A 44 VIN+B 43 VIN−B 39 VREF 40 SENSE 42 RBIAS 41 CML 49 CLK+ 50 CLK− ADC Fast Detect Outputs 54 FD0+ 53 FD0− 56 FD1+ 55 FD1− 59 FD2+ 58 FD2− 61 FD3+ 60 FD3− Digital Input 52 SYNC Type Description Ground Supply Supply Supply Ground Digital Output Ground. Digital Output Driver Supply (1.8 V to 3.3 V). Digital Power Supply (1.8 V Nominal). Analog Power Supply (1.8 V Nominal). Analog Ground. Pin 0 is the exposed thermal pad on the bottom of the package. Do Not Connect. Input Input Input Input Input/Output Input Input/Output Output Input Input Differential Analog Input Pin (+) for Channel A. Differential Analog Input Pin (−) for Channel A. Differential Analog Input Pin (+) for Channel B. Differential Analog Input Pin (−) for Channel B. Voltage Reference Input/Output. Voltage Reference Mode Select. See Table 14 for details. External Reference Bias Resistor. Common-Mode Level Bias Output for Analog Inputs. ADC Clock Input—True. ADC Clock Input—Complement. Output Output Output Output Output Output Output Output Channel A/Channel B LVDS Fast Detect Indicator 0—True. See Table 17 for details. Channel A/Channel B LVDS Fast Detect Indicator 0—Complement. See Table 17 for details. Channel A/Channel B LVDS Fast Detect Indicator 1—True. See Table 17 for details. Channel A/Channel B LVDS Fast Detect Indicator 1—Complement. See Table 17 for details. Channel A/Channel B LVDS Fast Detect Indicator 2—True. See Table 17 for details. Channel A/Channel B LVDS Fast Detect Indicator 2—Complement. See Table 17 for details. Channel A/Channel B LVDS Fast Detect Indicator 3—True. See Table 17 for details. Channel A/Channel B LVDS Fast Detect Indicator 3—Complement. See Table 17 for details. Input Digital Synchronization Pin. Slave mode only. Rev. B | Page 18 of 76 AD9627 Pin No. Mnemonic Digital Outputs 5 D0+ (LSB) 4 D0− (LSB) 7 D1+ 6 D1− 9 D2+ 8 D2− 13 D3+ 12 D3− 15 D4+ 14 D4− 17 D5+ 16 D5− 19 D6+ 18 D6− 23 D7+ 22 D7− 26 D8+ 25 D8− 28 D9+ 27 D9− 30 D10+ 29 D10− 32 D11+ (MSB) 31 D11− (MSB) 11 DCO+ 10 DCO− SPI Control 48 SCLK/DFS 47 SDIO/DCS 51 CSB Signal Monitor Port 33 SMI SDO/OEB 35 SMI SDFS 34 SMI SCLK/PDWN Type Description Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Channel A/Channel B LVDS Output Data 0—True. Channel A/Channel B LVDS Output Data 0—Complement. Channel A/Channel B LVDS Output Data 1—True. Channel A/Channel B LVDS Output Data 1—Complement. Channel A/Channel B LVDS Output Data 2—True. Channel A/Channel B LVDS Output Data 2—Complement. Channel A/Channel B LVDS Output Data 3—True. Channel A/Channel B LVDS Output Data 3—Complement. Channel A/Channel B LVDS Output Data 4 —True. Channel A/Channel B LVDS Output Data 4—Complement. Channel A/Channel B LVDS Output Data 5—True. Channel A/Channel B LVDS Output Data 5—Complement. Channel A/Channel B LVDS Output Data 6—True. Channel A/Channel B LVDS Output Data 6—Complement. Channel A/Channel B LVDS Output Data 7—True. Channel A/Channel B LVDS Output Data 7—Complement. Channel A/Channel B LVDS Output Data 8—True. Channel A/Channel B LVDS Output Data 8—Complement. Channel A/Channel B LVDS Output Data 9—True. Channel A/Channel B LVDS Output Data 9—Complement. Channel A/Channel B LVDS Output Data 10—True. Channel A/Channel B LVDS Output Data 10—Complement. Channel A/Channel B LVDS Output Data 11—True. Channel A/Channel B LVDS Output Data 11—Complement. Channel A/Channel B LVDS Data Clock Output—True. Channel A/Channel B LVDS Data Clock Output—Complement. Input Input/Output Input SPI Serial Clock/Data Format Select Pin in External Pin Mode. SPI Serial Data I/O/Duty Cycle Stabilizer Pin in External Pin Mode. SPI Chip Select (Active Low). Input/Output Output Input/Output Signal Monitor Serial Data Output/Output Enable Input (Active Low) in External Pin Mode. Signal Monitor Serial Data Frame Sync. Signal Monitor Serial Clock Output/Power-Down Input in External Pin Mode. Rev. B | Page 19 of 76 AD9627 EQUIVALENT CIRCUITS 1kΩ SCLK/DFS 26kΩ 06571-008 06571-012 VIN Figure 8. Equivalent Analog Input Circuit Figure 12. Equivalent SCLK/DFS Input Circuit AVDD 1kΩ 1.2V 10kΩ SENSE 10kΩ CLK+ 06571-009 06571-013 CLK– Figure 13. Equivalent SENSE Circuit Figure 9. Equivalent Clock Input Circuit DRVDD AVDD 26kΩ 1kΩ 06571-010 06571-014 CSB DRGND Figure 10. Digital Output Figure 14. Equivalent CSB Input Circuit AVDD DRVDD DRVDD VREF 26kΩ 6kΩ 1kΩ 06571-015 06571-011 SDIO/DCS Figure 11. Equivalent SDIO/DCS or SMI SDFS Circuit Figure 15. Equivalent VREF Circuit Rev. B | Page 20 of 76 AD9627 TYPICAL PERFORMANCE CHARACTERISTICS AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 3.3 V, sample rate = 150 MSPS, DCS enabled, 1.0 V internal reference, 2 V p-p differential input, VIN = −1.0 dBFS, and 64k sample, TA = 25°C, unless otherwise noted. 