14-Bit, 1.25 GSPS/1 GSPS/820 MSPS/500 MSPS
JESD204B, Dual Analog-to-Digital Converter
AD9680
Data Sheet
FEATURES
FUNCTIONAL BLOCK DIAGRAM
14
VIN+B
VIN–B
Rev. E
DDC
ADC
CORE
BUFFER
CONTROL
REGISTERS
V_1P0
SIGNAL
MONITOR
CLOCK
GENERATION
CLK+
CLK–
÷2
÷4
÷8
AGND
DRGND DGND
4
FAST
DETECT
JESD204B
SUBCLASS 1
CONTROL
SPI CONTROL
AD9680
SDIO SCLK CSB
SERDOUT0±
SERDOUT1±
SERDOUT2±
SERDOUT3±
SYNCINB±
SYSREF±
PDWN/
STBY
Figure 1.
PRODUCT HIGHLIGHTS
1.
2.
3.
APPLICATIONS
Communications
Diversity multiband, multimode digital receivers
3G/4G, TD-SCDMA, W-CDMA, GSM, LTE
General-purpose software radios
Ultrawideband satellite receivers
Instrumentation
Radars
Signals intelligence (SIGINT)
DOCSIS 3.0 CMTS upstream receive paths
HFC digital reverse path receivers
SIGNAL
MONITOR
11752-001
FD_B
DDC
Tx OUTPUTS
FD_A
ADC
CORE 14
JESD204B
HIGH SPEED SERIALIZER
BUFFER
VIN+A
VIN–A
FAST
DETECT
JESD204B (Subclass 1) coded serial digital outputs
1.65 W total power per channel at 1 GSPS (default settings)
SFDR at 1 GSPS = 85 dBFS at 340 MHz, 80 dBFS at 1 GHz
SNR at 1 GSPS = 65.3 dBFS at 340 MHz (AIN = −1.0 dBFS),
60.5 dBFS at 1 GHz (AIN = −1.0 dBFS)
ENOB = 10.8 bits at 10 MHz
DNL = ±0.5 LSB
INL = ±2.5 LSB
Noise density = −154 dBFS/Hz at 1 GSPS
1.25 V, 2.5 V, and 3.3 V dc supply operation
No missing codes
Internal ADC voltage reference
Flexible input range: 1.46 V p-p to 1.94 V p-p
AD9680-1250: 1.58 V p-p nominal
AD9680-1000 and AD9680-820: 1.70 V p-p nominal
AD9680-500: 1.46 V p-p to 2.06 V p-p (2.06 V p-p nominal)
Programmable termination impedance
400 Ω, 200 Ω, 100 Ω, and 50 Ω differential
2 GHz usable analog input full power bandwidth
95 dB channel isolation/crosstalk
Amplitude detect bits for efficient AGC implementation
2 integrated wideband digital processors per channel
12-bit NCO, up to 4 half-band filters
Differential clock input
Integer clock divide by 1, 2, 4, or 8
Flexible JESD204B lane configurations
Small signal dither
SPIVDD
AVDD1 AVDD2 AVDD3 AVDD1_SR DVDD DRVDD
(1.25V) (1.25V) (1.8V TO 3.3V)
(1.25V)
(1.25V) (2.5V) (3.3V)
4.
5.
6.
Wide full power bandwidth supports IF sampling of signals
up to 2 GHz.
Buffered inputs with programmable input termination eases
filter design and implementation.
Four integrated wideband decimation filters and numerically
controlled oscillator (NCO) blocks supporting multiband
receivers.
Flexible serial port interface (SPI) controls various product
features and functions to meet specific system requirements.
Programmable fast overrange detection.
9 mm × 9 mm, 64-lead LFCSP.
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2014–2019 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
AD9680
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
FIR Filters General Description ............................................... 58
Applications ....................................................................................... 1
Half-Band Filters ........................................................................ 59
Functional Block Diagram .............................................................. 1
DDC Gain Stage ......................................................................... 61
Product Highlights ........................................................................... 1
DDC Complex to Real Conversion ......................................... 61
Revision History ............................................................................... 3
DDC Example Configurations ................................................. 62
General Description ......................................................................... 5
Digital Outputs ............................................................................... 65
Specifications..................................................................................... 6
Introduction to the JESD204B Interface ................................. 65
DC Specifications ......................................................................... 6
JESD204B Overview .................................................................. 65
AC Specifications.......................................................................... 7
Functional Overview ................................................................. 66
Digital Specifications ................................................................... 9
JESD204B Link Establishment ................................................. 67
Switching Specifications ............................................................ 10
Physical Layer (Driver) Outputs .............................................. 68
Timing Specifications ................................................................ 11
JESD204B Tx Converter Mapping ........................................... 71
Absolute Maximum Ratings.......................................................... 13
Configuring the JESD204B Link .............................................. 73
Thermal Characteristics ............................................................ 13
Deterministic Latency.................................................................... 76
ESD Caution ................................................................................ 13
Subclass 0 Operation.................................................................. 76
Pin Configuration and Function Descriptions ........................... 14
Subclass 1 Operation.................................................................. 76
Typical Performance Characteristics ........................................... 16
Multichip Synchronization............................................................ 78
AD9680-1250 .............................................................................. 16
Normal Mode .............................................................................. 78
AD9680-1000 .............................................................................. 20
Timestamp Mode ....................................................................... 78
AD9680-820 ................................................................................ 25
SYSREF± Input ........................................................................... 80
AD9680-500 ................................................................................ 30
SYSREF± Setup/Hold Window Monitor ................................. 82
Equivalent Circuits ......................................................................... 34
Latency ............................................................................................. 84
Theory of Operation ...................................................................... 36
End to End Total Latency .......................................................... 84
ADC Architecture....................................................................... 36
Example Latency Calculation ................................................... 84
Analog Input Considerations.................................................... 36
Test Modes ....................................................................................... 85
Voltage Reference ....................................................................... 42
ADC Test Modes ........................................................................ 85
Clock Input Considerations ...................................................... 43
JESD204B Block Test Modes..................................................... 86
ADC Overrange and Fast Detect.................................................. 45
Serial Port Interface ........................................................................ 88
ADC Overrange .......................................................................... 45
Configuration Using the SPI ..................................................... 88
Fast Threshold Detection (FD_A and FD_B) ......................... 45
Hardware Interface ..................................................................... 88
Signal Monitor ................................................................................ 46
SPI Accessible Features .............................................................. 88
SPORT Over JESD204B ............................................................. 47
Memory Map .................................................................................. 89
Digital Downconverter (DDC) ..................................................... 49
Reading the Memory Map Register Table............................... 89
DDC I/Q Input Selection .......................................................... 49
Memory Map Register Table ..................................................... 90
DDC I/Q Output Selection ....................................................... 49
Applications Information ............................................................ 104
DDC General Description ........................................................ 49
Power Supply Recommendations........................................... 104
Frequency Translation.................................................................... 55
Exposed Pad Thermal Heat Slug Recommendations .......... 104
Frequency Translation General Description .............................. 55
AVDD1_SR (Pin 57) and AGND (Pin 56 and Pin 60) ............ 104
DDC NCO Plus Mixer Loss and SFDR ................................... 56
Outline Dimensions ..................................................................... 105
Numerically Controlled Oscillator........................................... 56
Ordering Guide ........................................................................ 105
FIR Filters ........................................................................................ 58
Rev. E | Page 2 of 105
Data Sheet
AD9680
REVISION HISTORY
3/2019—Rev. D to Rev. E
Changes to Figure 146 ....................................................................50
11/2017—Rev. C to Rev. D
Changes to Table 2............................................................................. 7
Change to Junction Temperature Range, Table 6 ........................13
Changes to Figure 17 ......................................................................17
Changes to Figure 18 ......................................................................18
Changes to Figure 34 ......................................................................20
Changes to Figure 65 and Figure 66 .............................................26
Changes to Figure 67 and Figure 68 .............................................27
Changes to Figure 118 to Figure 120 ............................................38
Added Deterministic Latency Section, Subclass 0 Operation
Section, Subclass 1 Operation Section, Deterministic Latency
Requirements Section, Setting Deterministic Latency Registers
Section, and Figure 171; Renumbered Sequentially ...................75
Added Figure 172 and Figure 173 .................................................76
Changes to Multichip Synchronization Section ..........................77
Added Normal Mode Section, Timestamp Mode Section, and
Figure 174 .........................................................................................77
Added Figure 175 ............................................................................78
Added SYSREF± Input Section, SYSREF± Control Features
Section, and Figure 176 to Figure 179 ..........................................79
Added Figure 180 and Figure 181 .................................................80
Added Latency Section, End to End Total Latency Section,
Example Latency Calculation Section, and Table 29 to
Table 31 .............................................................................................83
Updated Outline Dimensions ......................................................103
Changes to Ordering Guide .........................................................103
11/2015—Rev. B to Rev. C
Added AD9680-1250 ......................................................... Universal
Changes to Features Section ............................................................ 1
Change to General Description Section ......................................... 4
Changes to Table 1............................................................................. 5
Changes to Table 2............................................................................. 6
Changes to Table 4............................................................................. 9
Changes to Table 5...........................................................................10
Changes to Figure 4......................................................................... 11
Changes to Pin 14 Description, Table 8 .......................................14
Added AD9680-1250 Section and Figure 6 to Figure 29;
Renumbered Sequentially ..............................................................15
Changes to Figure 113 ....................................................................34
Changes to Analog Input Considerations Section ......................35
Changes to Table 9...........................................................................36
Changes to Input Buffer Control Registers (0x018, 0x019,
0x01A, 0x935, 0x934, 0x11A) Section ..........................................37
Added Figure 118 to Figure 120 ....................................................37
Changes to Table 10 ........................................................................40
Changes to Table 17 ........................................................................57
Changes to ADC Test Modes Section ........................................... 78
Changes to Table 36 ........................................................................ 83
Changes to Ordering Guide ........................................................... 97
3/2015—Rev. A to Rev. B
Added AD9680-820 ........................................................... Universal
Changes to Features Section ............................................................ 1
Changes to Table 1 ............................................................................ 5
Changes to Table 2 ............................................................................ 6
Changes to Table 3 ............................................................................ 8
Changes to Table 4 ............................................................................ 9
Added Figure 14; Renumbered Sequentially ............................... 15
Added AD9680-820 Section and Figure 31 Through Figure 36.... 19
Added Figure 37 Through Figure 42 ............................................ 20
Added Figure 43 Through Figure 48 ............................................ 21
Added Figure 49 Through Figure 54 ............................................ 22
Added Figure 55 .............................................................................. 23
Changes to Figure 69 and Figure 70 ............................................. 26
Changes to Input Buffer Control Registers (0x018, 0x019, 0x01A,
0x935, 0x934, 0x11A) Section, Table 9, and Figure 93 .................... 31
Added Figure 99 Through Figure 100 .......................................... 33
Changes to Table 10 ........................................................................ 34
Changes to Clock Jitter Considerations Section ......................... 37
Added Figure 112 ............................................................................ 37
Changes to Digital Downconverter (DDC) Section ................... 42
Changes to Table 17 ........................................................................ 51
Changes to Table 36 ........................................................................ 77
Changes to Ordering Guide ........................................................... 91
12/2014—Rev. 0 to Rev. A
Added AD9680-500 ........................................................... Universal
Changes to Features Section and Figure 1 ..................................... 1
Changes to General Description Section ....................................... 4
Changes to Specifications Section and Table 1 ............................. 5
Changes to AC Specifications Section and Table 2 ....................... 6
Changes to Digital Specifications Section ..................................... 8
Changes to Switching Specifications Section and Table 4 ........... 9
Changes to Table 6, Thermal Characteristics Section, and
Table 7 ............................................................................................... 11
Change to Digital Inputs Description, Table 8 ............................ 13
Added AD9680-1000 Section, Figure 10, and Figure 11;
Renumbered Sequentially .............................................................. 14
Changes to Figure 6 to Figure 9 .................................................... 14
Added Figure 12 to Figure 14 ........................................................ 15
Changes to Figure 15 to Figure 17 ................................................ 15
Changes to Figure 18 to Figure 21 ................................................ 16
Changes to Figure 25 and Figure 29 ............................................. 17
Changes to Figure 30 ...................................................................... 18
Deleted Figure 35, Figure 36, and Figure 38................................ 19
Added AD9680-500 Section and Figure 31 to Figure 54 ............. 19
Rev. E | Page 3 of 105
AD9680
Data Sheet
Changes to Analog Input Considerations Section and
Differential Input Configurations Section .................................. 25
Added Input Buffer Control Registers (0x018, 0x019, 0x01A,
0x935, 0x934, 0x11A) Section, Figure 66, Figure 68, and Table 9;
Renumbered Sequentially.............................................................. 26
Changes to Analog Input Buffer Controls and SFDR
Optimization Section and Figure 67 ............................................ 26
Added Figure 69 to Figure 72........................................................ 27
Added Figure 73 to Figure 75........................................................ 28
Changes to Table 10 ........................................................................ 28
Added Input Clock Divider ½ Period Delay Adjust Section and
Clock Fine Delay Adjust Section .................................................. 30
Changes to Figure 83 and Temperature Diode Section ............. 31
Added Signal Monitor Section and Figure 86 to Figure 89 ...... 33
Changes to Table 11 ........................................................................ 39
Changes to Table 12 to Table 14.................................................... 40
Changes to Table 16 ........................................................................ 41
Deleted Figure 65 and Figure 66................................................... 45
Changes to Table 17........................................................................ 45
Changes to Table 19 to Table 20 ................................................... 46
Changes to Table 22........................................................................ 47
Changes to Table 23........................................................................ 49
Changes to JESD204B Link Establishment Section ................... 53
Added Figure 105 to Figure 110 ................................................... 56
Changes to Example 1: Full Bandwidth Mode Section ............. 60
Added Multichip Synchronization Section, Figure 115 to
Figure 117, and Table 28 ................................................................ 62
Added Test Modes Section and Table 29 to Table 33 ................. 66
Changes to Reading the Memory Map Register Table Section ...... 70
Changes to Table 36........................................................................ 71
Changes to Power Supply Recommendations Section,
Figure 118, and Exposed Pad Thermal Heat Slug
Recommendations Section............................................................ 83
Changes to Ordering Guide .......................................................... 84
5/2014—Revision 0: Initial Version
Rev. E | Page 4 of 105
Data Sheet
AD9680
GENERAL DESCRIPTION
The AD9680 is a dual, 14-bit, 1.25 GSPS/1 GSPS/820 MSPS/
500 MSPS analog-to-digital converter (ADC). The device has
an on-chip buffer and sample-and-hold circuit designed for low
power, small size, and ease of use. This device is designed for
sampling wide bandwidth analog signals of up to 2 GHz. The
AD9680 is optimized for wide input bandwidth, high sampling
rate, excellent linearity, and low power in a small package.
function in the communications receiver. The programmable
threshold detector allows monitoring of the incoming signal
power using the fast detect output bits of the ADC. If the input
signal level exceeds the programmable threshold, the fast detect
indicator goes high. Because this threshold indicator has low
latency, the user can quickly turn down the system gain to avoid
an overrange condition at the ADC input.
The dual ADC cores feature a multistage, differential pipelined
architecture with integrated output error correction logic. Each
ADC features wide bandwidth inputs supporting a variety of
user-selectable input ranges. An integrated voltage reference
eases design considerations.
Users can configure the Subclass 1 JESD204B-based high speed
serialized output in a variety of one-, two-, or four-lane
configurations, depending on the DDC configuration and the
acceptable lane rate of the receiving logic device. Multiple device
synchronization is supported through the SYSREF± and
SYNCINB± input pins.
The analog input and clock signals are differential inputs. Each
ADC data output is internally connected to two digital downconverters (DDCs). Each DDC consists of up to five cascaded
signal processing stages: a 12-bit frequency translator (NCO),
and four half-band decimation filters. The DDCs are bypassed
by default.
In addition to the DDC blocks, the AD9680 has several
functions that simplify the automatic gain control (AGC)
The AD9680 has flexible power-down options that allow
significant power savings when desired. All of these features can
be programmed using a 1.8 V to 3.3 V capable, 3-wire SPI.
The AD9680 is available in a Pb-free, 64-lead LFCSP and is
specified over the −40°C to +85°C industrial temperature range.
This product is protected by a U.S. patent.
Rev. E | Page 5 of 105
AD9680
Data Sheet
SPECIFICATIONS
DC SPECIFICATIONS
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR = 1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified
maximum sampling rate for each speed grade, AIN = −1.0 dBFS, clock divider = 2, default SPI settings, TA = 25°C, unless otherwise noted.
Table 1.
Parameter
RESOLUTION
ACCURACY
No Missing Codes
Offset Error
Offset Matching
Gain Error
Gain Matching
Differential Nonlinearity
(DNL)
Integral Nonlinearity (INL)
TEMPERATURE DRIFT
Offset Error
Gain Error
INTERNAL VOLTAGE
REFERENCE
Voltage
INPUT-REFERRED NOISE
VREF = 1.0 V
ANALOG INPUTS
Differential Input Voltage
Range (Programmable)
Common-Mode Voltage
(VCM)
Differential Input
Capacitance 1
Analog Input Full Power
Bandwidth
POWER SUPPLY
AVDD1
AVDD2
AVDD3
AVDD1_SR
DVDD
DRVDD
SPIVDD
IAVDD1
IAVDD2
IAVDD3
IAVDD1_SR
IDVDD 2
IDRVDD1
IDRVDD (L = 2 Mode)
ISPIVDD
Temp
Full
AD9680-500
Min Typ Max
14
AD9680-820
Min Typ
Max
14
Min
14
Full
Full
Full
Full
Full
Full
Guaranteed
−0.3 0
+0.3
0
0.3
−6
0
+6
1
5.1
−0.6 ±0.5 +0.7
Guaranteed
−0.3 0
+0.3
0
0.23
−6
0
+6
1
5.5
−0.7 ±0.5 +0.8
Full
−4.5
−3.3
±2.5
+5.0
±2.5
+4.3
AD9680-1000
Typ
Max
AD9680-1250
Min
Typ
Max
14
Unit
Bits
Guaranteed
−0.31 0
+0.31
0
0.23
−6
0
+6
1
4.5
−0.7
±0.5
+0.8
Guaranteed
−0.31 0
+0.31
0
0.3
−6
0
+6
1
4.5
−0.8
±0.5 +0.8
% FSR
% FSR
% FSR
% FSR
LSB
−5.7
−6
LSB
±2.5
+6.9
±3
+6
Full
Full
−3
±25
−10
±54
−12
±13.8
−15
92
ppm/°C
ppm/°C
Full
1.0
1.0
1.0
1.0
V
25°C
2.06
2.46
2.63
3.45
LSB rms
Full
1.46
2.06
2.06
1.46
1.70
1.94
1.46
1.70
1.94
1.46
1.58
1.94
V p-p
25°C
2.05
2.05
2.05
2.05
V
25°C
1.5
1.5
1.5
1.5
pF
25°C
2
2
2
2
GHz
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
25°C
Full
1.22
2.44
3.2
1.22
1.22
1.22
1.7
1.25
2.50
3.3
1.25
1.25
1.25
1.8
435
395
87
15
145
190
140
5
1.28
2.56
3.4
1.28
1.28
1.28
3.4
467
463
101
22
152
237
6
1.22
2.44
3.2
1.22
1.22
1.22
1.7
1.25
2.50
3.3
1.25
1.25
1.25
1.8
605
490
125
15
205
200
N/A 3
5
1.28
2.56
3.4
1.28
1.28
1.28
3.4
660
545
140
18
246
240
6
Rev. E | Page 6 of 105
1.22
2.44
3.2
1.22
1.22
1.22
1.7
1.25
2.50
3.3
1.25
1.25
1.25
1.8
685
595
125
16
208
200
N/A3
5
1.28
2.56
3.4
1.28
1.28
1.28
3.4
720
680
142
18
269
225
6
1.22
2.44
3.2
1.22
1.22
1.22
1.7
1.25
2.50
3.3
1.25
1.25
1.25
1.8
785
675
125
17
250
220
N/A3
5
1.28
2.56
3.4
1.28
1.28
1.28
3.4
880
780
142
20
325
300
6
V
V
V
V
V
V
V
mA
mA
mA
mA
mA
mA
mA
mA
Data Sheet
Parameter
POWER CONSUMPTION
Total Power Dissipation
(Including Output
Drivers)2
Total Power Dissipation
(L = 2 Mode)
Power-Down Dissipation
Standby 4
AD9680
Temp
AD9680-500
Min Typ Max
AD9680-820
Min Typ
Max
Min
AD9680-1000
Typ
Max
AD9680-1250
Min
Typ
Max
Unit
Full
2.2
2.9
3.3
3.7
W
25°C
2.1
N/A3
N/A3
N/A3
W
Full
Full
700
1.2
820
1.3
835
1.4
1030
1.66
mW
W
All lanes running. Power dissipation on DRVDD changes with lane rate and number of lanes used.
