0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADA4505-2ARMZ

ADA4505-2ARMZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    MSOP8_3X3MM

  • 描述:

    10μA,轨对轨I/O,零输入交叉失真放大器

  • 数据手册
  • 价格&库存
ADA4505-2ARMZ 数据手册
10 μA, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifiers ADA4505-1/ADA4505-2/ADA4505-4 Data Sheet PIN CONFIGURATIONS OUT 1 5 ADA4505-1 V– 2 V+ OUT A 1 TOP VIEW (Not to Scale) +IN 3 4 –IN 07416-001 PSRR: 100 dB minimum CMRR: 105 dB typical Very low supply current: 10 μA per amplifier maximum 1.8 V to 5 V single-supply or ±0.9 V to ±2.5 V dual-supply operation Rail-to-rail input and output 3 mV offset voltage maximum Very low input bias current: 0.5 pA typical 8 V+ –IN A 2 ADA4505-2 7 OUT B +IN A 3 TOP VIEW (Not to Scale) 6 –IN B 5 +IN B V– 4 Figure 1. 5-Lead SOT-23 (RJ-5) 07416-004 FEATURES Figure 2. 8-Lead MSOP (RM-8) BALL A1 INDICATOR APPLICATIONS BALL A1 CORNER GENERAL DESCRIPTION The ADA4505-1/ADA4505-2/ADA4505-4 are single, dual, and quad micropower amplifiers featuring rail-to-rail input and output swings while operating from a single 1.8 V to 5 V power supply or from dual ±0.9 V to ±2.5 V power supplies. Remote battery-powered sensors, handheld instrumentation and consumer equipment, hazard detectors (for example, smoke, fire, and gas), and patient monitors can benefit from the features of the ADA4505-x amplifiers. The ADA4505-x family is specified for both the industrial temperature range (−40°C to +85°C) and the extended industrial temperature range (−40°C to +125°C). The ADA4505-1 single amplifier is available in a tiny 5-lead SOT-23 and a 6-ball WLCSP. The ADA4505-2 dual amplifier is available in a standard 8-lead MSOP and a 8-ball WLCSP. The ADA4505-4 quad amplifier is available in a 14-lead TSSOP and a 14-ball WLCSP. A2 OUT B V+ V– NC A1 A2 B1 B2 +IN –IN C1 C2 OUT A A3 –IN B –IN A B1 ADA4505-1 V– +IN A C1 C2 C3 ADA4505-2 07416-068 TOP VIEW (BALL SIDE DOWN) Not to Scale NC = NO CONNECT B3 +IN B TOP VIEW (BALL SIDE DOWN) Figure 3. 6-Ball WLCSP (CB-6-7) Figure 4. 8-Ball WLCSP (CB-8-2) BALL A1 INDICATOR 2 +IN A 3 V+ 4 +IN B 5 A2 A3 –IN D B1 V– B2 +IN A B3 +IN D ADA4505-4 TOP VIEW (Not to Scale) –IN A +IN B C1 C3 13 –IN D +IN C V+ 12 +IN D D1 D2 D3 –IN C OUT C OUT B E1 E2 E3 11 V– 10 +IN C 6 9 –IN C OUT B 7 8 OUT C –IN B OUT A A1 14 OUT D OUT A 1 –IN A OUT D Figure 5. 14-Lead TSSOP (RU-14) –IN B ADA4505-4 TOP VIEW (BALL SIDE DOWN) Not to Scale 07416-061 This combination of features makes the ADA4505-x amplifiers ideal choices for battery-powered applications because they minimize errors due to power supply voltage variations over the lifetime of the battery and maintain high CMRR even for a railto-rail op amp. V+ A1 07416-005 Employing a new circuit technology, these low cost amplifiers offer zero input crossover distortion (excellent PSRR and CMRR performance) and very low bias current, while operating with a supply current of less than 10 μA per amplifier. OUT 07416-003 Pressure and position sensors Remote security Medical monitors Battery-powered consumer equipment Hazard detectors Figure 6. 14-Ball WLCSP (CB-14-1) The ADA4505-x family is a member of a growing series of zero crossover op amps offered by Analog Devices, Inc., including the AD8505/AD8506/AD8508, which also operate from a single 1.8 V to 5 V power supply or from dual ±0.9 V to ±2.5 V power supplies. Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2008–2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADA4505-1/ADA4505-2/ADA4505-4 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 ESD Caution...................................................................................5 Applications ....................................................................................... 1 Typical Performance Characteristics ..............................................6 General Description ......................................................................... 1 Theory of Operation ...................................................................... 14 Pin Configurations ........................................................................... 1 Applications Information .............................................................. 16 Revision History ............................................................................... 2 Pulse Oximeter Current Source ............................................... 