FEATURES
PIN CONFIGURATION
Wide bandwidth
AD9631, G = +1
AD9632, G = +2
Small signal
AD9631, 320 MHz
AD9632, 250 MHz
Large signal (4 V p-p)
AD9631, 175 MHz
AD9632, 180 MHz
Ultralow distortion (SFDR), low noise
−113 dBc typical @ 1 MHz
−95 dBc typical @ 5 MHz
−72 dBc typical @ 20 MHz
46 dBm third-order intercept @ 25 MHz
7.0 nV/√Hz spectral noise density
High speed
Slew rate: 1300 V/μs
Settling time to 0.01%, 2 V step: 16 ns
±3 V to ±5 V supply operation
17 mA supply current
NC 1
NC
8
–INPUT
2
7
+VS
+INPUT
3
6
OUTPUT
–VS 4
TOP VIEW
5 NC
(Not to Scale)
NOTES
1. NC = NO CONNECT.
Figure 1. 8-Lead PDIP (N) and SOIC (R) Packages
A proprietary design architecture has produced an amplifier
that combines many of the best characteristics of both current
feedback and voltage feedback amplifiers. The AD9631/AD9632
exhibit exceptionally fast and accurate pulse response (16 ns to
0.01%) as well as extremely wide small signal and large signal
bandwidth and ultralow distortion. The AD9631 achieves
−72 dBc at 20 MHz, 320 MHz small signal bandwidth, and
175 MHz large signal bandwidths.
These characteristics position the AD9631/AD9632 ideally for
driving flash as well as high resolution ADCs. Additionally, the
balanced high impedance inputs of the voltage feedback architecture allow maximum flexibility when designing active filters.
APPLICATIONS
The AD9631/AD9632 are offered in the industrial (−40°C to
+85°C) temperature range. They are available in PDIP and SOIC.
–30
GENERAL DESCRIPTION
The AD9631/AD9632 are very high speed and wide bandwidth
amplifiers. The AD9631 is unity gain stable. The AD9632 is
stable at gains of 2 or greater. Using a voltage feedback
architecture, the exceptional settling time, bandwidth, and low
distortion of the AD9631/AD9632 meet the requirements of
many applications that previously depended on current feedback amplifiers. Its classical op amp structure works much more
predictably in many designs.
HARMONIC DISTORTION (dBc)
–40
VS = ±5V
RL = 500Ω
VOUT = 2V p-p
–50
–60
–70
–80
–90
SECOND HARMONIC
–100
–110
THIRD HARMONIC
–120
–130
10k
100k
1M
10M
100M
FREQUENCY (Hz)
00601-002
ADC input driver
Differential amplifiers
IF/RF amplifiers
Pulse amplifiers
Professional video
DAC current to voltage
Baseband and video communications
Pin diode receivers
Active filters/integrators/log amps
Rev. D
AD9631/
AD9632
00601-001
Data Sheet
Ultralow Distortion, Wide Bandwidth
Voltage Feedback Op Amps
AD9631/AD9632
Figure 2. AD9631 Harmonic Distortion vs. Frequency, G = +1
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
©2014 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
AD9631/AD9632
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
General......................................................................................... 15
Applications ....................................................................................... 1
Feedback Resistor Choice.......................................................... 15
General Description ......................................................................... 1
Pulse Response ........................................................................... 16
Pin Configuration ............................................................................. 1
Large Signal Performance ......................................................... 16
Revision History ............................................................................... 2
Power Supply Bypassing ............................................................ 16
Specifications..................................................................................... 3
Driving Capacitive Loads .......................................................... 16
Electrical Characteristics ............................................................. 3
Applications Information .............................................................. 17
Absolute Maximum Ratings ............................................................ 5
Operation as a Video Line Driver ............................................ 17
Metallization Photo ...................................................................... 5
Active Filters ............................................................................... 17
Thermal Resistance ...................................................................... 5