Default mode. No DDCs used. L = 4, M = 2, F = 1.
3
N/A means not applicable. At the maximum sample rate, it is not applicable to use L = 2 mode on the JESD204B output interface because this exceeds the maximum
lane rate of 12.5 Gbps. L = 2 mode is supported when the equation ((M × N΄ × (10/8) × fOUT)/L) results in a line rate that is ≤12.5 Gbps. fOUT is the output sample rate and
is denoted by fS/DCM, where DCM is the decimation ratio.
4
Can be controlled by the SPI.
1
2
AC SPECIFICATIONS
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR = 1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified
maximum sampling rate for each speed grade, AIN = −1.0 dBFS, clock divider = 2, default SPI settings, TA = 25°C, unless otherwise noted.
Table 2.
Parameter 1
ANALOG INPUT FULL SCALE
NOISE DENSITY 2
SIGNAL-TO-NOISE RATIO
(SNR) 3
fIN = 10 MHz
fIN = 170 MHz
fIN = 340 MHz
fIN = 450 MHz
fIN = 765 MHz
fIN = 985 MHz
fIN = 1950 MHz
SNR AND DISTORTION RATIO
(SINAD)3
fIN = 10 MHz
fIN = 170 MHz
fIN = 340 MHz
fIN = 450 MHz
fIN = 765 MHz
fIN = 985 MHz
fIN = 1950 MHz
EFFECTIVE NUMBER OF BITS
(ENOB)
fIN = 10 MHz
fIN = 170 MHz
fIN = 340 MHz
fIN = 450 MHz
fIN = 765 MHz
fIN = 985 MHz
fIN = 1950 MHz
Temp
Full
Full
25°C
Full
25°C
25°C
25°C
25°C
25°C
25°C
Full
25°C
25°C
25°C
25°C
25°C
25°C
Full
25°C
25°C
25°C
25°C
25°C
AD9680-500
Min Typ
Max
2.06
−153
67.8
67.6
10.9
69.2
69.0
68.6
68.0
64.4
63.8
60.5
69.0
68.8
68.4
67.9
64.2
63.6
60.3
11.2
11.1
11.1
11.0
10.4
10.3
9.7
AD9680-820
Min Typ
Max
1.7
−153
65.6
65.2
10.5
67.2
67.0
66.5
65.1
64.0
63.4
59.7
67.1
66.8
66.3
64.7
63.5
62.7
58.7
10.9
10.8
10.7
10.5
10.3
10.1
9.5
Rev. E | Page 7 of 105
AD9680-1000
Min Typ
Max
1.7
−154
65.1
65.0
10.5
67.2
66.6
65.3
64.0
62.6
61.5
57.0
67.1
66.4
65.2
63.8
62.5
61.4
56.4
10.8
10.7
10.5
10.3
10.1
9.9
9.1
AD9680-1250
Min Typ
Max
1.58
−151.5
61.5
61.4
9.9
Unit
V p-p
dBFS/Hz
63.6
63.2
62.8
62.2
61.1
59.2
55.5
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
63.5
62.8
62.6
61.8
60.8
58.2
51.5
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
10.3
10.1
10.1
10.0
9.8
9.4
8.3
Bits
Bits
Bits
Bits
Bits
Bits
Bits
AD9680
Parameter 1
SPURIOUS-FREE DYNAMIC
RANGE (SFDR)3
fIN = 10 MHz
fIN = 170 MHz
fIN = 340 MHz
fIN = 450 MHz
fIN = 765 MHz
fIN = 985 MHz
fIN = 1950 MHz
WORST HARMONIC,
SECOND OR THIRD3
fIN = 10 MHz
fIN = 170 MHz
fIN = 340 MHz
fIN = 450 MHz
fIN = 765 MHz
fIN = 985 MHz
fIN = 1950 MHz
WORST OTHER, EXCLUDING
SECOND OR THIRD
HARMONIC3
fIN = 10 MHz
fIN = 170 MHz
fIN = 340 MHz
fIN = 450 MHz
fIN = 765 MHz
fIN = 985 MHz
fIN = 1950 MHz
TWO-TONE
INTERMODULATION
DISTORTION (IMD),
AIN1 AND AIN2 = −7 dBFS
fIN1 = 185 MHz,
fIN2 = 188 MHz
fIN1 = 338 MHz,
fIN2 = 341 MHz
CROSSTALK 5
FULL POWER BANDWIDTH 6
Data Sheet
Temp
25°C
Full
25°C
25°C
25°C
25°C
25°C
AD9680-500
Min Typ
Max
80
83
88
83
81
80
75
70
AD9680-820
Min Typ
Max
75
91
83
81
78
78
74
70
75
88
85
85
82
82
80
69
74
84
77
78
76
77
71
61
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
25°C
Full
25°C
25°C
25°C
25°C
25°C
−95
−95
−93
−93
−88
−89
−84
25°C
−88
−90
−87
−82
dBFS
25°C
−88
−87
−88
−78 4
dBFS
25°C
25°C
95
2
95
2
95
2
95
2
dB
GHz
−82
−97
−93
−91
−90
−83
−84
−74
−80
−95
−94
−88
−86
−83
−82
−79
−75
−81
−84
−77
−78
−76
−77
−71
−61
Unit
−83
−88
−83
−81
−80
−75
−70
−75
−88
−85
−85
−82
−82
−80
−69
AD9680-1250
Min Typ
Max
25°C
Full
25°C
25°C
25°C
25°C
25°C
−80
−91
−83
−81
−78
−78
−74
−70
AD9680-1000
Min Typ
Max
−87
−79
−81
−79
−79
−77
−69
−74
−74
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.
Noise density is measured at a low analog input frequency (30 MHz).
3
See Table 10 for the recommended settings for full-scale voltage and buffer current settings.
4
Measurement taken with 449 MHz and 452 MHz inputs for two-tone.
5
Crosstalk is measured at 170 MHz with a −1.0 dBFS analog input on one channel and no input on the adjacent channel.
6
Measured with the circuit shown in Figure 115.
1
2
Rev. E | Page 8 of 105
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
dBFS
Data Sheet
AD9680
DIGITAL SPECIFICATIONS
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR = 1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified
maximum sampling rate for each speed grade, AIN = −1.0 dBFS, clock divider = 2, default SPI settings, TA = 25°C, unless otherwise noted.
Table 3.
Parameter
CLOCK INPUTS (CLK+, CLK−)
Logic Compliance
Differential Input Voltage
Input Common-Mode Voltage
Input Resistance (Differential)
Input Capacitance
SYSREF INPUTS (SYSREF+, SYSREF−)
Logic Compliance
Differential Input Voltage
Input Common-Mode Voltage
Input Resistance (Differential)
Input Capacitance (Differential)
LOGIC INPUTS (SDI, SCLK, CSB, PDWN/STBY)
Logic Compliance
Logic 1 Voltage
Logic 0 Voltage
Input Resistance
LOGIC OUTPUT (SDIO)
Logic Compliance
Logic 1 Voltage (IOH = 800 µA)
Logic 0 Voltage (IOL = 50 µA)
SYNCIN INPUT (SYNCINB+/SYNCINB−)
Logic Compliance
Differential Input Voltage
Input Common-Mode Voltage
Input Resistance (Differential)
Input Capacitance
LOGIC OUTPUTS (FD_A, FD_B)
Logic Compliance
Logic 1 Voltage
Logic 0 Voltage
Input Resistance
DIGITAL OUTPUTS (SERDOUTx±, x = 0 TO 3)
Logic Compliance
Differential Output Voltage
Output Common-Mode Voltage (VCM)
AC-Coupled
Short-Circuit Current (IDSHORT)
Differential Return Loss (RLDIFF) 1
Common-Mode Return Loss (RLCM)1
Differential Termination Impedance
1
Temperature
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Min
600
Typ
LVDS/LVPECL
1200
0.85
35
Max
Unit
1800
mV p-p
V
kΩ
pF
2.5
400
0.6
LVDS/LVPECL
1200
0.85
35
1800
2.0
2.5
mV p-p
V
kΩ
pF
CMOS
0.8 × SPIVDD
0
0.5
30
V
V
kΩ
CMOS
0.8 × SPIVDD
0
400
0.6
0.5
LVDS/LVPECL/CMOS
1200
0.85
35
1800
2.0
2.5
V
V
mV p-p
V
kΩ
pF
CMOS
0.8 × SPIVDD
0
0.5
V
V
kΩ
30
Full
Full
360
770
mV p-p
25°C
25°C
25°C
25°C
Full
0
−100
8
6
80
1.8
+100
V
mA
dB
dB
Ω
Differential and common-mode return loss are measured from 100 MHz to 0.75 × baud rate.
Rev. E | Page 9 of 105
CML
100
120
AD9680
Data Sheet
SWITCHING SPECIFICATIONS
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, AVDD1_SR = 1.25 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified
maximum sampling rate for each speed grade, AIN = −1.0 dBFS, default SPI settings, TA = 25°C, unless otherwise noted.
Table 4.
Parameter
CLOCK
Clock Rate (at
CLK+/CLK− Pins)
Maximum Sample Rate 1
Minimum Sample Rate 2
Clock Pulse Width High
Clock Pulse Width Low
OUTPUT PARAMETERS
Unit Interval (UI) 3
Rise Time (tR) (20% to
80% into 100 Ω Load)
Fall Time (tF) (20% to 80%
into 100 Ω Load)
PLL Lock Time
Data Rate per Channel
(NRZ) 4
LATENCY 5
Pipeline Latency
Fast Detect Latency
Wake-Up Time 6
Standby
Power-Down
APERTURE
Aperture Delay (tA)
Aperture Uncertainty
(Jitter, tJ)
Out-of-Range Recovery
Time
Temp
AD9680-500
Min
Typ Max
Min
Full
0.3
0.3
Full
Full
Full
Full
500
300
1000
1000
Full
25°C
80
24
200
32
80
24
121.95
32
80
24
100
32
80
24
80
32
ps
ps
25°C
24
32
24
32
24
32
24
32
ps
25°C
25°C
3.125
2
5
3.125
2
8.2
3.125
2
10
3.1215
2
12.5
Full
4
AD9680-820
Typ
Max
4
820
300
609.7
609.7
12.5
55
Full
AD9680-1000
Min
Typ Max
AD9680-1250
Min
Typ Max
Unit
0.3
0.3
GHz
4
1000
300
500
500
12.5
55
28
1250
300
400
400
12.5
55
28
1
4
MSPS
MSPS
ps
ps
12.5
55
28
1
Full
Full
530
55
530
55
530
55
530
55
ps
fS rms
Full
1
1
1
1
Clock
cycles
4
The maximum sample rate is the clock rate after the divider.
The minimum sample rate operates at 300 MSPS with L = 2 or L = 1.
3
Baud rate = 1/UI. A subset of this range can be supported.
4
Default L = 4. This number can be changed based on the sample rate and decimation ratio.
5
No DDCs used. L = 4, M = 2, F = 1.
6
Wake-up time is defined as the time required to return to normal operation from power-down mode.
1
2
Rev. E | Page 10 of 105
1
Clock
cycles
Clock
cycles
25°C
25°C
4
1
28
ms
Gbps
4
4
ms
ms
Data Sheet
AD9680
TIMING SPECIFICATIONS
Table 5.
Parameter
CLK+ to SYSREF+ TIMING REQUIREMENTS
tSU_SR
tH_SR
SPI TIMING REQUIREMENTS
tDS
tDH
tCLK
tS
tH
tHIGH
tLOW
tACCESS
Test Conditions/Comments
See Figure 3
Device clock to SYSREF+ setup time
Device clock to SYSREF+ hold time
See Figure 4
Setup time between the data and the rising edge of SCLK
Hold time between the data and the rising edge of SCLK
Period of the SCLK
Setup time between CSB and SCLK
Hold time between CSB and SCLK
Minimum period that SCLK must be in a logic high state
Minimum period that SCLK must be in a logic low state
Maximum time delay between falling edge of SCLK and output
data valid for a read operation
Time required for the SDIO pin to switch from an output to an
input relative to the SCLK rising edge (not shown in Figure 4)
tDIS_SDIO
Min
Typ
Max
Unit
117
−96
ps
ps
6
ns
ns
ns
ns
ns
ns
ns
ns
2
2
40
2
2
10
10
10
10
ns
Timing Diagrams
APERTURE
DELAY
ANALOG
INPUT
SIGNAL
SAMPLE N
N – 54
N+1
N – 55
N – 53
N – 52
N–1
N – 51
CLK–
CLK+
CLK–
CLK+
SERDOUT0–
A
B
C
D
E
F
G
H
I
J
A
B
C
D
E
F
G
H
I
J
A
B
C
D
E
F
G
H
I
J
CONVERTER0 MSB
A
B
C
D
E
F
G
H
I
J
A
B
C
D
E
F
G
H
I
J
A
B
C
D
E
F
G
H
I
J
CONVERTER0 LSB
A
B
C
D
E
F
G
H
I
J
A
B
C
D
E
F
G
H
I
J
A
B
C
D
E
F
G
H
I
J
CONVERTER1 MSB
A
B
C
D
E
F
G
H
I
J
A
B
C
D
E
F
G
H
I
J
A
B
C
D
E
F
G
H
I
J
CONVERTER1 LSB
SERDOUT0+
SERDOUT1–
SERDOUT1+
SERDOUT2–
SERDOUT2+
SERDOUT3–
SAMPLE N – 55
ENCODED INTO 1
8-BIT/10-BIT SYMBOL
SAMPLE N – 54
ENCODED INTO 1
8-BIT/10-BIT SYMBOL
SAMPLE N – 53
ENCODED INTO 1
8-BIT/10-BIT SYMBOL
Figure 2. Data Output Timing (Full Bandwidth Mode; L = 4; M = 2; F = 1)
Rev. E | Page 11 of 105
11752-002
SERDOUT3+
AD9680
Data Sheet
CLK–
CLK+
tH_SR
tSU_SR
11752-003
SYSREF–
SYSREF+
Figure 3. SYSREF± Setup and Hold Timing
tHIGH
tDS
tS
tCLK
tDH
tACCESS
tH
tLOW
CSB
SDIO DON’T CARE
DON’T CARE
R/W
A14
A13
A12
A11
A10
A9
A8
A7
D7
Figure 4. Serial Port Interface Timing Diagram
Rev. E | Page 12 of 105
D6
D3
D2
D1
D0
DON’T CARE
11752-004
SCLK DON’T CARE
Data Sheet
AD9680
ABSOLUTE MAXIMUM RATINGS
THERMAL CHARACTERISTICS
Table 6.
Parameter
Electrical
AVDD1 to AGND
AVDD1_SR to AGND
AVDD2 to AGND
AVDD3 to AGND
DVDD to DGND
DRVDD to DRGND
SPIVDD to AGND
AGND to DRGND
VIN±x to AGND
SCLK, SDIO, CSB to AGND
PDWN/STBY to AGND
Operating Temperature Range
Junction Temperature Range
Storage Temperature Range (Ambient)
Rating
1.32 V
1.32 V
2.75 V
3.63 V
1.32 V
1.32 V
3.63 V
−0.3 V to +0.3 V
3.2 V
−0.3 V to SPIVDD + 0.3 V
−0.3 V to SPIVDD + 0.3 V
−40°C to +85°C
−40°C to +125°C
−65°C to +150°C
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
Typical θJA, θJB, and θJC are specified vs. the number of printed
circuit board (PCB) layers in different airflow velocities (in m/sec).
Airflow increases heat dissipation effectively reducing θJA and
θJB. In addition, metal in direct contact with the package leads
and exposed pad from metal traces, through holes, ground, and
power planes, reduces θJA. Thermal performance for actual
applications requires careful inspection of the conditions in
an application. The use of appropriate thermal management
techniques is recommended to ensure that the maximum junction
temperature does not exceed the limits shown in Table 6.
Table 7. Thermal Resistance Values
PCB Type
JEDEC
2s2p Board
Airflow
Velocity
(m/sec)
0.0
1.0
2.5
θJA
17.81, 2
15.61, 2
15.01, 2
ΨJB
6.31, 3
5.91, 3
5.71, 3
θJC_TOP
4.71, 4
N/A5
N/A5
θJC_BOT
1.21, 4
Per JEDEC 51-7, plus JEDEC 51-5 2s2p test board.
Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).
3
Per JEDEC JESD51-8 (still air).
4
Per MIL-STD 883, Method 1012.1.
5
N/A means not applicable.
1
2
ESD CAUTION
Rev. E | Page 13 of 105
Unit
°C/W
°C/W
°C/W
AD9680
Data Sheet
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
AVDD1
AVDD2
AVDD2
AVDD1
AGND
SYSREF–
SYSREF+
AVDD1_SR
AGND
AVDD1
CLK–
CLK+
AVDD1
AVDD2
AVDD2
AVDD1
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
AD9680
TOP VIEW
(Not to Scale)
AVDD1
AVDD1
AVDD2
AVDD3
VIN–B
VIN+B
AVDD3
AVDD2
AVDD2
AVDD2
SPIVDD
CSB
SCLK
SDIO
DVDD
DGND
NOTES
1. EXPOSED PAD. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE
PACKAGE PROVIDES THE GROUND REFENCE FOR AVDDx. THIS EXPOSED
PAD MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.
11752-005
FD_A
DRGND
DRVDD
SYNCINB–
SYNCINB+
SERDOUT0–
SERDOUT0+
SERDOUT1–
SERDOUT1+
SERDOUT2–
SERDOUT2+
SERDOUT3–
SERDOUT3+
DRVDD
DRGND
FD_B
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
AVDD1
AVDD1
AVDD2
AVDD3
VIN–A
VIN+A
AVDD3
AVDD2
AVDD2
AVDD2
AVDD2
V_1P0
SPIVDD
PDWN/STBY
DVDD
DGND
Figure 5. Pin Configuration (Top View)
Table 8. Pin Function Descriptions
Pin No.
Power Supplies
0
Mnemonic
Type
Description
EPAD
Ground
1, 2, 47, 48, 49, 52, 55, 61, 64
3, 8, 9, 10, 11, 39, 40, 41,
46, 50, 51, 62, 63
4, 7, 42, 45
13, 38
15, 34
16, 33
18, 31
19, 30
56, 60
57
Analog
5, 6
12
AVDD1
AVDD2
Supply
Supply
Exposed Pad. The exposed thermal pad on the bottom of the
package provides the ground reference for AVDDx. This
exposed pad must be connected to ground for proper
operation.
