0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD9736BBC

AD9736BBC

  • 厂商:

    AD(亚德诺)

  • 封装:

    LFBGA-160

  • 描述:

    IC DAC 14BIT A-OUT 160CSPBGA

  • 数据手册
  • 价格&库存
AD9736BBC 数据手册
10-/12-/14-Bit, 1200 MSPS DACS AD9734/AD9735/AD9736 Data Sheet FEATURES FUNCTIONAL BLOCK DIAGRAM RESET DACCLK– DACCLK+ IRQ S1 S2 S3 DATACLK_OUT+ DATACLK_OUT– C1 CONTROLLER SPI C2 C3 LVDS DRIVER SDIO SDO CSB SCLK C3 CLOCK DISTRIBUTION DATACLK_IN+ DATACLK_IN– DB[13:0]+ DB[13:0]– SYNCHRONIZER S3 LVDS RECEIVER 2× BAND GAP C2 IOUTA 14-, 12-, 10-BIT DAC CORE REFERENCE CURRENT IOUTB S2 C1S1 VREF I120 04862-001 Pin-compatible family Excellent dynamic performance AD9736: SFDR = 82 dBc at fOUT = 30 MHz AD9736: SFDR = 69 dBc at fOUT = 130 MHz AD9736: IMD = 87 dBc at fOUT = 30 MHz AD9736: IMD = 82 dBc at fOUT = 130 MHz LVDS data interface with on-chip 100 Ω terminations Built-in self test LVDS sampling integrity LVDS-to-DAC data transfer integrity Low power: 380 mW (IFS = 20 mA; fOUT = 330 MHz) 1.8/3.3 V dual-supply operation Adjustable analog output 8.66 mA to 31.66 mA (RL = 25 Ω to 50 Ω) On-chip 1.2 V reference 160-lead chip scale ball grid array (CSP_BGA) package Figure 1. APPLICATIONS Broadband communications systems Cellular infrastructure (digital predistortion) Point-to-point wireless CMTS/VOD Instrumentation, automatic test equipment Radar, avionics PRODUCT HIGHLIGHTS 1. 2. 3. GENERAL DESCRIPTION The AD9736, AD9735, and AD9734 are high performance, high frequency DACs that provide sample rates of up to 1200 MSPS, permitting multicarrier generation up to their Nyquist frequency. The AD9736 is the 14-bit member of the family, while the AD9735 and the AD9734 are the 12-bit and 10-bit members, respectively. They include a serial peripheral interface (SPI) port that provides for programming of many internal parameters and enables readback of status registers. 4. 5. Low noise and intermodulation distortion (IMD) features enable high quality synthesis of wideband signals at intermediate frequencies up to 600 MHz. Double data rate (DDR) LVDS data receivers support the maximum conversion rate of 1200 MSPS. Direct pin programmability of basic functions or SPI port access offers complete control of all AD973x family functions. Manufactured on a CMOS process, the AD973x family uses a proprietary switching technique that enhances dynamic performance. The current output(s) of the AD9736 family are easily configured for single-ended or differential circuit topologies. A reduced-specification LVDS interface is utilized to achieve the high sample rate. The output current can be programmed over a range of 8.66 mA to 31.66 mA. The AD973x family is manufactured on a 0.18 µm CMOS process and operates from 1.8 V and 3.3 V supplies for a total power consumption of 380 mW in bypass mode. It is supplied in a 160-lead chip scale ball grid array for reduced package parasitics. Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2005–2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD9734/AD9735/AD9736 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Product Highlights ........................................................................... 1 Revision History ............................................................................... 3 Specifications..................................................................................... 4 DC Specifications ......................................................................... 4 Digital Specifications ................................................................... 6 AC Specifications.......................................................................... 8 Built-In Self Test Control (BIST_CNT) Registers (Reg. 17, Reg. 18, Reg. 19, Reg. 20, Reg. 21) ........................................... 33 Controller Clock Predivider (CCLK_DIV) Reading Register (Reg. 22)....................................................................................... 34 Theory of Operation ...................................................................... 35 Serial Peripheral Interface ............................................................. 36 General Operation of the Serial Interface ............................... 36 Short Instruction Mode (8-Bit Instruction) ........................... 36 Long Instruction Mode (16-Bit Instruction) .......................... 36 Serial Interface Port Pin Descriptions ..................................... 36 SCLK—Serial Clock ............................................................... 36 Absolute Maximum Ratings ............................................................ 9 CSB—Chip Select ................................................................... 37 Thermal Resistance ...................................................................... 9 SDIO—Serial Data I/O .......................................................... 37 Pin Configurations and Function Descriptions ......................... 10 Location of Supply and Control Pins ....................................... 16 Terminology .................................................................................... 17 Typical Performance Characteristics ........................................... 18 AD9736 Static Linearity, 10 mA Full Scale ............................. 18 AD9736 Static Linearity, 20 mA Full Scale ............................. 19 AD9736 Static Linearity, 30 mA Full Scale ............................. 20 AD9735 Static Linearity, 10 mA, 20 mA, 30 mA Full Scale ...................................................................................... 21 SDO—Serial Data Out .......................................................... 37 MSB/LSB Transfers .................................................................... 37 Notes on Serial Port Operation ................................................ 37 Pin Mode Operation .................................................................. 38 RESET Operation ....................................................................... 38 Programming Sequence ............................................................ 38 Interpolation Filter ..................................................................... 39 Data Interface Controllers......................................................... 39 AD9734 Static Linearity, 10 mA, 20 mA, 30 mA Full Scale ...................................................................................... 22 LVDS Sample Logic.................................................................... 40 AD9736 Power Consumption, 20 mA Full Scale ....................... 23 AD9736 Dynamic Performance, 20 mA Full Scale................ 24 Operating the LVDS Controller in Manual Mode via the SPI Port ........................................................................................ 41 AD9735, AD9734 Dynamic Performance, 20 mA Full Scale ...................................................................................... 27 Operating the LVDS Controller in Surveillance and Auto Mode ............................................................................................ 41 AD973x WCDMA ACLR, 20 mA Full Scale .......................... 28 SYNC Logic and Controller .......................................................... 42 SPI Register Map ............................................................................. 29 SYNC Logic and Controller Operation ................................... 42 SPI Register Details ........................................................................ 30 Operation in Manual Mode ...................................................... 42 Mode Register (Reg. 0) .............................................................. 30 Operation in Surveillance and Auto Modes ........................... 42 Interrupt Request Register (IRQ) (Reg. 1) .............................. 30 FIFO Bypass ................................................................................ 42 Full Scale Current (FSC) Registers (Reg. 2, Reg. 3) ............... 31 Digital Built-In Self Test (BIST) ................................................... 44 LVDS Controller (LVDS_CNT) Registers (Reg. 4, Reg. 5, Reg. 6) .......................................................................................... 31 Overview ..................................................................................... 44 SYNC Controller (SYNC_CNT) Registers (Reg. 7, Reg. 8) .......................................................................................... 32 AD973x Expected BIST Signatures.......................................... 45 Cross Controller (CROS_CNT) Registers (Reg. 10, Reg. 11) ........................................................................................ 32 Cross Controller Registers............................................................. 47 Analog Control (ANA_CNT) Registers (Reg. 14, Reg. 15) ........................................................................................ 33 Band Gap Temperature Characteristic Trim Bits................... 48 LVDS Sample Logic Calibration............................................... 40 AD973x BIST Procedure ........................................................... 45 Generating Expected Signatures .............................................. 46 Analog Control Registers .............................................................. 48 Mirror Roll-Off Frequency Control ........................................ 48 Rev. B | Page 2 of 72 Data Sheet AD9734/AD9735/AD9736 Headroom Bits .............................................................................48 Input Data Timing .......................................................................... 