Analog-to-Digital Converter (ADC) Driver .......................... 18
Maximum Power Dissipation ..................................................... 5
Layout Considerations ............................................................... 18
ESD Caution .................................................................................. 5
Outline Dimensions ....................................................................... 19
Typical Performance Characteristics ............................................. 6
Ordering Guide .......................................................................... 20
Theory of Operation ...................................................................... 15
REVISION HISTORY
2/14—Rev. C to Rev. D
Changes to Figure 33 ...................................................................... 10
Changes to Analog-to-Digital Converter (ADC) Driver Section
and Figure 66 ................................................................................... 18
Updated Outline Dimensions ....................................................... 19
Changes to Ordering Guide .......................................................... 20
7/03—Rev. B to Rev. C
Deleted Evaluation Boards information .......................... Universal
Deleted military CERDIP version .................................... Universal
Change to Absolute Maximum Ratings ......................................... 3
Change to TPC 4 ............................................................................... 4
Change to TPC 10............................................................................. 5
Change to Figure 6 ......................................................................... 14
Updated Outline Dimensions ....................................................... 17
1/03—Rev. A to Rev. B
Deleted DIP (N) Inverter, SOIC (R) Inverter, and DIP (N)
Noninverter Evaluation Boards in Figures 12–14 ...................... 17
Updated Outline Dimensions ....................................................... 18
Rev. D | Page 2 of 20
Data Sheet
AD9631/AD9632
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
±VS = ±5 V; RLOAD = 100 Ω; AV = 1 (AD9631); AV = 2 (AD9632), unless otherwise noted.
Table 1.
Parameter
DYNAMIC PERFORMANCE
Bandwidth (–3 dB)
Small Signal
Large Signal 1
Bandwidth for 0.1 dB Flatness
Slew Rate, Average ±
Rise/Fall Time
Settling Time
To 0.1%
To 0.01%
HARMONIC/NOISE PERFORMANCE
Second Harmonic Distortion
Third Harmonic Distortion
Third-Order Intercept
Noise Figure
Input Voltage Noise
Input Current Noise
Average Equivalent Integrated
Input Noise Voltage
Differential Gain Error (3.58 MHz)
Differential Phase Error (3.58 MHz)
Phase Nonlinearity
DC PERFORMANCE 2
Input Offset Voltage 3
Test Conditions/Comments
Min
VOUT ≤ 0.4 V p-p
VOUT = 4 V p-p
VOUT = 300 mV p-p
RF = 140 Ω (AD9631);
RF = 425 Ω (AD9632)
VOUT = 4 V step
VOUT = 0.5 V step
VOUT = 4 V step
220
150
AD9631
Typ
Max
320
175
180
155
130
1000
1300
1.2
2.5
1200
AD9632
Typ
Max
Unit
250
180
MHz
MHz
130
MHz
1500
1.4
2.1
V/μs
ns
ns
11
16
ns
ns
VOUT = 2 V step
VOUT = 2 V step
11
16
2 V p-p; 20 MHz, RL = 100 Ω
RL = 500 Ω
2 V p-p; 20 MHz, RL = 100 Ω
RL = 500 Ω
25 MHz
RS = 50 Ω
1 MHz to 200 MHz
1 MHz to 200 MHz
0.1 MHz to 200 MHz
−64
−72
−76
−81
46
18
7.0
2.5
100
−57
−65
−69
−74
−54
−72
−74
−81
41
14
4.3
2.0
60
−47
−65
−67
−74
dBc
dBc
dBc
dBc
dBm
dB
nA/√Hz
pA/√Hz
μV rms
RL = 150 Ω
RL = 150 Ω
DC to 100 MHz
RL = 150 Ω
0.03
0.02
1.1
0.06
0.04
0.02
0.02
1.1
0.04
0.04
%
Degree
Degree
3
10
13
2
5
8
mV
mV
µV/°C
µA
µA
µA
µA
dB
dB
dB
TMIN − TMAX
Offset Voltage Drift
Input Bias Current
±10
2
TMIN − TMAX
Input Offset Current
Common-Mode Rejection Ratio
Open-Loop Gain
Min
0.1
TMIN − TMAX
VCM = ± 2.5 V
VOUT = ± 2.5 V
TMIN − TMAX
70
46
40
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
Input Common-Mode Voltage Range
90
52
500
1.2
±3.4
Rev. D | Page 3 of 20
±10
2
7
10
3
5
0.1
70
46
40
90
52
500
1.2
±3.4
7
10
3
5
kΩ
pF
V
AD9631/AD9632
Parameter
OUTPUT CHARACTERISTICS
Output Voltage Range
Output Current
Output Resistance
Short Circuit Current
POWER SUPPLY
Operating Range
Quiescent Current
Power Supply Rejection Ratio
Data Sheet
AD9631
Typ
Max
Test Conditions/Comments
Min
RL = 150 Ω
±3.2
±3.9
70
0.3
240
±3.0
±5.0
17
50
60
TMIN − TMAX
TMIN − TMAX
See the Absolute Maximum Ratings and Theory of Operation sections of this data sheet.
