0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD9631ARZ-REEL

AD9631ARZ-REEL

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOICN8_150MIL

  • 描述:

    OPERATIONAL AMPLIFIER, 13000UV O

  • 数据手册
  • 价格&库存
AD9631ARZ-REEL 数据手册
FEATURES PIN CONFIGURATION Wide bandwidth AD9631, G = +1 AD9632, G = +2 Small signal AD9631, 320 MHz AD9632, 250 MHz Large signal (4 V p-p) AD9631, 175 MHz AD9632, 180 MHz Ultralow distortion (SFDR), low noise −113 dBc typical @ 1 MHz −95 dBc typical @ 5 MHz −72 dBc typical @ 20 MHz 46 dBm third-order intercept @ 25 MHz 7.0 nV/√Hz spectral noise density High speed Slew rate: 1300 V/μs Settling time to 0.01%, 2 V step: 16 ns ±3 V to ±5 V supply operation 17 mA supply current NC 1 NC 8 –INPUT 2 7 +VS +INPUT 3 6 OUTPUT –VS 4 TOP VIEW 5 NC (Not to Scale) NOTES 1. NC = NO CONNECT. Figure 1. 8-Lead PDIP (N) and SOIC (R) Packages A proprietary design architecture has produced an amplifier that combines many of the best characteristics of both current feedback and voltage feedback amplifiers. The AD9631/AD9632 exhibit exceptionally fast and accurate pulse response (16 ns to 0.01%) as well as extremely wide small signal and large signal bandwidth and ultralow distortion. The AD9631 achieves −72 dBc at 20 MHz, 320 MHz small signal bandwidth, and 175 MHz large signal bandwidths. These characteristics position the AD9631/AD9632 ideally for driving flash as well as high resolution ADCs. Additionally, the balanced high impedance inputs of the voltage feedback architecture allow maximum flexibility when designing active filters. APPLICATIONS The AD9631/AD9632 are offered in the industrial (−40°C to +85°C) temperature range. They are available in PDIP and SOIC. –30 GENERAL DESCRIPTION The AD9631/AD9632 are very high speed and wide bandwidth amplifiers. The AD9631 is unity gain stable. The AD9632 is stable at gains of 2 or greater. Using a voltage feedback architecture, the exceptional settling time, bandwidth, and low distortion of the AD9631/AD9632 meet the requirements of many applications that previously depended on current feedback amplifiers. Its classical op amp structure works much more predictably in many designs. HARMONIC DISTORTION (dBc) –40 VS = ±5V RL = 500Ω VOUT = 2V p-p –50 –60 –70 –80 –90 SECOND HARMONIC –100 –110 THIRD HARMONIC –120 –130 10k 100k 1M 10M 100M FREQUENCY (Hz) 00601-002 ADC input driver Differential amplifiers IF/RF amplifiers Pulse amplifiers Professional video DAC current to voltage Baseband and video communications Pin diode receivers Active filters/integrators/log amps Rev. D AD9631/ AD9632 00601-001 Data Sheet Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps AD9631/AD9632 Figure 2. AD9631 Harmonic Distortion vs. Frequency, G = +1 Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD9631/AD9632 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 General......................................................................................... 15 Applications ....................................................................................... 1 Feedback Resistor Choice.......................................................... 15 General Description ......................................................................... 1 Pulse Response ........................................................................... 