54 Voltage Reference ........................................................................48 Synchronization Timing................................................................. 55 Applications Information ...............................................................50 Power Supply Sequencing .............................................................. 56 Driving the DACCLK Input ......................................................50 AD973X Evaluation Board Schematics ........................................ 57 DAC Output Distortion Sources ...................................................51 AD973X Evaluation Board PCB Layout ....................................... 62 DC-Coupled DAC Output .............................................................52 Outline Dimensions ........................................................................ 69 DAC Data Sources...........................................................................53 Ordering Guide ........................................................................... 69 REVISION HISTORY 6/2017—Rev. A to Rev. B Change to SFLT Bit, Table 14 ..............................................32 Change to Data Interface Controller Section ..............................39 Changes to Figure 78 ......................................................................40 Changes to Figure 80 and Figure 81 .............................................41 Changes to AD793x BIST Signatures Section .............................45 Change to Generating Expected Signatures Section ..................46 Changes to Ordering Guide ...........................................................69 9/2006—Rev. 0 to Rev. A Updated Format.................................................................. Universal Changes to Table 1 ............................................................................ 5 Changes to Table 2 ............................................................................ 6 Changes to Table 3 ............................................................................ 8 Inserted Table 5.................................................................................. 9 Replaced Pin Configuration and Function Descriptions Section .............................................................................................. 10 Changes to Figure 27 to Figure 38 ................................................ 21 Changes to Figure 40 ...................................................................... 23 Changes to Table 9 .......................................................................... 29 Changes to Figure 103 .................................................................... 56 Changes to Figure 105 .................................................................... 58 Changes to Figure 107 .................................................................... 60 Changes to Figure 108 .................................................................... 61 Changes to Figure 115 .................................................................... 68 Updated Outline Dimensions........................................................ 69 Changes to Ordering Guide ........................................................... 69 4/2005—Revision 0: Initial Version Rev. B | Page 3 of 72 AD9734/AD9735/AD9736 Data Sheet SPECIFICATIONS DC SPECIFICATIONS AVDD33 = DVDD33 = 3.3 V, CVDD18 = DVDD18 = 1.8 V, maximum sample rate, IFS = 20 mA, 1× mode, 25 Ω, 1% balanced load, unless otherwise noted. Table 1. Parameter RESOLUTION ACCURACY Integral Nonlinearity (INL) Differential Nonlinearity (DNL) ANALOG OUTPUTS Offset Error Gain Error (With Internal Reference) Gain Error (Without Internal Reference) Full-Scale Output Current Output Compliance Range Output Resistance Output Capacitance TEMPERATURE DRIFT Offset Gain Reference Voltage 1 REFERENCE Internal Reference Voltage1 Output Resistance 2 ANALOG SUPPLY VOLTAGES AVDD33 CVDD18 DIGITAL SUPPLY VOLTAGES DVDD33 DVDD18 SUPPLY CURRENTS 1× Mode, 1.2 GSPS IAVDD33 ICVDD18 IDVDD33 IDVDD18 FIR Bypass (1×) Mode 2× Mode, 1.2 GSPS IAVDD33 ICVDD18 IDVDD33 IDVDD18 FIR 2× Interpolation Filter Enabled Min AD9736 Typ 14 Max Min AD9735 Typ 12 Max Min AD9734 Typ 10 Max Unit Bits −5.6 −2.1 ±1.0 ±0.6 +5.6 +2.1 −1.5 −0.5 ±0.50 ±0.25 +1.5 +0.5 −0.5 −0.1 ±0.12 ±0.06 +0.5 +0.1 LSB LSB −0.01 ±0.005 ±1.0 +0.01 −0.01 ±0.005 ±1.0 +0.01 −0.01 ±0.005 ±1.0 +0.01 % FSR % FSR ±1.0 8.66 −1.0 20.2 ±1.0 31.66 +1.0 8.66 −1.0 20.2 ±1.0 31.66 1.0 8.66 −1.0 20.2 % FSR 31.66 +1.0 10 1 10 1 10 1 mA V MΩ pF 0 80 40 0 80 40 0 80 40 ppm/°C ppm/°C ppm/°C 1.14 1.2 5 1.26 1.14 1.2 5 1.26 1.14 1.2 5 1.26 V kΩ 3.13 1.70 3.3 1.8 3.47 1.90 3.13 1.70 3.3 1.8 3.47 1.90 3.13 1.70 3.3 1.8 3.47 1.90 V V 3.13 1.70 3.3 1.8 3.47 1.90 3.13 1.70 3.3 1.8 3.47 1.90 3.13 1.70 3.3 1.8 3.47 1.90 V V 25 47 10 122 380 25 47 10 122 380 25 47 10 122 380 mA mA mA mA mW 25 47 10 234 550 25 47 10 234 550 25 47 10 234 550 mA mA mA mA mW Rev. B | Page 4 of 72 Data Sheet Parameter Static, No Clock IAVDD33 ICVDD18 IDVDD33 IDVDD18 FIR Bypass (1×) Mode Sleep Mode, No Clock IAVDD33 FIR Bypass (1×) Mode Power-Down Mode 3 IAVDD33 ICVDD18 IDVDD33 IDVDD18 FIR Bypass (1×) Mode AD9734/AD9735/AD9736 Min AD9736 Typ Max 25 8 10 2 133 Min AD9735 Typ Max 25 8 10 2 133 Min AD9734 Typ Max 25 8 10 2 133 Unit mA mA mA mA mW 2.5 59 3.15 65 2.5 59 3.15 65 2.5 59 3.15 65 mA mW 0.01 0.02 0.01 0.01 0.12 0.13 0.12 0.12 0.11 1.24 0.01 0.02 0.01 0.01 0.12 0.13 0.12 0.12 0.11 1.24 0.01 0.02 0.01 0.01 0.12 0.13 0.12 0.12 0.11 1.24 mA mA mA mA mW Default band gap adjustment (Reg. 0x0E = 0x0). Use an external amplifier to drive any external load. 3 Typical wake-up time is 8 µs with recommended 1 nF capacitor on VREF pin. 1 2 Rev. B | Page 5 of 72 AD9734/AD9735/AD9736 Data Sheet DIGITAL SPECIFICATIONS AVDD33 = DVDD33 = 3.3 V, CVDD18 = DVDD18 = 1.8 V, maximum sample rate, IFS = 20 mA, 1× mode, 25 Ω, 1% balanced load, unless otherwise noted. LVDS drivers and receivers are compliant to the IEEE-1596 reduced range link, unless otherwise noted. Table 2. Parameter LVDS DATA INPUT (DB[13:0]+, DB[13:0]−) DB+ = VIA, DB− = VIB Input Voltage Range, VIA or VIB Input Differential Threshold, VIDTH Input Differential Hysteresis, VIDTHH − VIDTHL Receiver Differential Input Impedance, RIN LVDS Input Rate LVDS Minimum Data Valid Period (tMDE) LVDS CLOCK INPUT (DATACLK_IN+, DATACLK_IN−) DATACLK_IN+ = VIA, DATACLK_IN− = VIB Input Voltage Range, VIA or VIB Input Differential Threshold, 1 VIDTH Input Differential Hysteresis, VIDTHH − VIDTHL Receiver Differential Input Impedance, RIN Maximum Clock Rate LVDS CLOCK OUTPUT (DATACLK_OUT+, DATACLK_ OUT−) DATACLK_OUT+ = Voa, DATACLK_OUT− = Vob 100 Ω Termination Output Voltage High, VOA or VOB Output Voltage Low, VOA or VOB Output Differential Voltage, |VOD| Output Offset Voltage, VOS Output Impedance, Single-Ended, RO RO Mismatch Between A and B, ∆RO Change in |VOD| Between 0 and 1, |∆VOD| Change in VOS Between 0 and 1, ∆VOS Output Current—Driver Shorted to Ground, ISA, ISB Output Current—Drivers Shorted Together, ISAB Power-Off Output Leakage, |IXA|, |IXB| Maximum Clock Rate DAC CLOCK INPUT (CLK+, CLK−) Input Voltage Range, CLK− or CLK+ Differential Peak-to-Peak Voltage Common-Mode Voltage Maximum Clock Rate SERIAL PERIPHERAL INTERFACE Maximum Clock Rate (fSCLK, 1/tSCLK) Minimum Pulse Width High, tPWH Minimum Pulse Width Low, tPWL Minimum SDIO and CSB to SCLK Setup, tDS Minimum SCLK to SDIO Hold, tDH Maximum SCLK to Valid SDIO and SDO, tDV Minimum SCLK to Invalid SDIO and SDO, tDNV Min Typ 825 −100 Max Unit 1575 +100 mV mV mV Ω MSPS ps 20 80 1200 120 344 825 −100 1575 +100 20 80 600 120 1375 1025 150 1150 80 200 100 250 1250 120 10 25 25 20 4 10 600 0 400 300 1200 800 400 800 1600 500 20 20 20 10 5 20 5 Rev. B | Page 6 of 72 mV mV mV Ω MHz mV mV mV mV Ω % mV mV mA mA mA MHz mV mV MHz MHz ns ns ns ns ns ns Data Sheet AD9734/AD9735/AD9736 Parameter INPUT (SDI, SDIO, SCLK, CSB) Voltage in High, VIH Voltage in Low, VIL Current in High, IIH Current in Low, IIL SDIO OUTPUT Voltage out High, VOH Voltage out Low, VOL Current out High, IOH Current out Low, IOL Min Max Unit −10 −10 0.8 +10 +10 V V µA µA 2.4 0 3.6 0.4 2.0 Typ 3.3 0 4 4 Refer to the Input Data Timing section for recommended LVDS differential drive levels. 