Measured at AV = 50.
3
Measured with respect to the inverting input.
1
2
Rev. D | Page 4 of 20
±6.0
18
21
Min
AD9632
Typ
Max
±3.2
±3.9
70
0.3
240
±3.0
±5.0
16
56
66
Unit
V
mA
Ω
mA
±6.0
17
20
V
mA
mA
dB
Data Sheet
AD9631/AD9632
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 2.
Table 3.
Rating
12.6 V
550 V × MHz
Storage Temperature Range
Operating Temperature Range (A Grade)
Lead Temperature Range (Soldering 10 sec)
Package Type1
8-Lead PDIP (N)
8-Lead SOIC (R)
1.3 W
0.9 W
±VS
±1.2 V
Observe Power
Derating Curves
−65°C to +125°C
−40°C to +85°C
300°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
METALLIZATION PHOTO
MAXIMUM POWER DISSIPATION
The maximum power that can be safely dissipated by these
devices is limited by the associated rise in junction temperature.
The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature
of the plastic, approximately 150°C. Exceeding this limit temporarily may cause a shift in parametric performance due to a
change in the stresses exerted on the die by the package.
Exceeding a junction temperature of 175°C for an extended
period can result in device failure.
While the AD9631 and AD9632 are internally short circuit
protected, this may not be sufficient to guarantee that the maximum junction temperature (150°C) is not exceeded under all
conditions. To ensure proper operation, it is necessary to
observe the maximum power derating curves.
2.0
TJ = 150°C
8-LEAD PDIP PACKAGE
MAXIMUM POWER DISSIPATION (W)
0.046
(1.17)
6
OUT
0.050 (1.27)
–IN
2
1.5
1.0
8-LEAD SOIC PACKAGE
0.5
0
–50 –40 –30 –20 –10
AD9631
4
–VS
AD9632
00601-003
6
OUT
4
–VS
10
20
30
40
50
60
70
80
Figure 4. Maximum Power Dissipation vs. Temperature
ESD CAUTION
3
+IN
0
AMBIENT TEMPERATURE (°C)
+VS
7
0.046
(1.17)
Unit
°C/W
°C/W
For device in free air.