Analog Power Supply (1.25 V Nominal).
Analog Power Supply (2.5 V Nominal).
AVDD3
SPIVDD
DVDD
DGND
DRGND
DRVDD
AGND1
AVDD1_SR 1
Supply
Supply
Supply
Ground
Ground
Supply
Ground
Supply
Analog Power Supply (3.3 V Nominal).
Digital Power Supply for SPI (1.8 V to 3.3 V).
Digital Power Supply (1.25 V Nominal).
Ground Reference for DVDD.
Ground Reference for DRVDD.
Digital Driver Power Supply (1.25 V Nominal).
Ground Reference for SYSREF±.
Analog Power Supply for SYSREF± (1.25 V Nominal).
VIN−A, VIN+A
V_1P0
Input
Input/DNC
VIN−B, VIN+B
CLK+, CLK−
Input
Input
ADC A Analog Input Complement/True.
1.0 V Reference Voltage Input/Do Not Connect. This pin is
configurable through the SPI as a no connect or an input. Do
not connect this pin if using the internal reference. Requires a
1.0 V reference voltage input if using an external voltage
reference source.
ADC B Analog Input Complement/True.
Clock Input True/Complement.
44, 43
53, 54
Rev. E | Page 14 of 105
Data Sheet
Pin No.
CMOS Outputs
17, 32
Digital Inputs
20, 21
58, 59
Data Outputs
22, 23
24, 25
26, 27
28, 29
Device Under Test (DUT)
Controls
14
35
36
37
1
AD9680
Mnemonic
Type
Description
FD_A, FD_B
Output
Fast Detect Outputs for Channel A and Channel B.
SYNCINB−, SYNCINB+
SYSREF+, SYSREF−
Input
Input
Active Low JESD204B LVDS Sync Input True/Complement.
Active High JESD204B LVDS System Reference Input
True/Complement.
SERDOUT0−, SERDOUT0+
SERDOUT1−, SERDOUT1+
SERDOUT2−, SERDOUT2+
SERDOUT3−, SERDOUT3+
Output
Output
Output
Output
Lane 0 Output Data Complement/True.
Lane 1 Output Data Complement/True.
Lane 2 Output Data Complement/True.
Lane 3 Output Data Complement/True.
PDWN/STBY
Input
SDIO
SCLK
CSB
Input/Output
Input
Input
Power-Down Input (Active High). The operation of this pin
depends on the SPI mode and can be configured as powerdown or standby. Requires an external 10 kΩ pull-down resistor.
SPI Serial Data Input/Output.
SPI Serial Clock.
SPI Chip Select (Active Low).
To ensure proper ADC operation, connect AVDD1_SR and AGND separately from the AVDD1 and EPAD connection. For more information, see the Applications
Information section.
Rev. E | Page 15 of 105
AD9680
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
AD9680-1250
AVDD1 = 1.25 V, AVDD1_SR = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, 1.58 V p-p
full-scale differential input, AIN = −1.0 dBFS, default SPI settings, clock divider = 2, TA = 25°C, 128k FFT sample, unless otherwise noted.
See Table 10 for recommended settings.
AIN = –1dBFS
SNR = 64dBFS
ENOB = 10.3 BITS
SFDR = 82dBFS
BUFFER CURRENT = 3.5×
–10
–30
AMPLITUDE (dBFS)
–50
–70
–90
–50
–70
–90
0
78.125
156.250 234.375 312.500 390.625 468.750 546.875 625.000
FREQUENCY (MHz)
–130
11752-606
–130
0
AIN = –1dBFS
SNR = 60.9dBFS
ENOB = 9.8 BITS
SFDR = 74dBFS
BUFFER CURRENT = 5.5×
–10
–30
AMPLITUDE (dBFS)
AMPLITUDE (dBFS)
Figure 9. Single-Tone FFT with fIN = 450.3 MHz
AIN = –1dBFS
SNR = 63.4dBFS
ENOB = 10.2 BITS
SFDR = 79dBFS
BUFFER CURRENT = 3.5×
–30
156.250 234.375 312.500 390.625 468.750 546.875 625.000
FREQUENCY (MHz)
Figure 6. Single-Tone FFT with fIN = 10.3 MHz
–10
78.125
11752-609
–110
–110
–50
–70
–90
–110
–50
–70
–90
–110
0
78.125
156.250 234.375 312.500 390.625 468.750 546.875 625.000
FREQUENCY (MHz)
–130
11752-607
–130
0
78.125
156.250 234.375 312.500 390.625 468.750 546.875 625.000
FREQUENCY (MHz)
Figure 7. Single-Tone FFT with fIN = 170.3 MHz
11752-610
AMPLITUDE (dBFS)
–30
AIN = –1dBFS
SNR = 62.5dBFS
ENOB = 9.9 BITS
SFDR = 70dBFS
BUFFER CURRENT = 3.5×
–10
Figure 10. Single-Tone FFT with fIN = 765.3 MHz
0
AIN = –1dBFS
SNR = 62.8dBFS
ENOB = 10.1 BITS
SFDR = 76dBFS
BUFFER CURRENT = 3.5×
–10
AMPLITUDE (dBFS)
–20
–50
–70
–90
–40
–60
–80
–130
0
78.125
156.250 234.375 312.500 390.625 468.750 546.875 625.000
FREQUENCY (MHz)
–120
Figure 8. Single-Tone FFT with fIN = 340.3 MHz
0
78.125
156.250 234.375 312.500 390.625 468.750 546.875 625.000
FREQUENCY (MHz)
Figure 11. Single-Tone FFT with fIN = 985.3 MHz
Rev. E | Page 16 of 105
11752-611
–100
–110
11752-608
AMPLITUDE (dBFS)
–30
AIN = –1dBFS
SNR = 59.7dBFS
ENOB = 9.6 BITS
SFDR = 74dBFS
BUFFER CURRENT = 5.5×
Data Sheet
AD9680
0
85
AIN = –1dBFS
SNR = 58.5dBFS
ENOB = 9.3 BITS
SFDR = 68dBFS
BUFFER CURRENT = 5.5×
80
–40
SNR/SFDR (dBFS)
AMPLITUDE (dBFS)
–20
–60
–80
SFDR
75
70
65
–100
0
78.125
156.250 234.375 312.500 390.625 468.750 546.875 625.000
FREQUENCY (MHz)
60
11752-612
–120
Figure 12. Single-Tone FFT with fIN = 1205.3 MHz
1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 1260
SAMPLE RATE (MHz)
Figure 15. SNR/SFDR vs. fS, fIN = 170.3 MHz; Buffer Control 1 (0x018) = 3.5×
85
0
AIN = –1dBFS
SNR = 56.6dBFS
ENOB = 9.0 BITS
SFDR = 67dBFS
BUFFER CURRENT = 7.5×
3.5× SNR (dBFS)
3.5× SFDR (dBFS)
4.5× SNR (dBFS)
4.5× SFDR (dBFS)
80
SNR/SFDR (dBFS)
–40
–60
–80
75
70
0
78.125
156.250 234.375 312.500 390.625 468.750 546.875 625.000
FREQUENCY (MHz)
60
10.3
11752-613
–120
147.3
212.3
290.3
355.3
433.3
511.3
589.3
667.3
INPUT FREQUENCY (MHz)
Figure 13. Single-Tone FFT with fIN = 1602.3 MHz
11752-616
65
–100
Figure 16. SNR/SFDR vs. fIN; fIN < 700 MHz;
Buffer Control 1 (0x018) = 3.5× and 4.5×
80
0
AIN = –1dBFS
SNR = 55.4dBFS
ENOB = 8.8 BITS
SFDR = 63dBFS
BUFFER CURRENT = 8.5×
–20
75
SNR/SFDR (dBFS)
–40
–60
–80
SFDR
70
65
SNR
60
–120
0
78.125
156.250 234.375 312.500 390.625 468.750 546.875 625.000
FREQUENCY (MHz)
11752-614
–100
55
628.3
706.6
784.3
862.3 940.3 1018.3 1096.3 1174.3 1252.3
INPUT FREQUENCY (MHz)
Figure 17. SNR/SFDR vs. fIN; 650 MHz < fIN < 1.3 GHz;
Buffer Control 1 (0x018) = 6.5×
Figure 14. Single-Tone FFT with fIN = 1954.3 MHz
Rev. E | Page 17 of 105
11752-617
AMPLITUDE (dBFS)
–20
AMPLITUDE (dBFS)
11752-615
SNR
AD9680
Data Sheet
0
80
–20
SFDR/IMD3 (dBc AND dBFS)
SNR/SFDR (dBFS)
75
IMD3 (dBc)
IMD3 (dBFS)
SFDR (dBFS)
SFDR (dBc)
70
SFDR
65
60
SNR
55
–40
–60
–80
1356.3
1460.3
1564.3
1668.3
177.23
1876.3
1980.3
INPUT FREQUENCY (MHz)
–120
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6
0
INPUT AMPLITUDE (dBFS)
Figure 21. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with
fIN1 = 184 MHz and fIN2 = 187 MHz
Figure 18. SNR/SFDR vs. fIN; 1.3 GHz < fIN < 2GHz;
Buffer Control 1 (0x018) = 8.5×
0
0
AIN1 AND AIN2 = –7dBFS
SFDR = 82dBFS
IMD2 = 84dBFS
IMD3 = 82dBFS
BUFFER CURRENT = 3.5×
IMD3 (dBc)
IMD3 (dBFS)
SFDR (dBFS)
SFDR (dBc)
–20
SFDR/IMD3 (dBc AND dBFS)
–40
–60
–80
–100
–40
–60
–80
–100
0
78.125
156.250 234.375 312.500 390.625 468.750 546.875 625.000
FREQUENCY (MHz)
–140
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6
11752-095
–120
0
INPUT AMPLITUDE (dBFS)
11752-623
–120
Figure 22. Two-Tone IMD3/SFDR vs. Input Amplitude (AIN) with
fIN1 = 449 MHz and fIN2 = 452 MHz
Figure 19. Two-Tone FFT; fIN1 = 184 MHz, fIN2 = 187 MHz
120
0
AIN1 AND AIN2 = –7dBFS
SFDR = 78dBFS
IMD2 = 78dBFS
IMD3 = 78dBFS
BUFFER CURRENT = 5.5×
–20
100
80
SNR/SFDR (dB)
–40
–60
60
40
20
–80
0
–100
SNR (dBFS)
SNR (dBc)
SFDR (dBc)
SFDR (dBFS)
–120
0
78.125
156.250 234.375 312.500 390.625 468.750 546.875 625.000
FREQUENCY (MHz)
11752-096
–20
Figure 20. Two-Tone FFT; fIN1 = 449 MHz, fIN2 = 452 MHz
–40
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6
0
INPUT AMPLITUDE (dBFS)
Figure 23. SNR/SFDR vs. Analog Input Level, fIN = 170.3 MHz
Rev. E | Page 18 of 105
11752-624
AMPLITUDE (dBFS)
–20
AMPLITUDE (dBFS)
11752-622
50
1252.3
11752-618
–100
Data Sheet
AD9680
1200000
85
3.45 LSB rms
SFDR
1000000
NUMBER OF HITS
SNR/SFDR (dBFS)
80
75
70
65
800000
600000
400000
SNR
60
12 22 32 42 52 62 72 82 92 102 112
TEMPERATURE (°C)
0
11752-628
2
11752-625
55
–48 –38 –28 –18 –8
N – 10
N–9
N–8
N–7
N–6
N–5
N–4
N–3
N–2
N–1
N
N+1
N+2
N+3
N+4
N+5
N+6
N+7
N+8
N+9
N + 10
200000
CODE
Figure 24. SNR/SFDR vs. Temperature, fIN = 170.3 MHz
Figure 27. Input-Referred Noise Histogram
4
4.00
3
3.95
3.90
2
3.85
POWER (W)
INL (LSB)
1
0
–1
3.80
3.75
3.70
–2
3.65
–3
0
2000
4000
6000
8000
10000
12000
14000
16000
OUTPUT CODE
3.55
–48 –38 –28 –18 –8
11752-626
–4
Figure 25. INL, fIN = 10.3 MHz
12
22
32
42
52
62
72
82
Figure 28. Power Dissipation vs. Temperature
0.4
4.0
0.3
3.9
POWER DISSIPATION (W)
0.2
0.1
0
–0.1
–0.2
3.8
3.7
3.6
3.5
–0.4
0
2000
4000
6000
8000
10000
12000
OUTPUT CODE
14000
16000
Figure 26. DNL, fIN = 15 MHz
3.3
1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 1260
SAMPLE RATE (MHz)
Figure 29. Power Dissipation vs. fS
Rev. E | Page 19 of 105
11752-630
3.4
–0.3
11752-627
DNL (LSB)
2
TEMPERATURE (°C)
11752-629
3.60
AD9680
Data Sheet
AD9680-1000
AVDD1 = 1.25 V, AVDD1_SR = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, 1.7 V p-p
full-scale differential input, AIN = −1.0 dBFS, default SPI settings, clock divider = 2, TA = 25°C, 128k FFT sample, unless otherwise noted.
See Table 10 for recommended settings.
AIN = –1dBFS
SNR = 67.2dBFS
ENOB = 10.8 BITS
SFDR = 88dBFS
BUFFER CONTROL 1 = 1.5×
–10
–30
AMPLITUDE (dBFS)
–50
–70
–90
–50
–70
–90
–110
–110
0
100
200
300
400
500
FREQUENCY (MHz)
–130
11752-100
–130
100
0
Figure 30. Single-Tone FFT with fIN = 10.3 MHz
400
500
AIN = –1dBFS
SNR = 62.6dBFS
ENOB = 10.1 BITS
SFDR = 82dBFS
BUFFER CONTROL 1 = 6.0×
AMPLITUDE (dBFS)
AMPLITUDE (dBFS)
–30
300
Figure 33. Single-Tone FFT with fIN = 450.3 MHz
AIN = –1dBFS
SNR = 66.6dBFS
ENOB = 10.7 BITS
SFDR = 85dBFS
BUFFER CONTROL 1 = 3.0×
–10
200
FREQUENCY (MHz)
11752-103
AMPLITUDE (dBFS)
–30
AIN = –1dBFS
SNR = 64.0dBFS
ENOB = 10.3 BITS
SFDR = 82dBFS
BUFFER CONTROL 1 = 3.0×
–10
–50
–70
–90
0
100
200
300
400
500
FREQUENCY (MHz)
0
0
400
500
AIN = –1dBFS
SNR = 60.5dBFS
ENOB = 9.9 BITS
SFDR = 80dBFS
BUFFER CONTROL 1 = 6.0×
AMPLITUDE (dBFS)
–20
–50
–70
–90
–40
–60
–80
–130
0
100
200
300
400
FREQUENCY (MHz)
500
Figure 32. Single-Tone FFT with fIN = 340.3 MHz
–120
0
100
200
300
400
FREQUENCY (MHz)
Figure 35. Single-Tone FFT with fIN = 985.3 MHz
Rev. E | Page 20 of 105
500
11752-105
–100
–110
11752-102
AMPLITUDE (dBFS)
300
Figure 34. Single-Tone FFT with fIN = 765.3 MHz
AIN = –1dBFS
SNR = 65.3dBFS
ENOB = 10.5 BITS
SFDR = 85dBFS
BUFFER CONTROL 1 = 3.0×
–30
200
FREQUENCY (MHz)
Figure 31. Single-Tone FFT with fIN = 170.3 MHz
–10
100
11752-104
–130
11752-101
–110
Data Sheet
AD9680
90
0
85
SFDR (dBFS)
–40
SNR/SFDR (dBFS)
AMPLITUDE (dBFS)
AIN = –1dBFS
SNR = 59.8BFS
ENOB = 9.6 BITS
–20 SFDR = 79dBFS
BUFFER CONTROL 1 = 8.0×
–60
–80
80
75
70
SNR (dBFS)
–100
0
100
200
300
400
500
FREQUENCY (MHz)
60
700
750
800
850
900
950
1000
1050
11752-201
–120
11752-107
65
1100
SAMPLE RATE (MHz)
Figure 36. Single-Tone FFT with fIN = 1293.3 MHz
Figure 39. SNR/SFDR vs. fS, fIN = 170.3 MHz; Buffer Control 1 (0x018) = 3.0×
0
90
85
80
–40
SNR/SFDR (dBFS)
AMPLITUDE (dBFS)
AIN = –1dBFS
SNR = 57.7dBFS
ENOB = 9.2 BITS
–20 SFDR = 70dBFS
BUFFER CONTROL 1 = 8.0×
–60
–80
75
70
65
55
1.5× SFDR (dBFS)
1.5× SNR (dBFS)
3.0× SFDR (dBFS)
3.0× SNR (dBFS)
0
100
200
300
400
500
FREQUENCY (MHz)
11752-108
–120
50
10.3
63.3
ANALOG INPUT FREQUENCY (MHz)
Figure 40. SNR/SFDR vs. fIN; fIN < 500 MHz;
Buffer Control 1 (0x018) = 1.5× and 3.0×
Figure 37. Single-Tone FFT with fIN = 1725.3 MHz
100
0
AIN = –1dBFS
SNR = 57.0dBFS
ENOB = 9.1 BITS
SFDR = 69dBFS
BUFFER CURRENT = 6.0×
90
SNR/SFDR (dBFS)
–20
–40
–60
–80
80
70
60
–120
0
100
200
300
FREQUENCY (MHz)
400
500
50
476.8
4.0× SFDR
4.0× SNRFS
6.0× SFDR
6.0× SNRFS
554.4
593.2
670.8
748.4
826.0
903.6
981.2
ANALOG INPUT FREQUENCY (MHz)
Figure 41. SNR/SFDR vs. fIN; 500 MHz < fIN < 1 GHz;
Buffer Control 1 (0x018) = 4.0× and 6.0×
Figure 38. Single-Tone FFT with fIN = 1950.3 MHz
Rev. E | Page 21 of 105
11752-218
–100
11752-506
AMPLITUDE (dBFS)
100.3 170.3 225.3 302.3 341.3 403.3 453.3 502.3
11752-216
60
–100
AD9680
Data Sheet
100
0
–20
AMPLITUDE (dBFS)
90
80
SFDR
70
–40
–60
–80
SNR
60
50
978.5
1142.4
1065.0
1220.0
1297.3
1452.2
1374.8
–120
ANALOG INPUT FREQUENCY (MHz)
0
100
200
300
Figure 42. SNR/SFDR vs. fIN; 1 GHz < fIN < 1.5 GHz;
Buffer Control 1 (0x018) = 6.0×
500
Figure 45. Two-Tone FFT; fIN1 = 338 MHz, fIN2 = 341 MHz
100
20
SFDR (dBc)
SFDR (dBFS)
IMD3 (dBc)
IMD3 (dBFS)
0
SFDR/IMD3 (dBc AND dBFS)
90
80
SFDR
70
60
SNR
1607.4
1701.6
–40
–60
–80
–100
–120
11752-220
50
1513.3
–20
1889.7
1795.6
ANALOG INPUT FREQUENCY (MHz)
–140
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6
INPUT AMPLITUDE (dBFS)
Figure 43. SNR/SFDR vs. fIN; 1.5 GHz < fIN < 2 GHz;
Buffer Control 1 (0x018) = 7.5×
Figure 46. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with
fIN1 = 184 MHz and fIN2 = 187 MHz
0
SFDR (dBc)
SFDR (dBFS)
IMD3 (dBc)
IMD3 (dBFS)
SNR/SFDR (dBc AND dBFS)
0
–40
–60
–80
–20
–40
–60
–80
–100
–100
0
100
200
300
400
FREQUENCY (MHz)
500
–140
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6
INPUT AMPLITUDE (dBFS)
Figure 44. Two-Tone FFT; fIN1 = 184 MHz, fIN2 = 187 MHz
Figure 47. Two-Tone IMD3/SFDR vs. Input Amplitude (AIN) with
fIN1 = 338 MHz and fIN2 = 341 MHz
Rev. E | Page 22 of 105
11752-208
–120
–120
11752-205
AMPLITUDE (dBFS)
20
AIN1 AND AIN2 = –7dBFS
SFDR = 87dBFS
IMD2 = 93dBFS
IMD3 = 87dBFS
BUFFER CONTROL 1 = 3.0×
–20
11752-207
SNR/SFDR (dBFS)
400
FREQUENCY (MHz)
11752-206
–100
11752-219
SNR/SFDR (dBFS)
AIN1 AND AIN2 = –7dBFS
SFDR = 88dBFS
IMD2 = 93dBFS
IMD3 = 88dBFS
BUFFER CONTROL 1 = 4.5×
Data Sheet
AD9680
3
110
100
90
2
80
1
60
INL (LSB)
SNR/SFDR (dB)
70
50
40
0
30
–1
20
10
0
INPUT AMPLITUDE (dBFS)
–3
11752-209
–20
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12 –6
0
2000
6000
8000
10000 12000 14000 16000
OUTPUT CODE
Figure 48. SNR/SFDR vs. Analog Input Level, fIN = 170.3 MHz
Figure 50. INL, fIN = 10.3 MHz
0.6
100
0.4
90
SFDR
0.2
70
DNL (LSB)
80
SNR
0
–0.2
60
50
–50 –40 –30 –20 –10
0
10
20
30
40
50
60
70
80
TEMPERATURE (°C)
90
–0.6
0
2000
4000
6000
8000
10000 12000 14000 16000
OUTPUT CODE
Figure 49. SNR/SFDR vs. Temperature, fIN = 170.3 MHz
Figure 51. DNL, fIN = 15 MHz
Rev. E | Page 23 of 105
11752-212
–0.4
11752-210
SNR/SFDR (dBFS)
4000
11752-211
–2
SFDR (dBFS)
SFDR (dBc)
SNR (dBFS)
SNR (dBc)
0
–10
AD9680
Data Sheet
3.40
25000
L = 4, M = 2, F = 1
2.63 LSB rms
3.35
3.30
POWER DISSIPATION (W)
NUMBER OF HITS
20000
15000
10000
3.25
3.20
3.15
3.10
3.05
3.00
5000
N–6 N–5 N–4 N–3 N–2 N–1
N
N+1 N+2 N+3 N+4 N+5 N+6
CODE
Figure 52. Input-Referred Noise Histogram
L=4
M=2
F=1
3.30
3.25
3.20
10
20
30
40
50
60
70
TEMPERATURE (°C)
80
90
11752-214
POWER DISSIPATION (W)
3.35
0
750
800
850
900
950
1000
SAMPLE RATE (MHz)
Figure 54. Power Dissipation vs. fS
3.40
3.15
–50 –40 –30 –20 –10
2.90
700
Figure 53. Power Dissipation vs. Temperature
Rev. E | Page 24 of 105
1050
1100
11752-215
0
11752-213
2.95
Data Sheet
AD9680
AD9680-820
AVDD1 = 1.25 V, AVDD1_SR = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, 1.7 V p-p
full-scale differential input, AIN = −1.0 dBFS, default SPI settings, clock divider = 2, TA = 25°C, 128k FFT sample, unless otherwise noted.