1 Rev. B | Page 7 of 72 V V mA mA AD9734/AD9735/AD9736 Data Sheet AC SPECIFICATIONS AVDD33 = DVDD33 = 3.3 V, CVDD18 = DVDD18 = 1.8 V, maximum sample rate, IFS = 20 mA, 1× mode, 25 Ω, 1% balanced load, unless otherwise noted. Table 3. Parameter DYNAMIC PERFORMANCE Maximum Update Rate SPURIOUS-FREE DYNAMIC RANGE (SFDR) fDAC = 800 MSPS fOUT = 20 MHz fDAC = 1200 MSPS fOUT = 50 MHz fOUT = 100 MHz fOUT = 316 MHz fOUT = 550 MHz TWO-TONE INTERMODULATION DISTORTION (IMD) fDAC = 1200 MSPS fOUT2 = fOUT + 1.25 MHz fOUT = 40 MHz fOUT = 50 MHz fOUT = 100 MHz fOUT = 316 MHz fOUT = 550 MHz NOISE SPECTRAL DENSITY (NSD) Single Tone fDAC = 1200 MSPS fOUT = 50 MHz fOUT = 100 MHz fOUT = 241MHz fOUT = 316 MHz fOUT = 550 MHz Eight-Tone fDAC = 1200 MSPS, 500 kHz Tone Spacing fOUT = 50 MHz fOUT = 100 MHz fOUT = 241MHz fOUT = 316 MHz fOUT = 550 MHz Min AD9736 Typ 1200 Max Min AD9735 Typ Max 1200 Min AD9734 Typ Max 1200 Unit MSPS 75 75 75 dBc 80 77 63 55 76 74 63 54 76 71 60 53 dBc dBc dBc dBc 88 85 84 70.5 65 84 84 81 67 60 83 83 79 66 60 dBc dBc dBc dBc dBc −158.5 −165 −164 −160.5 −158 −155 −162 −161 −159.5 −157 −155 −154 −154 −155 −152 −149 dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz −163.3 −166.5 −166 −165 −164 −162 −163 −163 −161.5 −162 −160 −154 −152 −150.5 −151 −150 dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz Rev. B | Page 8 of 72 Data Sheet AD9734/AD9735/AD9736 ABSOLUTE MAXIMUM RATINGS Table 4. Parameter AVDD33 DVDD33 DVDD18 CVDD18 AVSS AVSS DVSS CLK+, CLK− PIN_MODE DATACLK_IN, DATACLK_OUT LVDS Data Inputs IOUTA, IOUTB I120, VREF, IPTAT IRQ, CSB, SCLK, SDO, SDIO, RESET Junction Temperature Storage Temperature With Respect to AVSS DVSS DVSS CVSS DVSS CVSS CVSS CVSS DVSS DVSS Min −0.3 V −0.3 V −0.3 V −0.3 V −0.3 V −0.3 V −0.3 V −0.3 V −0.3 V −0.3 V Max +3.6 V +3.6 V +1.98 V +1.98 V +0.3 V +0.3 V +0.3 V CVDD18 + 0.18 V DVDD33 + 0.3 V DVDD33 + 0.3 V DVSS AVSS AVSS DVSS −0.3 V −1.0 V −0.3 V −0.3 V DVDD33 + 0.3 V AVDD33 + 0.3 V AVDD33 + 0.3 V DVDD33 + 0.3 V −65°C 150°C +150°C Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 5. Thermal Resistance Package Type 160-Lead Ball, CSP_BGA θJA measurement in still air. 1 ESD CAUTION Rev. B | Page 9 of 72 θJA 1 31.2 Unit °C/W AD9734/AD9735/AD9736 Data Sheet PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 A B C D DACCLK– E DACCLK+ F G H J K DB13 (MSB) L DB12 DB0 (LSB) M DB11 N 04862-005 DB9 DB10 DB8 DB7 DB6 DATACLK_IN DB5 DATACLK_OUT DB4 DB3 DB2 DB1 P Figure 2. AD9736 Digital LVDS Input, Clock I/O (Top View) Table 6. AD9736 Pin Function Descriptions Pin No. A1, A2, A3, B1, B2, B3, C1, C2, C3, D2, D3 A4, A5, A6, A9, A10, A11, B4, B5, B6, B9, B10, B11, C4, C5, C6, C9, C10, C11, D4, D5, D6, D9, D10, D11 A7, B7, C7, D7 A8, B8, C8, D8 A12, A13, B12, B13, C12, C13, D12, D13 A14 B14 Mnemonic CVDD18 AVSS Description 1.8 V Clock Supply. Analog Supply Ground. IOUTB IOUTA AVDD33 DNC I120 C14 VREF D1, E2, E3, E4, F2, F3, F4, G1, G2, G3, G4 D14 CVSS IPTAT E1, F1 E11, E12, F11, F12, G11, G12 E13 DACCLK−/DACCLK+ AVSS IRQ/UNSIGNED E14 RESET/PD F13 CSB/2× F14 G13 G14 H1, H2, H3, H4, H11, H12, H13, H14, J1, J2, J3, J4, J11, J12, J13, J14 SDIO/FIFO SCLK/FSC0 SDO/FSC1 DVDD18 DAC Negative Output. 10 mA to 30 mA full-scale output current. DAC Positive Output. 10 mA to 30 mA full-scale output current. 3.3 V Analog Supply. Do Not Connect. Nominal 1.2 V Reference. Tie to analog ground via 10 kΩ resistor to generate a 120 μA reference current. Band Gap Voltage Reference I/O. Tie to analog ground via 1 nF capacitor; output impedance is approximately 5 kΩ. Clock Supply Ground. Factory Test Pin. Output current, proportional to absolute temperature, is approximately 10 μA at 25°C with a slope of approximately 20 nA/°C. Negative/Positive DAC Clock Input (DACCLK). Analog Supply Ground Shield. Tie to AVSS at the DAC. If PIN_MODE = 0, IRQ: Active low open-drain interrupt request output, pull up to DVDD33 with 10 kΩ resistor. If PIN_MODE = 1, UNSIGNED: Digital input pin where 0 = twos complement input data format, 1 = unsigned. If PIN_MODE = 0, RESET: 1 resets the AD9736. If PIN_MODE = 1, PD: 1 puts the AD9736 in the power-down state. See the Serial Peripheral Interface section and the Pin Mode Operation section for pin description. See the Pin Mode Operation section for pin description. See the Pin Mode Operation section for pin description. See the Pin Mode Operation section for pin description. 1.8 V Digital Supply. Rev. B | Page 10 of 72 Data Sheet AD9734/AD9735/AD9736 Pin No. K1, K2, K3, K4, K11, K12, L2, L3, L4, L5, L6, L9, L10, L11, L12, M3, M4, M5, M6, M9, M10, M11, M12 K13, K14 Mnemonic DVSS Description Digital Supply Ground. DB−/DB+ L1 PIN_MODE L7, L8, M7, M8, N7, N8, P7, P8 L13, L14 DVDD33 DB−/DB+ M2, M1 DB−/DB+ M13, M14 DB−/DB+ N1, P1 DB−/DB+ N2, P2 DB−/DB+ N3, P3 DB−/DB+ N4, P4 DB−/DB+ N5, P5 DB−/DB+ N6, P6 N10, P10 DATACLK_OUT−/ DATACLK_OUT+ DATACLK_IN−/ DATACLK_IN+ DB−/DB+ N11, P11 DB−/DB+ N12, P12 DB−/DB+ N13, P13 DB−/DB+ N14, P14 DB−/DB+ Negative/Positive Data Input Bit 13 (MSB). Conforms to IEEE-1596 reduced range link. 0 = SPI Mode. SPI is enabled. 1 = PIN Mode. SPI is disabled; direct pin control. 3.3 V Digital Supply. Negative/Positive Data Input Bit 12. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 0 (LSB). Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 11. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 1. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 2. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 3. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 4. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 5. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Output Clock. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Clock. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 6. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 7. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 8. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 9. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 10. Conforms to IEEE-1596 reduced range link. N9, P9 Rev. B | Page 11 of 72 AD9734/AD9735/AD9736 Data Sheet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 A B C D DACCLK– E DACCLK+ F G H J K DB11 (MSB) L DB10 DB9 NC M N 04862-115 DB8 DB7 DB6 DB5 DB4 DATACLK_IN DB3 DATACLK_OUT DB1 DB2 NC DB0 (LSB) P Figure 3. AD9735 Digital LVDS Input, Clock I/O (Top View) Table 7. AD9735 Pin Function Descriptions Pin No. A1, A2, A3, B1, B2, B3, C1, C2, C3, D2, D3 A4, A5, A6, A9, A10, A11, B4, B5, B6, B9, B10, B11, C4, C5, C6, C9, C10, C11, D4, D5, D6, D9, D10, D11 A7, B7, C7, D7 A8, B8, C8, D8 A12, A13, B12, B13, C12, C13, D12, D13 A14 B14 Mnemonic CVDD18 AVSS Description 1.8 V Clock Supply. Analog Supply Ground. IOUTB IOUTA AVDD33 DNC I120 C14 VREF D1, E2, E3, E4, F2, F3, F4, G1, G2, G3, G4 D14 CVSS IPTAT E1, F1 E11, E12, F11, F12, G11, G12 E13 DACCLK−/DACCLK+ AVSS IRQ/UNSIGNED E14 RESET/PD F13 CSB/2× F14 G13 G14 H1, H2, H3, H4, H11, H12, H13, H14, J1, J2, J3, J4, J11, J12, J13, J14 K1, K2, K3, K4, K11, K12, L2, L3, L4, L5, L6, L9, L10, L11, L12, M3, M4, M5, M6, M9, M10, M11, M12 SDIO/FIFO SCLK/FSC0 SDO/FSC1 DVDD18 DAC Negative Output. 10 mA to 30 mA full-scale output current. DAC Positive Output. 10 mA to 30 mA full-scale output current. 3.3 V Analog Supply. Do Not Connect. Nominal 1.2 V Reference. Tie to analog ground via 10 kΩ resistor to generate a 120 µA reference current. Band Gap Voltage Reference I/O. Tie to analog ground via 1 nF capacitor; output impedance approximately 5 kΩ. Clock Supply Ground. Factory Test Pin; Output current, proportional to absolute temperature, is approximately 10 µA at 25°C with a slope of approximately 20 nA/°C. Negative/Positive DAC Clock Input (DACCLK). Analog Supply Ground Shield. Tie to AVSS at the DAC. If PIN_MODE = 0, IRQ: Active low open-drain interrupt request output, pull up to DVDD33 with 10 kΩ resistor. If PIN_MODE = 1, UNSIGNED: Digital input pin where 0 = twos complement input data format, 1 = unsigned. If PIN_MODE = 0, RESET: 1 resets the AD9735. If PIN_MODE = 1, PD: 1 puts the AD9735 in the power-down state. See the Serial Peripheral Interface section and the Pin Mode Operation section for pin description. See the Pin Mode Operation section for pin description. See the Pin Mode Operation section for pin description. See the Pin Mode Operation section for pin description. 1.8 V Digital Supply. DVSS Digital Supply Ground. Rev. B | Page 12 of 72 Data Sheet AD9734/AD9735/AD9736 Pin No. K13, K14 Mnemonic DB−/DB+ L1 PIN_MODE L7, L8, M7, M8, N7, N8, P7, P8 L13, L14 DVDD33 DB−/DB+ M1, M2 M13, M14 NC DB−/DB+ N1, P1 N2, P2 NC DB−/DB+ N3, P3 DB−/DB+ N4, P4 DB−/DB+ N5, P5 DB−/DB+ N6, P6 N10, P10 DATACLK_OUT−/ DATACLK_OUT+ DATACLK_IN−/ DATACLK_IN+ DB−/DB+ N11, P11 DB−/DB+ N12, P12 DB−/DB+ N13, P13 DB−/DB+ N14, P14 DB−/DB+ N9, P9 Description Negative/Positive Data Input Bit 11 (MSB). Conforms to IEEE-1596 reduced range link. 0 = SPI Mode. SPI is enabled. 1 = PIN Mode. SPI disabled; direct pin control. 3.3 V Digital Supply. Negative/Positive Data Input Bit 10. Conforms to IEEE-1596 reduced range link. No Connect. Negative/Positive Data Input Bit 9. Conforms to IEEE-1596 reduced range link. No Connect. Negative/Positive Data Input Bit 0 (LSB). Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 1. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 2. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 3. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Output Clock. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Clock. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 4. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 5. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 6. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 7. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 8. Conforms to IEEE-1596 reduced range link. Rev. B | Page 13 of 72 AD9734/AD9735/AD9736 Data Sheet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 A B C D DACCLK– E DACCLK+ F G H J K DB9 (MSB) L DB8 NC M DB7 N 04862-114 DB6 DB5 DB4 DB3 DB2 DATACLK_IN DB1 DATACLK_OUT NC DB0 (LSB) NC NC P Figure 4. AD9734 Digital LVDS Input, Clock I/O (Top View) Table 8. AD9734 Pin Function Descriptions Pin No. A1, A2, A3, B1, B2, B3, C1, C2, C3, D2, D3 A4, A5, A6, A9, A10, A11, B4, B5, B6, B9, B10, B11, C4, C5, C6, C9, C10, C11, D4, D5, D6, D9, D10, D11 A7, B7, C7, D7 A8, B8, C8, D8 A12, A13, B12, B13, C12, C13, D12, D13 A14 B14 Mnemonic CVDD18 AVSS Description 1.8 V Clock Supply. Analog Supply Ground. IOUTB IOUTA AVDD33 DNC I120 C14 VREF D1, E2, E3, E4, F2, F3, F4, G1, G2, G3, G4 D14 CVSS IPTAT E1, F1 E11, E12, F11, F12, G11, G12 E13 DACCLK−/DACCLK+ AVSS IRQ/UNSIGNED E14 RESET/PD F13 CSB/2× F14 G13 G14 H1, H2, H3, H4, H11, H12, H13, H14, J1, J2, J3, J4, J11, J12, J13, J14 K1, K2, K3, K4, K11, K12, L2, L3, L4, L5, L6, L9, L10, L11, L12, M3, M4, M5, M6, M9, M10, M11, M12 SDIO/FIFO SCLK/FSC0 SDO/FSC1 DVDD18 DAC Negative Output. 10 mA to 30 mA full-scale output current. DAC Positive Output. 10 mA to 30 mA full-scale output current. 