0 0 150MSPS 2.3MHz @ –1dBFS SNR = 69.4dBc (70.4dBFS) ENOB = 11.4 BITS SFDR = 86.5dBc –20 AMPLITUDE (dBFS) –40 –60 SECOND HARMONIC THIRD HARMONIC –80 10 20 30 40 50 60 70 THIRD HARMONIC SECOND HARMONIC FREQUENCY (MHz) –120 06571-016 0 0 10 20 30 40 50 60 70 FREQUENCY (MHz) Figure 16. AD9627-150 Single-Tone FFT with fIN = 2.3 MHz Figure 19. AD9627-150 Single-Tone FFT with fIN = 140 MHz 0 0 150MSPS 30.3MHz @ –1dBFS SNR = 69.3dBc (70.3dBFS) ENOB = 11.4 BITS SFDR = 84.0dBc –40 –60 THIRD HARMONIC –80 150MSPS 220MHz @ –1dBFS SNR = 68.2dBc (69.2dBFS) ENOB = 11.2 BITS SFDR = 77.0dBc –20 AMPLITUDE (dBFS) –20 SECOND HARMONIC –100 –40 –60 SECOND HARMONIC THIRD HARMONIC –80 –100 0 10 20 30 40 50 60 70 FREQUENCY (MHz) –120 06571-017 –120 0 10 20 30 40 50 60 70 FREQUENCY (MHz) Figure 17. AD9627-150 Single-Tone FFT with fIN = 30.3 MHz 06571-020 AMPLITUDE (dBFS) –80 –100 –120 Figure 20. AD9627-150 Single-Tone FFT with fIN = 220 MHz 0 0 150MSPS 70MHz @ –1dBFS SNR = 69.2dBc (70.2dBFS) ENOB = 11.4 BITS SFDR = 84.0dBc –40 –60 THIRD HARMONIC SECOND HARMONIC –80 150MSPS 337MHz @ –1dBFS SNR = 67.6dBc (68.6dBFS) ENOB = 11.1 BITS SFDR = 74.0dBc –20 AMPLITUDE (dBFS) –20 –100 –40 –60 THIRD HARMONIC SECOND HARMONIC –80 –100 –120 0 10 20 30 40 50 60 70 FREQUENCY (MHz) 06571-018 AMPLITUDE (dBFS) –60 06571-019 –100 –40 Figure 18. AD9627-150 Single-Tone FFT with fIN = 70 MHz –120 0 10 20 30 40 50 60 70 FREQUENCY (MHz) Figure 21. AD9627-150 Single-Tone FFT with fIN = 337 MHz Rev. B | Page 21 of 76 06571-021 AMPLITUDE (dBFS) –20 150MSPS 140MHz @ –1dBFS SNR = 68.8dBc (69.8dBFS) ENOB = 11.3 BITS SFDR = 83.5dBc AD9627 0 0 150MSPS 440MHz @ –1dBFS SNR = 65.7dBc (66.7dBFS) ENOB = 10.4 BITS SFDR = 70.0dBc –20 AMPLITUDE (dBFS) –40 SECOND HARMONIC –60 THIRD HARMONIC –80 10 20 30 40 50 60 70 THIRD HARMONIC FREQUENCY (MHz) –120 06571-022 0 0 10 20 30 40 50 60 FREQUENCY (MHz) Figure 25. AD9627-125 Single-Tone FFT with fIN = 70 MHz Figure 22. AD9627-150 Single-Tone FFT with fIN = 440 MHz 0 0 125MSPS 2.3MHz @ –1dBFS SNR = 69.5dBc (70.5dBFS) ENOB = 11.4 BITS SFDR = 86.5dBc –40 –60 SECOND HARMONIC –80 125MSPS 140MHz @ –1dBFS SNR = 69.1dBc (70.1dBFS) ENOB = 11.3 BITS SFDR = 84dBc –20 AMPLITUDE (dBFS) –20 THIRD HARMONIC –40 –60 SECOND HARMONIC –80 THIRD HARMONIC –100 –100 0 10 20 30 40 50 60 FREQUENCY (MHz) –120 06571-023 –120 0 10 20 30 40 50 60 FREQUENCY (MHz) 06571-026 AMPLITUDE (dBFS) SECOND HARMONIC –80 –100 –120 Figure 26. AD9627-125 Single-Tone FFT with fIN = 140 MHz Figure 23. AD9627-125 Single-Tone FFT with fIN = 2.3 MHz 0 0 125MSPS 30.3MHz @ –1dBFS SNR = 69.4dBc (70.4dBFS) ENOB = 11.4 BITS SFDR = 85dBc –40 –60 THIRD HARMONIC –80 125MSPS 337MHz @ –1dBFS SNR = 67.6dBc (68.6dBFS) ENOB = 11.1 BITS SFDR = 74dBc –20 AMPLITUDE (dBFS) –20 SECOND HARMONIC –40 –60 SECOND HARMONIC THIRD HARMONIC –80 –100 –100 –120 0 10 20 30 40 50 60 FREQUENCY (MHz) 06571-024 AMPLITUDE (dBFS) –60 06571-025 –100 –40 Figure 24. AD9627-125 Single-Tone FFT with fIN = 30.3 MHz –120 0 10 20 30 40 50 60 FREQUENCY (MHz) Figure 27. AD9627-125 Single-Tone FFT with fIN = 337 MHz Rev. B | Page 22 of 76 06571-027 AMPLITUDE (dBFS) –20 125MSPS 70MHz @ –1dBFS SNR = 69.4dBc (70.4dBFS) ENOB = 11.4 BITS SFDR = 85dBc AD9627 120 95 SFDR = +85°C SFDR (dBFS) 90 85 80 SFDR = +25°C SNR/SFDR (dBc) SNR (dBFS) 60 40 80 SFDR = –40°C 75 70 SFDR (dBc) 65 85dB REFERENCE LINE SNR = +25°C SNR = +85°C SNR = –40°C 20 60 SNR (dBc) –80 –70 –60 –50 –40 –30 –20 –10 0 INPUT AMPLITUDE (dBFS) 55 06571-028 0 –90 0 50 100 150 200 250 300 350 400 450 INPUT FREQUENCY (MHz) Figure 28. AD9627-150 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with fIN = 2.4 MHz 06571-031 SNR/SFDR (dBc AND dBFS) 100 Figure 31. AD9627-150 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and Temperature with 1 V p-p Full Scale 100 –2.5 0.5 SFDR (dBFS) –3.0 60 SFDR (dBc) 40 0.4 GAIN –3.5 0.3 OFFSET –4.0 0.2 –4.5 0.1 85dB REFERENCE LINE 20 OFFSET ERROR (%FSR) SNR (dBFS) GAIN ERROR (%FSR) SNR/SFDR (dBc AND dBFS) 80 –80 –70 –60 –50 –40 –30 –20 –10 0 INPUT AMPLITUDE (dBFS) –5.0 –40 0 –20 0 20 40 60 06571-032 0 –90 06571-029 SNR (dBc) 80 TEMPERATURE (°C) Figure 29. AD9627-150 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with fIN = 98.12 MHz Figure 32. AD9627-150 Gain and Offset vs. Temperature 95 0 SFDR (dBc) 90 –20 SFDR/IMD3 (dBc AND dBFS) SFDR = +85°C SFDR = +25°C 80 SFDR = –40°C 75 70 SNR = +25°C SNR = +85°C SNR = –40°C 65 IMD3 (dBc) –40 –60 –80 SFDR (dBFS) –100 60 0 50 100 150 200 250 300 350 400 450 INPUT FREQUENCY (MHz) Figure 30. AD9627-150 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and Temperature with 2 V p-p Full Scale –120 –90 –78 –66 –54 –42 –30 INPUT AMPLITUDE (dBFS) –18 –6 06571-033 IMD3 (dBFS) 55 06571-030 SNR/SFDR (dBc) 85 Figure 33. AD9627-150 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with fIN1 = 29.1 MHz, fIN2 = 32.1 MHz, fS = 150 MSPS Rev. B | Page 23 of 76 AD9627 0 0 –20 SFDR (dBc) AMPLITUDE (dBFS) SFDR/IMD3 (dBc AND dBFS) –20 150MSPS 169.1MHz @ –7dBFS 172.1MHz @ –7dBFS SFDR = 83.8dBc (90.8dBFS) –40 IMD3 (dBc) –60 –80 –40 –60 –80 SFDR (dBFS) –100 –100 IMD3 (dBFS) –66 –54 –42 –30 –18 –6 INPUT AMPLITUDE (dBFS) –120 0 30 40 50 60 70 Figure 37. AD9627-150 Two-Tone FFT with fIN1 = 169.1 MHz and fIN2 = 172.1 MHz 0 0 NPR = 61.5dBc NOTCH @ 18.5MHz NOTCH WIDTH = 3MHz –20 AMPLITUDE (dBFS) –20 –40 –60 –80 –100 –40 –60 –80 –100 0 15.36 30.72 46.08 61.44 FREQUENCY (MHz) –120 06571-035 –120 0 10 20 30 40 50 60 06571-038 AMPLITUDE (dBFS) 20 FREQUENCY (MHz) Figure 34. AD9627-150 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with fIN1 = 169.1 MHz, fIN2 = 172.1 MHz, fS = 150 MSPS 70 FREQUENCY (MHz) Figure 35. AD9627-125, Two 64k WCDMA Carriers with fIN = 170 MHz, fS = 122.88 MSPS Figure 38. AD9627-150 Noise Power Ratio (NPR) 0 100 150MSPS 29.1MHz @ –7dBFS 32.1MHz @ –7dBFS SFDR = 86.1dBc (93.1dBFS) –20 SFDR - SIDE B 90 –40 SNR/SFDR (dBc) AMPLITUDE (dBFS) 10 06571-037 –78 06571-034 –120 –90 –60 –80 SFDR - SIDE A 80 SNR - SIDE B 70 SNR - SIDE A –120 0 10 20 30 40 50 FREQUENCY (MHz) 60 70 06571-036 –100 Figure 36. AD9627-150 Two-Tone FFT with fIN1 = 29.1 MHz and fIN2 = 32.1 MHz Rev. B | Page 24 of 76 50 0 25 50 75 100 125 150 SAMPLE RATE (MSPS) Figure 39. AD9627-150 Single-Tone SNR/SFDR vs. Sample Rate (fS) with fIN = 2.3 MHz 06571-039 60 AD9627 12 100 0.3 LSB rms 95 90 8 SNR/SFDR (dBc) NUMBER OF HITS (1M) 10 6 4 SFDR DCS ON 85 80 SFDR DCS OFF 75 SNR DCS ON 70 2 65 N–2 N–1 N N+1 N+2 N+3 OUTPUT CODE 06571-040 N–3 60 20 60 80 DUTY CYCLE (%) Figure 40. AD9627 Grounded Input Histogram Figure 43. AD9627-150 SNR/SFDR vs. Duty Cycle with fIN = 10.3 MHz 0.4 95 0.3 90 0.2 SFDR 85 SNR/SFDR (dBc) INL ERROR (LSB) 40 06571-043 SNR DCS OFF 0 0.1 0 –0.1 80 75 70 –0.2 SNR 0 512 1024 1536 2048 2560 3072 3584 4096 OUTPUT CODE 06571-041 –0.4 Figure 41. AD9627 INL with fIN = 10.3 MHz 0.05 –0.05 –0.15 –0.25 1024 1536 2048 2560 3072 3584 OUTPUT CODE 4096 06571-042 DNL ERROR (LSB) 0.15 512 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 INPUT COMMON-MODE VOLTAGE (V) Figure 44. AD9627-150 SNR/SFDR vs. Input Common Mode (VCM) with fIN = 30 MHz 0.25 0 60 0.2 Figure 42. AD9627 DNL with fIN = 10.3 MHz Rev. B | Page 25 of 76 06571-044 65 –0.3 AD9627 THEORY OF OPERATION The AD9627 dual ADC design can be used for diversity reception of signals, where the ADCs are operating identically on the same carrier but from two separate antennae. The ADCs can also be operated with independent analog inputs. The user can sample any fS/2 frequency segment from dc to 200 MHz, using appropriate low-pass or band-pass filtering at the ADC inputs with little loss in ADC performance. Operation to 450 MHz analog input is permitted but occurs at the expense of increased ADC noise and distortion. In nondiversity applications, the AD9627 can be used as a baseband or direct downconversion receiver, where one ADC is used for I input data, and the other is used for Q input data. Synchronizaton capability is provided to allow synchronized timing between multiple channels or multiple devices. A small resistor in series with each input can help reduce the peak transient current required from the output stage of the driving source. A shunt capacitor can be placed across the inputs to provide dynamic charging currents. This passive network creates a low-pass filter at the ADC input; therefore, the precise values are dependent on the application. In intermediate frequency (IF) undersampling applications, any shunt capacitors should be reduced. In combination with the driving source impedance, the shunt capacitors limit the input bandwidth. Refer to Application Note AN-742, Frequency Domain Response of Switched-Capacitor ADCs; Application Note AN-827, A Resonant Approach to Interfacing Amplifiers to Switched-Capacitor ADCs; and the Analog Dialogue article, “Transformer-Coupled Front-End for Wideband A/D Converters,” for more information on this subject (see www.analog.com). Programming and control of the AD9627 are accomplished using a 3-bit SPI-compatible serial interface. S CH ADC ARCHITECTURE S CS The AD9627 architecture consists of a dual front-end sampleand-hold amplifier (SHA), followed by a pipelined, switched capacitor ADC. The quantized outputs from each stage are combined into a final 12-bit result in the digital correction logic. The pipelined architecture permits the first stage to operate on a new input sample and the remaining stages to operate on the preceding samples. Sampling occurs on the rising edge of the clock. Each stage of the pipeline, excluding the last, consists of a low resolution flash ADC connected to a switched capacitor digitalto-analog converter (DAC) and an interstage residue amplifier (MDAC). The residue amplifier magnifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each stage to facilitate digital correction of flash errors. The last stage simply consists of a flash ADC. The input stage of each channel contains a differential SHA that can be ac- or dc-coupled in differential or single-ended modes. The output staging block aligns the data, corrects errors, and passes the data to the output buffers. The output buffers are powered from a separate supply, allowing adjustment of the output voltage swing. During power-down, the output buffers go into a high impedance state. ANALOG INPUT CONSIDERATIONS The analog input to the AD9627 is a