0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADA4084-4ARUZ-RL

ADA4084-4ARUZ-RL

  • 厂商:

    AD(亚德诺)

  • 封装:

    TSSOP-14_5X4.4MM

  • 描述:

    IC OPAMP GP 4 CIRCUIT 14TSSOP

  • 详情介绍
  • 数据手册
  • 价格&库存
ADA4084-4ARUZ-RL 数据手册
FEATURES PIN CONNECTION DIAGRAM Rail-to-rail input/output Low power: 0.625 mA typical per amplifier at ±15 V Gain bandwidth product: 15.9 MHz at AV = 100 typical Unity-gain crossover: 9.9 MHz typical −3 dB closed-loop bandwidth: 13.9 MHz typical at ±15 V Low offset voltage: 100 µV maximum (SOIC) Unity-gain stable High slew rate: 4.6 V/µs typical Low noise: 3.9 nV/√Hz typical at 1 kHz Long-term offset voltage drift (10,000 hours): 3 µV typical Temperature hysteresis: 4 µV typical ADA4084-2 OUT A 1 8 V+ –IN A 2 7 OUT B +IN A 3 6 –IN B V– 4 5 +IN B NOTES 1. FOR THE LFCSP PACKAGE, THE EXPOSED PAD MUST BE CONNECTED TO V–. 08237-001 Data Sheet 30 V, Low Noise, Rail-to-Rail Input/Output, Low Power Operational Amplifiers ADA4084-1/ADA4084-2/ADA4084-4 Figure 1. ADA4084-2, 8-Lead LFCSP (CP); for Additional Packages and Models, See the Pin Configurations and Function Descriptions Section APPLICATIONS Battery-powered instrumentation High-side and low-side sensing Power supply control and protection Telecommunications Digital-to-analog converter (DAC) output amplifiers Analog-to-digital converter (ADC) input buffers GENERAL DESCRIPTION The ADA4084-1 (single), ADA4084-2 (dual), and ADA4084-4 (quad) are single-supply, 10 MHz bandwidth amplifiers featuring rail-to-rail inputs and outputs. They are guaranteed to operate from +3 V to +30 V (or ±1.5 V to ±15 V). These amplifiers are well suited for single-supply applications requiring both ac and precision dc performance. The combination of wide bandwidth, low noise, and precision makes the ADA4084-1/ADA4084-2/ADA4084-4 useful in a wide variety of applications, including filters and instrumentation. Other applications for these amplifiers include portable telecommunications equipment, power supply control and protection, and use as amplifiers or buffers for transducers with wide output ranges. Sensors requiring a rail-to-rail input amplifier include Hall effect, piezoelectric, and resistive transducers. The ability to swing rail to rail at both the input and output enables designers to build multistage filters in single-supply systems and to maintain high signal-to-noise ratios. The single ADA4084-1 is available in the 5-lead SOT-23 and 8-lead SOIC; the dual ADA4084-2 is available in the 8-lead SOIC, 8-lead MSOP, and 8-lead LFCSP surface-mount packages; and the ADA4084-4 is offered in the 14-lead TSSOP and 16-lead LFCSP. The ADA4084-1/ADA4084-2/ADA4084-4 are members of a growing series of high voltage, low noise op amps offered by Analog Devices, Inc. (see Table 1). Table 1. Low Noise Op Amps Single AD8597 ADA4004-1 AD8675 AD8671 OP27, OP37 ADA4084-1 Dual AD8599 ADA4004-2 AD8676 AD8672 Quad ADA4004-4 ADA4084-2 ADA4084-4 AD8674 Voltage Noise 1.1 nV/Hz 1.8 nV/Hz 2.8 nV/Hz rail-to-rail output 2.8 nV/Hz 3.2 nV/Hz 3.9 nV/Hz rail-to-rail input/output The ADA4084-1/ADA4084-2/ADA4084-4 are specified over the industrial temperature range of −40°C to +125°C. Rev. I Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2011–2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 ±5 V Characteristics................................................................... 17 Applications ....................................................................................... 1 ±15 V Characteristics ................................................................ 23 Pin Connection Diagram ................................................................ 1 Applications Information .............................................................. 29 General Description ......................................................................... 1 Functional Description .............................................................. 29 Revision History ............................................................................... 2 Start-Up Characteristics ............................................................ 30 Specifications..................................................................................... 4 Input Protection ......................................................................... 30 Electrical Characteristics ............................................................. 4 Output Phase Reversal ............................................................... 30 Absolute Maximum Ratings............................................................ 7 Designing Low Noise Circuits in Single-Supply Applications .. 31 Thermal Resistance ...................................................................... 7 Comparator Operation .............................................................. 31 ESD Caution .................................................................................. 7 Long-Term Drift ......................................................................... 32 Pin Configurations and Function Descriptions ........................... 8 Temperature Hysteresis ............................................................. 32 Typical Performance Characteristics ........................................... 11 Outline Dimensions ....................................................................... 33 ±1.5 V Characteristics................................................................ 11 Ordering Guide .......................................................................... 36 REVISION HISTORY 5/2017—Rev. H to Rev. I Changed CP-8-12 to CP-8-11 ...................................... Throughout Changed CP-16-26 to CP-16-17 .................................. Throughout Changes to Features Section............................................................ 1 Added Long-Term Drift Section, Temperature Hysteresis Section, Figure 112, Figure 113, and Figure 114; Renumbered Sequentially ..................................................................................... 32 Updated Outline Dimensions ....................................................... 34 Changes to Ordering Guide .......................................................... 36 8/2015—Rev. G to Rev. H Added 5-Lead SOT-23 ....................................................... Universal Changes to Pin Connection Diagram Section, Figure 1, and General Description Section ........................................................... 1 Deleted Figure 3; Renumbered Sequentially................................. 1 Changes to Large Signal Voltage Gain Parameter, Table 2 .......... 4 Changes to Large Signal Voltage Gain Parameter, Table 3 .......... 5 Changes to Large Signal Voltage Gain Parameter, Table 4 .......... 6 Changes to Table 6 ............................................................................ 7 Moved Figure 3 ................................................................................. 8 Added Pin Configurations and Function Descriptions Section, Figure 4, Figure 5, Table 7, Table 8, and Table 9; Renumbered Sequentially ....................................................................................... 8 Added Figure 6, Figure 7, Figure 8, Table 10, and Table 11 ........ 9 Moved Figure 9 ............................................................................... 10 Added Table 12 ............................................................................... 10 Added Figure 11 and Figure 15..................................................... 11 Added Figure 42 and Figure 46..................................................... 17 Added Figure 73 and Figure 77..................................................... 23 Updated Outline Dimensions ....................................................... 32 Changes to Ordering Guide .......................................................... 35 6/2015—Rev. F to Rev. G Changes to Figure 96 and Figure 97............................................. 24 1/2015—Rev. E to Rev. F Moved Revision History ...................................................................3 Changes to Table 5.............................................................................7 Changes to Ordering Guide .......................................................... 29 7/2014—Rev. D to Rev. E Added ADA4084-1 ............................................................. Universal Added Figure 1; Renumbered Sequentially ...................................1 Changes to Output Voltage High Parameter, Table 2 ...................3 Changes to Current Noise Density Parameter, Table 3 ................4 Changes to Current Noise Density Parameter, Table 4 ................5 Changes to Figure 8 Caption, and Figure 9 to Figure 11 .............7 Changes to Figure 13.........................................................................8 Changes to Figure 21.........................................................................9 Added Figure 31; Renumbered Sequentially .............................. 