See Table 10 for recommended settings.
0
0
AIN = –1dBFS
SNR = 67.2dBFS
ENOB = 10.9BITS
SFDR = 89dBFS
BUFFER CONTROL 1 = 1.5×
AIN = –1dBFS
SNR = 65.1dBFS
ENOB = 10.5 BITS
SFDR = 79dBFS
BUFFER CONTROL 1 = 6.5×
–20
AMPLITUDE (dBFS)
–40
–60
–80
–40
–60
–80
0
82
164
246
FREQUENCY (MHz)
328
410
–120
11752-507
–120
0
246
328
410
Figure 58. Single-Tone FFT with fIN = 450.3 MHz
0
0
AIN = –1dBFS
SNR = 67.0dBFS
ENOB = 10.8 BITS
SFDR = 83dBFS
BUFFER CONTROL 1 = 2.0×
AIN = –1dBFS
SNR = 64.0dBFS
ENOB = 10.3 BITS
SFDR = 79dBFS
BUFFER CONTROL 1 = 6.5×
–20
AMPLITUDE (dBFS)
–20
–40
–60
–80
–40
–60
–80
–100
–100
0
82
164
246
328
410
FREQUENCY (MHz)
–120
11752-508
–120
0
82
164
246
328
410
11752-511
AMPLITUDE (dBFS)
164
FREQUENCY (MHz)
Figure 55. Single-Tone FFT with fIN = 10.3 MHz
410
FREQUENCY (MHz)
Figure 59. Single-Tone FFT with fIN = 765.3 MHz
Figure 56. Single-Tone FFT with fIN = 170.3 MHz
0
0
AIN = –1dBFS
SNR = 66.5dBFS
ENOB = 10.7 BITS
SFDR = 86dBFS
BUFFER CONTROL 1 = 3.0×
AIN = –1dBFS
SNR = 63.4dBFS
ENOB = 10.1 BITS
SFDR = 74dBFS
BUFFER CONTROL 1 = 8.5×
–20
AMPLITUDE (dBFS)
–20
–40
–60
–80
–40
–60
–80
–100
–100
–120
0
82
164
246
FREQUENCY (MHz)
328
410
11752-509
AMPLITUDE (dBFS)
82
11752-510
–100
–100
11752-512
AMPLITUDE (dBFS)
–20
Figure 57. Single-Tone FFT with fIN = 340.3 MHz
–120
0
82
164
246
328
FREQUENCY (MHz)
Figure 60. Single-Tone FFT with fIN = 985.3 MHz
Rev. E | Page 25 of 105
AD9680
Data Sheet
0
90
AIN = –1dBFS
SNR = 62.0dBFS
ENOB = 9.9 BITS
SFDR = 76dBFS
BUFFER CONTROL 1 = 6.5×
85
SFDR
80
–40
SNR/SFDR (dBFS)
AMPLITUDE (dBFS)
–20
–60
–80
75
70
SNR
65
60
–100
0
82
164
246
FREQUENCY (MHz)
328
410
50
500
550
Figure 61. Single-Tone FFT with fIN = 1205.3 MHz
650
700
750
SAMPLE RATE (MHz)
800
850
900
Figure 64. SNR/SFDR vs. fS, fIN = 170.3 MHz;
Buffer Control 1 (0x018) = 3.0×
0
95
AIN = –1dBFS
SNR = 60.5dBFS
ENOB = 9.5 BITS
SFDR = 68dBFS
BUFFER CONTROL 1 = 7.5×
–20
90
85
–40
SNR/SFDR (dBFS)
–60
–80
80
75
70
65
60
450.3
11752-517
985.3
11752-518
420.3
390.3
360.3
340.7
330.3
301.3
270.3
240.3
50
210.5
410
180.3
328
170.3
246
65.5
164
FREQUENCY (MHz)
10.3
82
11752-514
0
150.3
SFDR
SNR
55
–120
95.3
–100
125.4
AMPLITUDE (dBFS)
600
11752-516
–120
11752-513
55
ANALOG INPUT FREQUENCY (MHz)
Figure 65. SNR/SFDR vs. fIN; fIN < 450 MHz;
Buffer Control 1 (0x018) = 3.0×
Figure 62. Single-Tone FFT with fIN = 1720.3 MHz
85
0
AIN = –1dBFS
SNR = 59.7dBFS
ENOB = 9.5 BITS
SFDR = 69dBFS
BUFFER CONTROL 1 = 8.5×
80
SNR/SFDR (dBFS)
75
–40
–60
–80
70
SNR
65
60
–100
55
–120
0
82
164
246
328
FREQUENCY (MHz)
410
11752-515
AMPLITUDE (dBFS)
–20
SFDR
50
450.3
480.3
510.3
515.3
610.3
766.3
810.3
ANALOG INPUT FREQUENCY (MHz)
Figure 66. SNR/SFDR vs. fIN; 450 MHz < fIN < 1 GHz;
Buffer Control 1 (0x018) = 6.5×
Figure 63. Single-Tone FFT with fIN = 1950.3 MHz
Rev. E | Page 26 of 105
Data Sheet
AD9680
0
80
SFDR
AMPLITUDE (dBFS)
70
65
SNR
60
–40
–60
–80
–100
55
–120
1022.3
1110.3
1205.3
1315.3
1420.3
1510.3
ANALOG INPUT FREQUENCY (MHz)
11752-519
50
985.3
0
164
246
328
410
FREQUENCY (MHz)
Figure 67. SNR/SFDR vs. fIN; 1 GHz < fIN < 1.5 GHz;
Buffer Control 1 (0x018) = 6.5×
Figure 70. Two-Tone FFT; fIN1 = 338 MHz, fIN2 = 341 MHz
75
0
–20
SFDR/IMD3 (dBc AND dBFS)
70
SFDR
SNR/SFDR (dBFS)
82
11752-527
SNR/SFDR (dBFS)
AIN1 AND AIN2 = –7dBFS
SFDR = 87dBFS
IMD2 = 92dBFS
IMD3 = 87dBFS
BUFFER CURRENT = 3.0×
–20
75
65
SNR
60
55
IMD3 (dBc)
IMD3 (dBFS)
SFDR (dBc)
SFDR (dBFS)
–40
–60
–80
1600.3
1720.3
1810.3
1920.3
ANALOG INPUT FREQUENCY (MHz)
1950.3
–120
–87 –81 –75 –69 –63 –57 –51 –45 –39 –33 –27 –21 –15 –9
INPUT AMPLITUDE (dBFS)
Figure 68. SNR/SFDR vs. fIN; 1.5 GHz < fIN < 2 GHz;
Buffer Control 1 (0x018) = 8.5×
Figure 71. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with
fIN1 = 184 MHz and fIN2 = 187 MHz
0
0
AIN1 AND AIN2 = –7dBFS
SFDR = 90dBFS
IMD2 = 90dBFS
IMD3 = 91dBFS
BUFFER CURRENT = 3.0×
–20
SFDR/IMD3 (dBc AND dBFS)
–20
–40
–60
–80
–100
IMD3 (dBc)
IMD3 (dBFS)
SFDR (dBc)
SFDR (dBFS)
–40
–60
–80
–120
0
82
164
246
FREQUENCY (MHz)
328
410
–120
–87 –81 –75 –69 –63 –57 –51 –45 –39 –33 –27 –21 –15 –9
INPUT AMPLITUDE (dBFS)
Figure 72. Two-Tone IMD3/SFDR vs. Input Amplitude (AIN) with
fIN1 = 338 MHz and fIN2 = 341 MHz
Figure 69. Two-Tone FFT; fIN1 = 184 MHz, fIN2 = 187 MHz
Rev. E | Page 27 of 105
11752-535
–100
11752-529
AMPLITUDE (dBFS)
11752-528
50
1510.3
11752-520
–100
Data Sheet
120
2.5
105
2.0
90
1.5
75
1.0
INL (LSB)
60
45
30
0.5
0
–0.5
15
–1.0
SNR (dBc)
SNR (dBFS)
SFDR (dBc)
SFDR (dBFS)
–15
–1.5
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–55
–50
–60
–65
–70
–75
–80
–85
–90
–95
–30
–2.0
0
2000
4000
6000
8000 10000
OUTPUT CODE
12000
14000
16000
11752-534
0
11752-521
SNR/SFDR (dBc AND dBFS)
AD9680
INPUT AMPLITUDE (dBFS)
Figure 73. SNR/SFDR vs. Analog Input Level, fIN = 170.3 MHz
Figure 75. INL, fIN = 10.3 MHz
0.25
90
SNR (dBFS)
SFDR (dBFS)
0.20
85
0.15
DNL (LSB)
0.05
75
0
–0.05
–0.10
70
–0.15
–0.20
65
–30
–15
–5
5
15
25
TEMPERATURE (°C)
45
65
85
–0.30
0
2000
4000
6000
8000 10000
OUTPUT CODE
12000
Figure 76. DNL, fIN = 15 MHz
Figure 74. SNR/SFDR vs. Temperature, fIN = 170.3 MHz
Rev. E | Page 28 of 105
14000
16000
11752-530
–0.25
60
–45
11752-533
SNR/SFDR (dBFS)
0.10
80
Data Sheet
AD9680
3.1
1600000
2.46 LSB rms
1400000
3.0
2.9
POWER (W)
1000000
800000
600000
2.8
2.7
400000
11752-531
CODE
2.90
2.88
2.86
2.84
2.82
2.80
–15
–5
5
15
25
TEMPERATURE (°C)
45
65
85
11752-532
2.78
–30
900
875
850
825
800
775
750
725
700
650
675
625
600
575
550
SAMPLE RATE (MHz)
Figure 79. Power Dissipation vs. fS ; L = 4, M = 2, F = 1 for fS ≥ 625 MSPS and
L = 2, M = 2, F = 2 for fS < 625 MSPS (Default SPI)
Figure 77. Input-Referred Noise Histogram
2.76
–45
525
2.5
500
N – 10
N–9
N–8
N–7
N–6
N–5
N–4
N–3
N–2
N–1
N
N+1
N+2
N+3
N+4
N+5
N+6
N+7
N+8
N+9
N + 10
0
11752-522
2.6
200000
POWER (W)
NUMBER OF HITS
1200000
Figure 78. Power Dissipation vs. Temperature
Rev. E | Page 29 of 105
AD9680
Data Sheet
AD9680-500
AVDD1 = 1.25 V, AVDD1_SR = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, 2.06 V p-p
full-scale differential input, AIN = −1.0 dBFS, default SPI settings, clock divider = 2, TA = 25°C, 128k FFT sample, unless otherwise noted.
See Table 10 for recommended settings.