differential switched capacitor SHA that has been designed for optimum performance while processing a differential input signal. The clock signal alternatively switches the SHA between sample mode and hold mode (see Figure 45). When the SHA is switched into sample mode, the signal source must be capable of charging the sample capacitors and settling within 1/2 of a clock cycle. VIN+ CPIN, PAR S H CS VIN– S 06571-045 CH CPIN, PAR Figure 45. Switched-Capacitor SHA Input For best dynamic performance, the source impedances driving VIN+ and VIN− should be matched. An internal differential reference buffer creates positive and negative reference voltages that define the input span of the ADC core. The span of the ADC core is set by this buffer to 2 × VREF. Input Common Mode The analog inputs of the AD9627 are not internally dc biased. In ac-coupled applications, the user must provide this bias externally. Setting the device so that VCM = 0.55 × AVDD is recommended for optimum performance, but the device functions over a wider range with reasonable performance (see Figure 44). An on-board common-mode voltage reference is included in the design and is available from the CML pin. Optimum performance is achieved when the common-mode voltage of the analog input is set by the CML pin voltage (typically 0.55 × AVDD). The CML pin must be decoupled to ground by a 0.1 μF capacitor, as described in the Applications Information section. Differential Input Configurations Optimum performance is achieved while driving the AD9627 in a differential input configuration. For baseband applications, the AD8138, ADA4937-2, and ADA4938-2 differential drivers provide excellent performance and a flexible interface to the ADC. Rev. B | Page 26 of 76 AD9627 An alternative to using a transformer-coupled input at frequencies in the second Nyquist zone is to use the AD8352 differential driver. An example is shown in Figure 50. See the AD8352 data sheet for more information. The output common-mode voltage of the AD8138 is easily set with the CML pin of the AD9627 (see Figure 46), and the driver can be configured in a Sallen-Key filter topology to provide band limiting of the input signal. 499Ω 1V p-p R 49.9Ω VIN+ In any configuration, the value of Shunt Capacitor C is dependent on the input frequency and source impedance and may need to be reduced or removed. Table 13 displays recommended values to set the RC network. However, these values are dependent on the input signal and should be used only as a starting guide. AVDD 499Ω R CML VIN– 06571-046 523Ω AD9627 C AD8138 0.1µF 499Ω Table 13. Example RC Network Figure 46. Differential Input Configuration Using the AD8138 For baseband applications where SNR is a key parameter, differential transformer coupling is the recommended input configuration. An example is shown in Figure 47. To bias the analog input, the CML voltage can be connected to the center tap of the secondary winding of the transformer. R Series (Ω Each) 33 33 15 15 Frequency Range (MHz) 0 to 70 70 to 200 200 to 300 >300 C Differential (pF) 15 5 5 Open R VIN+ Single-Ended Input Configuration AD9627 R A single-ended input can provide adequate performance in cost sensitive applications. In this configuration, SFDR and distortion performance degrade due to the large input common-mode swing. If the source impedances on each input are matched, there should be little effect on SNR performance. Figure 48 shows a typical single-ended input configuration. CML 06571-047 VIN– 0.1µF Figure 47. Differential Transformer-Coupled Configuration The signal characteristics must be considered when selecting a transformer. Most RF transformers saturate at frequencies below a few megahertz (MHz). Excessive signal power can also cause core saturation, which leads to distortion. 1kΩ R 49.9Ω 1V p-p At input frequencies in the second Nyquist zone and above, the noise performance of most amplifiers is not adequate to achieve the true SNR performance of the AD9627. For applications where SNR is a key parameter, differential double balun coupling is the recommended input configuration (see Figure 49). 0.1µF AVDD 10µF 0.1µF AVDD 0.1µF AD9627 C 1kΩ 10µF VIN+ 1kΩ R VIN– 1kΩ 06571-048 C Figure 48. Single-Ended Input Configuration 0.1µF R VIN+ 2V p-p 25Ω S S P AD9627 C 25Ω 0.1µF 0.1µF R CML VIN– 06571-049 PA Figure 49. Differential Double Balun Input Configuration VCC 0.1µF 0Ω ANALOG INPUT 16 0.1µF 8, 13 1 11 0.1µF CD RD RG 3 200Ω AD8352 10 4 5 ANALOG INPUT 0.1µF 0Ω R VIN+ 2 C 0.1µF 200Ω R AD9627 VIN– CML 14 0.1µF 0.1µF Figure 50. Differential Input Configuration Using the AD8352 Rev. B | Page 27 of 76 06571-050 2V p-p 49.9Ω AD9627 A stable and accurate voltage reference is built into the AD9627. The input range can be adjusted by varying the reference voltage applied to the AD9627, using either the internal reference or an externally applied reference voltage. The input span of the ADC tracks reference voltage changes linearly. The various reference modes are summarized in the sections