16 Specifications..................................................................................... 3 Electrical Characteristics—1.8 V Operation ............................ 3 Four-Pole, Low-Pass Butterworth Filter for Glucose Monitor ....................................................................................................... 17 Electrical Characteristics—5 V Operation................................ 4 Outline Dimensions ....................................................................... 18 Absolute Maximum Ratings ............................................................ 5 Ordering Guide .......................................................................... 21 Thermal Resistance ...................................................................... 5 REVISION HISTORY 8/2017—Rev. D to Rev. E Updated Outline Dimensions ....................................................... 18 7/2010—Rev. C to Rev. D Added 6-Ball WLCSP, ADA4505-1 .................................. Universal Moved Electrical Characteristics—1.8 V Operation Section .... 3 Changes to Large Signal Voltage Gain Parameter, Table 1.......... 3 Moved Electrical Characteristics—5 V Operation Section ....... 4 Changes to Large Signal Voltage Gain Parameter, Table 2.......... 4 Changes to Thermal Resistance Section and Table 4................... 5 Updated Outline Dimensions ....................................................... 18 Changes to Ordering Guide .......................................................... 21 7/2009—Rev. B to Rev. C Added 5-Lead SOT-23 (ADA4505-1) ......................... Throughout Changes to Supply Current per Amplifier Parameter, Table 1 ... 3 Changes to Supply Current per Amplifier Parameter, Table 2 ... 4 Changes to Figure 26 and Figure 29............................................... 9 Changes to Figure 31 and Figure 34............................................. 10 Changes to Figure 42 and Figure 45............................................. 12 Added Figure 49 and Figure 51; Renumbered Sequentially ..... 13 Updated Outline Dimensions ....................................................... 18 Changes to Ordering Guide .......................................................... 20 10/2008—Rev. 0 to Rev. A Added 8-Ball WLCSP (ADA4505-2) and 14-Lead TSSOP (ADA4505-4) ................................................................. Throughout Change to Features Section ..............................................................1 Added Figure 2 and Figure 3; Renumbered Sequentially ............1 Changes to Table 1.............................................................................3 Changes to Table 2.............................................................................4 Changes to Thermal Resistance Section ........................................5 Changes to Figure 22 and Figure 25 ...............................................9 Changes to Figure 40 and Figure 43 ............................................ 12 Deleted Figure 46 and Figure 48; Renumbered Sequentially ... 13 Change to Theory of Operation Section ..................................... 14 Changes to Figure 52...................................................................... 16 Change to Four-Pole Low-Pass Butterworth Filter for Glucose Monitor Section ......................................................... 17 Updated Outline Dimensions ....................................................... 18 Changes to Ordering Guide .......................................................... 19 7/2008—Revision 0: Initial Version 2/2009—Rev. A to Rev. B Added 14-Ball WLCSP (ADA4505-4) ........................ Throughout Changes to Thermal Resistance Section ........................................ 5 Changes to Figure 17, Figure 18, Figure 20, and Figure 21 ......... 8 Changes to Figure 42 and Figure 45............................................. 12 Updated Outline Dimensions ....................................................... 18 Changes to Ordering Guide .......................................................... 20 Rev. E | Page 2 of 24 Data Sheet ADA4505-1/ADA4505-2/ADA4505-4 SPECIFICATIONS ELECTRICAL CHARACTERISTICS—1.8 V OPERATION VSY = 1.8 V, VCM = VSY/2, TA = 25°C, RL = 100 kΩ to GND, unless otherwise specified. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Symbol Test Conditions/Comments VOS 0 V ≤ VCM ≤ 1.8 V −40°C ≤ TA ≤ +125°C Min IB Typ Max Unit 0.5 3 4 2 50 375 1 25 130 1.8 115 mV mV pA pA pA pA pA pA V dB dB dB dB 2.5 220 2.5 4.7 dB µV/°C GΩ pF pF 0.5 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C Input Offset Current IOS Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Offset Voltage Drift Input Resistance Input Capacitance Differential Mode Input Capacitance Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low ∆VOS/∆T RIN CINDM CINCM VOH VOL Short-Circuit Limit POWER SUPPLY Power Supply Rejection Ratio ISC Supply Current per Amplifier ADA4505-1 ISY PSRR 0.05 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C 0 V ≤ VCM ≤ 1.8 V −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C 0.05 V ≤ VOUT ≤ 1.75 V, RL = 100 kΩ to VCM −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C 0 85 85 80 95 100 95 RL = 100 kΩ to GND −40°C ≤ TA ≤ +125°C RL = 10 kΩ to GND −40°C ≤ TA ≤ +125°C RL = 100 kΩ to VSY −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VSY −40°C ≤ TA ≤ +125°C VOUT = VSY or GND 1.78 1.78 1.65 1.65 VSY = 1.8 V to 5 V −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C VOUT = VSY/2 100 100 95 1.79 1.75 2 12 ±3.8 110 10 –40°C ≤ TA ≤ +125°C ADA4505-2/ADA4505-4 7 −40°C ≤ TA ≤ +125°C DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density 5 5 25 25 V V V V mV mV mV mV mA dB dB dB 11.5 15 10 15 µA µA µA µA SR GBP ΦM RL = 100 kΩ, CL = 20 pF, G = 1 RL = 1 MΩ, CL = 20 pF, G = 1 RL = 1 MΩ, CL = 20 pF, G = 1 6.5 50 52 mV/µs kHz Degrees en p-p en in f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz 2.95 65 20 µV p-p nV/√Hz fA/√Hz Rev. E | Page 3 of 24 ADA4505-1/ADA4505-2/ADA4505-4 Data Sheet ELECTRICAL CHARACTERISTICS—5 V OPERATION VSY = 5 V, VCM = VSY/2, TA = 25°C, RL = 100 kΩ to GND, unless otherwise specified. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Symbol Test Conditions/Comments VOS 0 V ≤ VCM ≤ 5 V −40°C ≤ TA ≤ +125°C Min IB Typ Max Unit 0.5 3 4 2 50 375 1 25 130 5 120 mV mV pA pA pA pA pA pA V dB dB dB dB 2 220 2.5 4.7 dB µV/°C GΩ pF pF 0.5 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C Input Offset Current IOS Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Offset Voltage Drift Input Resistance Input Capacitance Differential Mode Input Capacitance Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low ∆VOS/∆T RIN CINDM CINCM VOH VOL Short-Circuit Limit POWER SUPPLY Power Supply Rejection Ratio ISC Supply Current per Amplifier ADA4505-1 ISY PSRR 0.05 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C 0 V ≤ VCM ≤ 5 V −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C 0.05 V ≤ VOUT ≤ 4.95 V, RL = 100 kΩ to VCM −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C 0 90 90 85 105 105 100 RL = 100 kΩ to GND −40°C ≤ TA ≤ +125°C RL = 10 kΩ to GND −40°C ≤ TA ≤ +125°C RL = 100 kΩ to VSY −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VSY −40°C ≤ TA ≤ +125°C VOUT = VSY or GND 4.98 4.98 4.9 4.9 VSY = 1.8 V to 5 V −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C VOUT = VSY/2 100 100 95 4.99 4.95 2 10 ±40 110 9 –40°C ≤ TA ≤ +125°C ADA4505-2/ADA4505-4 7 −40°C ≤ TA ≤ +125°C DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density 5 5 25 25 V V V V mV mV mV mV mA dB dB dB 10.5 15 10 15 µA µA µA µA SR GBP ΦM RL = 100 kΩ, CL = 20 pF, G = 1 RL = 1 MΩ, CL = 20 pF, G = 1 RL = 1 MΩ, CL = 20 pF, G = 1 6 50 52 mV/µs kHz Degrees en p-p en in f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz 2.95 65 20 µV p-p nV/√Hz fA/√Hz Rev. E | Page 4 of 24 Data Sheet ADA4505-1/ADA4505-2/ADA4505-4 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter Supply Voltage Input Voltage Input Current1 Differential Input Voltage2 Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages with its exposed paddle soldered to a pad (if applicable). Simulated thermal numbers on a 4-layer (2S/2P) JEDEC standard thermal test board, unless otherwise specified. Rating 5.5 V ±VSY ± 0.1 V ±10 mA ±VSY Indefinite −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C Table 4. Input pins have clamp diodes to the supply pins. Limit input current to 10 mA or less whenever the input signal exceeds the power supply rail by 0.1 V. 2 Differential input voltage is limited to 5 V or the supply voltage, whichever is less. 1 Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Package Type 5-Lead SOT-23 (RJ-5) 6-Ball WLCSP (CB-6-7) 8-Lead MSOP (RM-8) 8-Ball WLCSP (CB-8-2) 14-Lead TSSOP (RU-14) 14-Ball WLCSP (CB-14-1) ESD CAUTION Rev. E | Page 5 of 24 θJA 190 105 142 82 112 64 θJC 92 2.6 45 N/A 35 N/A Unit °C/W °C/W °C/W °C/W °C/W °C/W ADA4505-1/ADA4505-2/ADA4505-4 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. 