3.3 V Analog Supply. Do Not Connect. Nominal 1.2 V Reference. Tie to analog ground via 10 kΩ resistor to generate a 120 μA reference current. Band Gap Voltage Reference I/O. Tie to analog ground via 1 nF capacitor; output impedance approximately 5 kΩ. Clock Supply Ground. Factory Test Pin. Output current, proportional to absolute temperature, is approximately 10 μA at 25°C with a slope of approximately 20 nA/°C. Negative/Positive DAC Clock Input (DACCLK). Analog Supply Ground Shield. Tie to AVSS at the DAC. If PIN_MODE = 0, IRQ: Active low open-drain interrupt request output, pull up to DVDD33 with 10 kΩ resistor. If PIN_MODE = 1, UNSIGNED: Digital input pin where 0 = twos complement input data format, 1 = unsigned. If PIN_MODE = 0, RESET: 1 resets the AD9734. If PIN_MODE = 1, PD: 1 puts the AD9734 in the power-down state. See the Serial Peripheral Interface section and the Pin Mode Operation section for pin description. See the Pin Mode Operation section for pin description. See the Pin Mode Operation section for pin description. See the Pin Mode Operation section for pin description. 1.8 V Digital Supply. DVSS Digital Supply Ground. K13, K14 DB−/DB+ Negative/Positive Data Input Bit 9 (MSB). Conforms to IEEE-1596 Rev. B | Page 14 of 72 Data Sheet AD9734/AD9735/AD9736 Pin No. Mnemonic L1 PIN_MODE L7, L8, M7, M8, N7, N8, P7, P8 L13, L14 DVDD33 DB−/DB+ M1, M2 M13, M14 NC DB−/DB+ N1, P1 N2, P2 N3, P3 N4, P4 NC NC NC DB−/DB+ N5, P5 DB−/DB+ N6, P6 N10, P10 DATACLK_OUT−/ DATACLK_OUT+ DATACLK_IN−/ DATACLK_IN+ DB−/DB+ N11, P11 DB−/DB+ N12, P12 DB−/DB+ N13, P13 DB−/DB+ N14, P14 DB−/DB+ N9, P9 Description reduced range link. 0 = SPI Mode. SPI is enabled. 1 = PIN Mode. SPI is disabled; direct pin control. 3.3 V Digital Supply. Negative/Positive Data Input Bit 8. Conforms to IEEE-1596 reduced range link. No Connect. Negative/Positive Data Input Bit 7. Conforms to IEEE-1596 reduced range link. No Connect. No Connect. No Connect. Negative/Positive Data Input Bit 0 (LSB). Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 1. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Output Clock. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Clock. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 2. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 3. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 4. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 5. Conforms to IEEE-1596 reduced range link. Negative/Positive Data Input Bit 6. Conforms to IEEE-1596 reduced range link. Rev. B | Page 15 of 72 AD9734/AD9735/AD9736 Data Sheet LOCATION OF SUPPLY AND CONTROL PINS 4 5 6 7 8 9 10 11 12 13 14 1 A A B B C C D D E E F F G G H H J J K K L L M M N N P P AVDD33, 3.3V, ANALOG SUPPLY AVSS, ANALOG SUPPLY GROUND SHIELD 2 3 4 5 6 7 8 4 5 6 7 8 9 10 11 12 13 14 DVDD33, 3.3V DIGITAL SUPPLY DVSS DIGITAL SUPPLY GROUND Figure 5. Analog Supply Pins (Top View) 1 3 DVDD18, 1.8V DIGITAL SUPPLY 04862-002 AVSS, ANALOG SUPPLY GROUND 2 04862-004 3 Figure 7. Digital Supply Pins (Top View) 9 10 11 12 13 14 A B 1 C 2 3 4 5 6 IOUTA 2 IOUTB 1 7 8 9 10 11 12 13 14 D A E B I120 F C VREF G D IPTAT H E J PIN_MODE = SPI ENABLE IRQ RESE F K CSB SDIO G L SCLK SDO H J N K P PIN_MODE L CVDD18, 1.8V CLOCK SUPPLY CVSS, CLOCK SUPPLY GROUND 04862-003 M PIN_MODE = SPI DISABL UNSIGNED PD M 2× FIFO N FSC0 FSC1 P Figure 6. Clock Supply Pins (Top View) Figure 8. Analog I/O and SPI Control Pins (Top View) Rev. B | Page 16 of 72 Data Sheet AD9734/AD9735/AD9736 TERMINOLOGY Linearity Error (Integral Nonlinearity or INL) The maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero to full scale. Power Supply Rejection The maximum change in the full-scale output as the supplies are varied from nominal to minimum and maximum specified voltages. Differential Nonlinearity (DNL) The measure of the variation in analog value, normalized to full scale, associated with a 1 LSB change in digital input code. Settling Time The time required for the output to reach and remain within a specified error band about its final value, measured from the start of the output transition. Monotonicity A DAC is monotonic if the output either increases or remains constant as the digital input increases. Offset Error The deviation of the output current from the ideal of zero. For IOUTA, 0 mA output is expected when the inputs are all 0s. For IOUTB, 0 mA output is expected when all inputs are set to 1s. Gain Error The difference between the actual and ideal output span. The actual span is determined by the output when all inputs are set to 1s minus the output when all inputs are set to 0s. Output Compliance Range The range of allowable voltage at the output of a current output DAC. Operation beyond the maximum compliance limits can cause either output stage saturation or breakdown, resulting in nonlinear performance. Temperature Drift Specified as the maximum change from the ambient (25°C) value to the value at either TMIN or TMAX. For offset and gain drift, the drift is reported in ppm of full-scale range (FSR) per °C. For reference drift, the drift is reported in ppm per °C. Glitch Impulse Asymmetrical switching times in a DAC give rise to undesired output transients that are quantified by a glitch impulse. It is specified as the net area of the glitch in pV-s. Spurious-Free Dynamic Range The difference, in dB, between the rms amplitude of the output signal and the peak spurious signal over the specified bandwidth. Total Harmonic Distortion (THD) The ratio of the rms sum of the first six harmonic components to the rms value of the measured input signal. It is expressed as a percentage or in decibels (dB). Multitone Power Ratio The spurious-free dynamic range containing multiple carrier tones of equal amplitude. It is measured as the difference between the rms amplitude of a carrier tone to the peak spurious signal in the region of a removed tone. Rev. B | Page 17 of 72 AD9734/AD9735/AD9736 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS AD9736 STATIC LINEARITY, 10 mA FULL SCALE 1.00 1.0 0.75 0.8 0.50 0.6 0.25 0.4 ERROR (LSB) ERROR (LSB) 0 –0.25 –0.50 –0.75 –1.00 0.2 0 –0.2 –0.4 –1.25 –0.6 –1.50 0 2048 4096 6144 8192 10240 12288 14336 16384 CODE –1.0 04862-008 –2.00 0 Figure 9. AD9736 INL, −40°C, 10 mA FS 2048 4096 6144 8192 10240 12288 14336 16384 CODE 04862-010 –0.8 –1.75 Figure 12. AD9736 DNL, −40°C, 10 mA FS 1.00 1.0 0.75 0.8 0.50 0.6 0.25 0.4 ERROR (LSB) ERROR (LSB) 0 –0.25 –0.50 –0.75 –1.00 0.2 0 –0.2 –0.4 –1.25 –0.6 –1.50 0 2048 4096 6144 8192 10240 12288 14336 16384 CODE –1.0 04862-008 –2.00 0 Figure 10. AD9736 INL, 25°C, 10 mA FS 2048 4096 6144 8192 10240 12288 14336 16384 CODE 04862-011 –0.8 –1.75 Figure 13. AD9736 DNL, 25°C, 10 mA FS 1.00 1.0 0.75 0.8 0.50 0.6 0.25 0.4 ERROR (LSB) –0.25 –0.50 –0.75 –1.00 0.2 0 –0.2 –0.4 –1.25 –0.6 –1.50 –2.00 0 2048 4096 6144 8192 10240 12288 14336 16384 CODE Figure 11. AD9736 INL, 85°C, 10 mA FS –1.0 0 2048 4096 6144 8192 10240 12288 14336 16384 CODE Figure 14. AD9736 DNL, 85°C, 10 mA FS Rev. B | Page 18 of 72 04862-012 –0.8 –1.75 04862-009 ERROR (LSB) 0 Data Sheet AD9734/AD9735/AD9736 0.6 0.8 0.5 0.6 0.4 0.4 0.3 0.2 0.2 0 –0.2 –0.4 –0.6 0.1 0 –0.1 –0.2 –0.8 –0.3 –1.0 –0.4 –1.2 –0.5 2048 4096 6144 8192 10240 12288 14336 16384 CODE –0.6 0 0.6 0.8 0.5 0.6 0.4 0.4 0.3 0.2 0.2 ERROR (LSB) 1.0 0 –0.2 –0.4 –0.6 0 –0.2 –0.3 –0.4 –1.2 –0.5 2048 4096 6144 8192 10240 12288 14336 16384 CODE –0.6 0 0.6 0.8 0.5 0.6 0.4 0.4 0.3 0.2 0.2 ERROR (LSB) 1.0 0 –0.2 –0.4 –0.6 –0.2 –0.4 –1.2 –0.5 6144 8192 10240 12288 14336 16384 CODE 8192 10240 12288 14336 16384 CODE 0 –0.3 4096 6144 –0.1 –1.0 2048 4096 0.1 –0.8 0 2048 Figure 19. AD9736 DNL, 25°C, 20 mA FS 04862-015 ERROR (LSB) Figure 16. AD9736 INL, 25°C, 20 mA FS –1.4 8192 10240 12288 14336 16384 CODE –0.1 –1.0 0 6144 0.1 –0.8 –1.4 4096 Figure 18. AD9736 DNL, −40°C, 20 mA FS 04862-014 ERROR (LSB) Figure 15. AD9736 INL, −40°C, 20 mA FS 2048 04862-017 0 Figure 17. AD9736 INL, 85°C, 20 mA FS –0.6 0 2048 4096 6144 8192 10240 12288 14336 16384 CODE Figure 20. AD9736 DNL, 85°C, 20 mA FS Rev. B | Page 19 of 72 04862-018 –1.4 04862-016 ERROR (LSB) 1.0 04862-013 ERROR (LSB) AD9736 STATIC LINEARITY, 20 mA FULL SCALE AD9734/AD9735/AD9736 Data Sheet AD9736 STATIC LINEARITY, 30 mA FULL SCALE 0.6 2.0 0.5 1.5 0.4 0.3 1.0 ERROR (LSB) ERROR (LSB) 0.2 0.5 0 –0.5 0.1 0 –0.1 –0.2 –0.3 –1.0 –0.4 –1.5 2048 4096 6144 8192 10240 12288 14336 16384 CODE –0.6 04862-019 0 0 Figure 21. AD9736 INL, −40°C, 30 mA FS 2048 4096 6144 8192 10240 12288 14336 16384 CODE 04862-022 –0.5 –2.0 Figure 24. AD9736 DNL, −40°C, 30 mA FS 2.0 0.6 0.5 1.5 0.4 0.3 1.0 ERROR (LSB) ERROR (LSB) 0.2 0.5 0 –0.5 0.1 0 –0.1 –0.2 –0.3 –1.0 –0.4 –1.5 2048 4096 6144 8192 10240 12288 14336 16384 CODE –0.6 04862-020 0 0 Figure 22. AD9736 INL, 25°C, 30 mA FS 2048 4096 6144 8192 10240 12288 14336 16384 CODE 04862-023 –0.5 –2.0 Figure 25. AD9736 DNL, 25°C, 30 mA FS 2.0 1.0 1.5 0.5 1.0 0.5 0 0 ERROR (LSB) 0 0 –0.5 –0.5 –1.0 –0.5 –1.0 –1.5 –2.0 –1.0 –1.5 –2.5 –2.0 0 2048 4096 6144 8192 10240 12288 14336 16384 CODE Figure 23. AD9736 INL, 85°C, 30 mA FS –3.0 0 2048 4096 6144 8192 10240 12288 14336 16384 CODE Figure 26. AD9736 DNL, 85°C, 30 mA FS Rev. B | Page 20 of 72 04862-024 –1.5 04862-021 ERROR (LSB) 0 Data Sheet AD9734/AD9735/AD9736 AD9735 STATIC LINEARITY, 10 mA, 20 mA, 30 mA FULL SCALE 0.4 0.100 0.050 0.3 0 ERROR (LSB) ERROR (LSB) 0.2 0.1 –0.050 –0.100 0 –0.150 –0.1 512 1024 1536 2048 CODE 2560 3072 3584 4096 –0.250 0 Figure 27. AD9735 INL, 25°C, 10 mA FS 512 1024 1536 2048 CODE 2560 3072 3584 4096 3584 4096 3584 4096 04862-028 0 04862-025 –0.2 –0.200 Figure 30. AD9735 DNL, 25°C, 10 mA FS 0.15 0.100 0.075 0.10 0.050 0.05 ERROR (LSB) ERROR (LSB) 0.025 0 –0.05 0 –0.025 –0.050 –0.10 –0.075 –0.15 512 1024 1536 2048 2560 3072 3584 4096 CODE –0.125 0 Figure 28. AD9735 INL, 25°C, 20 mA FS 0.050 0.1 0 1536 2048 CODE 2560 