0
0
AIN = −1dBFS
SNR = 68.9dBFS
ENOB = 10.9 BITS
SFDR = 83dBFS
BUFFER CONTROL 1 = 2.0×
–20
–40
AMPLITUDE (dBFS)
–40
–60
–80
–60
–80
–100
–100
0
25
50
75
100
125
150
175
200
225
–140
11752-132
–140
250
FREQUENCY (MHz)
0
25
175
200
225
250
–40
AMPLITUDE (dBFS)
–60
–80
–120
–60
–80
–100
–140
0
25
50
75
100
125
150
175
200
225
250
FREQUENCY (MHz)
11752-133
–120
–140
0
75
100
125
150
175
200
225
250
Figure 84. Single-Tone FFT with fIN = 765.3 MHz
0
AIN = −1dBFS
SNR = 68.5dBFS
ENOB = 10.9 BITS
SFDR = 83dBFS
BUFFER CONTROL 1 = 4.5×
–20
50
FREQUENCY (MHz)
Figure 81. Single-Tone FFT with fIN = 170.3 MHz
0
25
11752-136
AMPLITUDE (dBFS)
150
AIN = −1dBFS
SNR = 64.7dBFS
ENOB = 10.4 BITS
SFDR = 80dBFS
BUFFER CONTROL 1 = 5.0×
–20
–100
AIN = −1dBFS
SNR = 64.0dBFS
ENOB = 10.3 BITS
SFDR = 76dBFS
BUFFER CONTROL 1 = 5.0×
–20
–40
–40
AMPLITUDE (dBFS)
AMPLITUDE (dBFS)
125
0
–40
–60
–80
–100
–120
–60
–80
–100
–120
0
25
50
75
100
125
150
175
200
225
FREQUENCY (MHz)
250
–140
11752-134
–140
100
Figure 83. Single-Tone FFT with fIN = 450.3 MHz
AIN = −1dBFS
SNR = 68.9dBFS
ENOB = 11 BITS
SFDR = 88dBFS
BUFFER CONTROL 1 = 2.0×
–20
75
FREQUENCY (MHz)
Figure 80. Single-Tone FFT with fIN = 10.3 MHz
0
50
11752-135
–120
–120
0
25
50
75
100
125
150
175
200
225
FREQUENCY (MHz)
Figure 82. Single-Tone FFT with fIN = 340.3 MHz
Figure 85. Single-Tone FFT with fIN = 985.3 MHz
Rev. E | Page 30 of 105
250
11752-137
AMPLITUDE (dBFS)
AIN = −1dBFS
SNR = 67.8dBFS
ENOB = 10.8 BITS
SFDR = 83dBFS
BUFFER CONTROL 1 = 4.5×
–20
Data Sheet
AD9680
95
0
AIN = −1dBFS
SNR = 63.0dBFS
ENOB = 10.0 BITS
SFDR = 69dBFS
BUFFER CONTROL 1 = 8.0×
90
SNR/SFDR (dBFS)
–60
–80
80
75
–100
70
–120
65
–140
0
25
50
75
100
125
150
175
200
225
250
FREQUENCY (MHz)
SNR
60
300 320 340 360 380 400 420 440 460 480 500 530 550
11752-138
AMPLITUDE (dBFS)
SFDR
85
–40
SAMPLE FREQUENCY (MHz)
Figure 86. Single-Tone FFT with fIN = 1310.3 MHz
11752-141
–20
Figure 89. SNR/SFDR vs. fS, fIN = 170.3 MHz; Buffer Control 1 = 2.0×
100
0
AIN = −1dBFS
SNR = 61.5dBFS
ENOB = 9.8 BITS
SFDR = 69dBFS
BUFFER CONTROL 1 = 8.0×
–20
90
SNR/SFDR (dBFS)
AMPLITUDE (dBFS)
–40
–60
–80
80
70
–100
60
0
25
50
75
100
125
150
175
200
225
250
FREQUENCY (MHz)
50
10.3
11752-139
–140
2.0× SNR
2.0× SFDR
4.5× SNR
4.5× SFDR
95.3
150.3
180.3
240.3
301.3
340.7
390.3
450.3
ANALOG INPUT FREQUENCY (MHz)
Figure 87. Single-Tone FFT with fIN = 1710.3 MHz
11752-142
–120
Figure 90. SNR/SFDR vs. fIN; fIN < 500 MHz;
Buffer Control 1 (0x018) = 2.0× and 4.5×
0
100
AIN = −1dBFS
SNR = 60.8dBFS
ENOB = 9.6 BITS
SFDR = 68dBFS
BUFFER CONTROL 1 = 8.0×
–20
90
SNR/SFDR (dBFS)
–60
–80
80
70
–100
60
–140
0
25
50
75
100
125
150
175
200
225
FREQUENCY (MHz)
250
50
450.3
4.0× SNR
4.0× SFDR
8.0× SNR
8.0× SFDR
480.3
510.3
515.3
610.3
765.3
810.3
985.3
ANALOG INPUT FREQUENCY (MHz)
Figure 91. SNR/SFDR vs. fIN; 500 MHz < fIN < 1 GHz;
Buffer Control 1 (0x018) = 4.0× and 8.0×
Figure 88. Single-Tone FFT with fIN = 1950.3 MHz
Rev. E | Page 31 of 105
1010.3
11752-143
–120
11752-140
AMPLITUDE (dBFS)
–40
AD9680
80
0
7.0× SNR
7.0× SFDR
8.0× SNR
8.0× SFDR
70
65
60
–40
–60
–80
–100
1205.3
1410.3
1600.3
1810.3
ANALOG INPUT FREQUENCY (MHz)
1950.3
–120
–90 –84 –78 –72 –66 –60 –54 –48 –42 –36 –30 –24 –18 –12
INPUT AMPLITUDE (dBFS)
Figure 92. SNR/SFDR vs. fIN; 1 GHz < fIN < 2 GHz;
Buffer Control 1 (0x018) = 7.0× and 8.0×
Figure 95. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with
fIN1 = 184 MHz and fIN2 = 187 MHz
0
0
AIN1 AND AIN2 = –7dBFS
SFDR = 88dBFS
IMD2 = 94dBFS
IMD3 = 88dBFS
BUFFER CONTROL 1 = 2.0×
SFDR (dBc)
SFDR (dBFS)
IMD3 (dBc)
IMD3 (dBFS)
–20
SFDR/IMD3 (dBc AND dBFS)
–20
–40
–60
–80
–40
–60
–80
0
50
100
150
FREQUENCY (MHz)
200
250
11752-146
–120
–120
–90
–72
–63
–54
–45
–36
100
90
80
SNR/SFDR (dBc AND dBFS)
–40
–60
–80
70
60
50
40
30
20
10
–100
SFDR (dBFS)
SNR (dBFS)
SFDR (dBc)
SNR (dBc)
0
–120
200
250
11752-147
–10
100
150
FREQUENCY (MHz)
–9
110
AIN1 AND AIN2 = –7dBFS
SFDR = 88dBFS
IMD2 = 88dBFS
IMD3 = 89dBFS
BUFFER CONTROL 1 = 4.5×
50
–18
Figure 96. Two-Tone IMD3/SFDR vs. Input Amplitude (AIN) with
fIN1 = 338 MHz and fIN2 = 341 MHz
0
0
–27
AMPLITUDE (dBFS)
Figure 93. Two-Tone FFT; fIN1 = 184 MHz, fIN2 = 187 MHz
–20
–81
11752-149
–100
–100
–20
–90
–80
–70
–60
–50
–40
–30
–20
–10
INPUT AMPLITUDE (dBFS)
Figure 94. Two-Tone FFT; fIN1 = 338 MHz, fIN2 = 341 MHz
Figure 97. SNR/SFDR vs. Analog Input Level, fIN = 170.3 MHz
Rev. E | Page 32 of 105
0
11752-150
AMPLITUDE (dBFS)
11752-148
50
1010.3
11752-144
55
AMPLITUDE (dBFS)
SFDR (dBc)
SFDR (dBFS)
IMD3 (dBc)
IMD3 (dBFS)
–20
SFDR/IMD3 (dBc AND dBFS)
75
SNR/SFDR (dBFS)
Data Sheet
Data Sheet
AD9680
95
900000
2.06 LSB RMS
800000
SFDR
700000
NUMBER OF HITS
SNR/SFDR (dBFS)
90
85
80
75
600000
500000
400000
300000
200000
SNR
70
10
35
60
85
TEMPERATURE (°C)
0
N – 10
N–9
N–8
N–7
N–6
N–5
N–4
N–3
N–2
N–1
N
N+1
N+2
N+3
N+4
N+5
N+6
N+7
N+8
N+9
N + 10
–15
11752-151
65
–40
OUTPUT CODE
Figure 98. SNR/SFDR vs. Temperature, fIN = 170.3 MHz
Figure 101. Input-Referred Noise Histogram
2.32
3.0
L=4
M=2
F=1
2.5
2.30
2.0
1.5
2.28
POWER (W)
INL (LSB)
11752-154
100000
1.0
0.5
0
2.26
2.24
–0.5
–1.0
2.22
0
2000
4000
6000
8000
10000
12000
14000
16000
OUTPUT CODE
2.20
–45
11752-152
–2.0
–35
–5
15
25
45
65
11752-155
–1.5
85
TEMPERATURE (°C)
Figure 99. INL, fIN = 10.3 MHz
Figure 102. Power Dissipation vs. Temperature
0.8
2.37
0.6
2.32
L = 4, M = 2, F = 1
L = 2, M = 2, F = 2
2.27
0.4
POWER (W)
DNL (LSB)
2.22
0.2
0
–0.2
2.17
2.12
2.07
2.02
–0.4
1.97
–0.6
2000
4000
6000
8000
10000
12000
OUTPUT CODE
14000
16000
1.87
300 320 340 360 380 400 420 440 460 480 500 520 540
SAMPLE RATE (MHz)
Figure 103. Power Dissipation vs. fS
Figure 100. DNL, fIN = 15 MHz
Rev. E | Page 33 of 105
11752-156
0
11752-153
1.92
–0.8
AD9680
Data Sheet
EQUIVALENT CIRCUITS
AVDD3
AVDD3
AVDD3
3pF 1.5pF
200Ω
EMPHASIS/SWING
CONTROL (SPI)
VCM
BUFFER
200Ω
67Ω
28Ω
10pF
200Ω
400Ω
DRVDD
AVDD3
AVDD3
DATA+
SERDOUTx+
x = 0, 1, 2, 3
VIN–x
DRGND
OUTPUT
DRIVER
DATA–
SERDOUTx–
x = 0, 1, 2, 3
11752-011
AIN
CONTROL
(SPI)
3pF 1.5pF
DRVDD
DRGND
11752-014
67Ω
200Ω
28Ω
VIN+x
Figure 107. Digital Outputs
Figure 104. Analog Inputs
DVDD
1kΩ
25Ω
CLK+
DGND
20kΩ
LEVEL
TRANSLATOR
25Ω
SYNCINB–
20kΩ
20kΩ
VCM = 0.85V
VCM
1kΩ
SYNCINB± PIN
CONTROL (SPI)
11752-012
CLK–
20kΩ
DVDD
AVDD1
VCM = 0.85V
11752-015
SYNCINB+
AVDD1
DGND
Figure 105. Clock Inputs
Figure 108. SYNCINB± Inputs
AVDD1_SR
1kΩ
SPIVDD
ESD
PROTECTED
20kΩ
LEVEL
TRANSLATOR
AVDD1_SR
SCLK
20kΩ
SPIVDD
1kΩ
30kΩ
1kΩ
ESD
PROTECTED
11752-013
SYSREF–
VCM = 0.85V
11752-016
SYSREF+
Figure 109. SCLK Input
Figure 106. SYSREF± Inputs
Rev. E | Page 34 of 105
Data Sheet
AD9680
SPIVDD
ESD
PROTECTED
30kΩ
1kΩ
CSB
1kΩ
PDWN/
STBY
ESD
PROTECTED
11752-017
ESD
PROTECTED
Figure 110. CSB Input
Figure 113. PDWN/STBY Input
SPIVDD
ESD
PROTECTED
AVDD2
SDO
ESD
PROTECTED
SPIVDD
1kΩ
SDIO
PDWN
CONTROL (SPI)
11752-020
ESD
PROTECTED
SPIVDD
SDI
V_1P0
30kΩ
11752-018
V_1P0 PIN
CONTROL (SPI)
Figure 111. SDIO Input
Figure 114. V_1P0 Input/Output
SPIVDD
ESD
PROTECTED
FD
JESD LMFC
FD_A/FD_B
JESD SYNC~
TEMPERATURE DIODE
(FD_A ONLY)
FD_x PIN CONTROL (SPI)
11752-019
ESD
PROTECTED
Figure 112. FD_A/FD_B Outputs
Rev. E | Page 35 of 105
11752-021
ESD
PROTECTED
ESD
PROTECTED
AD9680
Data Sheet
THEORY OF OPERATION
The AD9680 has two analog input channels and four JESD204B
output lane pairs. The ADC is designed to sample wide bandwidth
analog signals of up to 2 GHz. The AD9680 is optimized for wide
input bandwidth, high sampling rate, excellent linearity, and
low power in a small package.
The dual ADC cores feature a multistage, differential pipelined
architecture with integrated output error correction logic. Each
ADC features wide bandwidth inputs supporting a variety of
user-selectable input ranges. An integrated voltage reference
eases design considerations.
The AD9680 has several functions that simplify the AGC
function in a communications receiver. The programmable
threshold detector allows monitoring of the incoming signal
power using the fast detect output bits of the ADC. If the input
signal level exceeds the programmable threshold, the fast detect
indicator goes high. Because this threshold indicator has low
latency, the user can quickly turn down the system gain to avoid
an overrange condition at the ADC input.
The Subclass 1 JESD204B-based high speed serialized output data
lanes can be configured in one-lane (L = 1), two-lane (L = 2),
and four-lane (L = 4) configurations, depending on the sample
rate and the decimation ratio. Multiple device synchronization
is supported through the SYSREF± and SYNCINB± input pins.
ADC ARCHITECTURE
The architecture of the AD9680 consists of an input buffered
pipelined ADC. The input buffer is designed to provide a
termination impedance to the analog input signal. This
termination impedance can be changed using the SPI to meet
the termination needs of the driver/amplifier. The default
termination value is set to 400 Ω. The equivalent circuit diagram of
the analog input termination is shown in Figure 104. The input
buffer is optimized for high linearity, low noise, and low power.
The input buffer provides a linear high input impedance (for
ease of drive) and reduces kickback from the ADC. The buffer is
optimized for high linearity, low noise, and low power. The
quantized outputs from each stage are combined into a final
14-bit result in the digital correction logic. The pipelined
architecture permits the first stage to operate with a new input
sample; at the same time, the remaining stages operate with the
preceding samples. Sampling occurs on the rising edge of the clock.
ANALOG INPUT CONSIDERATIONS
The analog input to the AD9680 is a differential buffer. The
internal common-mode voltage of the buffer is 2.05 V. The
clock signal alternately switches the input circuit between
sample mode and hold mode. When the input circuit is switched
into sample mode, the signal source must be capable of charging
the sample capacitors and settling within one-half of a clock cycle.
A small resistor, in series with each input, can help reduce the peak
transient current injected from the output stage of the driving
source. In addition, low Q inductors or ferrite beads can be placed
on each leg of the input to reduce high differential capacitance at
the analog inputs and, thus, achieve the maximum bandwidth of
the ADC. Such use of low Q inductors or ferrite beads is required
when driving the converter front end at high IF frequencies.
Either a differential capacitor or two single-ended capacitors
can be placed on the inputs to provide a matching passive network.
This ultimately creates a low-pass filter at the input, which limits
unwanted broadband noise. For more information, refer to the
AN-742 Application Note, the AN-827 Application Note, and
the Analog Dialogue article “Transformer-Coupled Front-End
for Wideband A/D Converters” (Volume 39, April 2005). In
general, the precise values depend on the application.
For best dynamic performance, the source impedances driving
VIN+x and VIN−x must be matched such that common-mode
settling errors are symmetrical. These errors are reduced by the
common-mode rejection of the ADC. An internal reference
buffer creates a differential reference that defines the span of the
ADC core.
Maximum SNR performance is achieved by setting the ADC
to the largest span in a differential configuration. In the case
of the AD9680, the available span is programmable through
the SPI port from 1.46 V p-p to 2.06 V p-p differential, with
1.58 V p-p differential being the default for the AD9680-1250,
1.70 V p-p differential being the default for the AD9680-1000
and AD9680-820, and 2.06 V p-p differential being the default
for the AD9680-500.
Differential Input Configurations
There are several ways to drive the AD9680, either actively or
passively. However, optimum performance is achieved by
driving the analog input differentially.
For applications where SNR and SFDR are key parameters,
differential transformer coupling is the recommended input
configuration (see Figure 115 and Table 9) because the noise
performance of most amplifiers is not adequate to achieve the
true performance of the AD9680.
For low to midrange frequencies, a double balun or double
transformer network (see Figure 115 and Table 9) is recommended for optimum performance of the AD9680. For higher
frequencies in the second or third Nyquist zones, it is better
to remove some of the front-end passive components to ensure
wideband operation (see Figure 115 and Table 9).
Rev. E | Page 36 of 105
Data Sheet
AD9680
0.1µF
R1
R3
R2
C1
ADC
C2
R2
R1
0.1µF
0.1µF
R3
C1
11752-168
BALUN
NOTES
1. SEE TABLE 9 FOR COMPONENT VALUES.
Figure 115. Differential Transformer-Coupled Configuration for AD9680
Table 9. Differential Transformer-Coupled Input Configuration Component Values
Device
AD9680-500
Frequency Range
DC to 250 MHz
250 MHz to 2 GHz
DC to 410 MHz
410 MHz to 2 GHz
DC to 500 MHz
500 MHz to 2 GHz
DC to 625 MHz
625 MHz to 2 GHz
AD9680-820
AD9680-1000
AD9680-1250
Transformer
ETC1-1-13
BAL-0006/BAL-0006SMG
ETC1-1-13
BAL-0006/BAL-0006SMG
ETC1-1-13/BAL-0006SMG
BAL-0006/BAL-0006SMG
BAL-0006SMG
BAL-0006SMG
Input Common Mode
The analog inputs of the AD9680 are internally biased to the
common mode as shown in Figure 116. The common-mode
buffer has a limited range in that the performance suffers greatly
if the common-mode voltage drops by more than 100 mV.
Therefore, in dc-coupled applications, set the common-mode
voltage to 2.05 V, ±100 mV to ensure proper ADC operation.
The full-scale voltage setting must be at a 1.7 V p-p differential
if running in a dc-coupled application.
Analog Input Buffer Controls and SFDR Optimization
The AD9680 input buffer offers flexible controls for the analog
inputs, such as input termination, buffer current, and input fullscale adjustment. All the available controls are shown in Figure 116.
AVDD3
AVDD3
200Ω
67Ω
200Ω
28Ω
VIN+x
AVDD3
3pF 1.5pF
VCM
BUFFER
11752-169
AIN CONTROL
SPI REGISTERS
(0x008, 0x015,
0x016, 0x018,
0x019, 0x01A,
0x11A, 0x934,
0x935)
C1 (pF)
4
4
4
4
4
Open
4
Open
C2 (pF)
2
2
2
2
2
Open
2
Open
The input buffer has many registers that set the bias currents and
other settings for operation at different frequencies. These bias
currents and settings can be changed to suit the input frequency
range of operation. Register 0x018 controls the buffer bias current
to help with the kickback from the ADC core. This setting can be
scaled from a low setting of 1.0× to a high setting of 8.5×. The
default setting is 3.0× for the AD9680-1000 and AD9680-820,
and 2.0× for the AD9680-500. These settings are sufficient for
operation in the first Nyquist zone for the products. When the
input buffer current in Register 0x018 is set, the amount of
current required by the AVDD3 supply changes. This relationship
is shown in Figure 117. For a complete list of buffer current
settings, see Table 39.
VIN–x
3pF 1.5pF
R3 (Ω)
10
10
10
10
10
0
15
0
Input Buffer Control Registers (0x018, 0x019, 0x01A,
0x935, 0x934, 0x11A)
AVDD3
AVDD3
R2 (Ω)
50
50
50
50
25
25
50
50
Using the 0x018, 0x019, 0x01A, 0x11A, 0x934, and 0x935 registers,
the buffer behavior on each channel can be adjusted to optimize the
SFDR over various input frequencies and bandwidths of interest.
200Ω
67Ω
28Ω
10pF
200Ω
400Ω
R1 (Ω)
10
10
10
10
25
25
10
10
Figure 116. Analog Input Controls
Rev. E | Page 37 of 105
AD9680
Data Sheet
300
80
75
AD9680-500
150
70
65
100
3.5×
4.5×
5.5×
6.5×
7.5×
8.5×
BUFFER CONTROL 1 SETTING
Figure 117. IAVDD3 vs. Buffer Control 1 Setting in Register 0x018
The 0x019, 0x01A, 0x11A, and 0x935 registers offer secondary
bias controls for the input buffer for frequencies >500 MHz.
Register 0x934 can be used to reduce input capacitance to achieve
wider signal bandwidth but may result in slightly lower linearity
and noise performance. These register settings do not impact the
AVDD3 power as much as Register 0x018 does. For frequencies
500 MHz for the AD9680-1000). This setting enables the ADC
sampling network to optimize the sampling and settling times
internal to the ADC for high frequency operation. For frequencies
greater than 500 MHz, it is recommended to operate the ADC core
at a 1.46 V full-scale setting irrespective of the speed grade. This
setting offers better SFDR without any significant penalty in SNR.
Figure 118, Figure 119, and Figure 120 show the SFDR vs.
analog input frequency for various buffer settings for the
AD9680-1250. The recommended settings shown in Table 10
were used to take the data while changing the contents of
Register 0x018 only.
3.5×
4.5×
5.5×
6.5×
55
602.3
680.3
758.3
836.3
914.3
992.3 1070.3 1148.3 1226.3
INPUT FREQUENCY (MHz)
Figure 119. Buffer Current Sweeps, AD9680-1250 (SFDR vs. IBUFF);
600 MHz < fIN < 1300 MHz; Front-End Network Shown in Figure 115
76
74
72
70
SFDR (dBFS)
2.5×
11752-341
50
1.5×
60
11752-632
200
68
66
64
62
6.5×
7.5×
8.5×
60
58
1304.3
1408.3
1512.3
1616.3
1720.3
1824.3
1928.3
INPUT FREQUENCY (MHz)
11752-633
AD9680-1250,
AD9680-1000,
AND
AD9680-820
SFDR (dBFS)
IAVDD3 (mA)
250
Figure 120. Buffer Current Sweeps, AD9680-1250 (SFDR vs. IBUFF);
1300 MHz < fIN < 2000 MHz; Front-End Network Shown in Figure 115
Figure 121, Figure 122, and Figure 123 show the SFDR vs.
analog input frequency for various buffer settings for the
AD9680-1000. The recommended settings shown in Table 10
were used to take the data while changing the contents of
Register 0x018 only.
90
85
2.5×
3.5×
4.5×
5.5×
SFDR (dBFS)
80
75
75
70
65
70
60
60
10.3
55
50
10
147.3
212.3
290.3
355.3
433.3
511.3
589.3
667.3
INPUT FREQUENCY (MHz)
Figure 118. Buffer Current Sweeps, AD9680-1250 (SFDR vs. IBUFF);
fIN < 500 MHz; Front-End Network Shown in Figure 115
Rev. E | Page 38 of 105
1.5×
3.0×
4.5×
60
110
160
210
260
310
360
410
460
ANALOG INPUT FREQUENCY (MHz)
Figure 121. Buffer Current Sweeps, AD9680-1000 (SFDR vs. IBUFF);
fIN < 500 MHz; Front-End Network Shown in Figure 115
11752-170
65
11752-631
SFDR (dBFS)
80
85
Data Sheet
AD9680
85
Figure 125, Figure 126, and Figure 127 show the SFDR vs.
analog input frequency for various buffer settings for the
AD9680-820. The recommended settings shown in Table 10
were used to take the data while changing the contents of
Register 0x018 only.
4.0×
5.0×
6.0×
80
75
SFDR (dBFS)
70
65
95
60
90
55
85
50
SFDR (dBFS)
80
677.6
851.9
1200.5
1026.2
1374.8
ANALOG INPUT FREQUENCY (MHz)
75
70
65
Figure 122. Buffer Current Sweeps, AD9680-1000 (SFDR vs. IBUFF);
500 MHz < fIN < 1500 MHz; Front-End Network Shown in Figure 115
1.5×
2.0×
3.0×
4.5×
60
80
55
75
450.3
420.3
390.3
360.3
340.7
330.3
301.3
270.3
240.3
210.5
180.3
170.3
150.3
95.3
125.4
70
65.5
10.3
50
11752-523
40
503.4
11752-172
45
Figure 125. Buffer Current Sweeps, AD9680-820 (SFDR vs. IBUFF);
fIN < 500 MHz; Front-End Network Shown in Figure 115
60
85
55
80
50
1.65GHz
1.52GHz
1.76GHz
1.95GHz
1.9GHz
70
65
65
55
–3
1.52GHz
1.65GHz
1.76GHz
1.9GHz
1.95GHz
INPUT LEVEL (dBFS)
55
–1
11752-524
1022.3
985.3
Figure 126. Buffer Current Sweeps, AD9680-820 (SFDR vs. IBUFF);
500 MHz < fIN < 1000 MHz; Front-End Network Shown in Figure 115
60
–2
810.3
ANALOG INPUT FREQUENCY (MHz)
75
70
60
50
11752-174
SFDR (dBFS)
75
80
55
SNR (dBc)
80
3.5×
4.5×
5.5×
6.5×
7.5×
60
766.3
In certain high frequency applications, the SFDR can be improved
by reducing the full-scale setting, as shown in Table 10. At high
frequencies, the performance of the ADC core is limited by jitter.