140 VSY = 5V VCM = VSY/2 120 NUMBER OF AMPLIFIERS 120 100 80 60 40 20 100 80 60 40 1.0 1.5 2.0 2.5 3.0 0 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 VOS (mV) 07416-007 0 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 VOS (mV) Figure 7. Input Offset Voltage Distribution 14 10 8 6 4 2.5 3.0 10 8 6 4 2 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 TCVOS (µV/°C) 4.5 5.0 5.5 6.0 0 07416-009 0 0 Figure 8. Input Offset Voltage Drift Distribution 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 TCVOS (µV/°C) 4.5 5.0 5.5 6.0 Figure 11. Input Offset Voltage Drift Distribution 1500 1500 VSY = 1.8V VSY = 5V DEVICE 1 DEVICE 2 DEVICE 3 DEVICE 4 500 DEVICE 5 DEVICE 6 DEVICE 7 DEVICE 8 DEVICE 9 DEVICE 10 0 –500 –1000 1000 DEVICE 1 DEVICE 2 500 VOS (µV) 1000 DEVICE 3 DEVICE 4 DEVICE 5 0 DEVICE 6 DEVICE 7 DEVICE 8 DEVICE 9 –500 DEVICE 10 0 0.2 0.4 0.6 0.8 1.0 VCM (V) 1.2 1.4 1.6 1.8 07416-011 –1000 –1500 0 1 2 3 VCM (V) Figure 9. Input Offset Voltage vs. Common-Mode Voltage 4 5 07416-012 VOS (µV) 2.0 VSY = 5V –40°C ≤ TA ≤ 125°C 12 NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS 14 2 –1500 1.5 Figure 10. Input Offset Voltage Distribution VSY = 1.8V –40°C ≤ TA ≤ 125°C 12 1.0 07416-008 20 07416-010 NUMBER OF AMPLIFIERS 140 VSY = 1.8V VCM = VSY/2 Figure 12. Input Offset Voltage vs. Common-Mode Voltage Rev. E | Page 6 of 24 Data Sheet ADA4505-1/ADA4505-2/ADA4505-4 TA = 25°C, unless otherwise noted. 1000 1000 VSY = 1.8V VSY = 5V IB+ IB– 100 IB (pA) 10 10 1 0 25 50 75 TEMPERATURE (°C) 100 125 0.1 07416-013 0.1 0 25 Figure 13. Input Bias Current vs. Temperature 1000 1000 100 105°C 105°C IB (pA) 10 85°C 10 85°C 1 1 25°C 25°C 0 0.2 0.4 0.6 0.8 1.0 VCM (V) 1.2 1.4 1.6 1.8 0.1 07416-014 0.1 0 OUTPUT VOLTAGE (VOH) TO SUPPLY RAIL (mV) VSY = 1.8V 1k 100 10 1 0.1 1 LOAD CURRENT (mA) 10 100 07416-017 –40°C +25°C +85°C +125°C 0.01 3 4 5 Figure 17. Input Bias Current vs. Common-Mode Voltage and Temperature 10k 0.01 0.001 2 VCM (V) Figure 14. Input Bias Current vs. Common-Mode Voltage and Temperature 0.1 1 07416-016 IB (pA) 125 VSY = 5V IB+ AND IB– 125°C 100 OUTPUT VOLTAGE (VOH) TO SUPPLY RAIL (mV) 100 Figure 16. Input Bias Current vs. Temperature VSY = 1.8V IB+ AND IB– 125°C 50 75 TEMPERATURE (°C) 07416-015 1 Figure 15. Output Voltage (VOH) to Supply Rail vs. Load Current and Temperature 10k VSY = 5V 1k 100 10 1 –40°C +25°C +85°C +125°C 0.1 0.01 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10 100 Figure 18. Output Voltage (VOH) to Supply Rail vs. Load Current and Temperature Rev. E | Page 7 of 24 07416-018 IB (pA) 100 IB+ IB– ADA4505-1/ADA4505-2/ADA4505-4 Data Sheet TA = 25°C, unless otherwise noted. 1k 100 10 1 0.01 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10 100 100 10 1 –40°C +25°C +85°C +125°C 0.1 0.01 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10 100 Figure 19. Output Voltage (VOL) to Supply Rail vs. Load Current and Temperature Figure 22. Output Voltage (VOL) to Supply Rail vs. Load Current and Temperature 1.800 5.000 RL = 100kΩ OUTPUT VOLTAGE [VOH] (V) 1.790 1.785 RL = 100kΩ 4.995 1.795 RL = 10kΩ 1.780 4.990 RL = 10kΩ 4.985 4.980 5 20 35 50 65 TEMPERATURE (°C) 80 95 110 125 VSY = 5V 4.970 –40 –25 –10 25 25 OUTPUT VOLTAGE [VOL] (mV) 20 RL = 10kΩ 10 5 –25 –10 5 20 35 50 65 TEMPERATURE (°C) 80 95 110 125 VSY = 5V 20 RL = 10kΩ 15 10 5 RL = 100kΩ RL = 100kΩ 80 95 110 125 0 –40 07416-023 OUTPUT VOLTAGE [VOL] (mV) VSY = 1.8V 0 –40 20 35 50 65 TEMPERATURE (°C) Figure 23. Output Voltage (VOH) vs. Temperature Figure 20. Output Voltage (VOH) vs. Temperature 15 5 –25 –10 5 20 35 50 65 TEMPERATURE (°C) 80 95 110 Figure 24. Output Voltage (VOL) vs. Temperature Figure 21. Output Voltage (VOL) vs. Temperature Rev. E | Page 8 of 24 125 07416-024 VSY = 1.8V 1.775 –40 –25 –10 07416-022 4.975 07416-021 OUTPUT VOLTAGE [VOH] (V) VSY = 5V 1k 07416-019 –40°C +25°C +85°C +125°C 0.1 10k 07416-020 VSY = 1.8V OUTPUT VOLTAGE (VOL) TO SUPPLY RAIL (mV) OUTPUT VOLTAGE (VOL) TO SUPPLY RAIL (mV) 10k Data Sheet ADA4505-1/ADA4505-2/ADA4505-4 TA = 25°C, unless otherwise noted. 