0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADA4077-2TRMZ-EPR7

ADA4077-2TRMZ-EPR7

  • 厂商:

    AD(亚德诺)

  • 封装:

    MSOP8_3X3MM

  • 描述:

    ADA4077-2TRMZ-EPR7

  • 数据手册
  • 价格&库存
ADA4077-2TRMZ-EPR7 数据手册
4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Amplifier ADA4077-2-EP Enhanced Product PIN CONNECTION DIAGRAM Low offset voltage and low offset voltage drift Maximum offset voltage: 90 µV at TA = 25°C Maximum offset voltage drift: 1.2 µV/°C Moisture sensitivity level 1 (MSL1) rated Low input bias current: 1 nA maximum at TA = 25°C Low voltage noise density: 6.9 nV/√Hz typical at f = 1000 Hz CMRR, PSRR, and AV > 120 dB minimum Low supply current: 400 µA per amplifier typical Wide gain bandwidth product: 3.9 MHz at VSY = ±5 V Dual-supply operation: ±2.5 V to ±15 V Unity gain stable No phase reversal 8 V+ ADA4077-2-EP 7 OUT B TOP VIEW (Not to Scale) 6 –IN B 5 +IN B OUT A 1 –IN A 2 +IN A 3 V– 4 15053-001 FEATURES Figure 1. ENHANCED PRODUCT FEATURES Supports defense and aerospace applications (AQEC standard) Extended industrial temperature range: −55°C to +125°C Controlled manufacturing baseline 1 assembly/test site 1 fabrication site Product change notification Qualification data available upon request APPLICATIONS Process control front-end amplifiers Wireless base station control circuits Optical network control circuits Instrumentation Sensors and controls: thermocouples, RTDs, strain gages, and shunt current measurements Precision filters GENERAL DESCRIPTION The ADA4077-2-EP is available in an 8-lead MSOP. The dual ADA4077-2-EP amplifier features extremely low offset voltage and drift, and low input bias current, noise, and power consumption. Outputs are stable with capacitive loads of more than 1000 pF with no external compensation. Additional application and technical information can be found in the ADA4077-2 data sheet. Rev. 0 120 100 80 60 40 90 80 15053-103 VOS (µV) 70 60 40 50 30 20 0 10 –10 –20 –30 –50 –40 –60 –70 0 –80 20 –90 Unlike amplifiers by some competitors, theADA4077-2-EP has an MSL1 rating that is compliant with the most stringent of assembly processes, and is specified over the extended industrial temperature range from −55°C to +125°C for the most demanding operating environments. VSY = ±5V MSOP 140 NUMBER OF AMPLIFIERS Applications for this amplifier include sensor signal conditioning (such as thermocouples, RTDs, and strain gages), process control front-end amplifiers, and precision diode power measurement in optical and wireless transmission systems. The ADA4077-2-EP is useful in line powered and portable instrumentation, precision filters, and voltage or current measurement and level setting. 