0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADA4310-1ARHZ-R7

ADA4310-1ARHZ-R7

  • 厂商:

    AD(亚德诺)

  • 封装:

    MSOP10_EP

  • 描述:

    IC OPAMP CFA 190MHZ 10MSOP

  • 数据手册
  • 价格&库存
ADA4310-1ARHZ-R7 数据手册
Low Cost, Dual, High Current Output Line Driver with Shutdown ADA4310-1 FEATURES High speed −3 dB bandwidth: 190 MHz, G = +5 Slew rate: 820 V/μs, RLOAD = 50 Ω Wide output swing 20.4 V p-p differential, RLOAD of 100 Ω from 12 V supply High output current Low distortion −95 dBc typical at 1 MHz, VOUT = 2 V p-p, G = +5, RLOAD = 50 Ω −69 dBc typical at 10 MHz, VOUT = 2 V p-p, G = +5, RLOAD = 50 Ω Power management and shutdown Control inputs CMOS level compatible Shutdown quiescent current 0.65 mA/amplifier Adjustable low quiescent current: 3.9 mA to 7.6 mA per amp PIN CONFIGURATIONS +VS 1 NC 2 OUT A 3 –IN A 4 +IN A 5 10 9 8 7 6 OUT B –IN B +IN B PD1 06027-001 PD0 NC = NO CONNECT Figure 1. Thermally Enhanced, 10-Lead MINI_SO_EP 16 OUT A 15 NC 13 OUT B 14 +VS NC 1 −IN A 2 +IN A 3 GND 4 NC = NO CONNECT 12 NC 11 −IN B 10 +IN B 9 PD1 APPLICATIONS Home networking line drivers Twisted pair line drivers Power line communications Video line drivers ARB line drivers I/Q channel amplifiers PD0 8 –VS 7 NC 5 NC 6 Figure 2. Thermally Enhanced, 4 mm × 4 mm 16-Lead LFCSP_VQ GENERAL DESCRIPTION The ADA4310-1 is comprised of two high speed, current feedback operational amplifiers. The high output current, high bandwidth, and fast slew rate make it an excellent choice for broadband applications requiring high linearity performance while driving low impedance loads. The ADA4310-1 incorporates a power management function that provides shutdown capabilities and/or the ability to optimize the amplifiers quiescent current. The CMOScompatible, power-down control pins (PD1 and PD0) enable the ADA4310-1 to operate in four different modes: full power, medium power, low power, and complete power down. In the power-down mode, quiescent current drops to only 0.65 mA/amplifier, while the amplifier output goes to a high impedance state. The ADA4310-1 is available in a thermally enhanced, 10-lead MSOP with an exposed paddle for improved thermal conduction and in a thermally enhanced, 4 mm × 4 mm 16-lead LFCSP. The ADA4310-1 is rated to work in the extended industrial temperature range of −40°C to +85°C. 1/2 ADA4310-1 VMID1 1/2 06027-003 ADA4310-1 VCC – VEE 1V = MID 2 Figure 3. Typical PLC Driver Application Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved. 06027-002 ADA4310-1 TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 Pin Configurations ........................................................................... 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Absolute Maximum Ratings............................................................ 5 Thermal Resistance ...................................................................... 5 ESD Caution.................................................................................. 5 Pin Configurations and Function Descriptions ........................... 