45 GAIN 0 0 –20 –45 –40 –90 PHASE (Degrees) 20 90 –60 –135 –80 –180 –100 100 1k 10k FREQUENCY (Hz) –225 1M 100k 07416-025 40 OPEN-LOOP GAIN (dB) PHASE 135 PHASE 40 45 GAIN 0 –45 –40 –90 –60 –135 –80 –180 –100 100 10k FREQUENCY (Hz) –225 1M 100k 60 G = –1 –10 –20 –30 10 –10 –20 –30 –40 –50 –50 10k FREQUENCY (Hz) 100k 1M –60 100 07416-027 1k G = –1 0 –40 –60 100 G = –10 20 Figure 26. Closed-Loop Gain vs. Frequency 10k FREQUENCY (Hz) 100k 1M Figure 29. Closed-Loop Gain vs. Frequency 10k VSY = 1.8V 1k G = –10 VSY = 5V G = –10 G = –100 1k 1k G = –100 G = –1 ZOUT (Ω) 100 10 1 G = –1 100 10 1 1k 10k FREQUENCY (Hz) 100k 1M 0.1 10 07416-062 100 Figure 27. Output Impedance vs. Frequency 100 1k 10k FREQUENCY (Hz) 100k Figure 30. Output Impedance vs. Frequency Rev. E | Page 9 of 24 1M 07416-063 0 30 07416-028 CLOSED-LOOP GAIN (dB) G = –10 10 G = –100 40 30 20 VSY = 5V 50 G = –100 40 CLOSED-LOOP GAIN (dB) 1k Figure 28. Open-Loop Gain and Phase vs. Frequency VSY = 1.8V 50 ZOUT (Ω) 0 –20 60 0.1 10 90 20 Figure 25. Open-Loop Gain and Phase vs. Frequency 10k 225 180 60 135 60 VSY = 5V 80 180 80 OPEN-LOOP GAIN (dB) 100 225 PHASE (Degrees) VSY = 1.8V 07416-026 100 ADA4505-1/ADA4505-2/ADA4505-4 Data Sheet TA = 25°C, unless otherwise noted. 120 120 VSY = 5V 100 80 80 60 60 40 40 20 20 0 100 1k 10k FREQUENCY (Hz) 100k 1M 0 100 1k Figure 31. CMRR vs. Frequency 120 100k 1M Figure 34. CMRR vs. Frequency 120 VSY = 1.8V 100 VSY = 5V 100 80 80 PSRR (dB) 60 40 60 40 20 20 PSRR+ PSRR– 100 1k 10k FREQUENCY (Hz) 100k 1M 0 10 07416-033 0 10 PSRR+ PSRR– 100 Figure 32. PSRR vs. Frequency 1k 10k FREQUENCY (Hz) 100k 1M 07416-034 PSRR (dB) 10k FREQUENCY (Hz) 07416-032 CMRR (dB) 100 07416-031 CMRR (dB) VSY = 1.8V Figure 35. PSRR vs. Frequency 140 1k 1.8V ≤ VSY ≤ 5V 130 VSY = 5V en (nV/√Hz) 110 100 VSY = 1.8V 100 80 –40 –25 –10 5 20 35 50 65 TEMPERATURE (°C) 80 95 110 125 10 1 10 100 FREQUENCY (Hz) Figure 33. PSRR vs. Temperature Figure 36. Voltage Noise Density vs. Frequency Rev. E | Page 10 of 24 1000 07416-050 90 07416-035 PSRR (dB) 120 Data Sheet ADA4505-1/ADA4505-2/ADA4505-4 TA = 25°C, unless otherwise noted. 80 80 60 60 VSY = 5V VIN = 10mV p-p 70 R = 100kΩ L OVERSHOOT (%) 50 40 30 OS+ OS– 20 50 40 30 20 OS+ OS– 10 10 100 CAPACITANCE (pF) 1000 0 10 07416-036 0 10 Figure 37. Small Signal Overshoot vs. Load Capacitance T 100 CAPACITANCE (pF) 1000 Figure 40. Small Signal Overshoot vs. Load Capacitance T LOAD = 100kΩ || 100pF VSY = 1.8V LOAD = 100kΩ || 100pF VSY = 5V TIME (200µs/DIV) 07416-038 VOLTAGE (1V/DIV) 1.490V p-p TIME (200µs/DIV) Figure 38. Large Signal Transient Response Figure 41. Large Signal Transient Response T LOAD = 100kΩ || 100pF VSY = 1.8V LOAD = 100kΩ || 100pF VSY = 5V TIME (200µs/DIV) Figure 42. Small Signal Transient Response Figure 39. Small Signal Transient Response Rev. E | Page 11 of 24 07416-041 TIME (200µs/DIV) 07416-040 VOLTAGE (2mV/DIV) VOLTAGE (2mV/DIV) T 07416-039 VOLTAGE (500mV/DIV) 3.959V p-p 07416-037 OVERSHOOT (%) VSY = 1.8V VIN = 10mV p-p 70 R = 100kΩ L ADA4505-1/ADA4505-2/ADA4505-4 Data Sheet TA = 25°C, unless otherwise noted. 35 40 30 35 ADA4505-4 ADA4505-4, V SY = 1.8V 30 25 ADA4505-4, V SY = 5V 20 ISY (μA) ISY (μA) 25 ADA4505-2 15 ADA4505-2, V SY = 1.8V 20 15 ADA4505-1 10 ADA4505-1, V SY = 5V 5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VSY (V) 0 –40 5 20 35 50 65 80 95 110 125 Figure 46. Total Supply Current vs. Temperature VSY = 5V 2.95µV p-p TIME (s) TIME (s) Figure 47. Input Voltage Noise, 0.1 Hz to 10 Hz Noise 0 0 VSY = 1.8V RL = 100kΩ –20 G = –100 VSY = 5V RL = 100kΩ –20 G = –100 VIN = 0.5V p-p VIN = 1V p-p VIN = 1.7V p-p CHANNEL SEPARATION (dB) 100kΩ 1kΩ –60 –80 –100 100kΩ 1kΩ –60 –80 –100 –120 1k 10k FREQUENCY (Hz) 100k 07416-057 –120 –140 100 –40 VIN = 1V p-p VIN = 2V p-p VIN = 3V p-p VIN = 4V p-p VIN = 4.99V p-p –140 100 1k 10k FREQUENCY (Hz) Figure 48. Channel Separation vs. Frequency Figure 45. Channel Separation vs. Frequency Rev. E | Page 12 of 24 100k 07416-058 –40 07416-053 07416-052 INPUT VOLTAGE NOISE (0.5µV/DIV) INPUT VOLTAGE NOISE (0.5µV/DIV) 2.95µV p-p Figure 44. Input Voltage Noise, 0.1 Hz to 10 Hz Noise CHANNEL SEPARATION (dB) –10 TEMPERATURE (°C) Figure 43. Supply Current vs. Supply Voltage VSY = 1.8V –25 07416-065 5 07416-064 0 ADA4505-2, V SY = 5V ADA4505-1, V SY = 1.8V 10 Data Sheet ADA4505-1/ADA4505-2/ADA4505-4 TA = 25°C, unless otherwise noted. 