+VS
7
–IN
2
3
+IN
1
θJA
90
140
Figure 3. Dimensions shown in inches and (millimeters) Connect Substrate to −VS
Rev. D | Page 5 of 20
90
00601-004
Parameter
Supply Voltage (+VS to −VS)
Voltage Swing × Bandwidth Product
Internal Power Dissipation
PDIP (N)
SOIC (R)
Input Voltage (Common Mode)
Differential Input Voltage
Output Short Circuit Duration
AD9631/AD9632
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
RF
RF
10µF
+VS
+VS
PULSE
GENERATOR
TR/TF = 350ps
0.1µF
AD9631
VOUT
RL = 100Ω
0.1µF
RT
49.9Ω
10µF
–VS
Figure 8. AD9631 Inverting Configuration, G = −1
00601-006
5ns
1V
5ns
Figure 9. AD9631 Large Signal Transient Response; VOUT = 4 V p-p, G = −1,
RF = RIN = 267 Ω
00601-007
Figure 6. AD9631 Large Signal Transient Response; VOUT = 4 V p-p,
G = +1, RF = 250 Ω
5ns
00601-008
10µF
Figure 5. AD9631 Noninverting Configuration, G = +1
100mV
RL = 100Ω
0.1µF
100Ω
–VS
1V
VOUT
AD9631
00601-009
130Ω
267Ω
RT
49.9Ω
00601-005
VIN
VIN
0.1µF
100mV
Figure 7. AD9631 Small Signal Transient Response; VOUT = 400 mV p-p,
G = +1, RF = 140 Ω
5ns
00601-010
PULSE
GENERATOR
TR/TF = 350ps
10µF
Figure 10. AD9631 Small Signal Transient Response; VOUT = 400 mV p-p,
G = −1, RF = RIN = 267 Ω
Rev. D | Page 6 of 20
Data Sheet
AD9631/AD9632
RF
RF
10µF
+VS
PULSE
GENERATOR
TR/TF = 350ps
RIN
0.1µF
VIN
0.1µF
RT
49.9Ω
RT
49.9Ω
VOUT
AD9632
RL = 100Ω
0.1µF
100Ω
–VS
1V
5ns
Figure 15. AD9632 Large Signal Transient Response; VOUT = 4 V p-p, G = −1,
RF = RIN = 422 Ω, RT = 56.2 Ω
00601-013
Figure 12. AD9632 Large Signal Transient Response; VOUT = 4 V p-p, G = +2,
RF = RIN = 422 Ω
100mV
Figure 13. AD9632 Small Signal Transient Response; VOUT = 400 mV p-p,
G = +2, RF = RIN = 274 Ω
5ns
00601-015
Figure 14. AD9632 Inverting Configuration, G = −1
00601-012
5ns
00601-014
10µF
5ns
00601-016
10µF
Figure 11. AD9632 Noninverting Configuration, G = +2
100mV
VOUT
AD9632
RL = 100Ω
–VS
1V
0.1µF
RIN
00601-011
VIN
130Ω
10µF
+VS
PULSE
GENERATOR
TR/TF = 350ps
Figure 16. AD9632 Small Signal Transient Response; VOUT = 400 mV p-p,
G = −1, RF = RIN = 267 Ω, RT = 61.9 Ω
Rev. D | Page 7 of 20
AD9631/AD9632
Data Sheet
1
475
RF = 150Ω
0
–1
–3dB BANDWIDTH (MHz)
425
RF = 100Ω
–3
–4
–5
–6
375
N PACKAGE
350
358
R PACKAGE
VS = ±5V
RL = 100Ω
VOUT = 300mV p-p
10M
100M
1G
FREQUENCY (Hz)
250
20
140
160
180
200
220
240
RF = 250Ω
–1
–0.3
RF = 120Ω
–0.4
RF = 50Ω TO 250Ω
BY 50Ω
–2
RF = 100Ω
OUTPUT (dB)
–0.5
–3
–4
–5
–6
–0.6
–7
VS = ±5V
RL = 100Ω
G = +1
VOUT = 300mV p-p
10M
100M
500M
FREQUENCY (Hz)
100
1
80
80
0
70
60
–1
60
40
50
20
40