3072 –0.050 0 –1.000 ERROR (LSB) –0.1 –0.2 –0.3 –1.150 –0.200 –0.250 –0.4 –0.300 –0.5 0 512 1024 1536 2048 CODE 2560 3072 3584 4096 Figure 29. AD9735 INL, 25°C, 30 mA FS –0.400 0 512 1024 1536 2048 CODE 2560 3072 Figure 32. AD9735 DNL, 25°C, 30 mA FS Rev. B | Page 21 of 72 04862-030 –0.350 04862-027 ERROR (LSB) 1024 Figure 31. AD9735 DNL, 25°C, 20 mA FS 0.2 –0.6 512 04862-029 0 04862-026 –0.20 –0.100 AD9734/AD9735/AD9736 Data Sheet AD9734 STATIC LINEARITY, 10 mA, 20 mA, 30 mA FULL SCALE 0.04 0.03 0.02 0.02 ERROR (LSB) 0.04 0 0.01 –0.02 0 –0.04 –0.01 0 128 256 512 384 640 768 896 04862-031 –0.06 1024 CODE –0.02 0 128 256 384 512 CODE 640 768 896 1024 04862-034 ERROR (LSB) 0.06 Figure 36. AD9734 DNL, 25°C, 10 mA FS Figure 33. AD9734 INL, 25°C, 10 mA FS 0.03 0.03 0.02 0.02 0.01 0.01 ERROR (LSB) –0.01 –0.02 –0.03 0 –0.01 –0.04 –0.02 0 128 256 384 512 CODE 640 768 896 1024 –0.03 04862-032 –0.06 0 128 256 384 512 640 768 896 1024 CODE 04862-035 –0.05 Figure 37. AD9734 DNL, 25°C, 20 mA FS Figure 34. AD9734 INL, 25°C, 20 mA FS 0.01 0.06 0.04 0 0.02 –0.01 ERROR (LSB) 0 –0.02 –0.04 –0.02 –0.03 –0.06 –0.04 –0.08 –0.12 0 128 256 384 512 CODE 640 768 896 1024 –0.06 0 128 256 384 512 CODE 640 768 Figure 38. AD9734 DNL, 25°C, 30 mA FS Figure 35. AD9734 INL, 25°C, 30 mA FS Rev. B | Page 22 of 72 896 1024 04862-036 –0.05 –0.10 04862-033 ERROR (LSB) ERROR (LSB) 0 Data Sheet AD9734/AD9735/AD9736 AD9736 POWER CONSUMPTION, 20 mA FULL SCALE 0.7 0.50 0.45 0.6 TOTAL 0.40 TOTAL 0.5 0.25 0.20 DVDD18 0.15 0.4 DVDD18 0.3 CVDD18 0.2 AVDD33 0.10 DVDD33 0 0 250 500 750 fDAC (MHz) 1000 1250 1500 DVDD33 AVDD33 0.1 CVDD18 0.05 0 0 250 500 750 1000 1250 1500 fDAC (MHz) Figure 40. AD9736, 2× Interpolation Mode Power vs. fDAC at 25°C Figure 39. AD9736 1× Mode Power vs. fDAC at 25°C Rev. B | Page 23 of 72 04862-038 POWER (W) 0.30 04862-037 POWER (W) 0.35 AD9734/AD9735/AD9736 Data Sheet 80 75 800MSPS IMD (dBc) SFDR (dBc) 70 65 60 1.2GSPS 1GSPS 50 0 50 100 150 200 250 300 350 400 450 500 550 600 fOUT (MHz) 04862-039 55 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 0 50 100 150 200 250 300 350 400 450 500 550 fOUT (MHz) Figure 41. AD9736 SFDR vs. fOUT over fDAC at 25°C 04862-042 AD9736 DYNAMIC PERFORMANCE, 20 mA FULL SCALE Figure 44. AD9736 IMD vs. fOUT over 50 Parts, 25°C,1.2 GSPS 90 80 85 75 1GSPS 80 70 IMD (dBc) SFDR (dBc) 75 65 +85°C 60 70 800MSPS 1.2GSPS 65 –40°C 60 +25°C 55 55 100 150 200 250 300 350 400 450 500 550 600 fOUT (MHz) 50 0 100 200 300 400 500 600 04862-043 50 600 04862-044 0 04862-040 50 fOUT (MHz) Figure 42. AD9736 SFDR vs. fOUT over Temperature Figure 45. AD9736 IMD vs. fOUT over fDAC at 25°C 90 78 76 85 74 80 72 75 IMD (dBc) 68 66 64 62 –40°C 70 +25°C +85°C 65 60 58 60 56 55 54 52 0 50 100 150 200 250 300 350 400 450 500 550 fOUT (MHz) 50 04862-041 SFDR (dBc) 70 0 100 200 300 400 500 fOUT (MHz) Figure 43. AD9736 SFDR vs. fOUT over 50 Parts, 25°C, 1.2 GSPS Figure 46. AD9736 IMD vs. fOUT over Temperature, 1.2 GSPS Rev. B | Page 24 of 72 Data Sheet AD9734/AD9735/AD9736 95 90 90 85 IMD 0dBFS 80 75 IMD (dBc) SFDR 75 70 –6dBFS 65 65 60 60 55 55 0 10 fOUT (MHz) 100 –12dBFS 70 50 0 100 200 300 500 600 Figure 50. AD9736 IMD vs. fOUT over AOUT, 25°C, 1.2 GSPS Figure 47. AD9736 Low Frequency IMD and SFDR vs. fOUT, 25°C, 1.2 GSPS 90 90 THIRD-ORDER IMD 85 SFDR_2× SFDR 80 75 75 SFDR, IMD (dBc) 80 70 65 70 SFDR_1× 65 60 60 55 55 0 50 100 150 200 fOUT (MHz) 250 300 350 50 04862-046 50 Figure 48. AD9736 IMD and SFDR vs. fOUT, 25°C, 1.2 GSPS, 2× Interpolation 0 50 100 150 200 250 300 350 fOUT (MHz) 04862-049 85 SFDR, IMID (dBc) 400 fOUT (MHz) 04862-048 80 04862-045 IMD AND SFDR (dBc) 85 Figure 51. AD9736 SFDR vs. fOUT, 25°C, 1.2 GSPS, 1× and 2× Interpolation 80 90 75 85 THIRD-ORDER IMD_1× 70 80 –12dBFS 55 –6dBFS 70 65 50 60 45 55 40 0 100 200 300 fOUT (MHz) 400 500 600 Figure 49. AD9736 SFDR vs. fOUT over AOUT, 25°C, 1.2 GSPS 50 04862-047 SFDR (dBc) 0dBFS 60 75 0 50 100 150 200 fOUT (MHz) 250 300 350 04862-050 SFDR, IMD (dBc) THIRD-ORDER IMD_2× 65 Figure 52. AD9736 IMD vs. fOUT, 25°C, 1.2 GSPS, 1× and 2× Interpolation Rev. B | Page 25 of 72 AD9734/AD9735/AD9736 Data Sheet –150 –150 –152 –152 –154 –154 –156 –156 –160 –162 –158 –160 –164 –164 –166 –166 –168 –168 –170 0 100 200 300 fOUT (MHz) 400 500 600 +85°C –162 –40°C +25°C –170 0 100 200 300 400 500 600 fOUT (MHz) 04862-054 NSD (dBm/Hz) 1.2GSPS 04862-051 NSD (dBm/Hz) 1GSPS –158 Figure 56. AD9736 8-Tone NSD vs. fOUT over Temperature, 1.2 GSPS Figure 53. AD9736 1-Tone NSD vs. fOUT over fDAC, 25°C –150 –157 –152 –158 –154 –159 +85°C –158 NSD (dBm/Hz) –40°C –160 +25°C –162 –164 –160 –161 –162 –163 –164 –166 –165 –168 0 100 200 300 fOUT (MHz) 400 500 600 –166 04862-052 –170 0 50 100 150 200 250 300 350 400 450 500 550 fOUT (MHz) Figure 54. AD9736 1-Tone NSD vs. fOUT over Temperature, 1.2 GSPS 04862-055 NSD (dBm/Hz) –156 Figure 57. AD9736 1-Tone NSD vs. fOUT over 50 Parts, 1.2 GSPS, 25°C –150 –161 –152 –154 –162 NSD (dBm/Hz) –158 –160 –162 1GSPS –163 –164 –165 –164 1.2GSPS –166 –166 –170 0 100 200 300 fOUT (MHz) 400 500 600 –167 Figure 55. AD9736 8-Tone NSD vs. fOUT over fDAC, 25°C 0 50 100 150 200 250 300 fOUT (MHz) 350 400 450 500 550 04862-056 –168 04862-053 NSD (dBm/Hz) –156 Figure 58. AD9736 8-Tone NSD vs. fOUT over 50 Parts, 1.2 GSPS, 25°C Rev. B | Page 26 of 72 Data Sheet AD9734/AD9735/AD9736 AD9735, AD9734 DYNAMIC PERFORMANCE, 20 mA FULL SCALE 80 90 85 75 1GSPS 80 800MSPS 75 IMD (dBc) SFDR (dBc) 70 65 60 800MSPS 70 1.2GSPS 65 1GSPS 60 0 50 100 150 200 250 300 350 400 450 500 550 600 fOUT (MHz) 50 04862-060 50 55 1.2GSPS 0 Figure 59. AD9735 SFDR vs. fOUT over fDAC, 1.2 GSPS 50 100 150 200 250 300 350 400 450 500 550 600 fOUT (MHz) 04862-063 55 Figure 62. AD9734 IMD vs. fOUT over fDAC, 1.2 GSPS 80 –150 –152 75 –154 –156 NSD (dBc/Hz) 800MSPS 65 1GSPS 60 –160 –162 8 TONES –166 1.2GSPS 0 50 100 150 200 250 300 350 400 450 500 550 600 fOUT (MHz) –168 –170 0 50 Figure 60. AD9734 SFDR vs. fOUT over fDAC, 1.2 GSPS Figure 63. AD9735 NSD vs. fOUT, 1.2 GSPS 90 –145 1GSPS –147 85 –149 80 800MSPS 8 TONES –151 NSD (dBc/Hz) 75 70 65 1.2GSPS –153 1 TONE –155 –157 –159 60 –161 55 0 50 100 150 200 250 300 350 400 450 500 550 600 fOUT (MHz) Figure 61. AD9735 IMD vs. fOUT over fDAC, 1.2 GSPS –165 0 50 100 150 200 250 300 350 400 450 500 550 600 fOUT (MHz) Figure 64. AD9734 NSD vs. fOUT, 1.2 GSPS Rev. B | Page 27 of 72 04862-065 –163 50 04862-062 IMD (dBc) 100 150 200 250 300 350 400 450 500 550 600 fOUT (MHz) 04862-064 55 50 1 TONE –158 –164 04862-061 SFDR (dBc) 70 AD9734/AD9735/AD9736 Data Sheet AD973x WCDMA ACLR, 20 mA FULL SCALE REF –22.75dBm #AVG LOG 10dB/ 04862-057 #ATTEN 6dB PAVG 10 W1 S2 CENTER 134.83MHz #RES BW 30kHz RMS RESULTS CARRIER POWER –10.72dBm/ 3.84000MHz VBW 300kHz OFFSET FREQ 5.00MHz 10.0MHz 15.0MHz REF BW 3.840MHz 3.840MHz 3.884MHz LOWER dBc dBm –81.65 –92.37 –82.06 –92.78 –82.11 –92.83 SPAN 33.88MHz SWEEP 109.9ms (601pts) UPPER dBc –81.39 –82.43 –82.39 dBm –92.11 –93.16 –93.11 Figure 65. AD9736 WCDMA Carrier at 134.83 MHz, fDAC = 491.52 MSPS REF –22.75dBm #AVG LOG 10dB/ 04862-058 #ATTEN 6dB PAVG 10 S2 CENTER 134.83MHz #RES BW 30kHz RMS RESULTS CARRIER POWER –10.72dBm/ 3.84000MHz VBW 300kHz OFFSET FREQ 5.00MHz 10.0MHz 15.0MHz REF BW 3.840MHz 3.840MHz 3.884MHz LOWER dBc dBm –80.32 –91.10 –81.13 –91.91 –80.43 –91.21 SPAN 33.88MHz SWEEP 109.9ms (601pts) UPPER dBc –80.60 –80.75 –81.36 dBm –91.38 –91.53 –92.13 Figure 66. AD9735 WCDMA Carrier at 134.83 MHz, fDAC = 491.52 MSPS REF –22.75dBm #AVG LOG 10dB/ 04862-059 #ATTEN 6dB PAVG 10 S2 CENTER 134.83MHz #RES BW 30kHz RMS RESULTS CARRIER POWER –10.76dBm/ 3.84000MHz VBW 300kHz OFFSET FREQ 5.00MHz 10.0MHz 15.0MHz SPAN 33.88MHz SWEEP 109.9ms (601pts) REF BW 3.840MHz 3.840MHz 3.884MHz LOWER dBc dBm –71.07 –81.83 –70.55 –81.31 –70.79 –81.56 UPPER dBc –71.23 –71.42 –71.25 dBm –81.99 –82.19 –82.01 Figure 67. AD9734 WCDMA Carrier at 134.83 MHz, fDAC = 491.52 MSPS Rev. B | Page 28 of 72 Data Sheet AD9734/AD9735/AD9736 SPI REGISTER MAP Write 0 to unspecified or reserved bit locations. Reading these bits returns unknown values. Table 9. SPI Register Map Reg. Addr. Dec. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Hex. 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Default (Hex) Pin Mode (Hex) MODE IRQ FSC_1 FSC_2 LVDS_CNT1 LVDS_CNT2 LVDS_CNT3 SYNC_CNT1 SYNC_CNT2 RESERVED CROS_CNT1 CROS_CNT2 RESERVED RESERVED ANA_CNT1 ANA_CNT2 RESERVED BIST_CNT BIST BIST BIST BIST CCLK_DIV SDIO_DIR LVDS SLEEP FSC MSD SD LSURV FIFOSTAT3 SSURV LSBFIRST SYNC RESET CROSS LONG_INS RESERVED 2X MODE IE_LVDS FIFO MODE IE_SYNC FSC MSD SD LAUTO FIFOSTAT2 SAUTO FSC MSD SD LFLT FIFOSTAT1 SFLT FSC MSD SD LFLT FIFOSTAT0 SFLT FSC MHD LCHANGE LFLT VALID SFLT FSC MHD ERR_HI LFLT SCHANGE SFLT DATAFRMT IE_CROSS FSC FSC MHD ERR_LO LTRH PHOF RESERVED PD RESERVED FSC FSC MHD CHECK LTRH PHOF STRH 00 00 02 00 00 00 00 00 00 00 00 02 00 00 00 00 00 00 UPDEL DNDEL UPDEL DNDEL UPDEL DNDEL UPDEL DNDEL UPDEL DNDEL UPDEL DNDEL 00 00 00 00 HDRM HDRM TRMBG HDRM TRMBG HDRM TRMBG HDRM C0 CA C0 CA LVDS_EN SYNC_EN CLEAR 00 00 CCD CCD CCD 00 00 MSEL HDRM MSEL HDRM HDRM SEL SEL SIG_READ RESERVED RESERVED RESERVED RESERVED CCD Rev. B | Page 29 of 72 AD9734/AD9735/AD9736 Data Sheet SPI REGISTER DETAILS Reading these registers returns previously written values for all defined register bits, unless otherwise noted. Reset value for write registers in bold text. MODE REGISTER (REG. 0) ADDR 0x00 Name MODE Bit 7 SDIO_DIR Bit 6 LSB/MSB Bit 5 RESET Bit 4 LONG_INS Bit 3 2× MODE Bit 2 FIFO MODE Bit 1 DATAFRMT Bit 0 PD Table 10. Mode Register Bit Descriptions Bit Name SDIO_DIR Read/Write WRITE LSB/MSB WRITE RESET WRITE LONG_INS WRITE 2×_MODE WRITE FIFO_MODE WRITE DATAFRMT WRITE PD WRITE Description 0, input only per SPI standard. 