that follow. The Reference Decoupling section describes the best practices PCB layout of the reference. The input range of the ADC always equals twice the voltage at the reference pin for either an internal or an external reference. VIN+A/VIN+B VIN–A/VIN–B ADC CORE VREF 1.0µF Internal Reference Connection A comparator within the AD9627 detects the potential at the SENSE pin and configures the reference into four possible modes, which are summarized in Table 14. If SENSE is grounded, the reference amplifier switch is connected to the internal resistor divider (see Figure 51), setting VREF to 1.0 V. Connecting the SENSE pin to VREF switches the reference amplifier output to the SENSE pin, completing the loop and providing a 0.5 V reference output. VIN+A/VIN+B VIN–A/VIN–B SELECT LOGIC 0.5V R1 AD9627 Figure 52. Programmable Reference Configuration If the internal reference of the AD9627 is used to drive multiple converters to improve gain matching, the loading of the reference by the other converters must be considered. Figure 53 shows how the internal reference voltage is affected by loading. 0 REFERENCE VOLTAGE ERROR (%) VREF = 0.5V VREF 0.1µF SELECT LOGIC SENSE 06571-051 0.5V AD9627 R2 SENSE ADC CORE 1.0µF 0.1µF 06571-052 VOLTAGE REFERENCE –0.25 VREF = 1.0V –0.50 –0.75 –1.00 If a resistor divider is connected external to the chip, as shown in Figure 52, the switch again sets to the SENSE pin. This puts the reference amplifier in a noninverting mode with the VREF output defined as follows: –1.25 0 0.5 1.0 1.5 2.0 LOAD CURRENT (mA) Figure 53. VREF Accuracy vs. Load R2  VREF  0.5  1   R1   Table 14. Reference Configuration Summary Selected Mode External Reference SENSE Voltage AVDD Resulting VREF (V) N/A Resulting Differential Span (V p-p) 2 × external reference Internal Fixed Reference VREF 0.5 1.0 Programmable Reference 0.2 V to VREF Internal Fixed Reference AGND to 0.2 V R2   0.5   1   (see Figure 52) R1   1.0 Rev. B | Page 28 of 76 2 × VREF 2.0 06571-053 Figure 51. Internal Reference Configuration AD9627 External Reference Operation The use of an external reference may be necessary to enhance the gain accuracy of the ADC or improve thermal drift characteristics. Figure 54 shows the typical drift characteristics of the internal reference in 1.0 V mode. 2.5 This helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9627 while preserving the fast rise and fall times of the signal that are critical to a low jitter performance. 2.0 1.5 1.0 0.5 0 –0.5 Mini-Circuits® ADT1–1WT, 1:1Z 0.1µF XFMR 0.1µF CLOCK INPUT –1.0 ADC AD9627 0.1µF –1.5 CLK– –2.0 SCHOTTKY DIODES: HSMS2822 0.1µF –20 0 20 40 60 80 TEMPERATURE (°C) 06571-054 –2.5 –40 CLK+ 100Ω 50Ω 06571-056 REFERENCE VOLTAGE ERROR (mV) The RF balun configuration is recommended for clock frequencies between 125 MHz and 625 MHz, and the RF transformer is recommended for clock frequencies from 10 MHz to 200 MHz. The back-to-back Schottky diodes across the transformer/balun secondary limit clock excursions into the AD9627 to approximately 0.8 V p-p differential. Figure 56. Transformer-Coupled Differential Clock (Up to 200 MHz) Figure 54. Typical VREF Drift 1nF 0.1µF CLOCK INPUT CLK+ ADC AD9627 50Ω 0.1µF 1nF CLK– 06571-057 When the SENSE pin is tied to AVDD, the internal reference is disabled, allowing the use of an external reference. An internal reference buffer loads the external reference with an equivalent 6 kΩ load (see Figure 15). The internal buffer generates the positive and negative full-scale references for the ADC core. Therefore, the external reference must be limited to a maximum of 1.0 V. SCHOTTKY DIODES: HSMS2822 Figure 57. Balun-Coupled Differential Clock (Up to 625 MHz) CLOCK INPUT CONSIDERATIONS For optimum performance, the AD9627 sample clock inputs, CLK+ and CLK−, should be clocked with a differential signal. The signal is typically ac-coupled into the CLK+ and CLK− pins via a transformer or capacitors. These pins are biased internally (see Figure 55) and require no external bias. If a low jitter clock source is not available, another option is to ac couple a differential PECL signal to the sample clock input pins, as shown in Figure 58. The AD9510/AD9511/AD9512/ AD9513/AD9514/AD9515/AD9516 clock drivers offer excellent jitter performance. AVDD 0.1µF 0.1µF CLK– CLOCK INPUT 100Ω 0.1µF ADC AD9627 CLK– 50kΩ 50kΩ 240Ω 240Ω 2pF 06571-055 Figure 58. Differential PECL Sample Clock (Up to 625 MHz) Figure 55. Equivalent Clock Input Circuit Clock Input Options The AD9627 has a very flexible clock input structure. Clock input can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless of the type of signal being used, clock source jitter is of the most concern, as described in the Jitter Considerations section. Figure 56 and Figure 57 show two preferred methods for clocking the AD9627 (at clock rates up to 625 MHz). A low jitter clock source is converted from a single-ended signal to a differential signal using either an RF balun or an RF transformer. A third option is to ac-couple a differential LVDS signal to the sample clock input pins, as shown in Figure 59. The AD9510/ AD9511/AD9512/AD9513/AD9514/AD9515/AD9516 clock drivers offer excellent jitter performance. 