0
PHASE MARGIN (Degrees)
PHASE
–3
–5
–40
10
–60
0
–80
–7
–100
–8
1M
10M
100M
–6
–120
1G
00601-019
100k
RF = 267Ω
–4
20
–10
500M
–2
GAIN (dB)
–20
100M
Figure 21. AD9631 Large Signal Frequency Response, G = +1
90
GAIN
10M
FREQUENCY (Hz)
Figure 18. AD9631 0.1 dB Flatness, N Package (for R Package Add 20 Ω to RF)
30
VS = ±5V
RL = 100Ω
VOUT = 4V p-p
–9
1M
00601-018
–0.9
1M
–8
00601-021
GAIN (dB)
120
0
RF = 140Ω
–0.2
GAIN (dB)
100
1
–0.1
–20
10k
80
Figure 20. AD9631 Small Signal −3 dB Bandwidth vs. RF
RF = 150Ω
0
60
VALUE OF FEEDBACK RESISTOR, RF (Ω)
Figure 17. AD9631 Small Signal Frequency Response, G = +1
0.1
40
00601-020
–9
1M
275
00601-017
–8
–0.8
RL
300
–7
–0.7
AD9631
130Ω
400
FREQUENCY (Hz)
Figure 19. AD9631 Open-Loop Gain and Phase Margin vs. Frequency,
RL = 100 Ω
Rev. D | Page 8 of 20
VS = ±5V
RL = 100Ω
VOUT = 300mV p-p
–9
1M
10M
100M
1G
FREQUENCY (Hz)
Figure 22. AD9631 Small Signal Frequency Response, G = −1
00601-022
GAIN (dB)
RF = 200Ω
RF = 50Ω
–2
RF
VS = ±5V
RL = 100Ω
G = +1
450
Data Sheet
–60
–70
SECOND
HARMONIC
–80
–90
–100
THIRD
HARMONIC
–110
–130
10k
100k
1M
10M
100M
FREQUENCY (Hz)
00601-023
–120
–50
–0.05
–0.10
0.10
0.05
0
–0.05
–0.10
1ST
2ND
3RD
4TH
5TH
6TH
7TH
8TH
9TH
10TH 11TH
0.3
VS = ±5V
RL = 100Ω
G = +1
VOUT = 2V p-p
0.2
–60
0.1
–70
–80
ERROR (%)
HARMONIC DISTORTION (dBc)
–40
0
Figure 26. AD9631 Differential Gain and Phase Error, G = +2, RL = 150 Ω
Figure 23. AD9631 Harmonic Distortion vs. Frequency, RL = 500 Ω
–30
0.05
00601-026
–50
DIFFERENTIAL PHASE
(Degrees)
HARMONIC DISTORTION (dBc)
–40
0.10
VS = ±5V
RL = 500Ω
G = +1
VOUT = 2V p-p
DIFFERENTIAL GAIN
(%)
–30
AD9631/AD9632
SECOND
HARMONIC
–90
0
–0.1
–100
THIRD
HARMONIC
–110
–0.2
100k
1M
10M
100M
FREQUENCY (Hz)
–0.3
00601-024
–130
10k
0
10
20
30
40
50
60
70
80
SETTLING TIME (ns)
Figure 24. AD9631 Harmonic Distortion vs. Frequency, RL = 100 Ω
00601-027
–120
Figure 27. AD9631 Short-Term Settling Time, 2 V Step, RL = 100 Ω
0.3
60
55
0.2
ERROR (%)
45
40
35
0.1
0
30
–0.1
20
10
100
FREQUENCY (MHz)
Figure 25. AD9631 Third Order Intercept vs. Frequency
–0.2
0
1
2
3
4
5
6
7
8
9
10
SETTLING TIME (µs)
Figure 28. AD9631 Long-Term Settling Time, 2 V Step, RL = 100 Ω
Rev. D | Page 9 of 20
00601-028
25
00601-025
INTERCEPT (dBm)
50
AD9631/AD9632
Data Sheet
375
7
RF = 325Ω
6
VS = ±5V
RL = 100Ω
G = +2
350
RF = 425Ω
325
–3dB BANDWIDTH (MHz)
RF = 125Ω
RF = 225Ω
4
2
1
0
–1
VS = ±5V
RL = 100Ω
VOUT = 300mV p-p
–3
1M
10M
100M
1G
FREQUENCY (Hz)
RF
225
RIN
R PACKAGE
200
175
100Ω
150
49.9Ω
100
AD9632
150
RL
200