1, bidirectional per SPI standard. 0, MSB first per SPI standard. 1, LSB first per SPI standard. NOTE: Only change LSB/MSB order in single-byte instructions to avoid erratic behavior due to bit order errors. 0, execute software reset of SPI and controllers, reload default register values except Registers 0x00 and 0x04. 1, set software reset, write 0 on the next (or any following) cycle to release the reset. 0, short (single-byte) instruction word. 1, long (two-byte) instruction word, not necessary since the maximum internal address is REG31 (0x1F). 0, disable 2× interpolation filter. 1, enable 2× interpolation filter. 0, disable FIFO synchronization. 1, enable FIFO synchronization. 0, signed input DATA with midscale = 0x0000. 1, unsigned input DATA with midscale = 0x2000. 0, enable LVDS Receiver, DAC, and clock circuitry. 1, power down LVDS Receiver, DAC, and clock circuitry. INTERRUPT REQUEST REGISTER (IRQ) (REG. 1) ADDR 0x01 Name IRQ Bit 7 LVDS Bit 6 SYNC Bit 5 CROSS Bit 4 RESERVED Bit 3 IE_LVDS Bit 2 IE_SYNC Table 11. Interrupt Register Bit Descriptions Bit Name LVDS Read/Write WRITE READ SYNC WRITE READ CROSS WRITE READ IE_LVDS WRITE IE_SYNC WRITE IE_CROSS WRITE Description Don’t care. 0, no active LVDS receiver interrupt. 1, interrupt in LVDS receiver occurred. Don’t care. 0, no active SYNC logic interrupt. 1, interrupt in SYNC logic occurred. Don’t care. 0, no active CROSS logic interrupt. 1, interrupt in CROSS logic occurred. 0, reset LVDS receiver interrupt and disable future LVDS receiver interrupts. 1, enable LVDS receiver interrupt to activate IRQ pin. 0, reset SYNC logic interrupt and disable future SYNC logic interrupts. 1, enable SYNC logic interrupt to activate IRQ pin. 0, reset CROSS logic interrupt and disable future CROSS logic interrupts. 1, enable CROSS logic interrupt to activate IRQ pin. Rev. B | Page 30 of 72 Bit 1 IE_CROSS Bit 0 RESERVED Data Sheet AD9734/AD9735/AD9736 FULL SCALE CURRENT (FSC) REGISTERS (REG. 2, REG. 3) ADDR 0x02 0x03 Name FSC_1 FSC_2 Bit 7 SLEEP FSC Bit 6 – FSC Bit 5 Bit 4 Bit 3 Bit 2 – FSC – FSC – FSC – FSC Bit 1 FSC FSC Bit 0 FSC FSC Table 12. Full Scale Current Output Register Bit Descriptions Bit Name SLEEP Read/Write WRITE FSC WRITE Description 0, enable DAC output. 1, set DAC output current to 0 mA. 0x000, 10 mA full-scale output current. 0x200, 20 mA full-scale output current. 0x3FF, 30 mA full-scale output current. LVDS CONTROLLER (LVDS_CNT) REGISTERS (REG. 4, REG. 5, REG. 6) ADDR 0x04 0x05 0x06 Name LVDS_CNT1 LVDS_CNT2 LVDS_CNT3 Bit 7 MSD SD LSURV Bit 6 MSD SD LAUTO Bit 5 MSD SD LFLT Bit 4 MSD SD LFLT Bit 3 MHD LCHANGE LFLT Bit 2 MHD ERR_HI LFLT Bit 1 MHD ERR_LO LTRH Bit 0 MHD CHECK LTRH Table 13. LVDS Controller Register Bit Descriptions Bit Name MSD Read/Write WRITE READ MHD WRITE READ SD WRITE READ LCHANGE READ ERR_HI ERR_LO CHECK READ READ READ LSURV WRITE LAUTO WRITE LFLT WRITE LTRH WRITE Description 0x0, set setup delay for the measurement system. If ( LAUTO = 1), the latest measured value for the setup delay. If ( LAUTO = 0), readback of the last SPI write to this bit. 0x0, set hold delay for the measurement system. If ( LAUTO = 1), the latest measured value for the hold delay. If ( LAUTO = 0), readback of the last SPI write to this bit. 0x0, set sample delay. If ( LAUTO = 1), the result of a measurement cycle is stored in this register. If ( LAUTO = 0), readback of the last SPI write to this bit. 0, no change from previous measurement. 1, change in value from the previous measurement. NOTE: The average filter and the threshold detection are not applied to this bit. One of the 15 LVDS inputs is above the input voltage limits of the IEEE reduced link specification. One of the 15 LVDS inputs is below the input voltage limits of the IEEE reduced link specification. 0, phase measurement—sampling in the previous or following DATA cycle. 1, phase measurement—sampling in the correct DATA cycle. 0, the controller stops after completion of the current measurement cycle. 1, continuous measurements are taken and an interrupt is issued if the clock alignment drifts beyond the threshold value. 0, sample delay is not automatically updated. 1, continuously starts measurement cycles and updates the sample delay according to the measurement. NOTE: LSURV (Reg. 6, Bit 7) must be set to 1 and the LVDS IRQ (Reg. 1, Bit 3) must be set to 0 for AUTO mode. 0x0, average filter length, Delay = Delay + Delta Delay/2^ LFLT , values greater than 12 (0x0C) are clipped to 12. 000, set auto update threshold values. Rev. B | Page 31 of 72 AD9734/AD9735/AD9736 Data Sheet SYNC CONTROLLER (SYNC_CNT) REGISTERS (REG. 7, REG. 8) ADDR 0x07 0x08 Name SYNC_CNT1 SYNC_CNT2 Bit 7 FIFOSTAT3 SSURV Bit 6 FIFOSTAT2 SAUTO Bit 5 FIFOSTAT1 SFLT Bit 4 FIFOSTAT0 SFLT Bit 3 VALID SFLT Bit 2 SCHANGE SFLT Bit 1 PHOF RESERVED Bit 0 PHOF STRH Table 14. Sync Controller Register Bit Descriptions Bit Name FIFOSTAT FIFOSTAT Read/Write READ READ VALID READ SCHANGE READ PHOF WRITE READ SSURV WRITE SAUTO WRITE SFLT WRITE STRH WRITE Description Position of FIFO read counter ranges from 0 to 7. 0, SYNC logic OK. 1, error in SYNC logic. 0, FIFOSTAT is not valid yet. 1, FIFOSTAT is valid after a reset. 0, no change in FIFOSTAT. 1, FIFOSTAT has changed since the previous measurement cycle when SSURV = 1 (surveillance mode active). 00, change the readout counter. Current setting of the readout counter (PHOF) in surveillance mode (SSURV = 1) after an interrupt. Current calculated optimal readout counter value in AUTO mode (SAUTO = 1). 0, the controller stops after completion of the current measurement cycle. 1, continuous measurements are taken and an interrupt is issued if the readout counter drifts beyond the threshold value. 0, readout counter (PHOF) is not automatically updated. 1, continuously starts measurement cycles and updates the readout counter according to the measurement. NOTE: SSURV (Reg. 8, Bit 7) must be set to 1 and the SYNC IRQ (Reg. 1, Bit 2) must be set to 0 for AUTO mode. 0x0, average filter length, FIFOSTAT = FIFOSTAT + Delta FIFOSTAT/2 ^ SFLT; values greater than 12 (0x0C) are not valid. 0, if FIFOSTAT = 0 or 7, a sync interrupt is generated. 1, if FIFOSTAT = 0, 1, 6 or 7, a sync interrupt is generated. CROSS CONTROLLER (CROS_CNT) REGISTERS (REG. 10, REG. 11) ADDR 0x0A 0x0B Name CROS_CNT1 CROS_CNT2 Bit 7 – – Bit 6 – – Bit 5 UPDEL DNDEL Bit 4 UPDEL DNDEL Bit 3 UPDEL DNDEL Bit 2 UPDEL DNDEL Bit 1 UPDEL DNDEL Table 15. Cross Controller Register Description Bit Name UPDEL DNDEL Read/Write WRITE WRITE Description 0x00, move the differential output stage switching point up, set to 0 if DNDEL is non-zero. 0x00, move the differential output stage switching point down, set to 0 if UPDEL is non-zero. Rev. B | Page 32 of 72 Bit 0 UPDEL DNDEL Data Sheet AD9734/AD9735/AD9736 ANALOG CONTROL (ANA_CNT) REGISTERS (REG. 14, REG. 15) ADDR 0x0E 0x0F Name ANA_CNT1 ANA_CNT2 Bit 7 MSEL HDRM Bit 6 MSEL HDRM Bit 5 – HDRM Bit 4 – HDRM Bit 3 – HDRM Bit 2 TRMBG HDRM Bit 1 TRMBG HDRM Bit 0 TRMBG HDRM Table 16. Analog Control Register Bit Descriptions Bit Name MSEL Read/Write WRITE Description TRMBG WRITE 000, band gap temperature characteristic trim. NOTE: See the plot in the Analog Control Registers section. HDRM WRITE 0xCA, output stack headroom control. HDRM set reference offset from AVDD33 (VCAS centering). HDRM set overdrive (current density) trim (temperature tracking). Note: Set to 0xCA for optimum performance. 00, mirror roll off frequency control = bypass. 01, mirror roll off frequency control = narrowest bandwidth. 10, mirror roll off frequency control = medium bandwidth. 11, mirror roll off frequency control = widest bandwidth. NOTE: See the plot in the Analog Control Registers section. BUILT-IN SELF TEST CONTROL (BIST_CNT) REGISTERS (REG. 17, REG. 18, REG. 19, REG. 20, REG. 21) ADDR 0x11 0x12 0x13 0x14 0x15 Name BIST_CNT BIST BIST BIST BIST Bit 7 SEL BIST BIST BIST BIST Bit 6 SEL BIST BIST BIST BIST Bit 5 SIG_READ BIST BIST BIST BIST Bit 4 – BIST BIST BIST BIST Bit 3 – BIST BIST BIST BIST Bit 2 LVDS_EN BIST BIST BIST BIST Table 17. BIST Control Register Bit Descriptions Bit Name SEL Read/Write WRITE SIG_READ WRITE LVDS_EN WRITE SYNC_EN WRITE CLEAR WRITE BIST READ Description 00, write result of the LVDS Phase 1 BIST to BIST. 01, write result of the LVDS Phase 2 BIST to BIST. 10, write result of the SYNC Phase 1 BIST to BIST. 11, write result of the SYNC Phase 2 BIST to BIST. 0, no action. 1, enable BIST signature readback. 0, no action. 1, enable LVDS BIST. 0, no action. 1, enable SYNC BIST. 0, no action. 1, clear all BIST registers. Results of the built-in self test. Rev. B | Page 33 of 72 Bit 1 SYNC_EN BIST BIST BIST BIST Bit 0 CLEAR BIST BIST BIST BIST AD9734/AD9735/AD9736 Data Sheet CONTROLLER CLOCK PREDIVIDER (CCLK_DIV) READING REGISTER (REG. 22) ADR 0x16 Name CCLK_DIV Bit 7 RESERVED Bit 6 RESERVED Bit 5 RESERVED Bit 4 RESERVED Bit 3 CCD Bit 2 CCD Bit 1 CCD Bit 0 CCD Table 18. Controller Clock Predivider Register Bit Descriptions Bit Name CCD Read/Write WRITE Description 0x0, controller clock = DACCLK/16. 0x1, controller clock = DACCLK/32. 