0.1µF 0.1µF CLOCK INPUT CLK+ 0.1µF CLOCK INPUT Rev. B | Page 29 of 76 AD951x LVDS DRIVER 100Ω 0.1µF ADC AD9627 CLK– 50kΩ 50kΩ Figure 59. Differential LVDS Sample Clock (Up to 625 MHz) 06571-059 CLK+ CLK+ AD951x PECL DRIVER 06571-058 1.2V 2pF 0.1µF CLOCK INPUT AD9627 In some applications, it may be acceptable to drive the sample clock inputs with a single-ended CMOS signal. In such applications, the CLK+ pin should be driven directly from a CMOS gate, and the CLK− pin should be bypassed to ground with a 0.1 μF capacitor in parallel with a 39 kΩ resistor (see Figure 60). CLK+ can be driven directly from a CMOS gate. Although the CLK+ input circuit supply is AVDD (1.8 V), this input is designed to withstand input voltages of up to 3.6 V, making the selection of the drive logic voltage very flexible. VCC 0.1µF CLOCK INPUT 1kΩ OPTIONAL 0.1µF 100Ω AD951x CMOS DRIVER CLK+ ADC AD9627 1kΩ 50Ω1 Jitter Considerations CLK– 150Ω 39kΩ 06571-060 0.1µF Jitter in the rising edge of the input is still of paramount concern and is not easily reduced by the internal stabilization circuit. The duty cycle control loop does not function for clock rates less than 20 MHz nominally. The loop has a time constant associated with it thatmust be considered where the clock rate can change dynamically. A wait time of 1.5 μs to 5 μs is required after a dynamic clock frequency increase or decrease before the DCS loop is relocked to the input signal. During the time period that the loop is not locked, the DCS loop is bypassed, and internal device timing is dependent on the duty cycle of the input clock signal. In such applications, it may be appropriate to disable the duty cycle stabilizer. In all other applications, enabling the DCS circuit is recommended to maximize ac performance. RESISTOR IS OPTIONAL. Figure 60. Single-Ended 1.8 V CMOS Sample Clock (Up to 150 MSPS) High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR from the low frequency SNR (SNRLF) at a given input frequency (fINPUT) due to jitter (tJRMS) can be calculated by SNRHF = −10 log[(2π × fINPUT × tJRMS)2 + 10 (  SNRLF /10) ] VCC 0.1µF CLOCK INPUT 50Ω1 1kΩ AD951x CMOS DRIVER OPTIONAL 0.1µF 100Ω 1kΩ 0.1µF In the equation, the rms aperture jitter represents the clock input jitter specification. IF undersampling applications are particularly sensitive to jitter, as illustrated in Figure 62. CLK+ ADC AD9627 75 150Ω 06571-061 CLK– RESISTOR IS OPTIONAL. 70 0.05ps Figure 61. Single-Ended 3.3 V CMOS Sample Clock (Up to 150 MSPS) MEASURED 0.20ps The AD9627 contains an input clock divider with the ability to divide the input clock by integer values between 1 and 8. If a divide ratio other than 1 is selected, the duty cycle stabilizer is automatically enabled. The AD9627 clock divider can be synchronized using the external SYNC input. Bit 1 and Bit 2 of Register 0x100 allow the clock divider to be resynchronized on every SYNC signal or only on the first SYNC signal after the register is written. A valid SYNC causes the clock divider to reset to its initial state. This synchronization feature allows multiple parts to have their clock dividers aligned to guarantee simultaneous input sampling. Clock Duty Cycle Typical high speed ADCs use both clock edges to generate a variety of internal timing signals and, as a result, may be sensitive to clock duty cycle. Commonly, a ±5% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics. The AD9627 contains a duty cycle stabilizer (DCS) that retimes the nonsampling (falling) edge, providing an internal clock signal with a nominal 50% duty cycle. This allows the user to provide a wide range of clock input duty cycles without affecting the performance of the AD9627. Noise and distortion performance are nearly flat for a wide range of duty cycles with the DCS on, as shown in Figure 43. 60 0.5ps 55 1.0ps 1.50ps 50 45 2.00ps 2.50ps 3.00ps 1 10 100 INPUT FREQUENCY (MHz) 1000 06571-062 Input Clock Divider SNR (dBc) 65 Figure 62. SNR vs. Input Frequency and Jitter The clock input should be treated as an analog signal in cases where aperture jitter may affect the dynamic range of the AD9627. Power supplies for clock drivers should be separated from the ADC output driver supplies to avoid modulating the clock signal with digital noise. Low jitter, crystal-controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or another method), it should be retimed by the original clock at the last step. Refer to Application Note AN-501 and Application Note AN-756 (see www.analog.com) for more information about jitter performance as it relates to ADCs. Rev. B | Page 30 of 76 AD9627 1.00 The maximum DRVDD current (IDRVDD) can be calculated as IDRVDD = VDRVDD × CLOAD × fCLK × N IAVDD 0.75 TOTAL POWER (W) As shown in Figure 63 through Figure 66, the power dissipated by the AD9627 is proportional