250
300
350
400
450
500
550
600
VALUE OF RF, RIN (Ω)
Figure 32. AD9632 Small Signal −3 dB Bandwidth vs. RF, RIN
0.1
7
0
6
RF = 275Ω
OUTPUT (dB)
–0.4
RF = 425Ω
–0.5
1
–2
10M
100M
FREQUENCY (Hz)
VS = ±5V
RL = 100Ω
VOUT = 4V p-p
–3
1M
10M
100M
500M
FREQUENCY (Hz)
00601-033
–0.9
1M
Figure 33. AD9632 Large Signal Frequency Response, G = +2
Figure 30. AD9632 0.1 dB Flatness, N Package (for R Package Add 20 Ω to RF)
1
150
0
100
0
–50
GAIN
–100
–150
–2
GAIN (dB)
50
PHASE MARGIN (Degrees)
–1
PHASE
–3
RF, RIN = 267Ω
–4
–5
–6
–7
–200
100k
1M
10M
100M
–8
–250
1G
00601-031
65
60
55
50
45
40
35
30
25
20
15
10
5
0
–5
–10
–15
10k
2
–1
VS = ±5V
RL = 100Ω
G = +2
VOUT = 300mV p-p
00601-030
–0.8
3
0
–0.6
–0.7
RF = 125Ω TO 425Ω
BY 100Ω
4
RF = 375Ω
–0.3
RF = 425Ω
5
RF = 325Ω
–0.2
OUTPUT (dB)
250
Figure 29. AD9632 Small Signal Frequency Response, G = +2
–0.1
AOL (dB)
275
125
50
00601-029
–2
N PACKAGE
FREQUENCY (Hz)
Figure 31. AD9632 Open-Loop Gain and Phase Margin vs. Frequency,
RL = 100 Ω
Rev. D | Page 10 of 20
VS = ±5V
RL = 100Ω
VOUT = 300mV p-p
–9
1M
10M
100M
1G
FREQUENCY (Hz)
Figure 34. AD9632 Small Signal Frequency Response, G = −1
00601-034
GAIN (dB)
3
300
00601-032
5
Data Sheet
–60
–70
–80
SECOND
HARMONIC
–90
–100
THIRD
HARMONIC
–110
–130
10k
100k
1M
10M
100M
FREQUENCY (Hz)
00601-035
–120
–50
–0.02
–0.04
0.04
0.02
0
–0.02
–0.04
1ST
2ND
3RD
4TH
5TH
6TH
7TH
8TH
9TH
10TH 11TH
0.2
VS = ±5V
RL = 100Ω
G = +2
VOUT = 2V p-p
0.1
–60
SECOND
HARMONIC
–70
ERROR (%)
HARMONIC DISTORTION (dBc)
–40
0
Figure 38. AD9632 Differential Gain and Phase Error G = +2, RL = 150 Ω
Figure 35. AD9632 Harmonic Distortion vs. Frequency, RL = 500 Ω
–30
0.02
00601-038
–50
DIFFERENTIAL PHASE
(Degrees)
HARMONIC DISTORTION (dBc)
–40
0.04
VS = ±5V
RL = 500Ω
G = +2
VOUT = 2V p-p
DIFFERENTIAL GAIN
(%)
–30
AD9631/AD9632
–80
–90
0
–0.1
THIRD
HARMONIC
–100
–110
–0.2
100k
1M
10M
100M
FREQUENCY (Hz)
–0.3
00601-036
–130
10k
0
10
20
30
40
50
60
70
80
SETTLING TIME (ns)
Figure 36. AD9632 Harmonic Distortion vs. Frequency, RL = 100 Ω
00601-039
–120
Figure 39. AD9632 Short-Term Settling Time, 2 V Step, RL = 100 Ω
50
0.3
45
0.2
ERROR (%)
35
30
25
0.1
0
20
–0.1
10
10
100
FREQUENCY (MHz)
Figure 37. AD9632 Third Order Intercept vs. Frequency
–0.2
0
1
2
3
4
5
6
7
8
9
10
SETTLING TIME (µs)
Figure 40. AD9632 Long-Term Settling Time, 2 V Step, RL = 100 Ω
Rev. D | Page 11 of 20
00601-040
15
00601-037
INTERCEPT (dBm)
40
AD9631/AD9632
17
VS = ±5V
15
INPUT NOISE VOLTAGE (nV√Hz)
18
15
12
9
9
7
5
100
1k
10k
3
10
00601-041
3
10
11
100k