1.8 1.5 VSY = 5V VIN = 4.9V G=1 RL = 100kΩ 5 OUTPUT SWING (V) 1.2 0.9 0.6 4 3 2 100 1k FREQUENCY (Hz) 10k 100k 0 10 07416-059 100 Figure 49. Output Swing vs. Frequency 1k FREQUENCY (Hz) 10k 100k Figure 51. Output Swing vs. Frequency VSY = ±2.5V G=1 RL = 100kΩ CL = NO LOAD VSY = ±0.9V G=1 RL = 100kΩ CL = NO LOAD VIN VOUT VIN 2 1 VOUT TIME (400µs/DIV) TIME (400µs/DIV) Figure 50. No Phase Reversal Figure 52. No Phase Reversal Rev. E | Page 13 of 24 07416-067 0 10 07416-060 1 0.3 07416-066 OUTPUT SWING (V) 6 VSY = 1.8V VIN = 1.7V G=1 RL = 100kΩ ADA4505-1/ADA4505-2/ADA4505-4 Data Sheet THEORY OF OPERATION VDD The ADA4505-1/ADA4505-2/ADA4505-4 are unity-gain stable CMOS rail-to-rail input/output operational amplifiers designed to optimize performance in current consumption, PSRR, CMRR, and zero crossover distortion, all embedded in a small package. The typical offset voltage is 500 μV, with a low peak-to-peak voltage noise of 2.95 μV from 0.1 Hz to 10 Hz and a voltage noise density of 65 nV/√Hz at 1 kHz. VBIAS VIN+ The ADA4505-x amplifiers are designed to solve two key problems in low voltage battery-powered applications: battery voltage decre ase over time and rail-to-rail input stage distortion. One differential pair amplifies the input signal when the commonmode voltage is on the high end, whereas the other pair amplifies the input signal when the common-mode voltage is on the low end. This method also requires control circuitry to operate the two differential pairs appropriately. Unfortunately, this topology leads to a very noticeable and undesirable problem; if the signal level moves through the range where one input stage turns off and the other one turns on, noticeable distortion occurs (see Figure 54). Q2 Q4 VIN– IB 07416-043 VSS Figure 53. Typical Dual Differential Pair Input Stage Op Amp (Dual PMOS Q1 and Q2 Transistors Form the Lower End of the Input Voltage Range; Dual NMOS Q3 and Q4 Transistors Form the Upper End) 300 VSY = 5V TA = 25°C 250 200 150 100 50 0 –50 –100 –150 –200 –250 –300 0 0.5 1.0 1.5 2.0 2.5 3.0 VCM (V) 3.5 4.0 4.5 5.0 07416-044 The second problem with battery-powered applications is the distortion caused by the standard rail-to-rail input stage. Using a CMOS nonrail-to-rail input stage (that is, a single differential pair) limits the input voltage to approximately one VGS (gatesource voltage) away from one of the supply lines. Because VGS for normal operation is commonly over 1 V, a single differential pair, input stage op amp greatly restricts the allowable input voltage range when using a low supply voltage. This limitation restricts the number of applications where the nonrail-to-rail input op amp was originally intended to be used. To solve this problem, a dual differential pair input stage is usually implemented (see Figure 53); however, this technique has its own drawbacks. Q1 IB VOS (µV) In battery-powered applications, the supply voltage available to the IC is the voltage of the battery. Unfortunately, the voltage of a battery decreases as it discharges itself through the load. This voltage drop over the lifetime of the battery causes an error in the output of the op amps. Some applications requiring precision measurements during the entire lifetime of the battery use voltage regulators to power up the op amps as a solution. If a design uses standard battery cells, the op amps experience a supply voltage change from roughly 3.2 V to 1.8 V during the lifetime of the battery. This means that for a PSRR of 70 dB minimum in a typical op amp, the input-referred offset error is approximately 440 μV. If the same application uses the ADA4505-x with a 100 dB minimum PSRR, the error is only 14 μV. It is possible to calibrate this error out or to use an external voltage regulator to power the op amp, but these solutions can increase system cost and complexity. The ADA4505-x amplifiers solve the impasse with no additional cost or errornullifying circuitry. Q3 Figure 54. Typical Input Offset Voltage vs. Common-Mode Voltage Response in a Dual Differential Pair Input Stage Op Amp (Powered by a 5 V Supply; Results of Approximately 100 Units per Graph Are Displayed) This distortion forces the designer to devise impractical ways to avoid the crossover distortion areas, thereby narrowing the common-mode dynamic range of the operational amplifier. The ADA4505-x family solves this crossover distortion problem by using an on-chip charge pump to power the input differential pair. The charge pump creates