16 Pin Configuration ............................................................................. 1 Large Signal Performance ......................................................... 16 Revision History ............................................................................... 2 Power Supply Bypassing ............................................................ 16 Specifications..................................................................................... 3 Driving Capacitive Loads .......................................................... 16 Electrical Characteristics ............................................................. 3 Applications Information .............................................................. 17 Absolute Maximum Ratings ............................................................ 5 Operation as a Video Line Driver ............................................ 17 Metallization Photo ...................................................................... 5 Active Filters ............................................................................... 17 Thermal Resistance ...................................................................... 5 Analog-to-Digital Converter (ADC) Driver .......................... 18 Maximum Power Dissipation ..................................................... 5 Layout Considerations ............................................................... 18 ESD Caution .................................................................................. 5 Outline Dimensions ....................................................................... 19 Typical Performance Characteristics ............................................. 6 Ordering Guide .......................................................................... 20 Theory of Operation ...................................................................... 15 REVISION HISTORY 2/14—Rev. C to Rev. D Changes to Figure 33 ...................................................................... 10 Changes to Analog-to-Digital Converter (ADC) Driver Section and Figure 66 ................................................................................... 18 Updated Outline Dimensions ....................................................... 19 Changes to Ordering Guide .......................................................... 20 7/03—Rev. B to Rev. C Deleted Evaluation Boards information .......................... Universal Deleted military CERDIP version .................................... Universal Change to Absolute Maximum Ratings ......................................... 3 Change to TPC 4 ............................................................................... 4 Change to TPC 10............................................................................. 5 Change to Figure 6 ......................................................................... 14 Updated Outline Dimensions ....................................................... 17 1/03—Rev. A to Rev. B Deleted DIP (N) Inverter, SOIC (R) Inverter, and DIP (N) Noninverter Evaluation Boards in Figures 12–14 ...................... 17 Updated Outline Dimensions ....................................................... 