11 Changes to Figure 30 Caption, and Figure 32 to Figure 34 ...... 11 Changes to Figure 36 Caption to Figure 39 Caption ................. 12 Changes to Figure 50...................................................................... 14 Added Figure 60 ............................................................................. 16 Changes to Figure 59 Caption, Figure 62, and Figure 63 .......... 16 Changes to Figure 65 Caption to Figure 68 Caption ................. 17 Changes to Figure 79...................................................................... 19 Added Figure 89 ............................................................................. 21 Changes to Figure 88 Caption, Figure 91 Caption, and Figure 92 Caption ........................................................................... 21 Changes to Ordering Guide .......................................................... 28 Rev. I | Page 2 of 36 Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 11/2013—Rev. C to Rev. D Added 14-Lead TSSOP and 16-Lead LFCSP Packages ....... Universal Added ADA4084-4..................................................................... Universal Change to Features Section and Applications Section ................. 1 Added Figure 2 and Figure 3; Renumbered Sequentially ............ 1 Changes to Table 2 ............................................................................ 3 Changes to Table 3 ............................................................................ 4 Changes to Table 4 ............................................................................ 5 Changes to Table 5 and Table 6 ....................................................... 6 Changes to Typical Performance Characteristics Section ........... 7 Updated Outline Dimensions ........................................................27 Changes to Ordering Guide ...........................................................28 4/2013—Rev. B to Rev. C Changes to Figure 48 Caption .......................................................15 Updated Outline Dimensions ........................................................25 6/2012—Rev. A to Rev. B Added LFCSP Package....................................................... Universal Changes to Figure 1........................................................................... 1 Changes to Output Voltage High Parameter, Table 4 ................... 5 Added Figure 5 and Figure 7, Renumbered Sequentially ............ 7 Added Figure 30 and Figure 32 .....................................................12 Added Figure 55 and Figure 57 ..................................................... 17 Added Startup Characteristics Section ........................................ 23 Moved Figure 78 .............................................................................. 23 Changes to Output Phase Reversal Section and Comparator Operation Section ........................................................................... 24 Updated Outline Dimensions........................................................ 25 Changes to Ordering Guide ........................................................... 26 2/2012—Rev. 0 to Rev. A Changes to Data Sheet Title ............................................................. 1 Changes to Voltage Range in General Description ...................... 1 Changes to Supply Current/Amplifier Parameter, Table 2 .......... 3 Changes to Common-Mode Rejection Ratio Parameter, Table 3 .. 4 Changes to Common-Mode Rejection Ratio Parameter, Table 4 .. 5 Changes to Figure 2 .......................................................................... 6 Changes to Figure 24 ...................................................................... 10 Changes to Figure 32 ...................................................................... 12 Changes to Figure 47 ...................................................................... 14 Changes to Figure 55 ...................................................................... 16 Changes to Figure 62 ...................................................................... 17 Changes to Figure 73 ...................................................................... 20 10/2011—Revision 0: Initial Version Rev. I | Page 3 of 36 ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet SPECIFICATIONS ELECTRICAL CHARACTERISTICS VSY = 3 V, VCM = 1.5 V, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Test Conditions/Comments VOS SOIC package −40°C ≤ TA ≤ +125°C SOT-23, MSOP, TSSOP packages −40°C ≤ TA ≤ +125°C ADA4084-2 LFCSP package −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C TA = 25°C ADA4084-4 LFCSP package Offset Voltage Drift Offset Voltage Matching Δt/ΔT Input Bias Current IB Min Typ Max Unit 20 100 200 130 250 200 300 1.75 150 200 250 400 25 50 3 µV µV µV µV µV µV µV/°C µV µV nA nA nA nA V dB dB dB dB 50 80 0.5 140 −40°C ≤ TA ≤ +125°C Input Offset Current IOS 5 −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Input Impedance Differential Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Unity-Gain Crossover Phase Margin −3 dB Closed-Loop Bandwidth Settling Time Total Harmonic Distortion Plus Noise NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density VOH VOL ISC ZOUT PSRR VCM = 0 V to 3 V −40°C ≤ TA ≤ +125°C RL = 2 kΩ, 0.5 V ≤ VOUT ≤ 2.5 V −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 2 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 2 kΩ to VCM −40°C ≤ TA ≤ +125°C 0 64 60 100 97 2.90 2.80 2.85 2.70 104 100||1.1 80||2.9 kΩ||pF MΩ||pF 2.95 V V V V mV mV mV mV mA Ω 2.9 10 20 20 40 30 50 −17/+10 0.1 f = 1 kHz, AV = 1 VSY = ±1.25 V to ±1.75 V −40°C ≤ TA ≤ +125°C IOUT = 0 mA −40°C ≤ TA ≤ +125°C 100 90 SR GBP UGC ΦM −3 dB tS THD + N RL = 2 kΩ VIN = 5 mV p-p, RL = 10 kΩ, AV = 100 VIN = 5 mV p-p, RL = 10 kΩ, AV = 1 2.0 en p-p en in ISY 88 110 0.565 0.650 0.950 dB dB mA mA AV = 1, VIN = 5 mV p-p AV = 10, VIN = 2 V p-p, 0.1% VIN = 300 mV rms, RL = 2 kΩ, f = 1 kHz 2.6 15.4 8.08 86 12.3 4 0.009 V/µs MHz MHz Degrees MHz µs % 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz 0.14 3.9 0.55 µV p-p nV/√Hz pA/√Hz Rev. I | Page 4 of 36 Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 VSY = ±5.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Test Conditions/Comments VOS SOIC package −40°C ≤ TA ≤ +125°C SOT-23, MSOP, TSSOP packages −40°C ≤ TA ≤ +125°C ADA4084-2 LFCSP package −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C TA = 25°C ADA4084-4 LFCSP package Offset Voltage Drift Offset Voltage Matching ΔVOS/ΔT Input Bias Current IB Min Typ Max Unit 30 100 200 130 250 200 300 1.75 150 200 250 400 25 50 +5 µV µV µV µV µV µV µV/°C µV µV nA nA nA nA V dB dB dB dB dB 60 90 0.5 140 −40°C ≤ TA ≤ +125°C Input Offset Current IOS 5 −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Input Impedance Differential Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Unity-Gain Crossover Phase Margin −3 dB Closed-Loop Bandwidth Settling Time Total Harmonic Distortion Plus Noise NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density VOH VOL ISC ZOUT PSRR VCM = ±4 V, −40°C ≤ TA ≤ +125°C VCM = ±5 V VCM = ±5 V, −40°C ≤ TA ≤ +125°C RL = 2 kΩ, −4 V ≤ VOUT ≤ 4 V −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 2 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 2 kΩ to VCM −40°C ≤ TA ≤ +125°C −5 106 76 70 108 103 4.9 4.8 4.8 4.7 112 100||1.1 200||2.5 kΩ||pF MΩ||pF 4.95 V V V V V V V V mA Ω 4.85 −4.95 −4.95 −4.9 −4.8 −4.8 −4.7 −24/+17 0.1 f = 1 kHz, AV = 1 VSY = ±2 V to ±18 V −40°C ≤ TA ≤ +125°C IOUT = 0 mA −40°C ≤ TA ≤ +125°C 110 105 SR GBP UGC ΦM −3 dB tS THD + N RL = 2 kΩ to VCM VIN = 5 mV p-p, RL = 10 kΩ, AV = 100 VIN = 5 mV p-p, RL = 10 kΩ, AV = 1 2.4 en p-p en in ISY 124 120 0.595 0.700 1.00 dB dB mA mA AV = 1, VIN = 5 mV p-p AV = 10, VIN = 8 V p-p, 0.1% VIN = 2 V rms, RL = 2 kΩ, f = 1 kHz 3.7 15.9 9.6 85 13.9 4 0.003 V/µs MHz MHz Degrees MHz µs % 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz 0.14 3.9 0.55 µV p-p nV/√Hz pA/√Hz Rev. I | Page 5 of 36 ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet VSY = ±15.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 4. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Test Conditions/Comments VOS SOIC package −40°C ≤ TA ≤ +125°C SOT-23, MSOP, TSSOP packages −40°C ≤ TA ≤ +125°C ADA4084-2 LFCSP package −40°C ≤ TA ≤ +125°C Offset Voltage Drift Offset Voltage Matching ΔVOS/ΔT Input Bias Current IB Min Typ Max Unit 40 100 200 130 250 200 300 1.75 150 200 250 400 25 50 +15 µV µV µV µV µV µV µV/°C µV µV nA nA nA nA V dB dB dB dB dB 70 100 0.5 TA = 25°C ADA4084-4 LFCSP package 140 −40°C ≤ TA ≤ +125°C Input Offset Current IOS 5 −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Input Impedance Differential Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Unity-Gain Crossover Phase Margin −3 dB Closed-Loop Bandwidth Settling Time Total Harmonic Distortion Plus Noise NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density VOH VOL ISC ZOUT PSRR VCM = ±14 V, −40°C ≤ TA ≤ +125°C VCM = ±15 V VCM = ±15 V, −40°C ≤ TA ≤ +125°C RL = 2 kΩ, −13.5 V ≤ VOUT ≤ +13.5 V −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 2 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 2 kΩ to VCM −40°C ≤ TA ≤ +125°C −15 106 85 80 110 105 14.85 14.8 14.5 14.0 117 100||1.1 200||2.5 kΩ||pF MΩ||pF 14.9 V V V V V V V V mA Ω 14.6 −14.95 −14.9 −14.9 −14.8 −14.8 −14.7 ±30 0.1 f = 1 kHz, AV = +1 VSY = ±2 V to ±18 V −40°C ≤ TA ≤ +125°C IOUT = 0 mA −40°C ≤ TA ≤ +125°C 110 105 SR GBP UGC ΦM −3 dB tS THD + N RL = 2 kΩ VIN = 5 mV p-p, RL = 10 kΩ, AV = 100 VIN = 5 mV p-p, RL = 10 kΩ, AV = 1 2.4 en p-p en in ISY 124 120 0.625 0.750 1.050 dB dB mA mA AV = 1, VIN = 5 mV p-p AV = 10, VIN = 10 V p-p, 0.1% VIN = 5 V rms, RL = 2 kΩ, f = 1 kHz 4.6 15.9 9.9 86 13.9 4 0.003 V/µs MHz MHz Degrees MHz µs % 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz 0.1 3.9 0.55 µV p-p nV/√Hz pA/√Hz Rev. I | Page 6 of 36 Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 5. Parameter Supply Voltage Input Voltage Differential Input Voltage1 Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering 60 sec) ESD Human Body Model2 Machine Model3 Field-Induced Charged-Device Model (FICDM)4 θJA is specified for the device soldered on a 4-layer JEDEC standard printed circuit board (PCB) with zero airflow. Rating ±18 V V− ≤ VIN ≤ V+ ±0.6 V Indefinite −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C Table 6. Thermal Resistance Package Type 5-Lead SOT-23 (RJ-5) 8-Lead SOIC_N (R-8) 8-Lead MSOP (RM-8) 8-Lead LFCSP (CP-8-11)1, 3 14-Lead TSSOP (RU-14) 16-Lead LFCSP (CP-16-17)2, 3 4.5 kV 200 V 1.25 kV θJA 219.4 121 142 84 112 55 θJC 155.6 43 45 40 43 30 Values are based on 4-layer (2S2P) JEDEC standard PCB, with four thermal vias. Exposed pad soldered to PCB. 2 Values are based on 4-layer (2S2P) JEDEC standard PCB, with nine thermal vias. Exposed pad soldered to PCB. 3 θJC measured on top of package. 1 For input differential voltages greater than 0.6 V, limit the input current to less than 5 mA to prevent degradation or destruction of the input devices. 2 Applicable standard: MIL-STD-883, Method 3015.7. 3 Applicable standard: JESD22-A115-A (ESD machine model standard of JEDEC). 4 Applicable standard: JESD22-C101-C (ESD FICDM standard of JEDEC). 1 ESD CAUTION Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. VCC R4 R3 R6 Q24 D2 Q1 Q23 D1 Q2 MIRROR D100 Q4 D101 FOLDED CASCADE Q3 VOUT R7 C2 Q13 D5 VBIAS D4 R5 Q18 C1 R2 Q21 D20 Figure 2. Simplified Schematic Rev. I | Page 7 of 36 VEE 08237-002 Q19 R1 Unit °C/W °C/W °C/W °C/W °C/W °C/W ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet NIC 1 8 NIC –IN 2 ADA4084-1 7 V+ +IN 3 6 OUT V– TOP VIEW (Not to Scale) 4 5 NIC NOTES 1. NIC = NOT INTERNALLY CONNECTED. 08237-101 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS Figure 3. ADA4084-1, 8-Lead SOIC (R) Table 7. 8-Lead SOIC, ADA4084-1 Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 Mnemonic NIC −IN +IN V− NIC OUT V+ NIC Description Not Internally Connected Negative Input Positive Input Negative Supply Not Internally Connected Output Positive Supply Not Internally Connected ADA4084-1 OUT 1 5 V+ 4 –IN +IN 3 08237-301 V– 2 Figure 4. ADA4084-1, 5-Lead SOT-23 (RJ) Table 8. 5-Lead SOT-23, ADA4084-1 Pin Function Descriptions Mnemonic OUT V− +IN −IN V+ Description Output Negative Supply Positive Input Negative Input Positive Supply OUT A 1 –IN A 2 +IN A 3 8 V+ ADA4084-2 TOP VIEW (Not to Scale) 7 OUT B 6 –IN B 5 +IN B V– 4 NOTES 1. FOR THE LFCSP PACKAGE, THE EXPOSED PAD MUST BE CONNECTED TO V–. 08237-104 Pin No. 1 2 3 4 5 Figure 5. ADA4084-2, 8-Lead LFCSP (CP) Table 9. 8-Lead LFCSP, ADA4084-2 Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 Mnemonic OUT A −IN A +IN A V− +IN B −IN B OUT B V+ EPAD Description Output, Channel A Negative Input, Channel A Positive Input, Channel A Negative Supply Positive Input, Channel B Negative Input, Channel B Output, Channel B Positive Supply Exposed Pad. For the LFCSP package, the exposed pad must be connected to V−. Rev. I | Page 8 of 36 Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 8 V+ –IN A 2 7 +IN A 3 V– 4 TOP VIEW (Not to Scale) 1 8 V+ OUT B –IN A 2 7 OUT B 6 –IN B +IN A 3 6 –IN B 5 +IN B V– 4 5 +IN B TOP VIEW (Not to Scale) 08237-302 ADA4084-2 OUT A Figure 7. ADA4084-2, 8-Lead SOIC (R) Figure 6. ADA4084-2, 8-Lead MSOP (RM) Table 10. 8-Lead MSOP, 8-Lead SOIC, ADA4084-2 Pin Function Descriptions Mnemonic OUT A −IN A +IN A V− +IN B −IN B OUT B V+ Description Output, Channel A Negative Input, Channel A Positive Input, Channel A Negative Supply Positive Input, Channel B Negative Input, Channel B Output, Channel B Positive Supply B OUT A 1 14 OUT D –IN A 2 13 –IN D +IN A 3 V+ 4 +IN B 5 –IN B 6 9 –IN C OUT B 7 8 OUT C ADA4084-4 TOP VIEW (Not to Scale) 12 +IN D 11 V– 10 +IN C 08237-102 Pin No. 1 2 3 4 5 6 7 8 Figure 8. ADA4084-4, 14-Lead TSSOP (RU) Table 11. 14-Lead TSSOP, ADA4804-4 Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Mnemonic OUT A −IN A +IN A V+ +IN B −IN B OUT B OUT C −IN C +IN C V− +IN D −IN D OUT D 08237-303 ADA4084-2 OUT A 1 Description Output, Channel A Negative Input, Channel A Positive Input, Channel A Positive Supply Positive Input, Channel B Negative Input, Channel B Output, Channel B Output, Channel C Negative Input, Channel C Positive Input, Channel C Negative Supply Positive Input, Channel D Negative Input, Channel D Output, Channel D Rev. I | Page 9 of 36 13 NIC 14 OUT D 16 NIC Data Sheet 15 OUT A ADA4084-1/ADA4084-2/ADA4084-4 –IN A 1 12 –IN D ADA4084-4 TOP VIEW V+ 3 11 +IN D 10 V– 9 +IN C –IN C 8 OUT C 7 –IN B 5 OUT B 6 +IN B 4 NOTES 1. NIC = NOT INTERNALLY CONNECTED. 2. FOR THE LFCSP PACKAGE, THE EXPOSED PAD MUST BE CONNECTED TO V–. Figure 9. ADA4084-4, 16-Lead LFCSP (CP) Table 12. 16-Lead LFCSP, ADA4084-4 Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mnemonic −IN A +IN A V+ +IN B −IN B OUT B OUT C −IN C +IN C V− +IN D −IN D NIC OUT D OUT A NIC Description Negative Input Channel A Positive Input, Channel A Positive Supply Positive Input, Channel B Negative Input, Channel B Output, Channel B Output, Channel C Negative Input, Channel C Positive Input, Channel C Negative Supply Positive Input, Channel D Negative Input, Channel D Not Internally Connected Output, Channel D Output, Channel A Not Internally Connected Rev. I | Page 10 of 36 08237-103 +IN A 2 Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. ±1.5 V CHARACTERISTICS 120 VSY = ±1.5V TA = 25°C RL = ∞ NUMBER OF AMPLIFIERS 100 NUMBER OF AMPLIFIERS 200 VSY = ±1.5V TA = 25°C RL = ∞ 80 60 40 150 100 50 –50 –75 –25 0 25 50 100 75 0 –200 08237-003 0 –100 VOS (µV) 0 50 100 60 50 NUMBER OF AMPLIFIERS 80 NUMBER OF AMPLIFIERS –50 Figure 13. Input Offset Voltage (VOS) Distribution, LFCSP VSY = ±1.5V TA = 25°C RL = ∞ 90 –100 VOS (µV) Figure 10. Input Offset Voltage (VOS) Distribution, SOIC 100 –150 08237-081 20 70 60 50 40 30 40 30 20 20 10 –75 –50 –25 0 25 50 75 100 VOS (µV) 0 08237-306 0 –100 0 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Figure 14. TCVOS Distribution, SOIC, MSOP, and TSSOP 20 VSY = ±1.5V TA = 25°C RL = ∞ NUMBER OF AMPLIFIERS 16 35 30 25 20 15 14 12 10 8 6 4 5 2 –75 –50 –25 0 25 50 75 100 VOS (µV) 08237-004 10 0 –100 VSY = ±1.5V RL = ∞ –40°C ≤ TA ≤ +125°C 18 40 NUMBER OF AMPLIFIERS 0.6 Figure 12. Input Offset Voltage (VOS) Distribution, MSOP and TSSOP 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 TCVOS (µV/°C) Figure 15. TCVOS Distribution, SOT-23 Rev. I | Page 11 of 36 1.8 2.0 08237-309 50 0.4 TCVOS (µV/°C) Figure 11. Input Offset Voltage (VOS) Distribution, SOT-23 45 0.2 08237-005 VSY = ±1.5V RL = ∞ –40°C ≤ TA ≤ +125°C 10 ADA4084-1/ADA4084-2/ADA4084-4 50 30 VSY = ±1.5V RL = ∞ –40°C ≤ TA ≤ +125°C VSY = ±1.5V VCM = 0V RL = ∞ INPUT BIAS CURRENT (nA) 25 NUMBER OF AMPLIFIERS Data Sheet 20 15 10 IB+ –100 –150 IB – –200 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TCVOS (µV/°C) –250 –50 08237-082 0 –25 0 25 50 75 TEMPERATURE (°C) 100 125 150 08237-213 5 Figure 19. Input Bias Current vs. Temperature Figure 16. TCVOS Distribution, LFCSP 600 500 VSY = ±1.5V 400 200 100 0 –100 –200 –300 VSY = ±1.5V TA = 25°C RL = ∞ –400 –500 –1.50 –1.00 –0.50 0 0.50 1.00 1.50 COMMON-MODE VOLTAGE (V) 200 TA = +125°C 0 TA = +85°C –200 TA = +25°C –400 –600 –1.5 –1.0 –0.5 0 TA = –40°C 0.5 1.0 1.5 VCM (V) Figure 17. Input Offset Voltage vs. Common-Mode Voltage 08237-008 INPUT BIAS CURRENT (nA) 300 08237-006 INPUT OFFSET VOLTAGE (µV) 400 Figure 20. Input Bias Current vs. VCM for Various Temperatures 100 VSY = ±1.5V VSY = ±1.5V TA = 25°C 75 50 VDO (mV) 25 0 –25 100 (V+) – VOH 10 –50 –100 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) 150 1 0.001 0.01 0.1 1 10 SOURCE CURRENT (mA) Figure 18. Input Offset Voltage vs. Temperature Figure 21. Dropout Voltage (VDO) vs. Source Current Rev. I | Page 12 of 36 08237-009 –75 08237-108 INPUT OFFSET VOLTAGE (µV) 1000 Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 1000 VSY = ±1.5V TA = 25°C VSY = ±1.5V TA = 25°C 1000 AV = +10 ZOUT (Ω) 100 VOL – (V–) 0.01 1 0.1 1 10 0.01 10 225 120 80 180 100 60 135 40 90 20 45 0 0 100 1k FREQUENCY (kHz) 40 PSRR (dB) PSRR– PSRR+ 100 10k 100k 1M 10M 100M FREQUENCY (Hz) 140 VSY = ±1.5V TA = 25°C 120 AV = +100 100 CMRR (dB) AV = +10 80 60 10 AV = +1 40 20 –10 –20 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 100M 0 10 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 27. CMRR vs. Frequency Figure 24. Closed-Loop Gain vs. Frequency Rev. I | Page 13 of 36 10M 100M 08237-221 0 08237-012 GAIN (dB) 1k Figure 26. PSRR vs. Frequency 30 20 100M 60 –20 10 VSY = ±1.5V TA = 25°C 50 10M 80 Figure 23. Open-Loop Gain and Phase vs. Frequency 60 1M 0 –90 100k 10k 100k VSY = ±1.5V TA = 25°C 20 –45 –20 10 10k 40 08237-011 GAIN (dB) PHASE (Degrees) 140 VSY = ±1.5V TA = 25°C RL = 10kΩ 100 1k Figure 25. Output Impedance (ZOUT) vs. Frequency 270 120 100 FREQUENCY (Hz) Figure 22. Dropout Voltage (VDO) vs. Sink Current 1 AV = +1 0.10 SINK CURRENT (mA) –40 0.1 AV = +100 08237-013 1 0.001 10 08237-014 10 08237-010 VDO (mV) 100 ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet 1.5 VOLTAGE NOISE DENSITY (nV/√Hz) 10 1.0 0 –0.5 VSY = ±1.5V TA = 25°C RL = 2kΩ CL = 100pF –1.5 0 2 4 6 8 10 VSY = ±1.5V TA = 25°C 12 14 16 18 TIME (µs) 1 08237-016 –1.0 4 1 10 100 1k 10k 100k FREQUENCY (Hz) Figure 28. Large Signal Transient Response 08237-019 VOLTAGE (V) 0.5 Figure 31. Voltage Noise Density vs. Frequency 80 60 VSY = ±1.5V VIN = 100mV p-p RL = 2kΩ TA = 25°C 60 50 OS+ OVERSHOOT (%) VOLTAGE (mV) 40 20 0 –20 40 30 20 OS– –40 VSY = ±1.5V TA = 25°C RL = 2kΩ CL = 100pF 10 0 2 4 6 8 10 12 14 18 16 TIME (µs) 0 1 100 1000 LOAD CAPACITANCE (pF) Figure 29. Small Signal Transient Response Figure 32. Overshoot vs. Load Capacitance 2 0.08 INPUT 0 10 08237-020 –80 08237-017 –60 80 60 0.06 OUTPUT –6 0 –8 –0.02 VOLTAGE (V) 0.02 –4 20 0 –20 –40 –60 –10 –1 –0.04 0 1 2 3 4 5 6 TIME (µs) 7 8 9 Figure 30. Settling Time VSY = ±1.5V TA = 25°C –80 0 1 2 3 4 5 6 7 8 TIME (Seconds) Figure 33. Voltage Noise, 0.1 Hz to 10 Hz Rev. I | Page 14 of 36 9 10 08237-021 VSY = ±1.5V TA = 25°C 08237-018 VOLTAGE (V) VOLTAGE NOISE (nV) 40 0.04 –2 Data Sheet CHANNEL SEPARATION (dB) –20 VCC VCC – VEE 10V p-p CH A 2kΩ VSY = ±1.5V TA = 25°C VIN = 300mV rms 80kHz FILTER 1kΩ – + –40 0.1 10kΩ VSY = ±1.5V TA = 25°C VIN = 1V p-p + VEE CH B, CH C, CH D 2kΩ –60 0.01 THD + N (%) 0 ADA4084-1/ADA4084-2/ADA4084-4 –80 –100 RL = 2kΩ 0.001 –120 RL = 10kΩ 1k 10k 100k FREQUENCY (Hz) 0.0001 10 08237-022 –160 100 1k 10k 100k FREQUENCY (Hz) Figure 34. Channel Separation vs. Frequency Figure 37. THD + N vs. Frequency, 80 kHz Filter 2.0 1 VSY = ±1.5V TA = 25°C RL = 10kΩ VIN AT 1kHz VSY = ±1.5V TA = 25°C 1.5 1.0 VOLTAGE (V) 0.1 THD + N (%) 100 08237-231 –140 0.01 0.5 OUTPUT 0 –0.5 INPUT –1.0 0.001 –2.0 0.01 0.1 1 AMPLITUDE (VRMS) 100 200 400 500 600 700 800 900 1000 TIME (µs) Figure 38. No Phase Reversal Figure 35. THD + N vs. Amplitude 0.01 300 08237-125 0 0.0001 0.001 0.5 VSY = ±1.5V TA = 25°C VIN = 300mV rms 500kHz FILTER 08237-025 –1.5 4 RL = 2kΩ 0 3 RL = 10kΩ –0.5 2 –1.0 1 VOLTAGE (V) VOLTAGE (V) THD + N (%) INPUT OUTPUT –1.5 0 0.1 1 10 100 FREQUENCY (kHz) Figure 36. THD + N vs. Frequency, 500 kHz Filter –2.0 –2 –1 0 2 4 6 8 10 12 14 TIME (µs) Figure 39. Positive 50% Overload Recovery Rev. I | Page 15 of 36 16 18 08237-233 0.001 0.01 08237-126 VSY = ±1.5V TA = 25°C ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet 0.5 3 0 2 1 OUTPUT –1.0 0 –1.5 –1 VOLTAGE (V) –0.5 VSY = ±1.5V TA = 25°C –2.0 –2 –2 0 2 4 6 8 10 12 14 TIME (µs) 16 18 08237-234 VOLTAGE (V) INPUT Figure 40. Negative 50% Overload Recovery Rev. I | Page 16 of 36 Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 ±5 V CHARACTERISTICS 120 100 VSY = ±5V TA = 25°C RL = ∞ 200 NUMBER OF AMPLIFIERS 80 60 40 150 100 50 20 –75 –50 –25 0 25 50 75 0 –200 08237-026 0 –100 100 VOS (µV) 0 50 50 100 VSY = ±5V RL = ∞ –40°C ≤ TA ≤ +125°C 45 40 NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS –50 Figure 44. Input Offset Voltage (VOS) Distribution, LFCSP VSY = ±5V TA = 25°C RL = ∞ 100 –100 VOS (µV) Figure 41. Input Offset Voltage (VOS) Distribution, SOIC 120 –150 08237-080 NUMBER OF AMPLIFIERS 250 VSY = ±5V TA = 25°C RL = ∞ 80 60 40 35 30 25 20 15 10 20 –75 –50 –25 0 25 50 75 100 VOS (µV) 0 08237-335 0 –100 0 50 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TCVOS (µV/°C) Figure 42. Input Offset Voltage (VOS) Distribution, SOT-23 60 0.2 08237-028 5 Figure 45. TCVOS Distribution, SOIC, MSOP, and TSSOP 20 VSY = ±5V TA = 25°C RL = ∞ VSY = ±5V RL = ∞ –40°C ≤ TA ≤ +125°C 18 NUMBER OF AMPLIFIERS 40 30 20 14 12 10 8 6 4 10 0 –100 –75 –50 –25 0 25 50 75 100 VOS (µV) Figure 43. Input Offset Voltage (VOS) Distribution, MSOP and TSSOP 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 TCVOS (µV/°C) Figure 46. TCVOS Distribution for SOT-23 Rev. I | Page 17 of 36 1.8 2 08237-338 2 08237-027 NUMBER OF AMPLIFIERS 16 ADA4084-1/ADA4084-2/ADA4084-4 35 –50 VSY = ±5V RL = ∞ –40°C ≤ TA ≤ +125°C INPUT BIAS CURRENT (nA) 30 NUMBER OF AMPLIFIERS Data Sheet 25 20 15 10 VSY = ±5V VCM = 0V RL = ∞ –100 IB+ –150 IB– –200 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TCVOS (µV/°C) –250 –40 08237-084 0 600 800 20 35 50 65 80 95 110 125 VSY = ±5V 600 300 INPUT BIAS CURRENT (nA) INPUT OFFSET VOLTAGE (µV) 5 Figure 50. Input Bias Current vs. Temperature VSY = ±5V TA = 25°C RL = ∞ 400 –10 TEMPERATURE (°C) Figure 47. TCVOS Distribution, LFCSP 500 –25 08237-030 5 200 100 0 –100 –200 –300 400 200 TA = +85°C TA = +125°C 0 –200 TA = +25°C –400 TA = –40°C –400 –4 –3 –2 –1 0 1 2 3 4 5 COMMON-MODE VOLTAGE (V) 08237-029 –600 –5 –800 –5 –4 –3 –2 –1 0 1 2 3 4 5 VCM (V) Figure 48. Input Offset Voltage vs. Common-Mode Voltage 100 Figure 51. Input Bias Current vs. VCM for Various Temperatures VSY = ±5V 1000 75 VSY = ±5V TA = 25°C 50 VDO (mV) 25 0 –25 100 (V+) – VOH 10 –50 –100 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) 150 Figure 49. Input Offset Voltage vs. Temperature 1 0.001 0.01 0.1 1 10 SOURCE CURRENT (mA) Figure 52. Dropout Voltage (VDO) vs. Source Current Rev. I | Page 18 of 36 08237-032 –75 08237-133 INPUT OFFSET VOLTAGE (µV) 08237-031 –600 –500 Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 1000 1000 VSY = ±5V TA = 25°C VSY = ±5V TA = 25°C 100 ZOUT (Ω) VDO (mV) 100 AV = +10 10 AV = +1 AV = +100 1 VOL – (V–) 10 0.1 1 10 0.01 10 SINK CURRENT (mA) 140 225 120 80 180 100 60 135 40 90 20 45 0 0 10 100 1k FREQUENCY (kHz) PSRR (dB) 60 –20 10 PSRR– PSRR+ 100 40 100k 1M 140 10M 100M VSY = ±5V TA = 25°C 120 AV = +100 100 CMRR (dB) AV = +10 80 60 10 AV = +1 40 20 –10 –20 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 100M 0 10 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 58. CMRR vs. Frequency Figure 55. Closed-Loop Gain vs. Frequency Rev. I | Page 19 of 36 10M 100M 08237-221 0 08237-035 GAIN (dB) 10k Figure 57. PSRR vs. Frequency 30 20 1k FREQUENCY (Hz) VSY = ±5V TA = 25°C 50 100M 80 Figure 54. Open-Loop Gain and Phase vs. Frequency 60 10M 0 –90 100k 10k 1M VSY = ±5V TA = 25°C 20 –45 –20 1 100k 40 08237-034 GAIN (dB) PHASE (Degrees) 270 –40 0.1 10k Figure 56. Output Impedance (ZOUT) vs. Frequency VSY = ±5V TA = 25°C RL = 10kΩ 100 1k FREQUENCY (Hz) Figure 53. Dropout Voltage (VDO) vs. Sink Current 120 100 08237-037 0.01 08237-033 1 0.001 08237-036 0.10 ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet 5 10 3 VOLTAGE (V) 2 1 0 –1 –2 –3 VSY = ±5V TA = 25°C RL = 2kΩ CL = 100pF –5 0 2 4 6 8 10 12 14 16 18 TIME (µs) VSY = ±5V TA = 25°C 1 08237-039 –4 4 1 10 100 1k 10k 100k FREQUENCY (Hz) Figure 59. Large Signal Transient Response 08237-042 VOLTAGE NOISE DENSITY (nV/√Hz) 4 Figure 62. Voltage Noise Density vs. Frequency 80 60 VSY = ±5V VIN = 100mV p-p RL = 2kΩ TA = 25°C 60 50 OS+ OVERSHOOT (%) VOLTAGE (mV) 40 20 0 –20 40 30 20 OS– –40 VSY = ±5V TA = 25°C RL = 2kΩ CL = 100pF 10 0 1 2 3 4 5 6 7 8 9 10 TIME (µs) 0 1 1000 Figure 63. Overshoot vs. Load Capacitance 0.16 VSY = ±5V TA = 25°C 80 0.12 60 0 0.08 40 –5 0.04 5 0 –15 –0.04 –20 –0.08 VOLTAGE (V) OUTPUT –10 VOLTAGE NOISE (nV) INPUT VSY = ±5V TA = 25°C 20 0 –20 –40 –25 –2 –0.12 0 2 4 6 8 10 12 TIME (µs) 14 16 18 Figure 61. Settling Time –80 0 1 2 3 4 5 6 7 8 TIME (Seconds) Figure 64. Voltage Noise, 0.1 Hz to 10 Hz Rev. I | Page 20 of 36 9 10 08237-044 –60 08237-041 VOLTAGE (V) 100 LOAD CAPACITANCE (pF) Figure 60. Small Signal Transient Response 10 10 08237-043 –80 08237-040 –60 Data Sheet CHANNEL SEPARATION (dB) –20 VCC VCC – VEE 10V p-p CH A 2kΩ 2kΩ –60 VSY = ±5V TA = 25°C VIN = 300mV rms 80kHz FILTER 1kΩ – + –40 0.1 10kΩ VSY = ±5V TA = 25°C VIN = 5V p-p + VEE CH B, CH C, CH D RL = 2kΩ 0.01 THD + N (%) 0 ADA4084-1/ADA4084-2/ADA4084-4 –80 –100 –120 0.001 0.0001 RL = 10kΩ 1k 10k 100k FREQUENCY (Hz) 0.00001 10 100 1k 10k 100k FREQUENCY (Hz) Figure 65. Channel Separation vs. Frequency 08237-260 –160 100 08237-045 –140 Figure 68. THD + N vs. Frequency, 80 kHz Filter 6 1 VSY = ±5V TA = 25°C VSY = ±5V TA = 25°C RL = 10kΩ VIN AT 1kHz 4 0.1 VOLTAGE (V) THD + N (%) 2 0.01 0 OUTPUT –2 INPUT 0.001 –6 0.01 0.1 1 AMPLITUDE (VRMS) 0 08237-150 0.0001 0.001 100 200 400 500 700 800 900 1000 Figure 69. No Phase Reversal 1 VSY = ±5V TA = 25°C VIN = 2V rms 500kHz FILTER 10 0 8 VOLTAGE (V) RL = 2kΩ 0.01 –1 6 –2 4 –3 2 RL = 10kΩ 0.001 VOLTAGE (V) INPUT 0.1 THD + N (%) 600 TIME (µs) Figure 66. THD + N vs. Amplitude 1 300 08237-048 –4 OUTPUT –4 0 0.1 1 10 100 FREQUENCY (kHz) –5 –2 08237-151 0.0001 0.01 –2 0 2 4 6 8 10 12 14 TIME (µs) Figure 70. Positive 50% Overload Recovery Figure 67. THD + N vs. Frequency, 500 kHz Filter Rev. I | Page 21 of 36 16 18 08237-262 VSY = ±5V TA = 25°C ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet 1 6 0 4 INPUT OUTPUT –2 0 –3 –2 –4 VOLTAGE (V) 2 –4 VSY = ±5V TA = 25°C –5 –2 –6 0 2 4 6 8 10 12 14 TIME (µs) 16 18 08237-263 VOLTAGE (V) –1 Figure 71. Negative 50% Overload Recovery Rev. I | Page 22 of 36 Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 ±15 V CHARACTERISTICS 100 200 VSY = ±15V TA = 25°C RL = ∞ 90 VSY = ±15V TA = 25°C RL = ∞ NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS 80 70 60 50 40 30 150 100 50 20 –75 –50 –25 0 25 50 75 0 –200 08237-049 0 –100 100 VOS (µV) –100 –50 0 50 100 VOS (µV) Figure 72. Input Offset Voltage (VOS) Distribution, SOIC Figure 75. Input Offset Voltage (VOS) Distribution, LFCSP 100 60 VSY = ±1.5V T = 25°C 90 RA = ∞ L VSY = ±15V RL = ∞ –40°C ≤ TA ≤ +125°C 50 NUMBER OF AMPLIFIERS 80 NUMBER OF AMPLIFIERS –150 08237-079 10 70 60 50 40 30 20 40 30 20 10 10 –50 –25 0 25 50 75 100 VOS (µV) 0 0 1.0 1.2 1.4 1.6 1.8 2.0 VSY = ±15V RL = ∞ –40°C ≤ TA ≤ +125°C NUMBER OF AMPLIFIERS 20 30 20 15 10 –75 –50 –25 0 25 50 75 100 VOS (µV) Figure 74. Input Offset Voltage (VOS) Distribution, MSOP and TSSOP 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 TCVOS (µV) Figure 77. TCVOS Distribution, SOT-23 Rev. I | Page 23 of 36 1.8 2.0 08237-367 5 10 08237-050 NUMBER OF AMPLIFIERS 0.8 25 40 0 –100 0.6 Figure 76. TCVOS Distribution, SOIC, MSOP, and TSSOP VSY = ±15V TA = 25°C RL = ∞ 50 0.4 TCVOS (µV/°C) Figure 73. Input Offset Voltage (VOS) Distribution, SOT-23 60 0.2 08237-051 –75 08237-364 0 –100 ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet –50 30 VSY = ±15V RL = ∞ –40°C ≤ TA ≤ +125°C INPUT BIAS CURRENT (nA) 20 15 10 IB+ –100 –150 IB– –200 VSY = ±15V VCM = 0V RL = ∞ 5 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TCVOS (µV/°C) –250 –40 08237-085 0 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) Figure 81. Input Bias Current vs. Temperature Figure 78. TCVOS Distribution, LFCSP 1200 600 VSY = ±15V 500 T = 25°C A RL = ∞ 400 VSY = ±15V 800 300 INPUT BIAS CURRENT (nA) INPUT OFFSET VOLTAGE (µV) –25 08237-053 NUMBER OF AMPLIFIERS 25 200 100 0 –100 –200 –300 400 TA = +125°C TA = +85°C 0 TA = +25°C –400 –400 TA = –40°C –800 –10 –5 0 5 10 15 COMMON-MODE VOLTAGE (V) –1200 –15 0 5 10 15 Figure 82. Input Bias Current vs. VCM for Various Temperatures VSY = ±15V 10000 75 50 1000 VDO (mV) 25 0 100 –25 (V+) – VOH –50 10 –75 –25 0 25 50 75 100 125 TEMPERATURE (°C) 150 Figure 80. Input Offset Voltage vs. Temperature 1 0.001 VSY = ±15V TA = 25°C 0.01 0.1 1 10 SOURCE CURRENT (mA) Figure 83. Dropout Voltage (VDO) vs. Source Current Rev. I | Page 24 of 36 08237-055 –100 –50 08237-165 INPUT OFFSET VOLTAGE (µV) –5 VCM (V) Figure 79. Input Offset Voltage vs. Common-Mode Voltage 100 –10 08237-054 –600 –15 08237-052 –500 Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 1000 VSY = ±15V TA = 25°C 10000 100 AV = +10 ZOUT (Ω) VDO (mV) 1000 100 AV = +100 1 AV = +1 VOL – (V–) 10 10 0.1 0.1 1 10 SINK CURRENT (mA) 120 80 180 100 60 135 40 90 20 45 0 0 100k 1M PSRR (dB) PHASE (Degrees) 80 60 PSRR– PSRR+ 0 FREQUENCY (Hz) –20 10 100 50 10k 100k 1M 100M 10M Figure 88. PSRR vs. Frequency 140 VSY = ±15V TA = 25°C 40 1k FREQUENCY (Hz) Figure 85. Open-Loop Gain and Phase vs. Frequency 60 100M 10M VSY = ±15V TA = 25°C 20 –90 100M 10M 1M 40 –45 –20 10k 100k 140 08237-057 GAIN (dB) 100 1k 10k Figure 87. Output Impedance (ZOUT) vs. Frequency 270 VSY = ±15V TA = 25°C RL = 10kΩ 225 –40 100 1k FREQUENCY (Hz) Figure 84. Dropout Voltage (VDO) vs. Sink Current 120 100 08237-060 0.01 08237-056 1 0.001 08237-059 VSY = ±15V TA = 25°C 0.01 10 VSY = ±15V TA = 25°C 120 AV = +100 100 CMRR (dB) AV = +10 10 0 AV = +1 60 40 20 –10 –20 10 80 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 100M Figure 86. Closed-Loop Gain vs. Frequency 0 10 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 89. CMRR vs. Frequency Rev. I | Page 25 of 36 10M 100M 08237-279 20 08237-058 GAIN (dB) 30 ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet 10 VOLTAGE NOISE DENSITY (nV/√Hz) 15 10 0 –5 VSY = ±15V TA = 25°C RL = 2kΩ CL = 100pF 0 4 8 12 16 20 24 28 32 36 TIME (µs) 1 1 80 70 60 60 10k 100k VSY = ±15V VIN = 100mV p-p RL = 2kΩ TA = 25°C OS+ 50 OVERSHOOT (%) 20 0 –20 40 30 20 –40 VSY = ±15V TA = 25°C RL = 2kΩ CL = 100pF 10 –80 0 1 3 2 4 5 6 7 8 9 10 TIME (µs) 0 08237-063 –60 OS– 1 0.20 60 0.15 5 40 0.10 –5 0.05 OUTPUT –10 0 –15 –0.05 –20 VOLTAGE (V) 0 VOLTAGE NOISE (nV) INPUT 8 10 12 TIME (µs) 14 16 0 –20 VSY = ±15V TA = 25°C –0.15 18 08237-064 6 20 –40 –0.10 VSY = ±15V TA = 25°C 4 1000 Figure 94. Overshoot vs. Load Capacitance 10 2 100 LOAD CAPACITANCE (pF) Figure 91. Small Signal Transient Response 0 10 08237-066 VOLTAGE (mV) 1k Figure 93. Voltage Noise Density vs. Frequency 40 VOLTAGE (V) 100 FREQUENCY (Hz) Figure 90. Large Signal Transient Response –25 –2 10 08237-065 VSY = ±15V TA = 25°C –15 08237-062 –10 4 Figure 92. Settling Time –60 0 2 4 6 8 TIME (Seconds) Figure 95. Voltage Noise 0.1 Hz to 10 Hz Rev. I | Page 26 of 36 10 08237-067 VOLTAGE (V) 5 Data Sheet –20 VCC VCC – VEE 10V p-p CH A –60 2kΩ 2kΩ VSY = ±15V TA = 25°C VIN = 300mV rms 80kHz FILTER 1kΩ – + –40 CHANNEL SEPARATION (dB) 0.1 10kΩ VSY = ±15V TA = 25°C VIN = 10V p-p + VEE CH B, CH C, CH D RL = 2kΩ 0.01 THD + N (%) 0 ADA4084-1/ADA4084-2/ADA4084-4 –80 –100 0.001 –120 0.0001 –140 RL = 10kΩ 1k 10k 100k FREQUENCY (Hz) 0.00001 10 100 Figure 96. Channel Separation vs. Frequency 10k 100k Figure 99. THD + N vs. Frequency, 80 kHz Filter 20 1 VSY = ±15V RL = 10kΩ VIN AT 1kHz VSY = ±15V TA = 25°C 15 10 VOLTAGE (V) 0.1 THD + N (%) 1k FREQUENCY (Hz) 08237-289 –180 100 08237-068 –160 0.01 5 0 OUTPUT –5 INPUT –10 0.001 –20 0 0.01 0.1 1 10 AMPLITUDE (VRMS) 100 200 08237-175 0.0001 0.001 400 500 600 700 800 900 TIME (µs) Figure 97. THD + N vs. Amplitude 1 300 Figure 100. No Phase Reversal VSY = ±15V TA = 25°C VIN = 5V rms 500kHz FILTER VIN 1 0.1 THD + N (%) 1000 08237-071 –15 CH1 AMPL 202mV VOUT RL = 2kΩ 0.01 RL = 10kΩ 0.001 2 1 10 100 FREQUENCY (kHz) 08237-176 0.1 CH1 100mV CH2 5V M1µs T 10.2% A CH1 –84mV Figure 101. Positive 50% Overload Recovery Figure 98. THD + N vs. Frequency, 500 kHz Filter Rev. I | Page 27 of 36 08237-178 VSY = ±15V 0.0001 0.01 ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet 140 VSY = ±15V VCM = ±14V 120 CH1 AMPL 200mV VIN 100 CMRR (dB) 1 2 VCM = ±4V 80 VCM = ±1.5V 60 40 VOUT CH2 5V M2µs T 10.4% A CH1 44mV 0 –50 –25 0 25 50 75 100 125 150 125 150 TEMPERATURE (°C) Figure 104. CMRR vs. Temperature Figure 102. Negative 50% Overload Recovery 150 1000 140 900 +125°C 800 130 +85°C VSY = ±2V TO ±18V, VCM = 0V 120 700 +25°C 600 PSRR (dB) –40°C 500 400 110 VSY = ±1.25V TO ±1.75V, VCM = 0V 100 90 80 300 70 200 60 100 0 0 4 8 12 16 20 VSY (V) 24 28 32 36 08237-072 TA = 25°C RL = ∞ Figure 103. Supply Current (ISY) per Amplifier vs. Supply Voltage (VSY) for Various Temperatures Rev. I | Page 28 of 36 50 –50 –25 0 25 50 75 100 TEMPERATURE (°C) Figure 105. PSRR vs. Temperature 08237-181 ISY/AMPLIFIER (µA) 08237-180 CH1 100mV 08237-179 20 Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 APPLICATIONS INFORMATION FUNCTIONAL DESCRIPTION The ADA4084-1/ADA4084-2/ADA4084-4 devices are precision single-supply, rail-to-rail operational amplifiers. Intended for portable instrumentation, the ADA4084-1/ADA4084-2/ ADA4084-4 devices combine the attributes of precision, wide bandwidth, and low noise, making them an ideal choice in single-supply applications that require both ac and precision dc performance. Other low supply voltage applications for which the ADA4084-1/ADA4084-2/ADA4084-4 devices are well suited include active filters, audio microphone preamplifiers, power supply control, and telecommunications. To combine all of these attributes with rail-to-rail input/output operation, novel circuit design techniques are used. R4 R3 D2 Q1 D1 Q2 D100 Q4 D101 Q3 A key issue in the input stage is the behavior of the input bias currents over the input common-mode voltage range. Input bias currents in the ADA4084-1/ADA4084-2/ADA4084-4 are the arithmetic sum of the base currents in Q1 and Q4 and in Q2 and Q3. As a result of this design approach, the input bias currents in the ADA4084-1/ADA4084-2/ADA4084-4 not only exhibit different amplitudes, but they also exhibit different polarities. This effect is best shown in Figure 19, Figure 20, Figure 50, Figure 51, Figure 81, and Figure 82. It is, therefore, important