160 Figure 2. Offset Voltage Distribution Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADA4077-2-EP Enhanced Product TABLE OF CONTENTS Features .............................................................................................. 1 Electrical Characteristics, ±15 V .................................................4 Enhanced Product Features ............................................................ 1 Absolute Maximum Ratings ........................................................5 Applications ....................................................................................... 1 Thermal Resistance .......................................................................5 Pin Connection Diagram ................................................................ 1 ESD Caution...................................................................................5 General Description ......................................................................... 1 Pin Configuration and Function Descriptions..............................6 Revision History ............................................................................... 2 Typical Performance Characteristics ..............................................7 Specifications..................................................................................... 3 Outline Dimensions ....................................................................... 16 Electrical Characteristics, ±5 V .................................................. 3 Ordering Guide .......................................................................... 16 REVISION HISTORY 12/2016—Revision 0: Initial Version Rev. 0 | Page 2 of 16 Enhanced Product ADA4077-2-EP SPECIFICATIONS ELECTRICAL CHARACTERISTICS, ±5 V VSY = ±5.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Test Conditions/Comments VOS Offset Voltage Drift Input Bias Current ΔVOS/ΔT IB Input Offset Current IOS −55°C < TA < +125°C −55°C < TA < +125°C −55°C < TA < +125°C −55°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AV Input Capacitance Input Resistance OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Current Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier Min CINCM RIN VOH VOL IOUT ISC ZOUT PSRR ISY VCM = −3.8 V to +3 V VCM = −3.8 V to +3 V, −55°C < TA < +85°C VCM = −3.8 V to +2.8 V, 85°C < TA < 125°C RL = 2 kΩ, VO = −3.0 V to +3.0 V −55°C < TA < +125°C Common mode Common mode −1 −1.5 −0.5 −1.0 −3.8 122 120 120 121 120 IL = 1 mA −55°C < TA < +125°C IL = 1 mA −55°C < TA < +125°C VDROPOUT < 1.6 V TA = 25°C f = 1 kHz, AV = +1 3.8 3.7 VS = ±2.5 V to ±18 V −55°C < TA < +125°C VO = 0 V −55°C < TA < +125°C 123 120 Typ Max Unit 50 90 220 1.2 +1 +1.5 +0.5 +1.0 +3 5 70 µV µV µV/°C nA nA nA nA V dB dB dB dB dB pF GΩ ±10 22 0.05 V V V V mA mA Ω 0.5 −0.4 +0.1 140 130 −3.8 −3.7 128 400 450 