18 Rev. D | Page 2 of 20 Data Sheet AD9631/AD9632 SPECIFICATIONS ELECTRICAL CHARACTERISTICS ±VS = ±5 V; RLOAD = 100 Ω; AV = 1 (AD9631); AV = 2 (AD9632), unless otherwise noted. Table 1. Parameter DYNAMIC PERFORMANCE Bandwidth (–3 dB) Small Signal Large Signal 1 Bandwidth for 0.1 dB Flatness Slew Rate, Average ± Rise/Fall Time Settling Time To 0.1% To 0.01% HARMONIC/NOISE PERFORMANCE Second Harmonic Distortion Third Harmonic Distortion Third-Order Intercept Noise Figure Input Voltage Noise Input Current Noise Average Equivalent Integrated Input Noise Voltage Differential Gain Error (3.58 MHz) Differential Phase Error (3.58 MHz) Phase Nonlinearity DC PERFORMANCE 2 Input Offset Voltage 3 Test Conditions/Comments Min VOUT ≤ 0.4 V p-p VOUT = 4 V p-p VOUT = 300 mV p-p RF = 140 Ω (AD9631); RF = 425 Ω (AD9632) VOUT = 4 V step VOUT = 0.5 V step VOUT = 4 V step 220 150 AD9631 Typ Max 320 175 180 155 130 1000 1300 1.2 2.5 1200 AD9632 Typ Max Unit 250 180 MHz MHz 130 MHz 1500 1.4 2.1 V/μs ns ns 11 16 ns ns VOUT = 2 V step VOUT = 2 V step 11 16 2 V p-p; 20 MHz, RL = 100 Ω RL = 500 Ω 2 V p-p; 20 MHz, RL = 100 Ω RL = 500 Ω 25 MHz RS = 50 Ω 1 MHz to 200 MHz 1 MHz to 200 MHz 0.1 MHz to 200 MHz −64 −72 −76 −81 46 18 7.0 2.5 100 −57 −65 −69 −74 −54 −72 −74 −81 41 14 4.3 2.0 60 −47 −65 −67 −74 dBc dBc dBc dBc dBm dB nA/√Hz pA/√Hz μV rms RL = 150 Ω RL = 150 Ω DC to 100 MHz RL = 150 Ω 0.03 0.02 1.1 0.06 0.04 0.02 0.02 1.1 0.04 0.04 % Degree Degree 3 10 13 2 5 8 mV mV µV/°C µA µA µA µA dB dB dB TMIN − TMAX Offset Voltage Drift Input Bias Current ±10 2 TMIN − TMAX Input Offset Current Common-Mode Rejection Ratio Open-Loop Gain Min 0.1 TMIN − TMAX VCM = ± 2.5 V VOUT = ± 2.5 V TMIN − TMAX 70 46 40 INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range 90 52 500 1.2 ±3.4 Rev. D | Page 3 of 20 ±10 2 7 10 3 5 0.1 70 46 40 90 52 500 1.2 ±3.4 7 10 3 5 kΩ pF V AD9631/AD9632 Parameter OUTPUT CHARACTERISTICS Output Voltage Range Output Current Output Resistance Short Circuit Current POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio Data Sheet AD9631 Typ Max Test Conditions/Comments Min RL = 150 Ω ±3.2 ±3.9 70 0.3 240 ±3.0 ±5.0 17 50 60 TMIN − TMAX TMIN − TMAX See the Absolute Maximum Ratings and Theory of Operation sections of this data sheet. Measured at AV = 50. 3 Measured with respect to the inverting input. 1 2 Rev. D | Page 4 of 20 ±6.0 18 21 Min AD9632 Typ Max ±3.2 ±3.9 70 0.3 240 ±3.0 ±5.0 16 56 66 Unit V mA Ω mA ±6.0 17 20 V mA mA dB Data Sheet AD9631/AD9632 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 2. Table 3. Rating 12.6 V 550 V × MHz Storage Temperature Range Operating Temperature Range (A Grade) Lead Temperature Range (Soldering 10 sec) Package Type1 8-Lead PDIP (N) 8-Lead SOIC (R) 1.3 W 0.9 W ±VS ±1.2 V Observe Power Derating Curves −65°C to +125°C −40°C to +85°C 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. METALLIZATION PHOTO MAXIMUM POWER DISSIPATION The maximum power that can be safely dissipated by these devices is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately 150°C. Exceeding this limit temporarily may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of 175°C for an extended period can result in device failure. While the AD9631 and AD9632 are internally short circuit protected, this may not be sufficient to guarantee that the maximum junction temperature (150°C) is not exceeded under all conditions. To ensure proper operation, it is necessary to observe the maximum power derating curves. 