to its sample rate. In CMOS output mode, the digital power dissipation is determined primarily by the strength of the digital drivers and the load on each output bit. 0.4 TOTAL POWER 0.50 0.1 IDRVDD IDVDD IAVDD IDRVDD 0 50 75 100 125 0 150 SAMPLE RATE (MSPS) 1.25 1.00 0.2 TOTAL POWER 0.1 0.25 0.2 0.50 IDRVDD SUPPLY CURRENT (A) 0.3 TOTAL POWER 0.1 IDVDD 0 75 100 0 125 SAMPLE RATE (MSPS) 20 40 60 0 80 06571-065 By asserting PDWN (either through the SPI port or by asserting the PDWN pin high), the AD9627 is placed in power-down mode. In this state, the ADC typically dissipates 2.5 mW. During power-down, the output drivers are placed in a high impedance state. Asserting the PDWN pin low returns the AD9627 to its normal operating mode. Note that PDWN is referenced to the digital output driver supply (DRVDD) and should not exceed that supply voltage. Low power dissipation in power-down mode is achieved by shutting down the reference, reference buffer, biasing networks, and clock. Internal capacitors are discharged when entering powerdown mode and then must be recharged when returning to normal operation. As a result, wake-up time is related to the time spent in power-down mode, and shorter power-down cycles result in proportionally shorter wake-up times. 06571-064 TOTAL POWER (W) 0.75 50 0.50 SAMPLE RATE (MSPS) 0.4 IAVDD 25 IAVDD Figure 66. AD9627-80 Power and Current vs. Sample Rate 0.5 0 0.3 0 Figure 63. AD9627-150 Power and Current vs. Sample Rate 0.25 0.75 0 0.1 IDVDD 25 SAMPLE RATE (MSPS) IDRVDD SUPPLY CURRENT (A) 0.2 0.50 100 IDVDD 06571-063 TOTAL POWER (W) 0.3 TOTAL POWER 75 Figure 65. AD9627-105 Power and Current vs. Sample Rate 0.4 0.75 0 50 SUPPLY CURRENT (A) 0.5 25 06571-066 1.25 0 TOTAL POWER (W) Reducing the capacitive load presented to the output drivers can minimize digital power consumption. The data in Figure 63 was taken using the same operating conditions as those used for the Typical Performance Characteristics, with a 5 pF load on each output driver. 0 0 This maximum current occurs when every output bit switches on every clock cycle, that is, a full-scale square wave at the Nyquist frequency of fCLK/2. In practice, the DRVDD current is established by the average number of output bits switching, which is determined by the sample rate and the characteristics of the analog input signal. 0.25 0.2 0.25 where N is the number of output bits (26, in the case of the AD9627, with the fast detect output pins disabled). 1.00 0.3 SUPPLY CURRENT (A) POWER DISSIPATION AND STANDBY MODE When using the SPI port interface, the user can place the ADC in power-down mode or standby mode. Standby mode allows the user to keep the internal reference circuitry powered when faster wake-up times are required. See the Memory Map Register Description section for more details. Figure 64. AD9627-125 Power and Current vs. Sample Rate Rev. B | Page 31 of 76 AD9627 DIGITAL OUTPUTS Digital Output Enable Function (OEB) The AD9627 output drivers can be configured to interface with 1.8 V to 3.3 V CMOS logic families by matching DRVDD to the digital supply of the interfaced logic. The AD9627 can also be configured for LVDS outputs using a DRVDD supply voltage of 1.8 V. The AD9627 has a flexible three-state ability for the digital output pins. The three-state mode is enabled using the SMI SDO/OEB pin or through the SPI interface. If the SMI SDO/OEB pin is low, the output data drivers are enabled. If the SMI SDO/OEB pin is high, the output data drivers are placed in a high impedance state. This OEB function is not intended for rapid access to the data bus. Note that OEB is referenced to the digital output driver supply (DRVDD) and should not exceed that supply voltage. In CMOS output mode, the output drivers are sized to provide sufficient output current to drive a wide variety of logic families. However, large drive currents tend to cause current glitches on the supplies that may affect converter performance. Applications requiring the ADC to drive large capacitive loads or large fanouts may require external buffers or latches. The output data format can be selected for either offset binary or twos complement by setting the SCLK/DFS pin when operating in the external pin mode (see Table 15). As detailed in Application Note AN-877, Interfacing to High Speed ADCs via SPI, the data format can be selected for offset binary, twos complement, or gray code when using the SPI control. Table 15. SCLK/DFS Mode Selection (External Pin Mode) Voltage at Pin AGND (default) AVDD SCLK/DFS Offset binary Twos complement SDIO/DCS DCS disabled DCS enabled When using the SPI interface, the data and fast detect outputs of each channel can be independently three-stated by using the output enable bar bit in Register 0x14. TIMING The AD9627 provides latched data with a pipeline delay of 12 clock cycles. Data outputs are available one propagation delay (tPD) after the rising edge of the clock signal. The length of the output data lines and loads placed on them should be