0x2, controller clock = DACCLK/64 … 0xF, controller clock = DACCLK/524288. NOTE: The 100 MHz to 1.2 GHz DACCLK must be divided to less than 10 MHz for correct operation. CCD must be programmed to divide the DACCLK so that this relationship is not violated. Controller clock = DACCLK/(2 ^ ( CCD + 4 )). Rev. B | Page 34 of 72 Data Sheet AD9734/AD9735/AD9736 THEORY OF OPERATION The AD9736, AD9735, and AD9734 are 14-bit, 12-bit, and 10-bit DACs that run at an update rate up to 1.2 GSPS. Input data can be accepted up to the full 1.2 GSPS rate, or a 2× interpolation filter can be enabled (2× mode) allowing full speed operation with a 600 MSPS input data rate. The DATA and DATACLK_IN inputs are parallel LVDS, meeting the IEEE reduced swing LVDS specifications with the exception of input hysteresis. The DATACLK_IN input runs at one-half the input DATA rate in a double data rate (DDR) format. Each edge of DATACLK_IN transfers DATA into the AD9736, as shown in Figure 79. The DACCLK−/DACCLK+ inputs (Pin E1 and Pin F1) directly drive the DAC core to minimize clock jitter. The DACCLK signal is also divided by 2 (1× and 2× mode), then output as the DATACLK_OUT. The DATACLK_OUT signal clocks the data source. The DAC expects DDR LVDS data (DB) aligned with the DDR input clock (DATACLK_IN) from a circuit similar to the one shown in Figure 96. Table 19 shows the clock relationships. Table 19. AD973x Clock Relationship MODE 1× 2× DACCLK 1.2 GHz 1.2 GHz DATACLK_OUT 600 MHz 600 MHz DATACLK_IN 600 MHz 300 MHz DATA 1.2 GSPS 600 MSPS Maintaining correct alignment of data and clock is a common challenge with high speed DACs, complicated by changes in temperature and other operating conditions. Using the DATACLK_OUT signal to generate the data allows most of the internal process, temperature, and voltage delay variation to be cancelled. The AD973x further simplifies this high speed data capture problem with two adaptive closed-loop timing controllers. The LVDS controller locates the data transitions and delays the DATACLK_IN so that its transition is in the center of the valid data window. The sync controller manages the FIFO that moves data from the LVDS DATACLK_IN domain to the DACCLK domain. Both controllers can operate in manual mode under external processor control, in surveillance mode where error conditions generate external interrupts, or in automatic mode where errors are automatically corrected. The LVDS and sync controllers include moving average filtering for noise immunity and variable thresholds to control activity. Normally, the controllers are set to run in automatic mode, making any necessary adjustments without dropping or duplicating samples sent to the DAC. Both controllers require initial calibration prior to entering automatic update mode. The AD973x analog output changes 35 DACCLK cycles after the input data changes in 1× mode with the FIFO disabled. The FIFO adds up to eight additional cycles of delay. This delay is read from the SPI port. Internal clock delay variation is less than a single DACCLK cycle at 1.2 GHz (833 ps). Stopping the AD973x DATACLK_IN while the DACCLK is still running can lead to unpredictable output signals. This occurs because the internal digital signal path is interleaved. The last two samples clocked into the DAC continue to be clocked out by DACCLK even after DATACLK_IN has stopped. The resulting output signal is at a frequency of one-half fDAC, and the amplitude depends on the difference between the last two samples. Control of the AD973x functions is via the serially programmed registers listed in Table 9. Optionally, a limited number of functions can be directly set by external pins in pin mode. One timing controller manages the LVDS data and data clock alignment (LVDS controller), and the other manages the LVDS data and DACCLK alignment (sync controller). Rev. B | Page 35 of 72 AD9734/AD9735/AD9736 Data Sheet SERIAL PERIPHERAL INTERFACE The AD973x serial port is a flexible, synchronous serial communications port, allowing easy interface to many industry-standard microcontrollers and microprocessors. The serial I/O is compatible with most synchronous transfer formats, including both the Motorola SPI® and Intel® SSR protocols. The interface allows read/write access to all registers that configure the AD973x. Single- or multiple-byte transfers are supported, as well as most significant bit first (MSB-first) or least significant bit first (LSB-first) transfer formats. The AD973x serial interface port can be configured as a single pin I/O (SDIO) or two unidirectional pins for in/out (SDIO/SDO). SDO (PIN G14) SCLK (PIN G13) AD973x SPI PORT CSB (PIN F13) 04862-066 SDIO (PIN F14) MSB I7 R/W I6 N1 I5 N0 I4 A4 I3 A3 I2 A2 I1 A1 LSB I0 A0 R/W, Bit 7 of the instruction byte, determines whether a read or a write data transfer occurs after the instruction byte write. Logic high indicates read operation. Logic 0 indicates a write operation. N1, N0, Bit 6, and Bit 5 of the instruction byte determine the number of bytes to be transferred during the data transfer cycle. The bit decodes are shown in Table 20. A4, A3, A2, A1, A0, Bit 4, Bit 3, Bit 2, Bit 1, and Bit 0 of the instruction byte, determine which register is accessed during the data transfer portion of the communications cycle. For multibyte transfers, this address is the starting byte address. The remaining register addresses are generated by the AD973x, based on the LSBFIRST bit (Reg. 0, Bit 6). Table 20. Byte Transfer Count Figure 68. AD973x SPI Port The AD973x can optionally be configured via external pins rather than the serial interface. When the PIN_MODE input (Pin L1) is high, the serial interface is disabled and its pins are reassigned for direct control of the DAC. Specific functionality is described in the Pin Mode Operation section. GENERAL OPERATION OF THE SERIAL INTERFACE There are two phases to a communication cycle with the AD973x. Phase 1 is the instruction cycle, which is the writing of an instruction byte into the AD973x, coincident with the first eight SCLK rising edges. The instruction byte provides the AD973x serial port controller with information regarding the data transfer cycle, which is Phase 2 of the communication cycle. The Phase 1 instruction byte defines whether the upcoming data transfer is read or write, the number of bytes in the data transfer, and the starting register address for the first byte of the data transfer. The first eight SCLK rising edges of each communication cycle are used to write the instruction byte into the AD973x. The remaining SCLK edges are for Phase 2 of the communication cycle. Phase 2 is the actual data transfer between the AD973x and the system controller. Phase 2 of the communication cycle is a transfer of 1, 2, 3, or 4 data bytes as determined by the instruction byte. Using one multibyte transfer is the preferred method. Single-byte data transfers are useful to reduce CPU overhead when register access requires one byte only. Registers change immediately upon writing to the last bit of each transfer byte. N1 0 0 1 1 N2 0 1 0 1 Description Transfer 1 byte Transfer 2 bytes Transfer 3 bytes Transfer 4 bytes LONG INSTRUCTION MODE (16-BIT INSTRUCTION) The long instruction bytes are shown in the following table: MSB I15 R/W I7 A7 I14 N1 I6 A6 I13 N0 I5 A5 I12 A12 I4 A4 I11 A11 I3 A3 I10 A10 I2 A2 I9 A9 I1 A1 LSB I8 A8 I0 A0 If LONG_INS = 1 (Reg. 0, Bit 4), the instruction byte is extended to 2 bytes where the second byte provides an additional 8 bits of address information. Address 0x00 to Address 0x1F are equivalent in short and long instruction modes. The AD973x does not use any addresses greater than 31 (0x1F), so always set LONG_INS = 0. SERIAL INTERFACE PORT PIN DESCRIPTIONS SCLK—Serial Clock The serial clock pin is used to synchronize data to and from the AD973x and to run the internal state machines. The maximum frequency of SCLK is 20 MHz. All data input to the AD973x is registered on the rising edge of SCLK. All data is driven out of the AD973x on the rising edge of SCLK. CSB (Chip Select) can be raised after each sequence of 8 bits (except the last byte) to stall the bus. The serial transfer resumes when CSB is lowered. Stalling on nonbyte boundaries resets the SPI. SHORT INSTRUCTION MODE (8-BIT INSTRUCTION) The short instruction byte is shown in the following table: Rev. B | Page 36 of 72 Data Sheet AD9734/AD9735/AD9736 CSB—Chip Select Active low input starts and gates a communication cycle. It allows more than one device to be used on the same serial communications lines. The SDO and SDIO pins go to a high impedance state when this input is high. Chip select should stay low during the entire communication cycle. SDIO—Serial Data I/O Data is always written into the AD973x on this pin. However, this pin can be used as a bidirectional data line. The configuration of this pin is controlled by SDIO_DIR at Reg. 0, Bit 7. The default is Logic 0, which configures the SDIO pin as unidirectional. SDO—Serial Data Out Data is read from this pin for protocols that use separate lines for transmitting and receiving data. In the case where the AD973x operates in a single bidirectional I/O mode, this pin does not output data and is set to a high impedance state. MSB/LSB TRANSFERS For multibyte transfers, writing to this register can occur during the middle of the communication cycle. Care must be taken to compensate for this new configuration for the remaining bytes of the current communication cycle. The same considerations apply to setting the software reset, RESET (Reg. 0, Bit 5). All registers are set to their default values except Reg. 0 and Reg. 4, which remain unchanged. Use of only single-byte transfers when changing serial port configurations or initiating a software reset is highly recommended. In the event of unexpected programming sequences, the AD973x SPI can become inaccessible. For example, if user code inadvertently changes the LONG_INS bit or the LSBFIRST bit, the following bits experience unexpected results. The SPI can be returned to a known state by writing an incomplete byte (1 to 7 bits) of all 0s followed by 3 bytes of 0x00. This returns to MSB-first short instructions (Reg. 0 = 0x00), so the device can be reinitialized. INSTRUCTION CYCLE DATA TRANSFER CYCLE CSB When LSBFIRST = 1 (LSB first), the instruction and data bytes must be written from least significant bit to most significant bit. Multibyte data transfers in LSB-first format start with an instruction byte that includes the register address of the least significant data byte followed by multiple data bytes. The serial port internal byte address generator increments for each byte of the multibyte communication cycle. The AD973x serial port controller data address decrements from the data address written toward 0x00 for multibyte I/O operations if the MSB-first mode is active. The serial port controller address increments from the data address written toward 0x1F for multibyte I/O operations if the LSB-first mode is active. NOTES ON SERIAL PORT OPERATION R/W N1 N0 A4 A3 A2 A1 A0 D7N D6N D5N D30 D20 D10 D00 04862-067 SDIO Figure 69. Serial Register Interface Timing, MSB-First Write INSTRUCTION CYCLE DATA TRANSFER CYCLE CSB SCLK SDIO R/W N1 N0 A4 A3 A2 A1 A0 D6N D5N D30 D20 D10 D00 D6N D5N D30 D20 D10 D00 D7 SDO 04862-068 When LSBFIRST = 0 (MSB first), the instruction and data bytes must be written from the most significant bit to the least significant bit. Multibyte data transfers in MSB-first format start with an instruction byte that includes the register address of the most significant data byte. Subsequent data bytes should follow in order from high address to low address. In MSB-first mode, the serial port internal byte address generator decrements for each data byte of the multibyte communication cycle. SCLK D7 Figure 70. Serial Register Interface Timing, MSB-First Read INSTRUCTION CYCLE DATA TRANSFER CYCLE CSB SCLK SDIO A0 A1 A2 A3 A4 N0 N1 R/W D00 D10 D20 D4N D5N D6N D7N 04862-069 The AD973x serial port can support both MSB-first or LSB-first data formats. This functionality is controlled by LSBFIRST at Reg. 0, Bit 6. The default is MSB first (LSBFIRST = 0). Figure 71. Serial Register Interface Timing, LSB-First Write INSTRUCTION CYCLE DATA TRANSFER CYCLE CSB SCLK SDIO A0 A1 A2 A3 A4 N0 N1 R/W D10 D20 D4N D5N D6N D7N D10 D20 D4N D5N D6N D7N D0 SDO D0 Figure 72. Serial Register Interface Timing, LSB-First Read Rev. B | Page 37 of 72 04862-070 The AD973x serial port configuration is controlled by Reg. 0, Bit 4, Bit 5, Bit 6, and Bit 7. Note that the configuration changes immediately upon writing to the last bit of the register. AD9734/AD9735/AD9736 tDS Data Sheet tSCLK Table 22. PIN_MODE Input Functions Mnemonic UNSIGNED CSB tPWH tPWL SCLK 2× tDH INSTRUCTION BIT 7 SDIO 04862-071 tDS INSTRUCTION BIT 6 FSC1, FSC0 Figure 73. Timing Diagram for SPI Register Write CSB PD tDNV SDIO I1 I0 D7 tDV D6 D5 04862-072 SCLK Figure 74. Timing Diagram for SPI Register Read After the last instruction bit is written to the SDIO pin, the driving signal must be set to a high impedance in time for the bus to turn around. The serial output data from the AD973x is enabled by the falling edge of SCLK. This causes the first output data bit to be shorter than the remaining data bits, as shown in Figure 74. To assure proper reading of data, read the SDIO or SDO pin prior to changing the SCLK from low to high. Due to the more complex multibyte protocol, multiple AD973x devices cannot be daisy-chained on the SPI bus. Multiple DACs should be controlled by independent CSB signals. PIN MODE OPERATION When the PIN_MODE input (Pin L1) is set high, the SPI port is disabled. The SPI port pins are remapped, as shown in Table 21. The function of these pins is described in Table 22. The remaining PIN_MODE register settings are shown in Table 9. Table 21. SPI_MODE vs. PIN_MODE Inputs Pin Number E13 F13 G13 E14 F14 G14 PIN_MODE = 0 IRQ CSB SCLK RESET SDIO SDO PIN_MODE = 1 UNSIGNED 2× FSC0 PD FIFO FSC1 FIFO Function 0, twos complement input data format 1, unsigned input data format 0, interpolation disabled 1, interpolation = 2× enabled 00, sleep mode 01, 10 mA full-scale output current 10, 20 mA full-scale output current 11, 30 mA full-scale output current 0, chip enabled 1, chip in power-down state 0, input FIFO disabled 1, input FIFO enabled Care must be taken when using PIN_MODE because only the control bits shown in Table 22 can be changed. If the remaining register default values are not suitable for the desired operation, PIN_MODE cannot be used. If the FIFO is enabled, the controller clock must be less than 10 MHz. This limits the DAC clock to 160 MHz. RESET OPERATION The RESET pin forces all SPI register contents to their default values (see Table 9), which places the DAC in a known state. The software reset bit forces all SPI register contents, except Reg. 0 and Reg. 4, to their default values. The internal reset signal is derived from a logical OR operation on the RESET pin state and from the software reset state. This internal reset signal drives all SPI registers to their default values, except Reg. 0 and Reg. 4, which are unaffected. The data registers are not affected by either reset. The software reset is asserted by writing 1 to Reg. 0, Bit 5. It may be cleared on the next SPI write cycle or a later write cycle. PROGRAMMING SEQUENCE The AD973x registers should be programmed in this order: 1. 2. 3. 4. 5. 6. 7. Reset hardware. Make changes to SPI port configuration, if necessary. Input format, if unsigned. Interpolation, if in 2× mode. Calibrate and set the LVDS controller. Enable the FIFO. Calibrate and set the sync controller. Step 1 through Step 4 are required, while Step 5 through Step 7 are optional. The LVDS controller can help assure proper data reception in the DAC with changes in temperature and voltage. The sync controller manages the FIFO to assure proper transfer of the received data to the DAC core with changes in temperature and voltage. The DAC is intended to operate with both controllers active unless data and clock alignment is managed externally. Rev. B | Page 38 of 72 Data Sheet AD9734/AD9735/AD9736 INTERPOLATION FILTER 0.10 In 2× mode, the input data is interpolated by a factor of 2 so that it aligns with the DAC update rate. The interpolation filter is a hard-coded, 55-tap, symmetric FIR with a 0.001 dB passband flatness and a stop-band attenuation of about 90 dB. The transition band runs from 20% of fDAC to 30% of fDAC. The FIR response is shown in Figure 75 where the frequency axis is normalized to fDAC. Figure 76 shows the pass-band flatness and Table 23 shows the 16-bit filter coefficients. 0.08 0.06 MAGNITUDE (dB) 0.04 0.02 0 –0.02 –0.04 Table 23. FIR Interpolation Filter Coefficients –0.08 Coefficient Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 –0.10 Tap Weight −7 0 +24 0 −62 0 +135 0 −263 0 +471 0 −793 0 +1273 0 −1976 0 +3012 0 −4603 0 +7321 0 −13270 0 +41505 +65535 0 0.25 Figure 76. Interpolation Filter Pass-Band Flatness DATA INTERFACE CONTROLLERS Two internal controllers are utilized in the operation of the AD973x. The first controller helps maintain optimum LVDS data sampling; the second controller helps maintain optimum synchronization between the DACCLK and the incoming data. The LVDS controller is responsible for optimizing the sampling of the data from the LVDS bus (DB13:0), while the sync controller resolves timing problems between the DAC_CLK (CLK+, CLK−) and the DATACLK. A block diagram of these controllers is shown in Figure 77. DATACLK DATACLK_OUT CLK CONTROL DATACLK_IN DATA SOURCE i.e., FPGA LVDS CONTROLLER SYNC CONTROLLER SYNC LOGIC LVDS SAMPLE LOGIC DB FIFO DAC Figure 77. Data Controllers The controllers are clocked with a divided-down version of the DAC_CLK. The divide ratio is set utilizing the controller clock predivider bits (CCD) located at Reg. 22, Bits 3:0 to generate the controller clock as follows: Controller Clock = DAC_CLK/(2^(CCD + 4)) –10 Note that the controller clock cannot exceed 10 MHz for correct operation. Until CCD is properly programmed to meet this requirement, the DAC output may not be stable. This means the FIFO cannot be enabled in PIN_MODE unless the DACCLK is less than 160 MHz. –20 –30 –40 –50 –60 –70 –80 –90 –100 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 FREQUENCY NORMALIZED TO fDAC 0.45 0.50 04862-073 MAGNITUDE (dB) 0.20 0.15 0.05 0.10 FREQUENCY NORMALIZED TO fDAC 0 04862-075 Coefficient Number 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 04862-074 –0.06 Figure 75. Interpolation Filter Response Rev. B | Page 39 of 72 AD9734/AD9735/AD9736 Data Sheet DBU The LVDS and sync controllers are independently operated in three modes via SPI port Reg. 6 and Reg. 8: FF D1 FF D2 DBL DATA SAMPLING SIGNAL In surveillance mode, each controller takes measurements and calculates a new optimal value continuously. The result of the measurement is passed through an averaging filter before evaluating the results for increased noise immunity. The filtered result is compared to a threshold value set via Reg. 6 and Reg. 8 of the SPI port. If the error is greater than the threshold, an interrupt is triggered and the controller stops. DELAYED CLOCK SIGNAL SD SAMPLE DELAY In manual mode, all of the timing measurements and updates are externally controlled via the SPI. DATACLK_IN LVDS RX MSD DELAY CHECK FF MHD DELAY CLOCK SAMPLING SIGNAL 04862-076 Manual mode Surveillance mode Auto mode Figure 78. Internal LVDS Data Sampling Logic CLK TO DB SKEW Reg. 1 of the SPI port controls the interrupts with Bit 3 and Bit 2 enabling the respective interrupts and Bit 7 and Bit 6 indicating the respective controller interrupt. If an interrupt is enabled, it also activates the AD973x IRQ pin. To clear an interrupt, the interrupt enable bit of the respective controller must be set to 0 for at least 1 controller clock cycle (controller clock
AD9736BBC 价格&库存

很抱歉,暂时无法提供与“AD9736BBC”相匹配的价格&库存,您可以联系我们找货

免费人工找货