2.0 TJ = 150°C 8-LEAD PDIP PACKAGE MAXIMUM POWER DISSIPATION (W) 0.046 (1.17) 6 OUT 0.050 (1.27) –IN 2 1.5 1.0 8-LEAD SOIC PACKAGE 0.5 0 –50 –40 –30 –20 –10 AD9631 4 –VS AD9632 00601-003 6 OUT 4 –VS 10 20 30 40 50 60 70 80 Figure 4. Maximum Power Dissipation vs. Temperature ESD CAUTION 3 +IN 0 AMBIENT TEMPERATURE (°C) +VS 7 0.046 (1.17) Unit °C/W °C/W For device in free air. +VS 7 –IN 2 3 +IN 1 θJA 90 140 Figure 3. Dimensions shown in inches and (millimeters) Connect Substrate to −VS Rev. D | Page 5 of 20 90 00601-004 Parameter Supply Voltage (+VS to −VS) Voltage Swing × Bandwidth Product Internal Power Dissipation PDIP (N) SOIC (R) Input Voltage (Common Mode) Differential Input Voltage Output Short Circuit Duration AD9631/AD9632 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS RF RF 10µF +VS +VS PULSE GENERATOR TR/TF = 350ps 0.1µF AD9631 VOUT RL = 100Ω 0.1µF RT 49.9Ω 10µF –VS Figure 8. AD9631 Inverting Configuration, G = −1 00601-006 5ns 1V 5ns Figure 9. AD9631 Large Signal Transient Response; VOUT = 4 V p-p, G = −1, RF = RIN = 267 Ω 00601-007 Figure 6. AD9631 Large Signal Transient Response; VOUT = 4 V p-p, G = +1, RF = 250 Ω 5ns 00601-008 10µF Figure 5. AD9631 Noninverting Configuration, G = +1 100mV RL = 100Ω 0.1µF 100Ω –VS 1V VOUT AD9631 00601-009 130Ω 267Ω RT 49.9Ω 00601-005 VIN VIN 0.1µF 100mV Figure 7. AD9631 Small Signal Transient Response; VOUT = 400 mV p-p, G = +1, RF = 140 Ω 5ns 00601-010 PULSE GENERATOR TR/TF = 350ps 10µF Figure 10. AD9631 Small Signal Transient Response; VOUT = 400 mV p-p, G = −1, RF = RIN = 267 Ω Rev. D | Page 6 of 20 Data Sheet AD9631/AD9632 RF RF 10µF +VS PULSE GENERATOR TR/TF = 350ps RIN 0.1µF VIN 0.1µF RT 49.9Ω RT 49.9Ω VOUT AD9632 RL = 100Ω 0.1µF 100Ω –VS 1V 5ns Figure 15. AD9632 Large Signal Transient Response; VOUT = 4 V p-p, G = −1, RF = RIN = 422 Ω, RT = 56.2 Ω 00601-013 Figure 12. AD9632 Large Signal Transient Response; VOUT = 4 V p-p, G = +2, RF = RIN = 422 Ω 100mV Figure 13. AD9632 Small Signal Transient Response; VOUT = 400 mV p-p, G = +2, RF = RIN = 274 Ω 5ns 00601-015 Figure 14. AD9632 Inverting Configuration, G = −1 00601-012 5ns 00601-014 10µF 5ns 00601-016 10µF Figure 11. AD9632 Noninverting Configuration, G = +2 100mV VOUT AD9632 RL = 100Ω –VS 1V 0.1µF RIN 00601-011 VIN 130Ω 10µF +VS PULSE GENERATOR TR/TF = 350ps Figure 16. AD9632 Small Signal Transient Response; VOUT = 400 mV p-p, G = −1, RF = RIN = 267 Ω, RT = 61.9 Ω Rev. D | Page 7 of 20 AD9631/AD9632 Data Sheet 1 475 RF = 150Ω 0 –1 –3dB BANDWIDTH (MHz) 425 RF = 100Ω –3 –4 –5 –6 375 N PACKAGE 350 358 R PACKAGE VS = ±5V RL = 100Ω VOUT = 300mV p-p 10M 100M 1G FREQUENCY (Hz) 250 20 140 160 180 200 220 240 RF = 250Ω –1 –0.3 RF = 120Ω –0.4 RF = 50Ω TO 250Ω BY 50Ω –2 RF = 100Ω OUTPUT (dB) –0.5 –3 –4 –5 –6 –0.6 –7 VS = ±5V RL = 100Ω G = +1 VOUT = 300mV p-p 10M 100M 500M FREQUENCY (Hz) 100 1 80 80 0 70 60 –1 60 40 50 20 40 0 PHASE MARGIN (Degrees) PHASE –3 –5 –40 10 –60 0 –80 –7 –100 –8 1M 10M 100M –6 –120 1G 00601-019 100k RF = 267Ω –4 20 –10 500M –2 GAIN (dB) –20 100M Figure 21. AD9631 Large Signal Frequency Response, G = +1 90 GAIN 10M FREQUENCY (Hz) Figure 18. AD9631 0.1 dB Flatness, N Package (for R Package Add 20 Ω to RF) 30 VS = ±5V RL = 100Ω VOUT = 4V p-p –9 1M 00601-018 –0.9 1M –8 00601-021 GAIN (dB) 120 0 RF = 140Ω –0.2 GAIN (dB) 100 1 –0.1 –20 10k 80 Figure 20. AD9631 Small Signal −3 dB Bandwidth vs. RF RF = 150Ω 0 60 VALUE OF FEEDBACK RESISTOR, RF (Ω) Figure 17. AD9631 Small Signal Frequency Response, G = +1 0.1 40 00601-020 –9 1M 275 00601-017 –8 –0.8 RL 300 –7 –0.7 AD9631 130Ω 400 FREQUENCY (Hz) Figure 19. AD9631 Open-Loop Gain and Phase Margin vs. Frequency, RL = 100 Ω Rev. D | Page 8 of 20 VS = ±5V RL = 100Ω VOUT = 300mV p-p –9 1M 10M 100M 1G FREQUENCY (Hz) Figure 22. AD9631 Small Signal Frequency Response, G = −1 00601-022 GAIN (dB) RF = 200Ω RF = 50Ω –2 RF VS = ±5V RL = 100Ω G = +1 450 Data Sheet –60 –70 SECOND HARMONIC –80 –90 –100 THIRD HARMONIC –110 –130 10k 100k 1M 10M 100M FREQUENCY (Hz) 00601-023 –120 –50 –0.05 –0.10 0.10 0.05 0 –0.05 –0.10 1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH 0.3 VS = ±5V RL = 100Ω G = +1 VOUT = 2V p-p 0.2 –60 0.1 –70 –80 ERROR (%) HARMONIC DISTORTION (dBc) –40 0 Figure 26. AD9631 Differential Gain and Phase Error, G = +2, RL = 150 Ω Figure 23. AD9631 Harmonic Distortion vs. Frequency, RL = 500 Ω –30 0.05 00601-026 –50 DIFFERENTIAL PHASE (Degrees) HARMONIC DISTORTION (dBc) –40 0.10 VS = ±5V RL = 500Ω G = +1 VOUT = 2V p-p DIFFERENTIAL GAIN (%) –30 AD9631/AD9632 SECOND HARMONIC –90 0 –0.1 –100 THIRD HARMONIC –110 –0.2 100k 1M 10M 100M FREQUENCY (Hz) –0.3 00601-024 –130 10k 0 10 20 30 40 50 60 70 80 SETTLING TIME (ns) Figure 24. AD9631 Harmonic Distortion vs. Frequency, RL = 100 Ω 00601-027 –120 Figure 27. AD9631 Short-Term Settling Time, 2 V Step, RL = 100 Ω 0.3 60 55 0.2 ERROR (%) 45 40 35 0.1 0 30 –0.1 20 10 100 FREQUENCY (MHz) Figure 25. AD9631 Third Order Intercept vs. Frequency –0.2 0 1 2 3 4 5 6 7 8 9 10 SETTLING TIME (µs) Figure 28. AD9631 Long-Term Settling Time, 2 V Step, RL = 100 Ω Rev. D | Page 9 of 20 00601-028 25 00601-025 INTERCEPT (dBm) 50 AD9631/AD9632 Data Sheet 375 7 RF = 325Ω 6 VS = ±5V RL = 100Ω G = +2 350 RF = 425Ω 325 –3dB BANDWIDTH (MHz) RF = 125Ω RF = 225Ω 4 2 1 0 –1 VS = ±5V RL = 100Ω VOUT = 300mV p-p –3 1M 10M 100M 1G FREQUENCY (Hz) RF 225 RIN R PACKAGE 200 175 100Ω 150 49.9Ω 100 AD9632 150 RL 200 250 300 350 400 450 500 550 600 VALUE OF RF, RIN (Ω) Figure 32. AD9632 Small Signal −3 dB Bandwidth vs. RF, RIN 0.1 7 0 6 RF = 275Ω OUTPUT (dB) –0.4 RF = 425Ω –0.5 1 –2 10M 100M FREQUENCY (Hz) VS = ±5V RL = 100Ω VOUT = 4V p-p –3 1M 10M 100M 500M FREQUENCY (Hz) 00601-033 –0.9 1M Figure 33. AD9632 Large Signal Frequency Response, G = +2 Figure 30. AD9632 0.1 dB Flatness, N Package (for R Package Add 20 Ω to RF) 1 150 0 100 0 –50 GAIN –100 –150 –2 GAIN (dB) 50 PHASE MARGIN (Degrees) –1 PHASE –3 RF, RIN = 267Ω –4 –5 –6 –7 –200 100k 1M 10M 100M –8 –250 1G 00601-031 65 60 55 50 45 40 35 30 25 20 15 10 5 0 –5 –10 –15 10k 2 –1 VS = ±5V RL = 100Ω G = +2 VOUT = 300mV p-p 00601-030 –0.8 3 0 –0.6 –0.7 RF = 125Ω TO 425Ω BY 100Ω 4 RF = 375Ω –0.3 RF = 425Ω 5 RF = 325Ω –0.2 OUTPUT (dB) 250 Figure 29. AD9632 Small Signal Frequency Response, G = +2 –0.1 AOL (dB) 275 125 50 00601-029 –2 N PACKAGE FREQUENCY (Hz) Figure 31. AD9632 Open-Loop Gain and Phase Margin vs. Frequency, RL = 100 Ω Rev. D | Page 10 of 20 VS = ±5V RL = 100Ω VOUT = 300mV p-p –9 1M 10M 100M 1G FREQUENCY (Hz) Figure 34. AD9632 Small Signal Frequency Response, G = −1 00601-034 GAIN (dB) 3 300 00601-032 5 Data Sheet –60 –70 –80 SECOND HARMONIC –90 –100 THIRD HARMONIC –110 –130 10k 100k 1M 10M 100M FREQUENCY (Hz) 00601-035 –120 –50 –0.02 –0.04 0.04 0.02 0 –0.02 –0.04 1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH 0.2 VS = ±5V RL = 100Ω G = +2 VOUT = 2V p-p 0.1 –60 SECOND HARMONIC –70 ERROR (%) HARMONIC DISTORTION (dBc) –40 0 Figure 38. AD9632 Differential Gain and Phase Error G = +2, RL = 150 Ω Figure 35. AD9632 Harmonic Distortion vs. Frequency, RL = 500 Ω –30 0.02 00601-038 –50 DIFFERENTIAL PHASE (Degrees) HARMONIC DISTORTION (dBc) –40 0.04 VS = ±5V RL = 500Ω G = +2 VOUT = 2V p-p DIFFERENTIAL GAIN (%) –30 AD9631/AD9632 –80 –90 0 –0.1 THIRD HARMONIC –100 –110 –0.2 100k 1M 10M 100M FREQUENCY (Hz) –0.3 00601-036 –130 10k 0 10 20 30 40 50 60 70 80 SETTLING TIME (ns) Figure 36. AD9632 Harmonic Distortion vs. Frequency, RL = 100 Ω 00601-039 –120 Figure 39. AD9632 Short-Term Settling Time, 2 V Step, RL = 100 Ω 50 0.3 45 0.2 ERROR (%) 35 30 25 0.1 0 20 –0.1 10 10 100 FREQUENCY (MHz) Figure 37. AD9632 Third Order Intercept vs. Frequency –0.2 0 1 2 3 4 5 6 7 8 9 10 SETTLING TIME (µs) Figure 40. AD9632 Long-Term Settling Time, 2 V Step, RL = 100 Ω Rev. D | Page 11 of 20 00601-040 15 00601-037 INTERCEPT (dBm) 40 AD9631/AD9632 17 VS = ±5V 15 INPUT NOISE VOLTAGE (nV√Hz) 18 15 12 9 9 7 5 100 1k 10k 3 10 00601-041 3 10 11 100k FREQUENCY (Hz) PSRR (dB) 10M 100M 1G FREQUENCY (Hz) 00601-042 PSRR (dB) +PSRR 1M 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 10k CMRR (dB) 70 60 50 30 30 FREQUENCY (Hz) 10M 100M 1G 1G VS = ±5V ΔVCM = 1V RL = 100Ω 50 40 100M 1M 60 40 00601-043 CMRR (dB) 70 10M 100k 90 80 1M +PSRR 100 80 20 100k –PSRR Figure 45. AD9632 PSRR vs. Frequency VS = ±5V ΔVCM = 1V RL = 100Ω 90 100k FREQUENCY (Hz) Figure 42. AD9631 PSRR vs. Frequency 100 10k Figure 44. AD9632 Noise vs. Frequency –PSRR 100k 1k FREQUENCY (Hz) Figure 41. AD9631 Noise vs. Frequency 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 10k 100 00601-044 6 13 00601-045 INPUT NOISE VOLTAGE (nV√Hz) 21 VS = ±5V Figure 43. AD9631 CMRR vs. Frequency 20 100k 1M 10M 100M FREQUENCY (Hz) Figure 46. AD9632 CMRR vs. Frequency Rev. D | Page 12 of 20 1G 00601-046 24 Data Sheet Data Sheet 1350 VS = ±5V G = +1 1250 1150 OPEN-LOOP GAIN (V/V) ROUT (Ω) 100 10 1 0.1 +AOL AD9632 1050 950 –AOL 850 750 650 550 +AOL AD9631 450 100k 1M 10M 100M FREQUENCY (Hz) 350 –60 00601-047 0.01 10k –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) Figure 47. AD9631 Output Resistance vs. Frequency 1k –AOL 00601-050 1k AD9631/AD9632 Figure 50. Open-Loop Gain vs. Temperature 76 VS = ±5V G = +1 74 100 AD9632 –PSRR 72 PSRR (dB) ROUT (Ω) 70 10 1 +PSRR 68 AD9632 66 –PSRR 64 AD9631 62 0.1 60 +PSRR 100k 1M 10M 100M FREQUENCY (Hz) 56 –60 00601-048 0.01 10k –40 20 40 60 80 100 120 140 100 120 140 Figure 51. PSRR vs. Temperature 98 VS = ±5V +VOUT 4.0 96 RL = 150Ω |–VOUT| 3.9 94 CMRR (dB) 3.8 3.7 3.6 –40 –20 0 20 40 60 80 100 JUNCTION TEMPERATURE (°C) 120 140 Figure 49. Output Swing vs. Temperature 86 –60 –40 –20 0 20 40 60 80 JUNCTION TEMPERATURE (°C) Figure 52. CMRR vs. Temperature Rev. D | Page 13 of 20 00601-052 3.3 –60 –CMRR +CMRR 88 |–VOUT| 3.4 