650 dB dB µA µA DYNAMIC PERFORMANCE Slew Rate Settling Time to 0.1% Gain Bandwidth Product Unity-Gain Crossover −3 dB Closed-Loop Bandwidth Phase Margin Total Harmonic Distortion Plus Noise SR tS GBP UGC −3 dB ΦM THD + N RL = 2 kΩ VIN = 1 V step, RL = 2 kΩ, AV = −1 VIN = 10 mV p-p, RL = 2 kΩ, AV = +100 VIN = 10 mV p-p, RL = 2 kΩ, AV = +1 AV = +1, VIN = 10 mV p-p, RL = 2 kΩ VIN = 10 mV p-p, RL = 2 kΩ, AV = +1 VIN = 1 V rms, AV = +1, RL = 2 kΩ, f = 1 kHz 1.2 3 3.9 3.9 5.9 55 0.004 V/µs µs MHz MHz MHz Degrees % NOISE PERFORMANCE Voltage Noise Voltage Noise Density en p-p en Current Noise Density MULTIPLE AMPLIFIERS CHANNEL SEPARATION in CS 0.1 Hz to 10 Hz f = 1 Hz f = 100 Hz f = 1000 Hz f = 1 kHz f = 1 kHz, RL = 10 kΩ 0.25 13 7 6.9 0.2 −125 µV p-p nV/√Hz nV/√Hz nV/√Hz pA/√Hz dB Rev. 0 | Page 3 of 16 ADA4077-2-EP Enhanced Product ELECTRICAL CHARACTERISTICS, ±15 V VSY = ±15 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Test Conditions/Comments VOS Offset Voltage Drift Input Bias Current ΔVOS/ΔT IB Input Offset Current IOS −55°C < TA < +125°C −55°C < TA < +125°C −55°C < TA < +125°C −55°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio Min −1 −1.5 −0.5 −1.0 −13.8 132 130 CMRR VCM = −13.8 V to +13 V −55°C < TA < +125°C AV RL = 2 kΩ, VO = −13.0 V to +13.0 V −55°C < TA < +125°C Differential mode Common mode Common mode 125 120 IL = 1 mA −55°C < TA < +125°C IL = 1 mA −55°C < TA < +125°C VDROPOUT < 1.2 V TA = 25°C f = 1 kHz, AV = +1 13.8 13.7 VS = ±2.5 V to ±18 V −55°C < TA < +125°C VO = 0 V −55°C < TA < +125°C 123 120 Typ Max Unit 50 90 220 1.2 +1 +1.5 +0.5 +1.0 +13 µV µV µV/°C nA nA nA nA V dB dB 0.5 −0.4 +0.1 150 Large Signal Voltage Gain Input Capacitance Input Resistance OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Current Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier CINDM CINCM RIN VOH VOL IOUT ISC ZOUT PSRR ISY 130 3 5 70 dB dB pF pF GΩ ±10 22 0.05 V V V V mA mA Ω −13.8 −13.7 128 400 500 650 dB dB µA µA DYNAMIC PERFORMANCE Slew Rate Settling Time to 0.01% Settling Time to 0.1% Gain Bandwidth Product Unity-Gain Crossover −3 dB Closed-Loop Bandwidth Phase Margin Total Harmonic Distortion Plus Noise SR tS tS GBP UGC −3 dB ΦM THD + N RL = 2 kΩ VIN = 10 V p-p, RL = 2 kΩ, AV = −1 VIN = 10 V p-p, RL = 2 kΩ, AV = −1 VIN = 10 mV p-p, RL = 2 kΩ, AV = +100 VIN = 10 mV p-p, RL = 2 kΩ, AV = +1 AV = +1, VIN = 10 mV p-p, RL = 2 kΩ VIN = 10 mV p-p, RL = 2 kΩ, AV = +1 VIN = 1 V rms, AV = +1, RL = 2 kΩ, f = 1 kHz 1.2 16 10 3.6 3.9 5.5 58 0.004 V/µs µs µs MHz MHz MHz Degrees % NOISE PERFORMANCE Voltage Noise Voltage Noise Density en p-p en Current Noise Density MULTIPLE AMPLIFIERS CHANNEL SEPARATION in CS 0.1 Hz to 10 Hz f = 1 Hz f = 100 Hz f = 1000 Hz f = 1 kHz f = 1 kHz, RL = 10 kΩ 0.25 13 7 6.9 0.2 −125 µV p-p nV/√Hz nV/√Hz nV/√Hz pA/√Hz dB Rev. 0 | Page 4 of 16 Enhanced Product ADA4077-2-EP ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter Supply Voltage Input Voltage Input Current1 Differential Input Voltage Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Maximum Reflow, Soldering (10 sec) ESD Human Body Model (HBM)2 Field Induced Charge Device Model (FICDM)3 Rating 36 V ±VSY ±10 mA ±VSY Indefinite −65°C to +150°C −55°C to +125°C −65°C to +150°C 260°C 6 kV 1.25 kV Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. θJA is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θJC is the junction to case thermal resistance. Table 4. Thermal Resistance Package Type RM-81 1 θJC 77 Unit °C/W Thermal impedance simulated values are based on JEDEC JESD51-12. ESD CAUTION The input pins have clamp diodes to the power supply pins and to each other. Limit the input current to 10 mA or less whenever input signals exceed the power supply rail by 0.3 V. 2 ESDA/JEDEC JS-001-2011 applicable standard. 3 JESD22-C101 (ESD FICDM standard of JEDEC) applicable standard. 1 θJA 170 Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. 0 | Page 5 of 16 ADA4077-2-EP Enhanced Product OUT A 1 –IN A 2 +IN A 3 V– 4 8 V+ ADA4077-2-EP 7 OUT B TOP VIEW (Not to Scale) 6 –IN B 5 +IN B 15053-004 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 3. Pin Configuration Table 5. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 Mnemonic OUT A −IN A +IN A V− +IN B −IN B OUT B V+ Description Output Channel A. Inverting Input Channel A. Noninverting Input Channel A. Negative Supply Voltage. Noninverting Input Channel B. Inverting Input Channel B. Output Channel B. Positive Supply Voltage. Rev. 0 | Page 6 of 16 Enhanced Product ADA4077-2-EP TYPICAL PERFORMANCE CHARACTERISTICS 160 160 60 25 15 15 10 10 5 5 VOS (µV) 20 0 –5 –10 –10 –15 –15 –20 –20 0 25 50 75 100 125 150 TEMPERATURE (°C) –25 –75 90 15053-003 80 70 60 50 40 30 20 0 10 –10 25 50 75 100 125 150 Figure 8. Offset Voltage (VOS) vs. Temperature, VSY = ±15 V 10 VSY = ±15V, ±5V –55°C ≤ TA ≤ +125°C VOS (µV) 5 0 –10 15053-130 ΔVOS/ΔT (µV/°C) 0 5 10 15 20 25 30 35 VSY (V) Figure 6. Offset Voltage Drift (ΔVOS/ΔT) Distribution Figure 9. Offset Voltage (VOS) vs. Power Supply Voltage (VSY) Rev. 0 | Page 7 of 16 15053-134 –5 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 0 –25 –50 TEMPERATURE (°C) Figure 5. Offset Voltage (VOS) vs. Temperature, VSY = ±5 V NUMBER OF AMPLIFIERS 0 –5 –25 VSY = ±15V 15053-213 VSY = ±5V 15053-210 VOS (µV) Figure 7. Offset Voltage (VOS) Distribution, VSY = ±15 V 20 –50 –20 VOS (µV) Figure 4. Offset Voltage (VOS) Distribution, VSY = ±5 V –25 –75 –30 90 VOS (µV) 15053-006 80 70 60 50 40 30 20 0 10 –10 –20 –30 –40 –50 0 –60 0 –70 20 –80 20 –40 40 –50 