The SFDR can be improved by backing off of the full scale level.
Figure 124 shows the SFDR and SNR vs. full-scale input level at
different high frequencies for the AD9680-1000.
65
610.3
Figure 123. Buffer Current Sweeps, AD9680-1000 (SFDR vs. IBUFF);
1500 MHz < fIN < 2000 MHz; Front-End Network Shown in Figure 115
70
515.3
1889.8
510.3
1795.6
480.3
1701.5
ANALOG INPUT FREQUENCY (MHz)
420.3
1607.4
SFDR (dBFS)
40
1513.4
75
11752-173
45
4.5×
5.5×
6.5×
7.5×
8.5×
450.3
SFDR (dBFS)
ANALOG INPUT FREQUENCY (MHz)
65
Figure 124. SNR/SFDR vs. Analog Input Level vs. Input Frequencies, AD9680-1000
Rev. E | Page 39 of 105
AD9680
Data Sheet
95
80
6.5×
7.5×
8.5×
75
90
85
SFDR (dBFS)
65
75
60
11752-525
1950.3
1920.3
1810.3
1720.3
1600.3
1510.3
1420.3
1315.3
1205.3
1110.3
1022.3
65
450.3
ANALOG INPUT FREQUENCY (MHz)
Figure 127. Buffer Current Sweeps, AD9680-820 (SFDR vs. IBUFF);
1000 MHz < fIN < 2000 MHz; Front-End Network Shown in Figure 115
Figure 128, Figure 129, and Figure 130 show the SFDR vs.
analog input frequency for various buffer settings for the
AD9680-500. The recommended settings shown in Table 10
were used to take the data while changing the contents of
Register 0x018 only.
480.3
510.3
515.3
610.3
765.3
810.3
985.3
ANALOG INPUT FREQUENCY (MHz)
Figure 129. Buffer Current Sweeps, AD9680-500 (SFDR vs. IBUFF);
450 MHz < fIN < 1000 MHz; Front-End Network Shown in Figure 115
80
75
SFDR (dBFS)
70
100
90
65
60
55
50
80
45
70
40
1010.3
4.0×
5.0×
6.0×
7.0×
8.0×
1205.3
1410.3
1600.3
1810.3
1950.3
ANALOG INPUT FREQUENCY (MHz)
60
Figure 130. Buffer Current Sweeps, AD9680-500 (SFDR vs. IBUFF);
1 GHz < fIN < 2 GHz; Front-End Network Shown in Figure 115
50
30
10.3
1.0×
1.5×
2.0×
3.0×
4.5×
95.3
150.3
180.3
240.3
301.3
340.7
390.3
ANALOG INPUT FREQUENCY (MHz)
450.3
11752-145
40
11752-175
70
55
SFDR (dBFS)
80
Figure 128. Buffer Current Sweeps, AD9680-500 (SFDR vs. IBUFF);
fIN < 500 MHz; Front-End Network Shown in Figure 115 Buffer Control 1
(0x018) = 1.0×, 1.5×, 2.0×, 3.0×, or 4.5×
Rev. E | Page 40 of 105
11752-176
SFDR (dBFS)
70
50
4.0×
5.0×
6.0×
7.0×
8.0×
Data Sheet
AD9680
Table 10. Recommended Register Settings for SFDR Optimization at Different Input Frequencies
Product
AD9680500
AD9680820
AD96801000
AD96801250
Buffer
Control 1
(0x018)—
Buffer
Current
Control
Buffer
Control 2
(0x019)—
Buffer
Bias
Setting
Buffer
Control 3
(0x01A)—
Buffer
Bias
Setting
Buffer
Control 4
(0x11A)—
High
Frequency
Setting
Buffer
Control 5
(0x935)—
Low
Frequency
Setting
0x20
(2.0×)
0x70
(4.5×)
0x80
(5.0×)
0xF0
(8.5×)
0x60
(Setting 3)
0x60
(Setting 3)
0x40
(Setting 1)
0x40
(Setting 1)
0x0A
(Setting 3)
0x0A
(Setting 3)
0x08
(Setting 1)
0x08
(Setting 1)
0x00 (off)
0x04 (on)
0x00 (off)
0x04 (on)
0x00 (off)
0x00 (off)
0x00 (off)
0x00 (off)
DC to
200 MHz
DC to
410 MHz
500 MHz to
1 GHz
1 GHz to
2 GHz
0x10
(1.5×)
0x40
(3.0×)
0x80
(5.0×)
0xF0
(8.5×)
0x40
(Setting 1)
0x40
(Setting 1)
0x40
(Setting 1)
0x40
(Setting 1)
0x09
(Setting 2)
0x09
(Setting 2)
0x08
(Setting 1)
0x08
(Setting 1)
0x00 (off)
0x04 (on)
0x00 (off)
0x04 (on)
0x00 (off)
0x00 (off)
0x00 (off)
0x00 (off)
DC to
150 MHz
0x10
(1.5×)
0x50
(Setting 2)
0x09
(Setting 2)
0x00 (off)
0x04 (on)
DC to
500 MHz
0x40
(3.0×)
0x50
(Setting 2)
0x09
(Setting 2)
0x00 (off)
500 MHz to
1 GHz
1 GHz to
2 GHz
DC to
625 MHz
>625 MHz
0xA0
(6.0×)
0xD0
(7.5×)
0x50
(3.5×)
0xA0
(6.0×)
0x60
(Setting 3)
0x70
(Setting 4)
0x50
(Setting 2)
0x50
(Setting 2)
0x09
(Setting 2)
0x09
(Setting 2)
0x09
(Setting 2)
0x09
(Setting 2)
Frequency
DC to
250 MHz
250 MHz to
500 MHz
500 MHz to
1 GHz
1 GHz to
2 GHz
Input
FullScale
Control
(0x030)
Input
Termination
(0x016) 1
Input
Capacitance
(0x934)
0x0C
(2.06 V p-p)
0x0C
(2.06 V p-p)
0x08
(1.46 V p-p)
0x08
(1.46 V p-p)
0x04
0x0C/0x1C/…
0x1F
0x04
0x0C/0x1C/…
0x1F
0x18
0x0C/0x1C/…
0x18
0x0C/0x1C/…
0x1F or
0x00 2
0x1F or 0x001
0x0A
(1.70 V p-p)
0x0A
(1.70 V p-p)
0x08
(1.46 V p-p)
0x08
(1.46 V p-p)
0x14
0x0C/0x1C/…
0x1F
0x14
0x0C/0x1C/…
0x1F
0x18
0x0C/0x1C/…
0x1F or 0x002
0x18
0x0C/0x1C/…
0x1F or 0x001
0x0A
(1.70 V p-p)
0x18
0x0E/0x1E/…
0x1F
0x04 (on)
0x0A
(1.70 V p-p)
0x18
0x0E/0x1E/…
0x1F
0x20 (on)
0x00 (off)
0x18
0x0E/0x1E/…
0x1F or 0x001
0x20 (on)
0x00 (off)
0x18
0x0E/0x1E/…
0x1F or 0x001
0x00 (off)
0x04 (on)
0x18
0x0E/0x1E/…
0x1F
N/A 3
0x00 (off)
0x08
(1.46 V p-p)
0x08
(1.46 V p-p)
0x0A
(1.58 V p-p)
0x08
(1.46 V p-p)
0x18
0x0E/0x1E/…
0x1F or 0x001
Input
Full-Scale
Range
(0x025)
The input termination can be changed to accommodate the application with little or no impact to ac performance.
The input capacitance can be set to 1.5 pF to achieve wider input bandwidth but results in slightly lower ac performance.
3
N/A means not applicable.
1
2
Rev. E | Page 41 of 105
AD9680
Data Sheet
The absolute maximum input swing allowed at the inputs of the
AD9680 is 4.3 V p-p differential. Signals operating near or at
this level can cause permanent damage to the ADC.
VOLTAGE REFERENCE
A stable and accurate 1.0 V voltage reference is built into the
AD9680. This internal 1.0 V reference is used to set the fullscale input range of the ADC. The full-scale input range can
be adjusted via the ADC Function Register 0x025. For more
information on adjusting the input swing, see Table 39. Figure 131
shows the block diagram of the internal 1.0 V reference controls.
the reference voltage. For more information on adjusting the
full-scale level of the AD9680, refer to the Memory Map Register
Table section.
The use of an external reference may be necessary, in some
applications, to enhance the gain accuracy of the ADC or to
improve thermal drift characteristics. Figure 132 shows the
typical drift characteristics of the internal 1.0 V reference.
1.0010
1.0009
1.0008
1.0007
V_1P0 VOLTAGE (V)
Absolute Maximum Input Swing
VIN+A/
VIN+B
VIN–A/
VIN–B
ADC
CORE
FULL-SCALE
VOLTAGE
ADJUST
1.0004
1.0003
1.0002
1.0001
1.0000
V_1P0
0.9998
–50
25
90
Figure 132. Typical V_1P0 Drift
11752-031
V_1P0 PIN
CONTROL SPI
REGISTER
(0x025, 0x02,
AND 0x024)
Figure 131. Internal Reference Configuration and Controls
The SPI Register 0x024 enables the user to either use this internal
1.0 V reference, or to provide an external 1.0 V reference. When
using an external voltage reference, provide a 1.0 V reference.
The full-scale adjustment is made using the SPI, irrespective of
The external reference must be a stable 1.0 V reference. The
ADR130 is a good option for providing the 1.0 V reference.
Figure 133 shows how the ADR130 can be used to provide the
external 1.0 V reference to the AD9680. The grayed out areas
show unused blocks within the AD9680 while using the
ADR130 to provide the external reference.
INTERNAL
V_1P0
GENERATOR
ADR130
FULL-SCALE
VOLTAGE
ADJUST
NC 6
1
NC
2
GND SET 5
3
VIN
0.1µF
0
TEMPERATURE (°C)
11752-106
0.9999
INPUT FULL-SCALE
RANGE ADJUST
SPI REGISTER
(0x025, 0x02,
AND 0x024)
INPUT
1.0005
VOUT 4
V_1P0
0.1µF
FULL-SCALE
CONTROL
Figure 133. External Reference Using ADR130
Rev. E | Page 42 of 105
11752-032
INTERNAL
V_1P0
GENERATOR
1.0006
Data Sheet
AD9680
CLOCK INPUT CONSIDERATIONS
Input Clock Divider
For optimum performance, drive the AD9680 sample clock
inputs (CLK+ and CLK−) with a differential signal. This signal
is typically ac-coupled to the CLK+ and CLK− pins via a
transformer or clock drivers. These pins are biased internally
and require no additional biasing.
The AD9680 contains an input clock divider with the ability to
divide the Nyquist input clock by 1, 2, 4, and 8. The divider
ratios can be selected using Register 0x10B. This is shown in
Figure 137.
Figure 134 shows a preferred method for clocking the AD9680.
The low jitter clock source is converted from a single-ended
signal to a differential signal using an RF transformer.
0.1µF
1:1Z
CLK+
100Ω
50Ω
CLK+
ADC
CLK–
CLK–
11752-035
0.1µF
÷2
÷4
÷8
Figure 134. Transformer-Coupled Differential Clock
Another option is to ac couple a differential CML or LVDS
signal to the sample clock input pins, as shown in Figure 135
and Figure 136.
REG 0x10B
Figure 137. Clock Divider Circuit
The AD9680 clock divider can be synchronized using the
external SYSREF± input. A valid SYSREF± causes the clock
divider to reset to a programmable state. This synchronization
feature allows multiple devices to have their clock dividers
aligned to guarantee simultaneous input sampling. See the
Memory Map section for more information.
3.3V
71Ω
10pF
33Ω
33Ω
Z0 = 50Ω
0.1µF
ADC
Z0 = 50Ω
0.1µF
11752-036
CLK+
CLK–
Input Clock Divider ½ Period Delay Adjust
Figure 135. Differential CML Sample Clock
LVDS
DRIVER
100Ω
50Ω1
50Ω1
ADC
CLK–
CLK–
Clock Fine Delay Adjust
0.1µF
RESISTORS ARE OPTIONAL.
11752-037
0.1µF
150Ω
CLK+
CLK+
CLOCK INPUT
The input clock divider inside the AD9680 provides phase delay
in increments of ½ the input clock cycle. Register 0x10C can be
programmed to enable this delay independently for each channel.
Changing this register does not affect the stability of the
JESD204B link.
0.1µF
0.1µF
CLOCK INPUT
11752-038
CLOCK
INPUT
The maximum frequency at the CLK± inputs is 4 GHz. This is
the limit of the divider. In applications where the clock input is
a multiple of the sample clock, care must be taken to program
the appropriate divider ratio into the clock divider before applying
the clock signal. This ensures that the current transients during
device startup are controlled.
Figure 136. Differential LVDS Sample Clock
Clock Duty Cycle Considerations
Typical high speed ADCs use both clock edges to generate a
variety of internal timing signals. As a result, these ADCs may
be sensitive to clock duty cycle. Commonly, a 5% tolerance is
required on the clock duty cycle to maintain dynamic performance
characteristics. In applications where the clock duty cycle cannot
be guaranteed to be 50%, a higher multiple frequency clock can be
supplied to the device. The AD9680 can be clocked at 2 GHz with
the internal clock divider set to 2. The output of the divider offers
a 50% duty cycle, high slew rate (fast edge) clock signal to the
internal ADC. See the Memory Map section for more details on
using this feature.
The AD9680 sampling edge instant can be adjusted by writing to
Register 0x117 and Register 0x118. Setting Bit 0 of Register 0x117
enables the feature, and Bits[7:0] of Register 0x118 set the value
of the delay. This value can be programmed individually for
each channel. The clock delay can be adjusted from −151.7 ps
to +150 ps in ~1.7 ps increments. The clock delay adjust takes
effect immediately when it is enabled via SPI writes. Enabling
the clock fine delay adjust in Register 0x117 causes a datapath
reset. However, the contents of Register 0x118 can be changed
without affecting the stability of the JESD204B link.
Clock Jitter Considerations
High speed, high resolution ADCs are sensitive to the quality
of the clock input. The degradation in SNR at a given input
frequency (fA) due only to aperture jitter (tJ) can be calculated by
Rev. E | Page 43 of 105
SNR = 20 × log 10 (2 × π × fA × tJ)
AD9680
Data Sheet
In this equation, the rms aperture jitter represents the root
mean square of all jitter sources, including the clock input,
analog input signal, and ADC aperture jitter specifications.
Power-Down/Standby Mode
IF undersampling applications are particularly sensitive to jitter
(see Figure 138).
130
12.5fS
25fS
50fS
100fS
200fS
400fS
800fS
120
110
100
In standby mode, the JESD204B link is not disrupted and
transmits zeros for all converter samples. This can be changed
using Register 0x571, Bit 7 to select /K/ characters.
80
Temperature Diode
70
The AD9680 contains a diode-based temperature sensor for
measuring the temperature of the die. This diode can output a
voltage and serve as a coarse temperature sensor to monitor the
internal die temperature.
60
50
30
10
100
1000
10000
ANALOG INPUT FREQUENCY (MHz)
11752-039
40
Figure 138. Ideal SNR vs. Input Frequency and Jitter
Treat the clock input as an analog signal in cases where aperture
jitter may affect the dynamic range of the AD9680. Separate
power supplies for clock drivers from the ADC output driver
supplies to avoid modulating the clock signal with digital noise.
If the clock is generated from another type of source (by gating,
dividing, or other methods), retime the clock by the original clock
at the last step. Refer to the AN-501 Application Note and the
AN-756 Application Note for more in-depth information about
jitter performance as it relates to ADCs.
Figure 139 shows the estimated SNR of the AD9680-1000 across
input frequency for different clock induced jitter values. The
SNR can be estimated by using the following equation:
− SNR JITTER
− SNR ADC
SNR (dBFS) = 10log 10 10 + 10 10
The temperature diode voltage can be output to the FD_A pin
using the SPI. Use Register 0x028, Bit 0 to enable or disable the
diode. Register 0x028 is a local register. Channel A must be
selected in the device index register (0x008) to enable the
temperature diode readout. Configure the FD_A pin to output
the diode voltage by programming Register 0x040[2:0]. See
Table 39 for more information.
The voltage response of the temperature diode (SPIVDD =
1.8 V) is shown in Figure 140.
0.90
0.85
DIODE VOLTAGE (V)
SNR (dB)
90
The AD9680 has a PDWN/STBY pin that can be used to
configure the device in power-down or standby mode. The
default operation is PDWN. The PDWN/STBY pin is a logic
high pin. When in power-down mode, the JESD204B link is
disrupted. The power-down option can also be set via
Register 0x03F and Register 0x040.
0.80
0.75
0.70
0.65
0.60
–55 –45 –35 –25 –15 –5
65
5
15 25 35 45 55 65 75 85 95 105 115 125
TEMPERATURE (°C)
55
50
45
10
25fs
50fs
75fs
100f s
125f s
150f s
175f s
200f s
100
1K
INPUT FREQUENCY (MHz)
10K
11752-526
SNR (dBFS)
Figure 140. Temperature Diode Voltage vs. Temperature
60
Figure 139. Estimated SNR Degradation for the AD9680-1000 vs.
Input Frequency and RMS Jitter
Rev. E | Page 44 of 105
11752-353
70
Data Sheet
AD9680
ADC OVERRANGE AND FAST DETECT
The operation of the upper threshold and lower threshold
registers, along with the dwell time registers, is shown in
Figure 141.
In receiver applications, it is desirable to have a mechanism to
reliably determine when the converter is about to be clipped.
The standard overrange bit in the JESD204B outputs provides
information on the state of the analog input that is of limited
usefulness. Therefore, it is helpful to have a programmable
threshold below full scale that allows time to reduce the gain
before the clip actually occurs. In addition, because input
signals can have significant slew rates, the latency of this
function is of major concern. Highly pipelined converters can
have significant latency. The AD9680 contains fast detect
circuitry for individual channels to monitor the threshold and
assert the FD_A and FD_B pins.
The FD indicator is asserted if the input magnitude exceeds the
value programmed in the fast detect upper threshold registers,
located at Register 0x247 and Register 0x248. The selected
threshold register is compared with the signal magnitude at the
output of the ADC. The fast upper threshold detection has a
latency of 28 clock cycles (maximum). The approximate upper
threshold magnitude is defined by
Upper Threshold Magnitude (dBFS)
= 20 log (Threshold Magnitude/213)
ADC OVERRANGE
The FD indicators are not cleared until the signal drops below
the lower threshold for the programmed dwell time. The lower
threshold is programmed in the fast detect lower threshold
registers, located at Register 0x249 and Register 0x24A. The fast
detect lower threshold register is a 13-bit register that is compared
with the signal magnitude at the output of the ADC. This
comparison is subject to the ADC pipeline latency, but is
accurate in terms of converter resolution. The lower threshold
magnitude is defined by
The ADC overrange indicator is asserted when an overrange is
detected on the input of the ADC. The overrange indicator can
be embedded within the JESD204B link as a control bit (when
CSB > 0). The latency of this overrange indicator matches the
sample latency.