minimized to reduce transients within the AD9627. These transients can degrade converter dynamic performance. The lowest typical conversion rate of the AD9627 is 10 MSPS. At clock rates below 10 MSPS, dynamic performance can degrade. Data Clock Output (DCO) The AD9627 provides two data clock output (DCO) signals intended for capturing the data in an external register. The data outputs are valid on the rising edge of DCO, unless the DCO clock polarity has been changed via the SPI. See Figure 2 and Figure 3 for a graphical timing description. Table 16. Output Data Format Input (V) VIN+ − VIN− VIN+ − VIN− VIN+ − VIN− VIN+ − VIN− VIN+ − VIN− Condition (V) < −VREF − 0.5 LSB = −VREF =0 = +VREF − 1.0 LSB > +VREF − 0.5 LSB Offset Binary Output Mode 0000 0000 0000 0000 0000 0000 1000 0000 0000 1111 1111 1111 1111 1111 1111 Rev. B | Page 32 of 76 Twos Complement Mode 1000 0000 0000 1000 0000 0000 0000 0000 0000 0111 1111 1111 0111 1111 1111 OR 1 0 0 0 1 AD9627 ADC OVERRANGE AND GAIN CONTROL In receiver applications, it is desirable to have a mechanism to reliably determine when the converter is about to be clipped. The standard overflow indicator provides after-the-fact information on the state of the analog input that is of limited usefulness. Therefore, it is helpful to have a programmable threshold below full scale that allows time to reduce the gain before the clip actually occurs. In addition, because input signals can have significant slew rates, latency of this function is of major concern. Highly pipelined converters can have significant latency. A good compromise is to use the output bits from the first stage of the ADC for this function. Latency for these output bits is very low, and overall resolution is not highly significant. Peak input signals are typically between full scale and 6 dB to 10 dB below full scale. A 3-bit or 4-bit output provides adequate range and resolution for this function. Using the SPI port, the user can provide a threshold above which an overrange output is active. As long as the signal is below that threshold, the output should remain low. The fast detect outputs can also be programmed via the SPI port so that one of the pins functions as a traditional overrange pin for customers who currently use this feature. In this mode, all 12 bits of the converter are examined in the traditional manner, and the output is high for the condition normally defined as overflow. In either mode, the magnitude of the data is considered in the calculation of the condition (but the sign of the data is not considered). The threshold detection responds identically to positive and negative signals outside the desired range (magnitude). FAST DETECT OVERVIEW The AD9627 contains circuitry to facilitate fast overrange detection, allowing very flexible external gain control implementations. Each ADC has four fast detect (FD) output pins that are used to output information about the current state of the ADC input level. The function of these pins is programmable via the fast detect mode select bits and the fast detect enable bits in Register 0x104, allowing range information to be output from several points in the internal datapath. These output pins can also be set up to indicate the presence of overrange or underrange conditions, according to programmable threshold levels. Table 17 shows the six configurations available for the fast detect pins. Table 17. Fast Detect Mode Select Bits Settings Fast Detect Mode Select Bits (Register 0x104[3:1]) 000 001 010 011 100 101 Information Presented on Fast Detect (FD) Pins of Each ADC1, 2 FD[3] FD[2] FD[1] FD[0] ADC fast magnitude (see Table 18) OR ADC fast magnitude (see Table 19) OR F_LT ADC fast magnitude (see Table 20) C_UT F_LT ADC fast magnitude (see Table 20) OR C_UT F_UT F_LT OR F_UT IG DG 1 The fast detect pins are FD0A/FD0B to FD9A/FD9B for the CMOS mode configuration and FD0+/FD0− to FD9+/FD9− for the LVDS mode configuration. 2 See the ADC Overrange (OR) and Gain Switching sections for more information about OR, C_UT, F_UT, F_LT, IG, and DG. ADC FAST MAGNITUDE When the fast detect output pins are configured to output the ADC fast magnitude (that is, when the fast detect mode select bits are set to 0b000), the information presented is the ADC level from an early converter stage with a latency of only two clock cycles (when in CMOS output mode). Using the fast detect output pins in this configuration provides the earliest possible level indication information. Because this information is provided early in the datapath, there is significant uncertainty in the level indicated. The nominal levels, along with the uncertainty indicated by the ADC fast magnitude, are shown in Table 18. Table 18. ADC Fast Magnitude Nominal Levels with Fast Detect Mode Select Bits = 000 ADC Fast Magnitude on FD[3:0] Pins 0000 0001 0010 0011 0100 0101 0110 0111 1000 Rev. B | Page 33 of 76 Nominal Input Magnitude Below FS (dB)
AD9627ABCPZ-105 价格&库存

很抱歉,暂时无法提供与“AD9627ABCPZ-105”相匹配的价格&库存,您可以联系我们找货

免费人工找货