6 Typical Performance Characteristics ............................................. 7 Theory of Operation ...................................................................... 10 Application Information................................................................ 11 Feedback Resistor Selection...................................................... 11 Power Control Modes of Operation ........................................ 11 Exposed Thermal Pad Connections ........................................ 11 Power Line Application ............................................................. 11 Board Layout............................................................................... 12 Power Supply Bypassing ............................................................ 12 Outline Dimensions ....................................................................... 13 Ordering Guide .......................................................................... 13 REVISION HISTORY 10/06—Revision 0: Initial Version Rev. 0 | Page 2 of 16 ADA4310-1 SPECIFICATIONS VS = 12 V, ±6 V (@ TA = 25°C, G = +5, RL = 100 Ω, unless otherwise noted). Table 1. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth Test Conditions/Comments G = +5, VOUT = 0.1 V p-p, PD1 = 0, PD0 = 0 PD1 = 0, PD0 = 1 PD1 = 1, PD0 = 0 G = +5, VOUT = 2 V p-p, RLOAD = 50 Ω, PD1 = 0, PD0 = 0 PD1 = 0, PD0 = 1 PD1 = 1, PD0 = 0 fC = 1 MHz, VOUT = 2 V p-p, RLOAD = 50 Ω PD1 = 0, PD0 = 0 PD1 = 0, PD0 = 1 PD1 = 1, PD0 = 0 fC = 10 MHz, VOUT = 2 V p-p, RLOAD = 50 Ω PD1 = 0, PD0 = 0 PD1 = 0, PD0 = 1 PD1 = 1, PD0 = 0 fC = 20 MHz, VOUT = 2 V p-p, RLOAD = 50 Ω PD1 = 0, PD0 = 0 PD1 = 0, PD0 = 1 PD1 = 1, PD0 = 0 f = 100 kHz f = 100 kHz Min Typ 190 140 100 820 790 750 Max Unit MHz MHz MHz V/μs V/μs V/μs Slew Rate NOISE/DISTORTION PERFORMANCE Distortion (Worst Harmonic) −95 −88 −77 −69 −57 −47 −50 −42 −35 2.85 21.8 1 −2 6 dBc dBc dBc dBc dBc dBc dBc dBc dBc nV/√Hz pA/√Hz mV μA μA MΩ MΩ dB kΩ VP VP VP VP V p-p ±6 +12 V V mA/amp mA/amp mA/amp mA/amp Input Voltage Noise Input Current Noise DC PERFORMANCE Input Offset Voltage Input Bias Current Noninverting Input Inverting Input Open-Loop Transimpedance RLOAD = 50 Ω RLOAD = 100 Ω Common-Mode Rejection INPUT CHARACTERISTICS Input Resistance OUTPUT CHARACTERISTICS Single-Ended +Swing Single-Ended −Swing Single-Ended +Swing Single-Ended −Swing Differential Swing POWER SUPPLY Operating Range (Dual Supply) Operating Range (Single Supply) Supply Current 14 35 −62 500 +5.08 −5.12 +5.14 −5.17 20.4 ±2.5 +5 f < 100 kHz RLOAD = 50 Ω RLOAD = 50 Ω RLOAD = 100 Ω RLOAD = 100 Ω RLOAD = 100 Ω PD1 = 0, PD0 = 0 PD1 = 0, PD0 = 1 PD1 = 1, PD0 = 0 PD1 = 1, PD0 = 1 7.6 5.6 3.9 0.65 Rev. 0 | Page 3 of 16 ADA4310-1 Parameter POWER DOWN PINS PD1, PD0 Threshold PD1, PD0 = 0 Pin Bias Current PD1, PD0 = 1 Pin Bias Current Enable/Disable Time Power Supply Rejection Ratio Test Conditions/Comments Referenced to GND PD1 or PD0 = 0 V PD1 or PD0 = 3 V Positive/Negative Min Typ 1.5 −0.2 70 0.04/2 −70/−60 Max Unit V μA μA μs dB Rev. 0 | Page 4 of 16 ADA4310-1 ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Supply Voltage 10-Lead MINI_SO_EP 16-Lead LFCSP_VQ Power Dissipation Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering 10 sec) Junction Temperature Rating 12 V ±6V ( TJMAX − TA)/θJA −65°C to +125°C −40°C to +85°C 300°C 150°C Maximum Power Dissipation The maximum safe power dissipation for the ADA4310-1 is limited by the associated rise in junction temperature (TJ) on the die. At approximately 150°C, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the amplifiers. Exceeding a junction temperature of 150°C for an extended period can result in changes in silicon devices, potentially causing degradation or loss of functionality. Figure 4 shows the maximum safe power dissipation in the package vs. the ambient temperature for the 10-lead MINI_SO_EP (44°C/W) and for the 16-lead LFCSP_VQ (63°C/W) on a JEDEC standard 4-layer board. θJA values are approximations. 5.0 4.5 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. MAXIMUM POWER DISSIPATION (W) THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, θJA is specified for device soldered in circuit board for surface-mount packages. Table 3. Package Type 10-Lead MINI_SO_EP 16-Lead LFCSP_VQ θJA 44 63 Unit °C/W °C/W 4.0 3.5 3.0 2.5 LFCSP_VQ-16 2.0 1.5 1.0 0.5 –35 –15 5 25 45 65 85 06027-016 MINI_SO_EP-10 0 AMBIENT TEMPERATURE (°C) Figure 4. Maximum Power Dissipation vs. Temperature for a 4-Layer Board ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. 0 | Page 5 of 16 ADA4310-1 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS 16 OUT A 15 NC 14 +VS 13 OUT B +VS 1 NC 2 OUT A 3 –IN A 4 +IN A 5 10 9 8 7 6 OUT B –IN B +IN B PD1 06027-001 NC 1 −IN A 2 +IN A 3 GND 4 NC = NO CONNECT 12 NC 11 −IN B 10 +IN B 9 PD1 PD0 8 –VS 7 NC 5 NC 6 NC = NO CONNECT Figure 5. 10-Lead MSOP Pin Configuration Figure 6. 16-Lead LFCSP Pin Configuration Table 4. 10-Lead MSOP Pin Function Description Pin No. 1 2 3 4 5 6 7 8 9 10 11 (Exposed Paddle) Mnemonic +VS NC OUT A −IN A +IN A PD0 PD1 +IN B −IN B OUT B GND Description Positive Power Supply Input No Connection Amplifier A Output Amplifier A Inverting Input Amplifier A Noninverting Input Power Dissipation Control Power Dissipation Control Amplifier B Noninverting Input Amplifier B Inverting Input Amplifier B Output Ground (Electrical Connection Required) Table 5. 16-Lead LFCSP Pin Function Description Pin No. 1, 5, 6, 12, 15 2 3 4 7 8 9 10 11 13 14 16 17 (Exposed Paddle) Mnemonic NC −IN A +IN A GND −VS PD0 PD1 +IN B −IN B OUT B +VS OUT A GND Description No Connection Amplifier A Inverting Input Amplifier A Noninverting Input Ground Negative Power Supply Input Power Dissipation Control Power Dissipation Control Amplifier B Noninverting Input Amplifier B Inverting Input Amplifier B Output Positive Power Supply Input Amplifier A Output Ground Rev. 0 | Page 6 of 16 06027-002 PD0 ADA4310-1 TYPICAL PERFORMANCE CHARACTERISTICS 12 9 6 NORMALIZED GAIN (dB) VOUT = 100mV p-p RL = 50Ω PD1, PD0 = 0, 0 –20 G = +2 HARMONIC DISTORTION (dBc) –30 –40 –50 –60 –70 –80 –90 –100 –110 06027-022 VOUT = 2V p-p RL = 50Ω G = +5 PD1, PD0 = 1, 0 PD1, PD0 = 0, 1 PD1, PD0 = 0, 0 HD2 HD3 3 0 –3 –6 –9 –12 –15 –18 1 10 100 1000 G = +20 G = +10 G = +5 1 10 FREQUENCY (MHz) 100 FREQUENCY (MHz) Figure 7. Small Signal Frequency Response for Various Closed-Loop Gains 23 20 17 14 11 Figure 10. Harmonic Distortion vs. Frequency 100 VOUT = 100mV p-p G = +5 RL = 50Ω PD1, PD0 = 0, 0 8 5 2 –1 –4 –7 PD1, PD0 = 0, 1 VOLTAGE NOISE (nV/√Hz) GAIN (dB) 10 PD1, PD0 = 1, 0 FREQUENCY (MHz) FREQUENCY (Hz) Figure 8. Small Signal Frequency Response for Various Modes 100000 0° Figure 11. Voltage Noise vs. Frequency 0.20 0.15 0.10 RL = 100Ω 10000 –45 G = +5 RL = 50Ω 10ns/DIV MAGNITUDE (kΩ) PHASE (Degrees) 1000 –90 100 –135 OUTPUT (V) 0.05 0 –0.05 –0.10 10 –180 1 –225 06027-020 –0.15 0.1 0.0001 –270 1000 0.001 0.01 0.1 1 10 100 FREQUENCY (MHz) Figure 9. Open-Loop Transimpedance Gain and Phase vs. Frequency 06027-013 –0.20 Figure 12. Small Signal Transient Response Rev. 0 | Page 7 of 16 06027-012 10 100 1000 06027-021 –10 1 1 10 100 1k 10k 100k 1M 10M 100M 1G 06027-023 –120 0.1 ADA4310-1 0 –10 –20 –30 –40 –50 –60 –70 0.01 –120 –60 PD1, PD0 = (0, 0) RL = 100Ω –40 PD1, PD0 = (1,1) COMMON-MODE REJECTION (dB) FEEDTHROUGH (dB) 06027-007 –80 –100 0.1 1 10 100 1000 1 10 100 1000 FREQUENCY (MHz) FREQUENCY (MHz) Figure 13. Common-Mode Rejection(CMR) vs. Frequency 0 –10 POWER SUPPLY REJECTION (dB) Figure 16. Off-Isolation vs. Frequency 1000 G = +5 PD1, PD0 = (0, 0) RL = 100Ω PD1, PD0 = (1,1) 100 OUTPUT IMPEDANCE (kΩ) –20 –30 –40 –PSR –50 –60 –70 –80 0.01 10 +PSR 1 0.1 0.01 0.1 1 10 100 1000 FREQUENCY (MHz) FREQUENCY (MHz) Figure 14. Power Supply Rejection(PSR) vs. Frequency 100 Figure 17. Output Impedance vs. Frequency (Disabled) 2.5 PD1, PD0 = (0, 0) 10ns/DIV VOUT 2.0 OUTPUT IMPEDANCE (Ω) 10 1.5 1 VPD0, VPD1 VOLTAGE (V) 1.0 0.1 0.5 0 1 10 FREQUENCY (MHz) 100 1000 06027-009 06027-008 0.1 1 10 100 1000 06027-006 0.001 0.01 06027-010 0.01 0.1 –0.5 Figure 15. Closed-Loop Output Impedance vs. Frequency Figure 18. Power-Down Turn On/Turn Off Rev. 0 | Page 8 of 16 06027-011 ADA4310-1 0 –20 CROSSTALK (dB) –40 –60 –80 –100 1 10 FREQUENCY (MHz) 100 1000 Figure 19. Crosstalk 06027-014 –120 0.1 Rev. 0 | Page 9 of 16 ADA4310-1 THEORY OF OPERATION The ADA4310-1 is a current feedback amplifier with high output current capability. With a current feedback amplifier, the current into the inverting input is the feedback signal, and the open-loop behavior is that of a transimpedance, dVO/dIIN or TZ. The open-loop transimpedance is analogous to the open-loop voltage gain of a voltage feedback amplifier. Figure 20 shows a simplified model of a current feedback amplifier. Because RIN is proportional to 1/gm, the equivalent voltage gain is just TZ × gm, where gm is the transconductance of the input stage. Basic analysis of the follower with gain circuit yields VO TZ ( s ) = G× VIN TZ ( s ) + G × RIN + RF Because G × RIN
ADA4310-1ARHZ-R7 价格&库存

很抱歉,暂时无法提供与“ADA4310-1ARHZ-R7”相匹配的价格&库存,您可以联系我们找货

免费人工找货