that the effective source impedances that are connected to the ADA4084-1/ ADA4084-2/ADA4084-4 inputs be balanced for optimum dc and ac performance. To achieve rail-to-rail output, the ADA4084-1/ADA4084-2/ ADA4084-4 output stage design employs a unique topology for both sourcing and sinking current. This circuit topology is shown in Figure 107. The output stage is voltage driven from the second gain stage. The signal path through the output stage is inverting; that is, for positive input signals, Q13 provides the base current drive to Q19 so that it conducts (sinks) current. For negative input signals, the signal path via Q18 to the mirror to Q24 provides the base current drive for Q23 to conduct (source) current. Both transistors provide output current until they are forced into saturation. VCC D5 D4 R6 R1 R2 08237-073 Q24 Q23 MIRROR Figure 106. Equivalent Input Circuit VOUT R7 C2 Q13 VBIAS R5 Q18 C1 Q19 Q21 D20 VEE 08237-074 For example, Figure 106 illustrates a simplified equivalent circuit for the input stage of the ADA4084-1/ADA4084-2/ ADA4084-4. It comprises a PNP differential pair, Q1 and Q2, and an NPN differential pair, Q3 and Q4, operating concurrently. Diode D100 and Diode D101 serve to clamp the applied differential input voltage to the ADA4084-1/ADA4084-2/ ADA4084-4, thereby protecting the input transistors against Zener breakdown of the emitter-base junctions. Input stage voltage gains are kept low for input rail-to-rail operation. The two pairs of differential output voltages are connected to the second stage of the ADA4084-1/ADA4084-2/ADA4084-4, which is a modified compound folded cascade gain stage. It is also in the second gain stage that the two pairs of differential output voltages are combined into a single-ended output signal voltage used to drive the output stage. Figure 107. Equivalent Output Circuit Thus, the saturation voltage of the output transistors sets the limit on the ADA4084-1/ADA4084-2/ADA4084-4 maximum output voltage swing. Output short-circuit current limiting is determined by the maximum signal current into the base of Q13 from the second gain stage. The output stage also exhibits voltage gain. This is accomplished by the use of common-emitter amplifiers, and, as a result, the voltage gain of the output stage (thus, the open-loop gain of the device) exhibits a dependence on the total load resistance at the output of the ADA4084-1/ ADA4084-2/ADA4084-4. Rev. I | Page 29 of 36 ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet R2 START-UP CHARACTERISTICS INPUT PROTECTION As with any semiconductor device, if conditions exist where the applied input voltages to the device exceed either supply voltage, the input overvoltage I-to-V characteristic of the device must be considered. When an overvoltage occurs, the amplifier may be damaged, depending on the magnitude of the applied voltage and the magnitude of the fault current. The D1, D2, D4, and D5 diodes conduct when the input commonmode voltage exceeds either supply pin by a diode drop. This diode drop voltage varies with temperature and is in the range of 0.3 V to 0.8 V. As shown in the simplified equivalent input circuit of Figure 106, the ADA4084-1/ADA4084-2/ADA4084-4 do not have any internal current limiting resistors; thus, fault currents can quickly rise to damaging levels. This input current is not inherently damaging to the device, provided that it is limited to 5 mA or less. If a fault condition causes more than 5 mA to flow, add an external series resistor at the expense of additional thermal noise. Figure 108 shows a typical noninverting configuration for an overvoltage protected amplifier, where the series resistance (R1) is chosen, such that R1 = VIN ( MAX ) − VSUPPLY 5 mA For example, a 1 kΩ resistor protects the ADA4084-1/ADA4084-2/ ADA4084-4 against input signals up to 5 V above and below the supplies. Note that the thermal noise of a 1 kΩ resistor at room temperature is 4 nV/√Hz, which exceeds the voltage noise of the ADA4084-1/ADA4084-2/ADA4084-4. For other configurations in which both inputs are used, add a series resistor to limit the input current. To ensure optimum dc and ac performance, balance the source impedance levels. 1/2 ADA4084-1/ ADA4084-2/ ADA4084-4 VIN VOUT R1 08237-075 The ADA4084-1/ADA4084-2/ADA4084-4 are specified to operate from 3 V to 30 V (±1.5 V to ±15 V) under nominal power supplies. During power-up as the supply voltage increases from 0 V to the nominal power supply voltage, the supply current (ISY) increases as well, to the point at which it stabilizes and the amplifier is ready to operate. The stabilization varies with temperature, as shown in Figure 103. For example, at −40°C, it requires a higher voltage and stabilizes at a lower supply current than at hot temperatures. At hot temperatures, it requires a lower voltage but stabilizes at a higher current. In all cases, the ADA4084-1/ ADA4084-2/ADA4084-4 are specified to start up and operate at a minimum of 3 V under all temperature conditions. Figure 108. Resistance in Series with the Input Limits Overvoltage Currents to Safe Values To protect the Q1/Q2 and Q3/Q4 pairs from large differential voltages that may result in Zener breakdown of the emitter-base junction, D100 and D101 are connected between the two inputs. This precludes operation as a comparator. For a more complete description, see the MT-035 Tutorial, Op Amp Inputs, Outputs, Single-Supply, and Rail-to-Rail Issues; the MT-083 Tutorial, Comparators; the MT-084 Tutorial, Using Op Amps as Comparators; and the AN-849 Application Note, Using Op Amps as Comparators. OUTPUT PHASE REVERSAL Some operational amplifiers designed for single-supply operation exhibit an output voltage phase reversal when their inputs are driven beyond their useful common-mode range. Typically, for single-supply bipolar op amps, the negative supply determines the lower limit of their common-mode range. With these devices, external clamping diodes, with the anode connected to ground and the cathode to the inputs, prevent input signal excursions from exceeding the negative supply of the device (that is, GND), preventing a condition that causes the output voltage to change phase. JFET input amplifiers can also exhibit phase reversal, and, if so, a series input resistor is usually required to prevent it. The ADA4084-1/ADA4084-2/ADA4084-4 are free from reasonable input voltage range restrictions, provided that input voltages no greater than the supply voltages are applied (see Figure 38, Figure 69, and Figure 100). Although device output does not change phase, large currents can flow through the input protection diodes. Therefore, apply the technique recommended in the Input Protection section to those applications where the likelihood of input voltages exceeding the supply voltages is high. Rev. I | Page 30 of 36 Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 In single-supply applications, devices like the ADA4084-1/ ADA4084-2/ADA4084-4 extend the dynamic range of the application through the use of rail-to-rail operation. Referring to the op amp noise model circuit configuration illustrated in Figure 109, the expression for the total equivalent input noise voltage of an amplifier for a source resistance level, RS, is given by ] e nT = 2[(e nR )2 + (inOA × RS )2 + (e nOA )2 , units in V Hz where: (enR)2 is the source resistance thermal noise voltage power (4kTR). k is the Boltzmann’s constant, 1.38 × 10–23 J/K. T is the ambient temperature in Kelvin of the circuit, 273.15 + TA (°C). (inOA)2 is the op amp equivalent input noise current spectral power (1 Hz bandwidth). RS = 2R, the effective, or equivalent, circuit source resistance. (enOA)2 is the op amp equivalent input noise voltage spectral power (1 Hz bandwidth). enR NOISELESS enOA inOA IDEAL NOISELESS OP AMP RS = 2R enR R NOISELESS inOA 08237-076 R Figure 109. Op Amp Noise Circuit Model Used to Determine Total Circuit Equivalent Input Noise Voltage and Noise Figure As a design aid, Figure 110 shows the equivalent thermal noise of the ADA4084-1/ADA4084-2/ADA4084-4 vs. the total source resistance. Note that for source resistance less than 1 kΩ, the equivalent input noise voltage of the ADA4084-1/ADA4084-2/ ADA4084-4 is dominant. Because circuit SNR is the critical parameter in the final analysis, the noise behavior of a circuit is sometimes expressed in terms of its noise figure (NF). The noise figure is defined as the ratio of the signal-to-noise output of a circuit to its signal-to-noise input. Noise figure is generally used for RF and microwave circuit analysis in a 50 Ω system. This is not very useful for op amp circuits where the input and output impedances can vary greatly. For a more complete description of noise figure, see the MT-052 Tutorial, Op Amp Noise Figure: Don’t be Misled. Signal levels in the application invariably increase to maximize circuit SNR, which is not an option in low voltage, single-supply applications. Therefore, to achieve