92 90 RL = 50Ω +VOUT 3.5 00601-049 OUTPUT SWING (V) 0 JUNCTION TEMPERATURE (°C) Figure 48. AD9632 Output Resistance vs. Frequency 4.1 –20 00601-051 AD9631 58 AD9631/AD9632 Data Sheet 21 250 AD9631 ±6V AD9631 240 SHORT CIRCUIT CURRENT (mA) 19 AD9632 ±6V 18 AD9631 ±5V 17 AD9632 ±5V 16 SINK SOURCE 230 220 210 SOURCE 200 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) 180 –60 –40 –1.5 1.5 INPUT BIAS CURRENT (µA) AD9632 VS = ±5V –3.0 VS = ±6V AD9631 –4.0 VS = ±5V –4.5 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) 1.0 +IB 0.5 –IB CUMULATIVE +IB –2.0 –60 –40 160 40 0 0 1 2 3 4 5 6 INPUT OFFSET VOLTAGE (mV) 60 80 100 120 140 7 100 3 WAFER LOTS COUNT = 573 90 80 70 50 80 60 40 FREQUENCY DISTRIBUTION 30 40 20 20 10 20 –1 40 60 20 40 –2 20 100 30 60 –3 0 120 COUNT FREQUENCY DISTRIBUTION –4 –20 140 PERCENT 50 –5 AD9632 CUMULATIVE 00601-055 COUNT 90 60 –6 AD9631 –1.5 180 120 0 –7 140 –IB 100 70 140 80 120 JUNCTION TEMPERATURE (°C) 80 160 100 100 Figure 57. Input Bias Current vs. Temperature 3 WAFER LOTS COUNT = 1373 180 80 –1.0 Figure 54. Input Offset Voltage vs. Temperature 200 60 –0.5 VS = ±6V –5.0 –60 40 0 00601-054 INPUT OFFSET VOLTAGE (mV) 2.0 –3.5 20 Figure 56. Short Circuit Current vs. Temperature –1.0 –2.5 0 JUNCTION TEMPERATURE (°C) Figure 53. Supply Current vs. Temperature –2.0 –20 00601-057 –20 Figure 55. AD9631 Input Offset Voltage Distribution 0 –7 10 0 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 INPUT OFFSET VOLTAGE (mV) Figure 58. AD9632 Input Offset Voltage Distribution Rev. D | Page 14 of 20 PERCENT –40 00601-053 14 –60 00601-056 190 15 220 SINK AD9632 7 00601-058 SUPPLY CURRENT (mA) 20 Data Sheet AD9631/AD9632 THEORY OF OPERATION GENERAL The AD9631/AD9632 are wide bandwidth, voltage feedback amplifiers. Because their open-loop frequency response follows the conventional 6 dB/octave roll-off, their gain bandwidth product is basically constant. Increasing their closed-loop gain results in a corresponding decrease in small signal bandwidth. This can be observed by noting the bandwidth specification between the AD9631 (gain of +1) and AD9632 (gain of +2). The AD9631/AD9632 typically maintain 65° of phase margin. This high margin minimizes the effects of signal and noise peaking. FEEDBACK RESISTOR CHOICE The value of the feedback resistor is critical for optimum performance on the AD9631 (gain of +1) and less critical as the gain increases. Therefore, this section is specifically targeted at the AD9631. At the minimum stable gain (+1), the AD9631 provides optimum dynamic performance with RF = 140 Ω. This resistor acts as a parasitic suppressor only against damped RF oscillations that can occur due to lead (input, feedback) inductance and parasitic capacitance. This value of RF provides the best combination of wide bandwidth, low parasitic peaking, and fast settling time. When the AD9631 is used in the transimpedance (I to V) mode, such as in photodiode detection, the value of RF and diode capacitance (CI) are usually known. Generally, the value of RF selected will be in the kΩ range, and a shunt capacitor (CF) across RF will be required to maintain good amplifier stability. The value of CF required to maintain optimal flatness (
AD9631ARZ-REEL 价格&库存

很抱歉,暂时无法提供与“AD9631ARZ-REEL”相匹配的价格&库存,您可以联系我们找货

免费人工找货