The AD9680 also records any overrange condition in any of the
eight virtual converters. For more information on the virtual
converters, refer to Figure 146. The overrange status of each virtual
converter is registered as a sticky bit in Register 0x563. The
contents of Register 0x563 can be cleared using Register 0x562,
by toggling the bits corresponding to the virtual converter to set
and reset position.
Lower Threshold Magnitude (dBFS)
= 20 log (Threshold Magnitude/213)
For example, to set an upper threshold of −6 dBFS, write 0xFFF
to Register 0x247 and Register 0x248. To set a lower threshold
of −10 dBFS, write 0xA1D to Register 0x249 and Register 0x24A.
FAST THRESHOLD DETECTION (FD_A AND FD_B)
The FD bit is immediately set whenever the absolute value of
the input signal exceeds the programmable upper threshold
level. The FD bit is only cleared when the absolute value of the
input signal drops below the lower threshold level for greater
than the programmable dwell time. This feature provides
hysteresis and prevents the FD bit from excessively toggling.
The dwell time can be programmed from 1 to 65,535 sample
clock cycles by placing the desired value in the fast detect dwell
time registers, located at Register 0x24B and Register 0x24C.
See the Memory Map section (Register 0x040, and Register 0x245
to Register 0x24C in Table 39) for more details.
UPPER THRESHOLD
DWELL TIME
TIMER RESET BY
RISE ABOVE
LOWER
THRESHOLD
DWELL TIME
FD_A OR FD_B
Figure 141. Threshold Settings for FD_A and FD_B Signals
Rev. E | Page 45 of 105
TIMER COMPLETES BEFORE
SIGNAL RISES ABOVE
LOWER THRESHOLD
11752-040
MIDSCALE
LOWER THRESHOLD
AD9680
Data Sheet
SIGNAL MONITOR
The signal monitor block provides additional information about
the signal being digitized by the ADC. The signal monitor
computes the peak magnitude of the digitized signal. This
information can be used to drive an AGC loop to optimize the
range of the ADC in the presence of real-world signals.
The results of the signal monitor block can be obtained either
by reading back the internal values from the SPI port or by
embedding the signal monitoring information into the
JESD204B interface as special control bits. A global, 24-bit
programmable period controls the duration of the
measurement. Figure 142 shows the simplified block diagram
of the signal monitor block.
FROM
MEMORY
MAP
SIGNAL MONITOR
PERIOD REGISTER
(SMPR)
0x271, 0x272, 0x273
DOWN
COUNTER
IS
COUNT = 1?
FROM
INPUT
LOAD
LOAD
SIGNAL
MONITOR
HOLDING
REGISTER
TO SPORT OVER
JESD204B AND
MEMORY MAP
11752-087
CLEAR
COMPARE
A>B
Figure 142. Signal Monitor Block
The peak detector captures the largest signal within the
observation period. The detector only observes the magnitude
of the signal. The resolution of the peak detector is a 13-bit
value, and the observation period is 24 bits and represents
converter output samples. The peak magnitude can be derived
by using the following equation:
The magnitude of the input port signal is monitored over a
programmable time period, which is determined by the signal
monitor period register (SMPR). The peak detector function is
enabled by setting Bit 1 of Register 0x270 in the signal monitor
control register. The 24-bit SMPR must be programmed before
activating this mode.
After enabling peak detection mode, the value in the SMPR is
loaded into a monitor period timer, which decrements at the
decimated clock rate. The magnitude of the input signal is
compared with the value in the internal magnitude storage
register (not accessible to the user), and the greater of the two
is updated as the current peak level. The initial value of the
magnitude storage register is set to the current ADC input signal
magnitude. This comparison continues until the monitor period
timer reaches a count of 1.
LOAD
MAGNITUDE
STORAGE
REGISTER
Peak Magnitude (dBFS) = 20log(Peak Detector Value/213)
When the monitor period timer reaches a count of 1, the 13-bit
peak level value is transferred to the signal monitor holding
register, which can be read through the memory map or output
through the SPORT over the JESD204B interface. The monitor
period timer is reloaded with the value in the SMPR, and the
countdown restarts. In addition, the magnitude of the first
input sample is updated in the magnitude storage register, and
the comparison and update procedure, as explained previously,
continues.
Rev. E | Page 46 of 105
Data Sheet
AD9680
SPORT OVER JESD204B
is to be inserted (CS = 1), only the most significant control bit is
used (see Example Configuration 1 and Example Configuration 2
in Figure 143). To select the SPORT over JESD204B option,
program Register 0x559, Register 0x55A, and Register 0x58F.
See Table 39 for more information on setting these bits.
The signal monitor data can also be serialized and sent over the
JESD204B interface as control bits. These control bits must be
deserialized from the samples to reconstruct the statistical data.
The signal control monitor function is enabled by setting Bits[1:0]
of Register 0x279 and Bit 1 of Register 0x27A. Figure 143 shows
two different example configurations for the signal monitor
control bit locations inside the JESD204B samples. A maximum
of three control bits can be inserted into the JESD204B samples;
however, only one control bit is required for the signal monitor.
Control bits are inserted from MSB to LSB. If only one control bit
Figure 144 shows the 25-bit frame data that encapsulates the
peak detector value. The frame data is transmitted MSB first
with five 5-bit subframes. Each subframe contains a start bit
that can be used by a receiver to validate the deserialized data.
Figure 145 shows the SPORT over JESD204B signal monitor
data with a monitor period timer set to 80 samples.
16-BIT JESD204B SAMPLE SIZE (N' = 16)
EXAMPLE
CONFIGURATION 1
(N' = 16, N = 15, CS = 1)
1-BIT
CONTROL
BIT
(CS = 1)
15-BIT CONVERTER RESOLUTION (N = 15)
15
S[14]
X
14
S[13]
X
13
S[12]
X
12
S[11]
X
11
10
S[10]
X
9
S[9]
X
8
S[8]
X
7
S[7]
X
6
S[6]
X
5
S[5]
X
4
S[4]
X
S[3]
X
3
S[2]
X
2
S[1]
X
1
0
S[0]
X
CTRL
[BIT 2]
X
SERIALIZED SIGNAL MONITOR
FRAME DATA
16-BIT JESD204B SAMPLE SIZE (N' = 16)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
S[13]
X
S[12]
X
S[11]
X
S[10]
X
S[9]
X
S[8]
X
S[7]
X
S[6]
X
S[5]
X
S[4]
X
S[3]
X
S[2]
X
S[1]
X
S[0]
X
CTRL
[BIT 2]
X
TAIL
X
SERIALIZED SIGNAL MONITOR
FRAME DATA
Figure 143. Signal Monitor Control Bit Locations
5-BIT SUB-FRAMES
5-BIT IDLE
SUB-FRAME
(OPTIONAL)
25-BIT
FRAME
IDLE
1
IDLE
1
IDLE
1
IDLE
1
IDLE
1
5-BIT IDENTIFIER START
0
SUB-FRAME
ID[3]
0
ID[2]
0
ID[1]
0
ID[0]
1
5-BIT DATA
MSB
SUB-FRAME
START
0
P[12]
P[11]
P[10]
P[9]
5-BIT DATA
SUB-FRAME
START
0
P[8]
P[7]
P[6]
P5]
5-BIT DATA
SUB-FRAME
START
0
P[4]
P[3]
P[2]
P1]
5-BIT DATA
LSB
SUB-FRAME
START
0
P[0]
0
0
0
P[] = PEAK MAGNITUDE VALUE
11752-089
EXAMPLE
CONFIGURATION 2
(N' = 16, N = 14, CS = 1)
Figure 144. SPORT over JESD204B Signal Monitor Frame Data
Rev. E | Page 47 of 105
11752-088
1
CONTROL
1 TAIL
BIT
BIT
(CS = 1)
14-BIT CONVERTER RESOLUTION (N = 14)
AD9680
Data Sheet
SMPR = 80 SAMPLES (0x271 = 0x50; 0x272 = 0x00; 0x273 = 0x00)
80 SAMPLE PERIOD
PAYLOAD #3
25-BIT FRAME (N)
IDENT.
DATA
MSB
DATA
DATA
DATA
LSB
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
IDLE
80 SAMPLE PERIOD
PAYLOAD #3
25-BIT FRAME (N + 1)
IDENT.
DATA
MSB
DATA
DATA
DATA
LSB
IDLE
IDLE
IDLE
IDLE
IDLE
80 SAMPLE PERIOD
IDENT.
DATA
MSB
DATA
DATA
DATA
LSB
IDLE
IDLE
IDLE
IDLE
IDLE
Figure 145. SPORT over JESD204B Signal Monitor Example with Period = 80 Samples
Rev. E | Page 48 of 105
11752-090
PAYLOAD #3
25-BIT FRAME (N + 2)
Data Sheet
AD9680
DIGITAL DOWNCONVERTER (DDC)
The AD9680 includes four digital downconverters (DDC 0 to
DDC 3) that provide filtering and reduce the output data rate.
This digital processing section includes an NCO, a half-band
decimating filter, an FIR filter, a gain stage, and a complex-real
conversion stage. Each of these processing blocks has control lines
that allow it to be independently enabled and disabled to provide
the desired processing function. The digital downconverter can
be configured to output either real data or complex output data.
The Chip Q ignore bit (Bit 5) in the chip application mode
register (Register 0x200) controls the chip output muxing of all
the DDC channels. When all DDC channels use real outputs,
this bit must be set high to ignore all DDC Q output ports.
When any of the DDC channels are set to use complex I/Q
outputs, the user must clear this bit to use both DDC Output
Port I and DDC Output Port Q. For more information, see
Figure 154.
The DDCs output a 16-bit stream. To enable this operation, the
converter number of bits, N, is set to a default value of 16, even
though the analog core only outputs 14 bits. In full bandwidth
operation, the ADC outputs are the 14-bit word followed by
two zeros, unless the tail bits are enabled.
DDC GENERAL DESCRIPTION
DDC I/Q INPUT SELECTION
The AD9680 has two ADC channels and four DDC channels.
Each DDC channel has two input ports that can be paired to
support both real or complex inputs through the I/Q crossbar
mux. For real signals, both DDC input ports must select the
same ADC channel (for example, DDC Input Port I = ADC
Channel A, and Input Port Q = ADC Channel A). For complex
signals, each DDC input port must select different ADC
channels (for example, DDC Input Port I = ADC Channel A,
and Input Port Q = ADC Channel B).
The inputs to each DDC are controlled by the DDC input
selection registers (Register 0x311, Register 0x331, Register 0x351,
and Register 0x371). See Table 39 for information on how to
configure the DDCs.
DDC I/Q OUTPUT SELECTION
Each DDC channel has two output ports that can be paired to
support both real or complex outputs. For real output signals,
only the DDC Output Port I is used (the DDC Output Port Q is
invalid). For complex I/Q output signals, both DDC Output
Port I and DDC Output Port Q are used.
The I/Q outputs to each DDC channel are controlled by the
DDC complex to real enable bit (Bit 3) in the DDC control
registers (Register 0x310, Register 0x330, Register 0x350, and
Register 0x370).
The four DDC blocks are used to extract a portion of the full
digital spectrum captured by the ADC(s). They are intended for
IF sampling or oversampled baseband radios requiring wide
bandwidth input signals.
Each DDC block contains the following signal processing stages.
Frequency Translation Stage (Optional)
The frequency translation stage consists of a 12-bit complex NCO
and quadrature mixers that can be used for frequency translation
of both real or complex input signals. This stage shifts a portion
of the available digital spectrum down to baseband.
Filtering Stage
After shifting down to baseband, the filtering stage decimates
the frequency spectrum using a chain of up to four half-band
low-pass filters for rate conversion. The decimation process
lowers the output data rate, which in turn reduces the output
interface rate.
Gain Stage (Optional)
Due to losses associated with mixing a real input signal down to
baseband, the gain stage compensates by adding an additional
0 dB or 6 dB of gain.
Complex to Real Conversion Stage (Optional)
When real outputs are necessary, the complex to real conversion
stage converts the complex outputs back to real by performing
an fS/4 mixing operation plus a filter to remove the complex
component of the signal.
Figure 146 shows the detailed block diagram of the DDCs
implemented in the AD9680.
Rev. E | Page 49 of 105
AD9680
Data Sheet
REAL/I
ADC
SAMPLING
AT fS
COMPLEX TO REAL
CONVERSION
(OPTIONAL)
HB1 FIR
DCM = 2
GAIN = 0dB
OR 6dB
REAL/Q Q
HB2 FIR
DCM = BYPASS OR 2
NCO
+
MIXER
(OPTIONAL)
HB3 FIR
DCM = BYPASS OR 2
I
HB4 FIR
DCM = BYPASS OR 2
DDC 0
REAL/I
REAL/I
CONVERTER 0
Q CONVERTER 1
SYSREF±
COMPLEX TO REAL
CONVERSION
(OPTIONAL)
COMPLEX TO REAL
CONVERSION
(OPTIONAL)
COMPLEX TO REAL
CONVERSION
(OPTIONAL)
Q CONVERTER 3
REAL/Q Q
ADC
SAMPLING
AT fS
HB1 FIR
DCM = 2
I
HB2 FIR
DCM = BYPASS OR 2
REAL/I
HB3 FIR
DCM = BYPASS OR 2
DDC 2
REAL/I
CONVERTER 4
OUTPUT INTERFACE
GAIN = 0dB
OR 6dB
GAIN = 0dB
OR 6dB
GAIN = 0dB
OR 6dB
HB1 FIR
DCM = 2
REAL/I
CONVERTER 2
SYSREF±
NCO
+
MIXER
(OPTIONAL)
REAL/Q
HB2 FIR
DCM = BYPASS OR 2
REAL/Q Q
HB3 FIR
DCM = BYPASS OR 2
NCO
+
MIXER
(OPTIONAL)
HB4 FIR
DCM = BYPASS OR 2
I/Q CROSSBAR MUX
I
HB4 FIR
DCM = BYPASS OR 2
DDC 1
REAL/I
Q CONVERTER 5
SYSREF±
SYSREF
SYNCHRONIZATION
CONTROL CIRCUITS
HB1 FIR
DCM = 2
REAL/I
CONVERTER 6
Q CONVERTER 7
11752-041
REAL/Q Q
HB2 FIR
DCM = BYPASS OR 2
NCO
+
MIXER
(OPTIONAL)
HB3 FIR
DCM = BYPASS OR 2
I
HB4 FIR
DCM = BYPASS OR 2
DDC 3
REAL/I
SYSREF±
Figure 146. DDC Detailed Block Diagram
Figure 147 shows an example usage of one of the four DDC
blocks with a real input signal and four half-band filters (HB4,
HB3, HB2, and HB1). It shows both complex (decimate by 16)
and real (decimate by 8) output options.
the chip decimation ratio sample rate. Whenever the NCO
frequency is set or changed, the DDC soft reset must be issued.
If the DDC soft reset is not issued, the output may potentially
show amplitude variations.
When DDCs have different decimation ratios, the chip
decimation ratio (Register 0x201) must be set to the lowest
decimation ratio of all the DDC blocks. In this scenario,
samples of higher decimation ratio DDCs are repeated to match
Table 11, Table 12, Table 13, Table 14, and Table 15 show the
DDC samples when the chip decimation ratio is set to 1, 2, 4, 8,
or 16, respectively.
Rev. E | Page 50 of 105
Data Sheet
AD9680
ADC
ADC
SAMPLING
AT fS
REAL
REAL INPUT—SAMPLED AT fS
BANDWIDTH OF
INTEREST IMAGE
–fS/2
–fS/3
–fS/4
REAL
BANDWIDTH OF
INTEREST
fS/32
–fS/32
DC
–fS/16
fS/16
–fS/8
FREQUENCY TRANSLATION STAGE (OPTIONAL)
DIGITAL MIXER + NCO FOR fS/3 TUNING, THE FREQUENCY
TUNING WORD = ROUND ((fS/3)/fS × 4096) = +1365 (0x555)
fS/2
fS/3
fS/4
fS/8
I
NCO TUNES CENTER OF
BANDWIDTH OF INTEREST
TO BASEBAND
cos(ωt)
REAL
12-BIT
NCO
90°
0°
–sin(ωt)
Q
DIGITAL FILTER
RESPONSE
–fS/2
–fS/3
–fS/4
fS/32
–fS/32
DC
–fS/16
fS/16
–fS/8
BANDWIDTH OF
INTEREST IMAGE
(–6dB LOSS DUE TO
NCO + MIXER)
BANDWIDTH OF INTEREST
(–6dB LOSS DUE TO
NCO + MIXER)
fS/8
fS/4
fS/3
fS/2
FILTERING STAGE
HB4 FIR
4 DIGITAL HALF-BAND FILTERS
(HB4 + HB3 + HB2 + HB1)
I
HALFBAND
FILTER
Q
HALFBAND
FILTER
HB3 FIR
2
HALFBAND
FILTER
2
HALFBAND
FILTER
HB4 FIR
HB2 FIR
2
HALFBAND
FILTER
2
HALFBAND
FILTER
HB3 FIR
HB1 FIR
2
HALFBAND
FILTER
2
HALFBAND
FILTER
HB2 FIR
I
HB1 FIR
Q
6dB GAIN TO
COMPENSATE FOR
NCO + MIXER LOSS
COMPLEX (I/Q) OUTPUTS
GAIN STAGE (OPTIONAL)
DIGITAL FILTER
RESPONSE
I
GAIN STAGE (OPTIONAL)
Q
0dB OR 6dB GAIN
COMPLEX TO REAL
CONVERSION STAGE (OPTIONAL)
fS/4 MIXING + COMPLEX FILTER TO REMOVE Q
–fS/32
fS/32
DC
–fS/16
fS/16
–fS/8
I
REAL (I) OUTPUTS
+6dB
+6dB
fS/8
2
+6dB
2
+6dB
I
Q
fS/32
–fS/32
DC
–fS/16
fS/16
DOWNSAMPLE BY 2
I
DECIMATE BY 8
Q
DECIMATE BY 16
0dB OR 6dB GAIN
Q
COMPLEX REAL/I
TO
REAL
–fS/8
fS/32
–fS/32
DC
–fS/16
fS/16
fS/8
Figure 147. DDC Theory of Operation Example (Real Input—Decimate by 16)
Rev. E | Page 51 of 105
11752-042
6dB GAIN TO
COMPENSATE FOR
NCO + MIXER LOSS
AD9680
Data Sheet
Table 11. DDC Samples, Chip Decimation Ratio = 1
Real (I) Output (Complex to Real Enabled)
HB1 FIR
(DCM 1 = 1)
N
N+1
N+2
N+3
N+4
N+5
N+6
N+7
N+8
N+9
N + 10
N + 11
N + 12
N + 13
N + 14
N + 15
N + 16
N + 17
N + 18
N + 19
N + 20
N + 21
N + 22
N + 23
N + 24
N + 25
N + 26
N + 27
N + 28
N + 29
N + 30
N + 31
1
HB2 FIR +
HB1 FIR
(DCM1 = 2)
N
N+1
N
N+1
N+2
N+3
N+2
N+3
N+4
N+5
N+4
N+5
N+6
N+7
N+6
N+7
N+8
N+9
N+8
N+9
N + 10
N + 11
N + 10
N + 11
N + 12
N + 13
N + 12
N + 13
N + 14
N + 15
N + 14
N + 15
HB3 FIR +
HB2 FIR +
HB1 FIR
(DCM1 = 4)
N
N+1
N
N+1
N
N+1
N
N+1
N+2
N+3
N+2
N+3
N+2
N+3
N+2
N+3
N+4
N+5
N+4
N+5
N+4
N+5
N+4
N+5
N+6
N+7
N+6
N+7
N+6
N+7
N+6
N+7
Complex (I/Q) Outputs (Complex to Real Disabled)
HB4 FIR +
HB3 FIR +
HB2 FIR +
HB1 FIR
(DCM1 = 8)
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N+2
N+3
N+2
N+3
N+2
N+3
N+2
N+3
N+2
N+3
N+2
N+3
N+2
N+3
N+2
N+3
HB1 FIR
(DCM1 = 2)
N
N+1
N
N+1
N+2
N+3
N+2
N+3
N+4
N+5
N+4
N+5
N+6
N+7
N+6
N+7
N+8
N+9
N+8
N+9
N + 10
N + 11
N + 10
N + 11
N + 12
N + 13
N + 12
N + 13
N + 14
N + 15
N + 14
N + 15
DCM means decimation.