40 80 –60 60 100 –70 80 120 –90 NUMBER OF AMPLIFIERS 100 25 VSY = ±15V MSOP 140 120 –90 NUMBER OF AMPLIFIERS 140 –80 VSY = ±5V MSOP ADA4077-2-EP Enhanced Product 100 600 VSY = ±15V –15V ≤ VCM ≤ +15V 80 500 60 400 20 ISY (µA) VOS (µV) 40 0 300 –20 200 –60 100 AVERAGE AVERAGE = +3σ AVERAGE = –3σ –100 –15 –13 –11 –9 –7 –5 –3 –1 1 3 5 7 9 11 13 15 VCM (V) 0 15053-112 –80 0 14.15 VSY = ±5V 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 VSY = ±15V 14.10 OUTPUT VOLTAGE SWING (V) 4.05 VOH 4.00 3.95 VOL 3.90 3.85 14.05 VOH 14.00 13.95 VOL 13.90 13.85 –50 –25 0 25 50 75 100 125 150 TEMPERATURE (°C) 13.75 –75 15053-021 3.75 –75 –50 –25 0 25 50 75 100 125 150 TEMPERATURE (°C) Figure 11. Output Voltage Swing vs. Temperature, VSY = ±5 V Figure 14. Output Voltage Swing vs. Temperature, VSY = ±15 V 350 400 15053-140 13.80 3.80 VSY = ±15V VSY = ±5V 350 150 Figure 15. Input Bias Current Distribution, VSY = ±15 V Figure 12. Input Bias Current Distribution, VSY = ±5 V Rev. 0 | Page 8 of 16 15053-016 INPUT BIAS CURRENT (nA) MORE 0 –0.1 –0.2 –0.3 –1 15053-013 INPUT BIAS CURRENT (nA) MORE 0 –0.1 –0.2 –0.3 –0.4 –0.5 –0.6 –0.7 0 –0.8 0 –0.9 50 –1.0 50 –0.4 100 –0.5 100 200 –0.6 150 250 –0.7 200 300 –0.8 250 –0.9 NUMBER OF AMPLIFIERS 300 NUMBER OF AMPLIFIERS 4 Figure 13. Supply Current per Amplifier (ISY) vs. Power Supply Voltage (VSY) 4.10 OUTPUT VOLTAGE SWING (V) 2 POWER SUPPLY VOLTAGE (V) Figure 10. Offset Voltage (VOS) vs. Common-Mode Voltage (VCM), VSY = ±15 V 4.15 –55°C –40°C 0°C +25°C +85°C +105°C +125°C 15053-218 –40 Enhanced Product ADA4077-2-EP 0 0 VSY = ±15V –0.1 –0.1 –0.2 –0.2 IB (nA) +IB –0.4 –0.5 –0.6 –0.6 –50 –25 0 25 50 75 100 125 150 TEMPERATURE (°C) –0.7 –75 25 50 75 100 125 150 1 0.1 1 SINK CURRENT (mA) 10 100 VSY = ±15V 10 1 0.1 0.001 0.01 0.1 1 SINK CURRENT (mA) 10 100 15053-225 OUTPUT DROPOUT VOLTAGE (VOL – V–) 10 0.01 –55°C –40°C 0°C +25°C +85°C +105°C +125°C VSY = ±5V 15053-222 Figure 20. Output Dropout Voltage vs. Sink Current, VSY = ±15 V 100 100 –55°C –40°C 0°C +25°C +85°C +105°C +125°C OUTPUT DROPOUT VOLTAGE (–VOH + V+) VSY = ±5V 10 1 0.1 1 SOURCE CURRENT (mA) 10 100 Figure 18. Output Dropout Voltage vs. Source Current, VSY = ±5 V VSY = ±15V 10 1 0.1 0.001 15053-226 0.01 –55°C –40°C 0°C +25°C +85°C +105°C +125°C 0.01 0.1 1 SOURCECURRENT (mA) 10 100 Figure 21. Output Dropout Voltage vs. Source Current, VSY = ±15 V Rev. 0 | Page 9 of 16 15053-229 OUTPUT DROPOUT VOLTAGE (VOL – V–) 0 100 –55°C –40°C 0°C +25°C +85°C +105°C +125°C Figure 17. Output Dropout Voltage vs. Sink Current, VSY = ±5 V OUTPUT DROPOUT VOLTAGE (–VOH + V+) –25 Figure 19. Input Bias Current (IB) vs. Temperature, VSY = ±15 V 100 0.1 0.001 –50 TEMPERATURE (°C) Figure 16. Input Bias Current (IB) vs. Temperature, VSY = ±5 V 0.1 0.001 +IB –0.4 –0.5 –0.7 –75 –IB –0.3 15053-014 IB (nA) –IB –0.3 15053-017 VSY = ±5V ADA4077-2-EP Enhanced Product 50 50 0 0 VSY = ±5V AV = –1 RL = 2kΩ –50 100k 1M –150 100M 10M 50 50 0 0 VSY = ±15V AV = –1 RL = 2kΩ –50 –100 –100 15053-227 –150 10k 100 –50 –100 –100 GAIN = 200pF PHASE = 200pF 100 GAIN (dB) 100 GAIN = 100pF PHASE = 100pF FREQUENCY (Hz) Figure 22. Open-Loop Gain and Phase Margin vs. Frequency, VSY = ±5 V PHASE MARGIN (Degrees) GAIN = 0pF PHASE = 0pF 100 –50 150 150 GAIN = 200pF PHASE = 200pF PHASE MARGIN (Degrees) GAIN = 100pF PHASE = 100pF –150 10k 100k 1M –150 100M 10M FREQUENCY (Hz) Figure 25. Open-Loop Gain and Phase Margin vs. Frequency, VSY = ±15 V 160 133 VSY = ±5V VSY = ±2.5V TO ±18V 132 155 131 129 CMRR (dB) PSRR (dB) 130 128 127 150 145 126 125 140 –50 –25 0 25 50 75 100 125 150 TEMPERATURE (°C) 135 –75 15053-035 123 –75 –50 –25 0 25 50 Figure 23. PSRR vs. Temperature, VSY = ±2.5 V to ±18 V 100 125 150 Figure 26. CMRR vs. Temperature, VSY = ±5 V 120 140 VSY = ±15V VSY = ±5V VSY = ±5V 100 120 80 100 CMRR (dB) 60 PSRR– 40 80 60 PSRR+ 20 40 0 20 –20 100 1k 10k 100k 1M FREQUENCY (Hz) 10M Figure 24. PSRR vs. Frequency, VSY = ±5 V 0 100 1k 10k 100k 1M 10M FREQUENCY (Hz) Figure 27. CMRR vs. Frequency, VSY = ±5 V and VSY = ±15 V Rev. 0 | Page 10 of 16 15053-029 PSRR (dB) 75 TEMPERATURE (°C) 15053-035 124 15053-034 GAIN (dB) GAIN = 0pF PHASE = 0pF 15053-230 150 150 Enhanced Product ADA4077-2-EP 120 160 VSY = ±15V VSY = ±15V 100 155 60 CMRR (dB) PSRR (dB) 80 PSRR– 40 PSRR+ 150 145 20 140 1k 10k 100k 1M 10M FREQUENCY (Hz) 135 –75 15053-037 –20 100 0 25 50 75 100 125 150 Figure 31. CMRR vs. Temperature, VSY = ±15 V 1k 1k VSY = ±5V VSY = ±15V 100 100 ZOUT (Ω) 1 AV = +1 0.1 0.01 0.01 10k 100k 1M 10M FREQUENCY (Hz) AV = +1 0.001 100 15053-036 1k AV = +10 1 0.1 0.001 100 AV = +100 10 AV = +10 1k 10k 100k 1M 10M FREQUENCY (Hz) Figure 29. Output Impedance (ZOUT) vs. Frequency, VSY = ±5 V Figure 32. Output Impedance (ZOUT) vs. Frequency, VSY = ±15 V 50 50 VSY = ±5V G = 100 40 30 VSY = ±15V G = 100 40 15053-039 AV = +100 10 30 CLOSED-LOOP GAIN (dB) G = 10 20 10 G=1 0 –10 –20 –30 G = 10 20 10 G=1 0 –10 –20 –30 –40 –50 1k –50 1k 10k 100k 1M 10M FREQUENCY (Hz) 100M 15053-028 –40 Figure 30. Closed-Loop Gain vs. Frequency, VSY = ±5 V 10k 100k 1M 10M FREQUENCY (Hz) Figure 33. Closed-Loop Gain vs. Frequency, VSY = ±15 V Rev. 0 | Page 11 of 16 100M 15053-031 ZOUT (Ω) –25 TEMPERATURE (°C) Figure 28. PSRR vs. Frequency, VSY = ±15 V CLOSED-LOOP GAIN (dB) –50 15053-033 0 VSY = ±5V VIN = 1V p-p AV = +1 RL = 2kΩ CL = 300pF 0V TIME (100µs/DIV) TIME (100µs/DIV) Figure 37. Large Signal Transient Response, VSY = ±15 V 0.20 0.20 0.15 0.15 0.10 0.10 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) Figure 34. Large Signal Transient