FREQUENCY (Hz)
PSRR (dB)
10M
100M
1G
FREQUENCY (Hz)
00601-042
PSRR (dB)
+PSRR
1M
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
10k
CMRR (dB)
70
60
50
30
30
FREQUENCY (Hz)
10M
100M
1G
1G
VS = ±5V
ΔVCM = 1V
RL = 100Ω
50
40
100M
1M
60
40
00601-043
CMRR (dB)
70
10M
100k
90
80
1M
+PSRR
100
80
20
100k
–PSRR
Figure 45. AD9632 PSRR vs. Frequency
VS = ±5V
ΔVCM = 1V
RL = 100Ω
90
100k
FREQUENCY (Hz)
Figure 42. AD9631 PSRR vs. Frequency
100
10k
Figure 44. AD9632 Noise vs. Frequency
–PSRR
100k
1k
FREQUENCY (Hz)
Figure 41. AD9631 Noise vs. Frequency
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
10k
100
00601-044
6
13
00601-045
INPUT NOISE VOLTAGE (nV√Hz)
21
VS = ±5V
Figure 43. AD9631 CMRR vs. Frequency
20
100k
1M
10M
100M
FREQUENCY (Hz)
Figure 46. AD9632 CMRR vs. Frequency
Rev. D | Page 12 of 20
1G
00601-046
24
Data Sheet
Data Sheet
1350
VS = ±5V
G = +1
1250
1150
OPEN-LOOP GAIN (V/V)
ROUT (Ω)
100
10
1
0.1
+AOL
AD9632
1050
950
–AOL
850
750
650
550
+AOL
AD9631
450
100k
1M
10M
100M
FREQUENCY (Hz)
350
–60
00601-047
0.01
10k
–40
–20
0
20
40
60
80
100
120
140
JUNCTION TEMPERATURE (°C)
Figure 47. AD9631 Output Resistance vs. Frequency
1k
–AOL
00601-050
1k
AD9631/AD9632
Figure 50. Open-Loop Gain vs. Temperature
76
VS = ±5V
G = +1
74
100
AD9632
–PSRR
72
PSRR (dB)
ROUT (Ω)
70
10
1
+PSRR
68
AD9632
66
–PSRR
64
AD9631
62
0.1
60
+PSRR
100k
1M
10M
100M
FREQUENCY (Hz)
56
–60
00601-048
0.01
10k
–40
20
40
60
80
100
120
140
100
120
140
Figure 51. PSRR vs. Temperature
98
VS = ±5V
+VOUT
4.0
96
RL = 150Ω
|–VOUT|
3.9
94
CMRR (dB)
3.8
3.7
3.6
–40
–20
0
20
40
60
80
100
JUNCTION TEMPERATURE (°C)
120
140
Figure 49. Output Swing vs. Temperature
86
–60
–40
–20
0
20
40
60
80
JUNCTION TEMPERATURE (°C)
Figure 52. CMRR vs. Temperature
Rev. D | Page 13 of 20
00601-052
3.3
–60
–CMRR
+CMRR
88
|–VOUT|
3.4
92
90
RL = 50Ω
+VOUT
3.5
00601-049
OUTPUT SWING (V)
0
JUNCTION TEMPERATURE (°C)
Figure 48. AD9632 Output Resistance vs. Frequency
4.1
–20
00601-051
AD9631
58
AD9631/AD9632
Data Sheet
21
250
AD9631
±6V
AD9631
240
SHORT CIRCUIT CURRENT (mA)
19
AD9632
±6V
18
AD9631
±5V
17
AD9632
±5V
16
SINK
SOURCE
230
220
210
SOURCE
200
0
20
40
60
80
100
120
140
JUNCTION TEMPERATURE (°C)
180
–60
–40
–1.5
1.5
INPUT BIAS CURRENT (µA)
AD9632
VS = ±5V
–3.0
VS = ±6V
AD9631
–4.0
VS = ±5V
–4.5
–40
–20
0
20
40
60
80
100
120
140
JUNCTION TEMPERATURE (°C)
1.0
+IB
0.5
–IB
CUMULATIVE
+IB
–2.0
–60
–40
160
40
0
0
1
2
3
4
5
6
INPUT OFFSET VOLTAGE (mV)
60
80
100
120
140
7
100
3 WAFER LOTS
COUNT = 573
90
80
70
50
80
60
40