a supply voltage higher than the voltage of the battery, allowing the input stage to handle a wide range of input signal voltages without using a second differential pair. With this solution, the input voltage can vary from one supply extreme to the other with no distortion, thereby restoring the full common-mode dynamic range of the op amp. The charge pump has been carefully designed so that switching noise components at any frequency, both within and beyond the amplifier bandwidth, are much lower than the thermal noise floor. Therefore, the spurious-free dynamic range (SFDR) is limited only by the input signal and the thermal or flicker noise. There is no intermodulation between input signal and switching noise. Rev. E | Page 14 of 24 Data Sheet ADA4505-1/ADA4505-2/ADA4505-4 Figure 55 displays a typical front-end section of an operational amplifier with an on-chip charge pump. 300 200 VPP = POSITIVE PUMPED VOLTAGE = VDD + 1.8V 150 VPP VDD 100 VBIAS 50 Q1 Q2 –IN CASCODE STAGE AND RAIL-TO-RAIL OUTPUT STAGE VOS (µV) +IN VSY = 5V TA = 25°C 250 OUT 0 –50 –100 –150 –200 Figure 55. Typical Front-End Section of an Op Amp with Embedded Charge Pump Figure 56 shows the typical response of two devices from Figure 12, which shows the input offset voltage vs. input common-mode voltage for 10 devices. Figure 56 is expanded to make it easier to compare with Figure 54, which shows the typical input offset voltage vs. common-mode voltage response in a dual differential pair input stage op amp. 0 0.5 1.0 1.5 2.0 2.5 3.0 VCM (V) 3.5 4.0 4.5 5.0 07416-046 07416-045 VSS –250 –300 Figure 56. Input Offset Voltage vs. Input Common-Mode Voltage Response (Powered by a 5 V Supply; Results of Two Units Are Displayed) This solution improves the CMRR performance tremendously. For example, if the input varies from rail to rail on a 2.5 V supply rail, using a part with a CMRR of 70 dB minimum, an input-referred error of 790 μV is introduced. Another part with a CMRR of 52 dB minimum generates a 6.3 mV error. The ADA4505-x family CMRR of 90 dB minimum causes only a 79 μV error. As with the PSRR error, there are complex ways to minimize this error, but the ADA4505-x family solves this problem without incurring unnecessary circuitry complexity or increased cost. Rev. E | Page 15 of 24 ADA4505-1/ADA4505-2/ADA4505-4 Data Sheet APPLICATIONS INFORMATION PULSE OXIMETER CURRENT SOURCE +5V A pulse oximeter is a noninvasive medical device used for continuously measuring the percentage of hemoglobin (Hb) saturated with oxygen and the pulse rate of a patient. Hemoglobin that is carrying oxygen (oxyhemoglobin) absorbs light in the infrared (IR) region of the spectrum; hemoglobin that is not carrying oxygen (deoxyhemoglobin) absorbs visible red (R) light. In pulse oximetry, a clip containing two LEDs (sometimes more, depending on the complexity of the measurement algorithm) and the light sensor (photodiode) is placed on the finger or earlobe of the patient. One LED emits red light (600 nm to 700 nm), and the other emits light in the near IR (800 nm to 900 nm) region. The clip is connected by a cable to a processor unit. The LEDs are rapidly and sequentially excited by two current sources (one for each LED) whose dc levels depend on the LED being driven, based on manufacturer requirements; the detector is synchronized to capture the light from each LED as it is transmitted through the tissue. +5V C1 0.1µF U2 ADG733 U1 1/2 16 VDD ADA4505-2 62.5mA +5V S1A 12 8 R2 V 22Ω OUT1 V+ 14 D1 5 S1B 13 7 V– Q1 IRLMS2002 4 S2A 2 6 15 D2 S2B 1 C3 22pF R3 1kΩ R4 53.6kΩ VREF = 1.25V U3 ADR1581 S3A 5 4 D3 S3B 3 R1 20Ω 0.1% 1/4 W MIN RED CURRENT SOURCE 9 10 A1 11 A0 6 EN A2 8 GND VSS CONNECT TO INFRARED LED U1 1/2 101mA 7 +5V ADA4505-2 R6 22Ω VOUT2 8 V+ 1 V– Q2 IRLMS2002 3 4 2 I_BIT2 I_BIT1 I_BIT0 I_ENA C4 22pF R7 1kΩ R5 INFRARED CURRENT 12.4Ω SOURCE 0.1% 1/2 W MIN 07416-047 An example design of a dc current source driving the red and infrared LEDs is shown in Figure 57. These dc current sources allow 62.5 mA and 101 mA to flow through the red and infrared LEDs, respectively. First, to prolong battery life, the LEDs are driven only when needed. One third of the ADG733 SPDT analog switch is used to disconnect/connect the 1.25 V voltage reference from/to each current circuit. When driving the LEDs, the ADR1581 1.25 V voltage reference is buffered by one half of the ADA4505-2; the