Response, VSY = ±5 V 0.05 0 VSY = ±5V VIN = 100mV p-p AV = +1 RL = 2kΩ CL = 1000pF –0.05 –0.10 0.05 0 –0.05 –0.15 –0.15 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 –0.20 –0.2 15053-344 –0.20 –0.2 0.8 TIME (ms) –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 TIME (ms) Figure 35. Small Signal Transient Response, VSY = ±5 V Figure 38. Small Signal Transient Response, VSY = ±15 V 0.5 0.5 35 0 30 –0.5 25 INPUT 3 OUTPUT 1 –1 TIME (10µs/DIV) VSY = ±15V VIN = 200mV p-p AV = –100 RL = 10kΩ –1.5 –2.0 15 10 –2.5 5 –3.0 0 –3.5 –10 –5 0 10 20 30 40 50 60 70 80 TIME (µs) Figure 36. Positive Overload Recovery, VSY = ±5 V Figure 39. Positive Overload Recovery, VSY = ±15 V Rev. 0 | Page 12 of 16 90 OUTPUT VOLTAGE (V) 5 20 –1.0 15053-248 VSY = ±5V AV = –100 VIN = 200mV RL = 10kΩ OUTPUT VOLTAGE (V) –0.5 INPUT VOLTAGE (V) 0 15053-046 INPUT VOLTAGE (V) VSY = ±15V VIN = 100mV p-p AV = +1 RL = 2kΩ CL = 1000pF –0.10 15053-247 0V VSY = ±15V VIN = 4V p-p AV = +1 RL = 2kΩ CL = 300pF 15053-043 OUTPUT VOLTAGE (1V/DIV) Enhanced Product 15053-040 OUTPUT VOLTAGE (0.2V/DIV) ADA4077-2-EP ADA4077-2-EP INPUT VOLTAGE (V) INPUT VOLTAGE (V) Enhanced Product 0.5 INPUT 0 –0.5 0.5 INPUT 0 –0.5 OUTPUT –5 TIME (10µs/DIV) –5 VSY = ±15V AV = –100 VIN = 200mV RL = 10kΩ –15 TIME (10µs/DIV) Figure 40. Negative Overload Recovery, VSY = ±5 V Figure 43. Negative Overload Recovery, VSY = ±15 V 40 40 VSY = ±5V RL = 2kΩ 35 30 OVERSHOOT (%) 25 20 15 OS+ OS– 10 20 15 OS+ OS– 10 100p 1n 10n LOAD CAPACITANCE (F) 0 1p 15053-250 10p 10p 100p 10n 1n LOAD CAPACITANCE (F) Figure 41. Small Signal Overshoot vs. Load Capacitance, VSY = ±5 V Figure 44. Small Signal Overshoot vs. Load Capacitance, VSY = ±15 V 0.05 10 0.25 0.5 0.04 5 0.20 0.03 0 0.15 –5 0.10 –10 0.05 –15 0 0.02 INPUT VOLTAGE (V) –0.5 VSY = ±5V VIN = 1V p-p RL = 2kΩ OUTPUT VOLTAGE (V) 1.0 0 0.01 –1.5 0 –2.0 –0.01 –20 –2.5 –0.02 –25 –0.03 TIME (1µs/DIV) 15053-251 –1.0 –3.0 15053-253 5 5 INPUT VOLTAGE (V) 25 VSY = ±15V VIN = 10V p-p RL = 2kΩ Figure 42. Positive 0.1% Settling Time, VSY = ±5 V TIME (1µs/DIV) Figure 45. Positive 0.1% Settling Time, VSY = ±15 V Rev. 0 | Page 13 of 16 –0.05 –0.10 –0.15 –30 OUTPUT VOLTAGE (V) OVERSHOOT (%) 30 0 1p VSY = ±15V RL = 2kΩ 15053-254 35 –10 OUTPUT VOLTAGE (V) –3 OUTPUT VOLTAGE (V) –1 VSY = ±5V AV = –100 VIN = 200mV RL = 10kΩ 15053-047 OUTPUT 15053-051 0 1 ADA4077-2-EP Enhanced Product VSY = ±5V VIN = 1V p-p RL = 2kΩ 0.04 5 0.03 –1.0 0.01 –1.5 0 –2.0 –2.5 INPUT VOLTAGE (V) 0.02 OUTPUT VOLTAGE (V) –0.5 0.20 VSY = ±15V VIN = 10V p-p RL = 2kΩ 0.10 –10 0.05 –15 0 –0.01 –20 –0.05 –0.02 –25 –0.10 TIME (1µs/DIV) –0.15 –30 TIME (1µs/DIV) Figure 46. Negative 0.1% Settling Time, VSY = ±5 V Figure 49. Negative 0.1% Settling Time, VSY = ±15 V 1k 100 VSY = ±15V VSY = ±5V AV = +1 VSY = ±15V VSY = ±5V 90 VOLTAGE NOISE CORNER (nV/√Hz) VOLTAGE NOISE DENSITY (nV/√Hz) 0.15 –5 –0.03 –3.0 0.25 0 15053-252 INPUT VOLTAGE (V) 0 10 15053-255 0.5 0.05 OUTPUT VOLTAGE (V) 1.0 100 10 80 70 60 50 40 30 20 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 0 15053-053 1 10 Figure 47. Voltage Noise Density vs. Frequency, VSY = ±5 V and VSY = ±15 V 0 0.5 1.0 1.5 2.0 2.5 3.0 FREQUENCY (Hz) 15053-153 10 Figure 50. Voltage Noise Corner vs. Frequency, VSY = ±15 V and VSY = ±5 V 1 100 VSY = ±5V VSY = ±15V 10 0.1 THD + N (%) 0.01 BANDWIDTH = 80kHz BANDWIDTH = 500kHz 0.1 0.01 0.001 0.0001 10 100 1k FREQUENCY (Hz) 10k 100k Figure 48. THD + N vs. Frequency, VSY = ±5 V 0.0001 10 100 1k 10k FREQUENCY (Hz) Figure 51. THD + N vs. Frequency, VSY = ±15 V Rev. 0 | Page 14 of 16 100k 15053-158 0.001 15053-155 THD + N (%) 1 BANDWIDTH = 80kHz BANDWIDTH = 500kHz Enhanced Product ADA4077-2-EP VSY = ±15V VCM = 0V TIME (1s/DIV) TIME (1s/DIV) Figure 52. 0.1 Hz to 10 Hz Noise, VSY = ±15 V Figure 55. 0.1 Hz to 10 Hz Noise, VSY = ±5 V 0 200 10kΩ CHANNEL SEPARATION (dB) 0 –100 –300 –400 –500 –600 –700 MEAN +3σ MEAN MEAN –3σ –900 –15 –10 –5 0 5 10 15 20 VCM (V) + VEE VIN CH A –60 2kΩ 2kΩ 1kΩ VEE CH B, CH C, CH D –80 –100 –120 VSY = ±15V VIN = 10V p-p AV = +1 RL = 10kΩ –160 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 56. Channel Separation, VSY = ±15 V Figure 53. Input Bias Current (IB) vs. Common-Mode Voltage (VCM) 100 100 VSY = ±15V CURRENT NOISE DENSITY (pA/√Hz) VSY = ±5V 10 1 1 10 100 1k 10k 100k FREQUENCY (Hz) 15053-268 CURRENT NOISE DENSITY (pA/√Hz) – + –140 15053-219 –800 –40 VCC – 10 1 0.1 1 10 100 1k 10k 100k FREQUENCY (Hz) Figure 57. Current Noise Density vs. Frequency, VSY = ±15 V Figure 54. Current Noise Density vs. Frequency, VSY = ±5 V Rev. 0 | Page 15 of 16 15053-267 IB (pA) –200 –1000 –20 VCC –20 15053-244 VSY = ±15V –15V ≤ VCM ≤ +15V TA = 25°C 100 0.1 15053-054 15053-058 INPUT VOLTAGE (50nV/DIV) INPUT VOLTAGE (50nV/DIV) VSY = ±5V VCM = 0V ADA4077-2-EP Enhanced Product OUTLINE DIMENSIONS 3.20 3.00 2.80 8 3.20 3.00 2.80 5.15 4.90 4.65 5 1 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.40 0.25 6° 0° 0.23 0.09 0.80 0.55 0.40 COMPLIANT TO JEDEC STANDARDS MO-187-AA 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 Figure 58. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters ORDERING GUIDE Model1 ADA4077-2TRMZ-EP ADA4077-2TRMZ-EPR7 1 Temperature Range −55°C to +125°C −55°C to +125°C Package Description 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] Z = RoHS Compliant Part. ©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D15053-0-12/16(0) Rev. 0 | Page 16 of 16 Package Option RM-8 RM-8 Branding Y6Q Y6Q
ADA4077-2TRMZ-EPR7 价格&库存

很抱歉,暂时无法提供与“ADA4077-2TRMZ-EPR7”相匹配的价格&库存,您可以联系我们找货

免费人工找货