Rev. E | Page 52 of 105
HB2 FIR +
HB1 FIR
(DCM1 = 4)
N
N+1
N
N+1
N
N+1
N
N+1
N+2
N+3
N+2
N+3
N+2
N+3
N+2
N+3
N+4
N+5
N+4
N+5
N+4
N+5
N+4
N+5
N+6
N+7
N+6
N+7
N+6
N+7
N+6
N+7
HB3 FIR +
HB2 FIR +
HB1 FIR
(DCM1 = 8)
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N+2
N+3
N+2
N+3
N+2
N+3
N+2
N+3
N+2
N+3
N+2
N+3
N+2
N+3
N+2
N+3
HB4 FIR +
HB3 FIR +
HB2 FIR +
HB1 FIR
(DCM1 = 16)
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
N
N+1
Data Sheet
AD9680
Table 12. DDC Samples, Chip Decimation Ratio = 2
Real (I) Output (Complex to Real Enabled)
HB2 FIR +
HB1 FIR
(DCM 1 = 2)
N
N+1
N+2
N+3
N+4
N+5
N+6
N+7
N+8
N+9
N + 10
N + 11
N + 12
N + 13
N + 14
N + 15
1
HB3 FIR +
HB2 FIR +
HB1 FIR
(DCM1 = 4)
HB4 FIR +
HB3 FIR +
HB2 FIR +
HB1 FIR
(DCM1 = 8)
N
N+1
N
N+1
N
N
N+1
N+1
N+2
N
N+3
N+2
N+1
N
N+3
N+1
N+4
N+2
N+5
N+3
N+4
N+2
N+5
N+6
N+3
N+2
N+7
N+3
N+6
N+2
N+7
N+3
Complex (I/Q) Outputs (Complex to Real Disabled)
HB1 FIR
(DCM1 = 2)
N
N+1
N+2
N+3
N+4
N+5
N+6
N+7
N+8
N+9
N + 10
N + 11
N + 12
N + 13
N + 14
N + 15
HB2 FIR +
HB1 FIR
(DCM1 = 4)
HB3 FIR +
HB2 FIR +
HB1 FIR
(DCM1 = 8)
HB4 FIR +
HB3 FIR +
HB2 FIR +
HB1 FIR
(DCM1 = 16)
N
N+1
N
N+1
N
N+1
N
N
N
N+1
N+1
N+1
N+2
N
N
N+3
N+2
N+1
N
N+1
N
N+3
N+1
N+1
N+4
N+2
N
N+5
N+3
N+1
N+4
N+2
N
N+5
N+6
N+3
N+2
N+1
N
N+7
N+3
N+1
N+6
N+2
N
N+7
N+3
N+1
DCM means decimation.
Table 13. DDC Samples, Chip Decimation Ratio = 4
Real (I) Output (Complex to Real Enabled)
HB3 FIR + HB2 FIR +
HB1 FIR (DCM 1 = 4)
N
N+1
N+2
N+3
N+4
N+5
N+6
N+7
1
HB4 FIR + HB3 FIR +
HB2 FIR + HB1 FIR
(DCM1 = 8)
N
N+1
N
N+1
N+2
N+3
N+2
N+3
Complex (I/Q) Outputs (Complex to Real Disabled)
HB2 FIR + HB1 FIR
(DCM1 = 4)
N
N+1
N+2
N+3
N+4
N+5
N+6
N+7
HB3 FIR + HB2 FIR +
HB1 FIR (DCM1 = 8)
HB4 FIR + HB3 FIR +
HB2 FIR + HB1 FIR
(DCM1 = 16)
N
N
N+1
N+1
N
N
N+1
N+1
N+2
N+3
N
N+1
N+2
N
N+3
N+1
DCM means decimation.
Table 14. DDC Samples, Chip Decimation Ratio = 8
Real (I) Output (Complex to Real Enabled)
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM 1 = 8)
N
N+1
N+2
N+3
N+4
Complex (I/Q) Outputs (Complex to Real Disabled)
HB3 FIR + HB2 FIR + HB1 FIR
(DCM1 = 8)
N
N+1
N+2
N+3
N+4
Rev. E | Page 53 of 105
HB4 FIR + HB3 FIR + HB2 FIR +
HB1 FIR (DCM1 = 16)
N
N+1
N
N+1
N+2
AD9680
Data Sheet
Real (I) Output (Complex to Real Enabled)
Complex (I/Q) Outputs (Complex to Real Disabled)
HB3 FIR + HB2 FIR + HB1 FIR
(DCM1 = 8)
N+5
N+6
N+7
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM 1 = 8)
N+5
N+6
N+7
1
HB4 FIR + HB3 FIR + HB2 FIR +
HB1 FIR (DCM1 = 16)
N+3
N+2
N+3
DCM means decimation.
Table 15. DDC Samples, Chip Decimation Ratio = 16
Real (I) Output (Complex to Real Enabled)
Complex (I/Q) Outputs (Complex to Real Disabled)
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM 1 = 16)
Not applicable
Not applicable
Not applicable
Not applicable
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM1 = 16)
N
N+1
N+2
N+3
1
DCM means decimation.
If the chip decimation ratio is set to decimate by 4, DDC 0 is set to use HB2 + HB1 filters (complex outputs decimate by 4), and DDC 1 is
set to use HB4 + HB3 + HB2 + HB1 filters (real outputs decimate by 8), then DDC 1 repeats its output data two times for every one
DDC 0 output. The resulting output samples are shown in Table 16.
Table 16. DDC Output Samples when Chip DCM 1 = 4, DDC 0 DCM1 = 4 (Complex), and DDC 1 DCM1 = 8 (Real)
DDC 0
DDC Input Samples
N
N+1
N+2
N+3
N+4
N+5
N+6
N+7
N+8
N+9
N + 10
N + 11
N + 12
N + 13
N + 14
N + 15
1
Output Port I
I0 [N]
DDC 1
Output Port Q
Q0 [N]
Output Port I
I1 [N]
Output Port Q
Not applicable
I0 [N + 1]
Q0 [N + 1]
I1 [N + 1]
Not applicable
I0 [N + 2]
Q0 [N + 2]
I1 [N]
Not applicable
I0 [N + 3]
Q0 [N + 3]
I1 [N + 1]
Not applicable
DCM means decimation.
Rev. E | Page 54 of 105
Data Sheet
AD9680
FREQUENCY TRANSLATION
FREQUENCY TRANSLATION GENERAL DESCRIPTION
Variable IF Mode
Frequency translation is accomplished by using a 12-bit
complex NCO along with a digital quadrature mixer. The
frequency translation translates either a real or complex input
signal from an intermediate frequency (IF) to a baseband
complex digital output (carrier frequency = 0 Hz).
NCO and mixers are enabled. NCO output frequency can be
used to digitally tune the IF frequency.
0 Hz IF (ZIF) Mode
Mixers are bypassed and the NCO is disabled.
fS/4 Hz IF Mode
The frequency translation stage of each DDC can be controlled
individually and supports four different IF modes using Bits[5:4] of
the DDC control registers (Register 0x310, Register 0x330,
Register 0x350, and Register 0x370). These IF modes are
Test Mode
Variable IF mode
0 Hz IF (ZIF) mode
fS/4 Hz IF mode
Test mode
Input samples are forced to 0.999 to positive full scale. NCO is
enabled. This test mode allows the NCOs to directly drive the
decimation filters.
Figure 148 and Figure 149 show examples of the frequency
translation stage for both real and complex inputs.
NCO FREQUENCY TUNING WORD (FTW) SELECTION
12-BIT NCO FTW = MIXING FREQUENCY/ADC SAMPLE RATE × 4096
I
ADC + DIGITAL MIXER + NCO
REAL INPUT—SAMPLED AT fS
REAL
cos(ωt)
ADC
SAMPLING
AT fS
REAL
12-BIT
NCO
90°
0°
COMPLEX
–sin(ωt)
Q
BANDWIDTH OF
INTEREST
BANDWIDTH OF
INTEREST IMAGE
–fS/2
–fS/3
–fS/4
–fS/8
fS/32
–fS/32
DC
–fS/16
fS/16
fS/8
fS/4
fS/3
fS/2
–6dB LOSS DUE TO
NCO + MIXER
12-BIT NCO FTW =
ROUND ((fS/3)/fS × 4096) = +1365 (0x555)
POSITIVE FTW VALUES
–fS/32
DC
fS/32
12-BIT NCO FTW =
ROUND ((fS/3)/fS × 4096) = –1365 (0xAAB)
–fS/32
NEGATIVE FTW VALUES
DC
fS/32
Figure 148. DDC NCO Frequency Tuning Word Selection—Real Inputs
Rev. E | Page 55 of 105
11752-043
•
•
•
•
Mixers and NCO are enabled in special down mixing by fS/4
mode to save power.
AD9680
Data Sheet
NCO FREQUENCY TUNING WORD (FTW) SELECTION
12-BIT NCO FTW = MIXING FREQUENCY/ADC SAMPLE RATE × 4096
QUADRATURE ANALOG MIXER +
2 ADCs + QUADRATURE DIGITAL REAL
MIXER + NCO
COMPLEX INPUT—SAMPLED AT fS
QUADRATURE MIXER
ADC
SAMPLING
AT fS
I
+
I
I
Q
Q
90°
PHASE
12-BIT
NCO
90°
0°
Q
Q
ADC
SAMPLING
AT fS
Q
Q
I
I
–
–sin(ωt)
I
I
+
COMPLEX
Q
+
BANDWIDTH OF
INTEREST
IMAGE DUE TO
ANALOG I/Q
MISMATCH
–fS/3
–fS/4
–fS/32
fS/32
fS/16
–fS/16
DC
–fS/8
fS/8
fS/4
fS/3
fS/2
12-BIT NCO FTW =
ROUND ((fS/3)/fS × 4096) = +1365 (0x555)
POSITIVE FTW VALUES
–fS/32
fS/32
11752-044
–fS/2
DC
Figure 149. DDC NCO Frequency Tuning Word Selection—Complex Inputs
DDC NCO PLUS MIXER LOSS AND SFDR
When mixing a real input signal down to baseband, 6 dB of loss
is introduced in the signal due to filtering of the negative image.
An additional 0.05 dB of loss is introduced by the NCO. The
total loss of a real input signal mixed down to baseband is 6.05 dB.
For this reason, it is recommended that the user compensate for
this loss by enabling the additional 6 dB of gain in the gain stage
of the DDC to recenter the dynamic range of the signal within
the full scale of the output bits.
When mixing a complex input signal down to baseband, the
maximum value each I/Q sample can reach is 1.414 × full scale
after it passes through the complex mixer. To avoid overrange
of the I/Q samples and to keep the data bit widths aligned with
real mixing, 3.06 dB of loss (0.707 × full scale) is introduced in
the mixer for complex signals. An additional 0.05 dB of loss is
introduced by the NCO. The total loss of a complex input signal
mixed down to baseband is −3.11 dB.
The worst case spurious signal from the NCO is greater than
102 dBc SFDR for all output frequencies.
NUMERICALLY CONTROLLED OSCILLATOR
The AD9680 has a 12-bit NCO for each DDC that enables the
frequency translation process. The NCO allows the input
spectrum to be tuned to dc, where it can be effectively filtered
by the subsequent filter blocks to prevent aliasing. The NCO
can be set up by providing a frequency tuning word (FTW) and
a phase offset word (POW).
Setting Up the NCO FTW and POW
The NCO frequency value is given by the 12-bit twos
complement number entered in the NCO FTW. Frequencies
between −fS/2 and fS/2 (fS/2 excluded) are represented using the
following frequency words:
•
•
•
0x800 represents a frequency of –fS/2.
0x000 represents dc (frequency is 0 Hz).
0x7FF represents a frequency of +fS/2 – fS/212.
The NCO frequency tuning word can be calculated using the
following equation:
Mod( fC , f S )
NCO _ FTW = round 212
fS
where:
NCO_FTW is a 12-bit twos complement number representing
the NCO FTW.
fS is the AD9680 sampling frequency (clock rate) in Hz.
fC is the desired carrier frequency in Hz.
Mod( ) is a remainder function. For example, Mod(110,100) =
10, and for negative numbers, Mod(–32, 10) = –2.
round( ) is a rounding function. For example, round(3.6) = 4,
and for negative numbers, round(–3.4)= –3.
Rev. E | Page 56 of 105
Data Sheet
AD9680
Note that this equation applies to the aliasing of signals in the
digital domain (that is, aliasing introduced when digitizing
analog signals).
For example, if the ADC sampling frequency (fS) is 1250 MSPS
and the carrier frequency (fC) is 416.667 MHz,
in the Setting Up the NCO FTW and POW section. The phase
increment value of each PAW is determined by the FTW.
Two methods can be used to synchronize multiple PAWs within
the chip:
•
Mod(416.667,1250
NCO _ FTW = round 212
= 1365 MHz
1250
This, in turn, converts to 0x555 in the 12-bit twos complement
representation for NCO_FTW. The actual carrier frequency can
be calculated based on the following equation:
NCO _ FTW × f S
fC − actual =
= 416.56 MHz
212
•
A 12-bit POW is available for each NCO to create a known phase
relationship between multiple AD9680 chips or individual DDC
channels inside one AD9680.
The following procedure must be followed to update the FTW
and/or POW registers to ensure proper operation of the NCO:
•
•
•
Write to the FTW registers for all the DDCs.
Write to the POW registers for all the DDCs.
Synchronize the NCOs either through the DDC soft reset
bit accessible through the SPI, or through the assertion of
the SYSREF± pin.
Note that the NCOs must be synchronized either through SPI
or through the SYSREF± pin after all writes to the FTW or POW
registers have completed. This synchronization is necessary to
ensure the proper operation of the NCO.
NCO Synchronization
Each NCO contains a separate phase accumulator word (PAW)
that determines the instantaneous phase of the NCO. The initial
reset value of each PAW is determined by the POW described
Using the SPI. The DDC NCO soft reset bit in the DDC
synchronization control register (Register 0x300, Bit 4)
can be used to reset all the PAWs in the chip. This is
accomplished by toggling the DDC NCO soft reset bit.
This method can only be used to synchronize DDC
channels within the same AD9680 chip.
Using the SYSREF± pin. When the SYSREF± pin is enabled
in the SYSREF± control registers (Register 0x120 and
Register 0x121), and the DDC synchronization is enabled
in Bits[1:0] in the DDC synchronization control register
(Register 0x300), any subsequent SYSREF± event resets all
the PAWs in the chip. This method can be used to synchronize
DDC channels within the same AD9680 chip, or DDC
channels within separate AD9680 chips.
Mixer
The NCO is accompanied by a mixer, whose operation is
similar to an analog quadrature mixer. The mixer performs the
downconversion of input signals (real or complex) by using the
NCO frequency as a local oscillator. For real input signals, this
mixer performs a real mixer operation (with two multipliers).
For complex input signals, the mixer performs a complex mixer
operation (with four multipliers and two adders). The mixer
adjusts its operation based on the input signal (real or complex)
provided to each individual channel. The selection of real or
complex inputs can be controlled individually for each DDC
block by using Bit 7 of the DDC control register (Register 0x310,
Register 0x330, Register 0x350, and Register 0x370).
Rev. E | Page 57 of 105
AD9680
Data Sheet
FIR FILTERS
FIR FILTERS GENERAL DESCRIPTION
Table 17 shows the different bandwidth options by including
different half-band filters. In all cases, the DDC filtering stage of
the AD9680 provides less than −0.001 dB of pass-band ripple and
>100 dB of stop-band alias rejection.
There are four sets of decimate-by-2, low-pass, half-band, finite
impulse response (FIR) filters (HB1 FIR, HB2 FIR, HB3 FIR,
and HB4 FIR, shown in Figure 146). These filters follow the
frequency translation stage. After the carrier of interest is tuned
down to dc (carrier frequency = 0 Hz), these filters efficiently lower
the sample rate while providing sufficient alias rejection from
unwanted adjacent carriers around the bandwidth of interest.
Table 18 shows the amount of stop-band alias rejection for
multiple pass-band ripple/cutoff points. The decimation ratio
of the filtering stage of each DDC can be controlled individually
through Bits[1:0] of the DDC control registers (0x310, 0x330,
0x350, and 0x370).
HB1 FIR is always enabled and cannot be bypassed. The HB2,
HB3, and HB4 FIR filters are optional and can be bypassed for
higher output sample rates.
Table 17. DDC Filter Characteristics
Real Output
ADC
Sample
Rate
(MSPS)
1250
1000
820
500
1
Complex (I/Q) Output
Decimation
Ratio
1
Output
Sample
Rate
(MSPS)
1250
Decimation
Ratio
2
HB1 + HB2
2
625
4
HB1 + HB2 +
HB3
HB1 + HB2 +
HB3 + HB4
HB1
4
312.5
8
8
156.25
16
1
1000
2
HB1 + HB2
2
500
4
HB1 + HB2 +
HB3
HB1 + HB2 +
HB3 + HB4
HB1
4
250
8
8
125
16
1
820
2
HB1 + HB2
2
410
4
HB1 + HB2 +
HB3
HB1 + HB2 +
HB3 + HB4
HB1
4
205
8
8
102.5
16
1
500
2
HB1 + HB2
2
250
4
HB1 + HB2 +
HB3
HB1 + HB2 +
HB3 + HB4
4
125
8
8
62.5
16
Half Band
Filter
Selection
HB1
Output
Sample
Rate
(MSPS)
625 (I) +
625 (Q)
312.5 (I) +
312.5 (Q)
156.25 (I) +
156.25 (Q)
78.125 (I) +
78.125 (Q)
500 (I) +
500 (Q)
250 (I) +
250 (Q)
125 (I) +
125 (Q)
62.5 (I) +
62.5 (Q)
410 (I) +
410 (Q)
205 (I) +
205 (Q)
102.5 (I) +
102.5 (Q)
51.25 (I) +
51.25 (Q)
250 (I) +
250 (Q)
125 (I) +
125 (Q)
62.5 (I) +
62.5 (Q)
31.25 (I) +
31.25 (Q)
Ideal SNR improvement due to oversampling and filtering = 10log(bandwidth/(fS/2)).
Rev. E | Page 58 of 105
Alias
Protected
Bandwidth
(MHz)
481.25
Ideal SNR
Improvement
(dB) 1
1
240.62
4
120.31
7
60.15
10
385.0
1
192.5
4
96.3
7
48.1
10
315.7
1
157.8
4
78.9
7
39.4
10
192.5
1
96.3
4
48.1
7
24.1
10
PassBand
Ripple
(dB)
100
Data Sheet
AD9680
Table 18. DDC Filter Alias Rejection
Alias
Rejection (dB)
>100
90
85
63.3
25
19.3
10.7
1
Pass-Band Ripple/
Cutoff Point (dB)