optimum circuit SNR in single-supply applications, choose an operational amplifier with the lowest equivalent input noise voltage, along with source resistance levels that are consistent with maintaining low total circuit noise. COMPARATOR OPERATION Although op amps are quite different from comparators, occasionally an unused section of a dual or a quad op amp can be used as a comparator; however, this is not recommended for any rail-to-rail output op amps. For rail-to-rail output op amps, the output stage is generally a ratioed current mirror with bipolar or MOSFET transistors. With the device operating open-loop, the second stage increases the current drive to the ratioed mirror to close the loop. However, the loop cannot close, which results in an increase in supply current. With the op amp configured as a comparator, the supply current can be significantly higher (see Figure 111). Configure an unused section as a voltage follower with the noninverting input connected to a voltage within the input voltage range. The ADA4084-1/ADA4084-2/ADA4084-4 have unique second stage and output stage designs that greatly reduce the excess supply current when the op amp is operating open-loop. 800 COMPARATOR OUTPUT LOW 700 SUPPLY CURRENT (µA) FREQUENCY = 1kHz TA = 25°C ADA4084-1/ADA4084-2/ADA4084-4 TOTAL EQUIVALENT NOISE 10 RESISTOR THERMAL NOISE ONLY 600 BUFFER COMPARATOR OUTPUT HIGH 500 400 300 200 100 TA = 25°C RL = ∞ 0 0 1 100 1k 10k 100k TOTAL SOURCE RESISTANCE, RS (Ω) 08237-077 EQUIVALENT THERMAL NOISE (nV/ Hz) 100 Figure 110. Equivalent Thermal Noise vs. Total Source Resistance Rev. I | Page 31 of 36 4 8 12 16 20 24 28 32 VSY (V) Figure 111. Supply Current vs. Supply Voltage (VSY) 36 08237-078 DESIGNING LOW NOISE CIRCUITS IN SINGLESUPPLY APPLICATIONS ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet LONG-TERM DRIFT TEMPERATURE HYSTERESIS The stability of a precision signal path over its lifetime or between calibration procedures is dependent on the long-term stability of the analog components in the path, such as op amps, references, and data converters. To help system designers predict the long-term drift of circuits that use the ADA4084-1/ ADA4084-2/ADA4084-4, Analog Devices measured the offset voltage of multiple units for 10,000 hours (more than 13 months) using a high precision measurement system, including an ultrastable oil bath. To replicate real-world system performance, the devices under test (DUTs) were soldered onto an FR4 PCB using a standard reflow profile (as defined in the JEDEC J-STD020D standard), as opposed to testing them in sockets. This manner of testing is important because expansion and contraction of the PCB can apply stress to the integrated circuit (IC) package and contribute to shifts in the offset voltage. In addition to stability over time as described in the Long-Term Drift section, it is useful to know the temperature hysteresis, that is, the stability vs. cycling of temperature. Hysteresis is an important parameter because it tells the system designer how closely the signal returns to its starting amplitude after the ambient temperature changes and subsequent return to room temperature. Figure 113 shows the change in input offset voltage as the temperature cycles three times from room temperature to +125°C to −40°C and back to room temperature. The dotted line is an initial preconditioning cycle to eliminate the original temperature-induced offset shift from exposure to production solder reflow temperatures. In the three full cycles, the offset hysteresis is typically only 4 μV, or 2% of its 200 µV maximum offset voltage over the full operating temperature range. The histogram in Figure 114 shows that the hysteresis is larger when the device is cycled through only a half cycle, from room temperature to 125°C and back to room temperature. 10 5 0 60 40 20 0 –20 –40 –60 –100 –40 –20 0 20 40 60 TEMPERATURE (°C) 80 100 120 08237-113 –80 –5 NUMBER OF DEVICES 10,000 08237-112 8000 7000 6000 5000 4000 3000 2000 1000 TIME (Hours) 9000 VSY = 10V 27 UNITS TA = 25°C SAMPLE 1 SAMPLE 2 SAMPLE 3 Figure 112. Measured Long-Term Drift of the ADA4084-1/ADA4084-2/ ADA4084-4 Offset Voltage over 10,000 Hours 40 VSY = 10V HALF CYCLE 35 27 UNITS × 3 CYCLES FULL CYCLE HALF CYCLE = +26°C, +125°C, +26°C 30 FULL CYCLE = +26°C, +125°C, +26°C, –40°C, +26°C 25 20 15 10 5 0 40 35 30 25 20 15 10 5 0 –40 –32 –24 –18 –8 0 8 18 24 32 40 OFFSET VOLTAGE HYSTERESIS (µV) 08237-114 Figure 113. Change in Offset Voltage over Three Full Temperature Cycles –10 –15 PRECONDITION CYCLE 1 CYCLE 2 CYCLE 3 VSY = 10V 80 MEAN MEAN PLUS ONE STANDARD DEVIATION MEAN MINUS ONE STANDARD DEVIATION 0 CHANGE IN OFFSET VOLTAGE (µV) 15 100 CHANGE IN OFFSET VOLTAGE (µV) The ADA4084-1/ADA4084-2/ADA4084-4 have extremely low long-term drift, as shown in Figure 112. The red, blue, and green traces show sample units. Note that the mean drift of the ADA4084-1/ADA4084-2/ADA4084-4 over 10,000 hours is less than 3 μV, or less than 3% of their maximum specified offset voltage of 100 µV at room temperature. Figure 114. Histogram Showing the Temperature Hysteresis of the Offset Voltage over Three Full Cycles and over Three Half Cycles Rev. I | Page 32 of 36 Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 5 1 6.20 (0.2441) 5.80 (0.2284) 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) COPLANARITY 0.10 SEATING PLANE 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. 012407-A 8 4.00 (0.1574) 3.80 (0.1497) Figure 115. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) 3.00 2.90 2.80 1.70 1.60 1.50 5 1 4 2 3.00 2.80 2.60 3 0.95 BSC 1.90 BSC 1.45 MAX 0.95 MIN 0.15 MAX 0.05 MIN 0.50 MAX 0.35 MIN 0.20 MAX 0.08 MIN SEATING PLANE 10° 5° 0° 0.60 BSC COMPLIANT TO JEDEC STANDARDS MO-178-AA Figure 116. 5-Lead Small Outline Transistor Package [SOT-23] (RJ-5) Dimensions shown in millimeters Rev. I | Page 33 of 36 0.55 0.45 0.35 11-01-2010-A 1.30 1.15 0.90 ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet 3.20 3.00 2.80 8 3.20 3.00 2.80 1 5.15 4.90 4.65 5 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.40 0.25 6° 0° 0.80 0.55 0.40 0.23 0.09 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 117. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters DETAIL A (JEDEC 95) 2.44 2.34 2.24 3.10 3.00 SQ 2.90 0.50 BSC 8 5 PIN 1 INDEX AREA TOP VIEW PKG-005136 SEATING PLANE SIDE VIEW 0.30 0.25 0.20 4 1 0.20 MIN BOTTOM VIEW 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.203 REF FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET COMPLIANT TO JEDEC STANDARDS MO-229-W3030D-4 Figure 118. 8-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-8-11) Dimensions shown in millimeters Rev. I | Page 34 of 36 PIN 1 INDIC ATOR AREA OPTIONS (SEE DETAIL A) 02-10-2017-C 0.50 0.40 0.30 0.80 0.75 0.70 1.70 1.60 1.50 EXPOSED PAD Data Sheet ADA4084-1/ADA4084-2/ADA4084-4 DETAIL A (JEDEC 95) 4.10 4.00 SQ 3.90 PIN 1 INDICATOR 0.35 0.30 0.25 0.65 BSC 16 13 PIN 1 INDIC ATOR AREA OPTIONS (SEE DETAIL A) 12 1 EXPOSED PAD 4 2.70 2.60 SQ 2.50 9 SIDE VIEW 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF SEATING PLANE PKG-004828 BOTTOM VIEW 0.20 MIN FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 02-22-2017-C 0.80 0.75 0.70 5 8 0.45 0.40 0.35 TOP VIEW COMPLIANT TO JEDEC STANDARDS MO-220-WGGC. Figure 119. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 075 mm Package Height (CP-16-17) Dimensions shown in millimeters 5.10 5.00 4.90 14 8 4.50 4.40 4.30 6.40 BSC 1 7 PIN 1 0.65 BSC 1.20 MAX 0.15 0.05 COPLANARITY 0.10 0.30 0.19 0.20 0.09 SEATING PLANE 8° 0° COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 Figure 120. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters Rev. I | Page 35 of 36 0.75 0.60 0.45 061908-A 1.05 1.00 0.80 ADA4084-1/ADA4084-2/ADA4084-4 Data Sheet ORDERING GUIDE Model 1 ADA4084-1ARZ ADA4084-1ARZ-R7 ADA4084-1ARZ-RL ADA4084-1ARJZ-R2 ADA4084-1ARJZ-R7 ADA4084-1ARJZ-RL ADA4084-2ARMZ ADA4084-2ARMZ-R7 ADA4084-2ARMZ-RL ADA4084-2ARZ ADA4084-2ARZ-R7 ADA4084-2ARZ-RL ADA4084-2ACPZ-R7 ADA4084-2ACPZ-RL ADA4084-4ACPZ-R7 ADA4084-4ACPZ-RL ADA4084-4ARUZ ADA4084-4ARUZ-RL 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 5-Lead Small Outline Transistor Package [SOT-23] 5-Lead Small Outline Transistor Package [SOT-23] 5-Lead Small Outline Transistor Package [SOT-23] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Lead Frame Chip Scale Package [LFCSP] 8-Lead Lead Frame Chip Scale Package [LFCSP] 16-Lead Lead Frame Chip Scale Package [LFCSP] 16-Lead Lead Frame Chip Scale Package [LFCSP] 14-Lead Thin Shrink Small Outline Package [TSSOP] 14-Lead Thin Shrink Small Outline Package [TSSOP] Z = RoHS Compliant Part. ©2011–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08237-0-5/17(I) Rev. I | Page 36 of 36 Package Option R-8 R-8 R-8 RJ-5 RJ-5 RJ-5 RM-8 RM-8 RM-8 R-8 R-8 R-8 CP-8-11 CP-8-11 CP-16-17 CP-16-17 RU-14 RU-14 Branding A38 A38 A38 A2Q A2Q A2Q A2Q A2Q
ADA4084-4ARUZ-RL
物料型号: - ADA4084-1:单路放大器 - ADA4084-2:双路放大器 - ADA4084-4:四路放大器