FREQUENCY
DISTRIBUTION
30
40
20
20
10
20
–1
40
60
20
40
–2
20
100
30
60
–3
0
120
COUNT
FREQUENCY
DISTRIBUTION
–4
–20
140
PERCENT
50
–5
AD9632
CUMULATIVE
00601-055
COUNT
90
60
–6
AD9631
–1.5
180
120
0
–7
140
–IB
100
70
140
80
120
JUNCTION TEMPERATURE (°C)
80
160
100
100
Figure 57. Input Bias Current vs. Temperature
3 WAFER LOTS
COUNT = 1373
180
80
–1.0
Figure 54. Input Offset Voltage vs. Temperature
200
60
–0.5
VS = ±6V
–5.0
–60
40
0
00601-054
INPUT OFFSET VOLTAGE (mV)
2.0
–3.5
20
Figure 56. Short Circuit Current vs. Temperature
–1.0
–2.5
0
JUNCTION TEMPERATURE (°C)
Figure 53. Supply Current vs. Temperature
–2.0
–20
00601-057
–20
Figure 55. AD9631 Input Offset Voltage Distribution
0
–7
10
0
–6
–5
–4
–3
–2
–1
0
1
2
3
4
5
6
INPUT OFFSET VOLTAGE (mV)
Figure 58. AD9632 Input Offset Voltage Distribution
Rev. D | Page 14 of 20
PERCENT
–40
00601-053
14
–60
00601-056
190
15
220
SINK
AD9632
7
00601-058
SUPPLY CURRENT (mA)
20
Data Sheet
AD9631/AD9632
THEORY OF OPERATION
GENERAL
The AD9631/AD9632 are wide bandwidth, voltage feedback
amplifiers. Because their open-loop frequency response follows
the conventional 6 dB/octave roll-off, their gain bandwidth
product is basically constant. Increasing their closed-loop gain
results in a corresponding decrease in small signal bandwidth.
This can be observed by noting the bandwidth specification
between the AD9631 (gain of +1) and AD9632 (gain of +2). The
AD9631/AD9632 typically maintain 65° of phase margin. This
high margin minimizes the effects of signal and noise peaking.
FEEDBACK RESISTOR CHOICE
The value of the feedback resistor is critical for optimum performance on the AD9631 (gain of +1) and less critical as the
gain increases. Therefore, this section is specifically targeted
at the AD9631.
At the minimum stable gain (+1), the AD9631 provides optimum dynamic performance with RF = 140 Ω. This resistor acts
as a parasitic suppressor only against damped RF oscillations
that can occur due to lead (input, feedback) inductance and
parasitic capacitance. This value of RF provides the best combination of wide bandwidth, low parasitic peaking, and fast
settling time.
When the AD9631 is used in the transimpedance (I to V)
mode, such as in photodiode detection, the value of RF and
diode capacitance (CI) are usually known. Generally, the value
of RF selected will be in the kΩ range, and a shunt capacitor (CF)
across RF will be required to maintain good amplifier stability.
The value of CF required to maintain optimal flatness (