器件简介: ADA4084系列放大器是Analog Devices生产的单电源、10MHz带宽放大器,具有轨至轨输入和输出能力。它们适用于+3V至+30V(或±1.5V至±15V)的电源电压范围。这些放大器非常适合需要交流和精密直流性能的单电源应用,如滤波器和仪器仪表。其他应用包括便携式通信设备、电源控制与保护,以及作为具有宽输出范围的传感器的放大器或缓冲器。

引脚分配: - ADA4084-1:5引脚SOT-23和8引脚SOIC封装 - ADA4084-2:8引脚SOIC、8引脚MSOP和8引脚LFCSP封装 - ADA4084-4:14引脚TSSOP和16引脚LFCSP封装

参数特性: - 轨至轨输入/输出 - 低功耗:典型值每放大器0.625mA(±15V供电时) - 增益带宽积:典型值15.9MHz(增益=100时) - 单位增益交叉频率:典型值9.9MHz - -3dB闭环带宽:典型值13.9MHz(±15V供电时) - 低偏置电压:最大值100μV(SOIC封装) - 高压摆率:典型值4.6V/μs - 低噪声:典型值1kHz时3.9nV/√Hz

功能详解: ADA4084系列放大器能够在输入和输出同时摆动至轨至轨,使设计者能够在单电源系统中构建多级滤波器,并保持高信噪比。这些放大器还具有长期偏置电压漂移(10,000小时)典型值为3μV,温度滞后典型值为4μV。

应用信息: - 电池供电仪表 - 高侧和低侧传感 - 电源控制和保护 - 电信 - 数模转换器(DAC)输出放大器 - 模数转换器(ADC)输入缓冲器
ADA4084-4ARUZ-RL 价格&库存

很抱歉,暂时无法提供与“ADA4084-4ARUZ-RL”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ADA4084-4ARUZ-RL
  •  国内价格
  • 1+109.52582
  • 10+87.14843
  • 25+78.01238
  • 100+67.87967
  • 250+62.95569
  • 500+59.95385
  • 2500+59.70468

库存:2154

ADA4084-4ARUZ-RL
  •  国内价格
  • 1+109.52582
  • 10+87.14843
  • 25+78.01238
  • 100+67.87967
  • 250+62.95569
  • 500+59.95385
  • 2500+59.70468

库存:2154

ADA4084-4ARUZ-RL
    •  国内价格
    • 1+64.40000

    库存:1000

    ADA4084-4ARUZ-RL
    •  国内价格
    • 1+90.46080
    • 10+86.18400
    • 30+78.78600
    • 100+68.71122

    库存:21