presence of this voltage on the noninverting input forces the output of the op amp (due to the negative feedback) to maintain a level that causes its inverting input to track the noninverting pin. Therefore, the 1.25 V appears in parallel with the 20 Ω R1 or 12.4 Ω R5 current source resistor, creating the flow of the 62.5 mA or 101 mA current through the red or infrared LED as the output of the op amp turns on the Q1 or Q2 N-MOSFET IRLMS2002. C2 0.1µF CONNECT TO RED LED Figure 57. Pulse Oximeter Red and Infrared Current Sources Using the ADA4505-2 as a Buffer to the Voltage Reference Device The maximum total quiescent currents for one half of the ADA4505-2, the ADR1581, and the ADG733 are 15 µA, 70 µA, and 1 µA, respectively, for a total of 86 µA current consumption (430 µW power consumption) per circuit, which is good for a system powered by a battery. If the accuracy and temperature drift of the total design need improvement, use a more accurate and low temperature coefficient drift voltage reference and current source resistor. C3 and C4 are used to improve stabilization of U1; R3 and R7 are used to provide some current limit into the U1 inverting pin; and R2 and R6 are used to slow the rise time of the N-MOSFET when it turns on. These elements may not be needed, or some bench adjustments may be required. Rev. E | Page 16 of 24 Data Sheet ADA4505-1/ADA4505-2/ADA4505-4 Another consideration is operation from a 3.3 V battery. Glucose signal currents are usually less than 3 μA full scale; therefore, the I-to-V converter requires low input bias current. The ADA4505-x family is an excellent choice because it provides 0.5 pA typical and 2 pA maximum input bias current at ambient temperature. FOUR-POLE, LOW-PASS BUTTERWORTH FILTER FOR GLUCOSE MONITOR There are several methods of glucose monitoring: spectroscopic absorption of infrared light in the 2 μm to 2.5 μm range, reflectance spectrophotometry, and the amperometric type using electrochemical strips with glucose oxidase enzymes. The amperometric type generally uses three electrodes: a reference electrode, a control electrode, and a working electrode. Although this is a very old and widely used technique, signal-to-noise ratio and repeatability can be improved using the ADA4505-x family, with its low peak-to-peak voltage noise of 2.95 μV from 0.1 Hz to 10 Hz and voltage noise density of 65 nV/√Hz at 1 kHz. A low-pass filter with a cutoff frequency of 80 Hz to 100 Hz is desirable in a glucose meter device to remove extraneous noise; this can be a simple two-pole or four-pole Butterworth filter. Low power op amps with bandwidths of 50 kHz to 500 kHz should be adequate. The ADA4505-x family, with its 50 kHz GBP and 7 μA typical current consumption, meets these requirements. A circuit design of a four-pole Butterworth filter (preceded by a one-pole low-pass filter) is shown in Figure 58. With a 3.3 V battery, the total power consumption of this design is 198 μW typical at ambient temperature. C1 1000pF R1 5MΩ +3.3V WORKING CONTROL +3.3V 3 8 V+ 1 V– 2 4 U1 1/2 R3 22.6kΩ ADA4505-2 5 C3 0.047µF 8 V+ 7 V– ADA4505-2 U1 1/2 6 4 R4 22.6kΩ +3.3V R5 22.6kΩ 3 C5 0.047µF 8 V+ 1 V– C2 0.1µF U2 1/2 ADA4505-2 2 VOUT 4 C4 0.1µF DUPLICATE OF CIRCUIT ABOVE 07416-048 REFERENCE R2 22.6kΩ Figure 58. Four-Pole Butterworth Filter That Can Be Used in a Glucose Meter Rev. E | Page 17 of 24 ADA4505-1/ADA4505-2/ADA4505-4 Data Sheet OUTLINE DIMENSIONS 3.00 2.90 2.80 5 1.70 1.60 1.50 1 4 2 3.00 2.80 2.60 3 0.95 BSC 1.90 BSC 1.45 MAX 0.95 MIN 0.15 MAX 0.05 MIN 0.20 MAX 0.08 MIN 10° 5° 0° SEATING PLANE 0.50 MAX 0.35 MIN 0.55 0.45 0.35 0.20 BSC 121608-A 1.30 1.15 0.90 COMPLIANT TO JEDEC STANDARDS MO-178-AA Figure 59. 5-Lead Small Outline Transistor Package [SOT-23] (RJ-5) Dimensions shown in millimeters 0.945 0.905 0.865 2 1 A BALL A1 IDENTIFIER 1.425 1.385 1.345 0.80 REF (BALL SIDE DOWN) 0.40 BSC BOTTOM VIEW 0.415 0.400 0.385 SIDE VIEW (BALL SIDE UP) COPLANARITY 0.05 0.287 0.267 0.247 0.230 0.200 0.170 Figure 60. 6-Ball Wafer Level Chip Scale Package [WLCSP] (CB-6-7) Dimensions shown in millimeters Rev. E | Page 18 of 24 08-09-2012-A SEATING PLANE C 0.40 BSC TOP VIEW 0.645 0.600 0.555 B Data Sheet ADA4505-1/ADA4505-2/ADA4505-4 1.460 1.420 SQ 1.380 3 2 1 A BALL A1 IDENTIFIER B C 0.50 BSC TOP VIEW BOTTOM VIEW (BALL SIDE DOWN) 0.650 0.595 0.540 (BALL SIDE UP) 0.380 0.355 0.330 END VIEW COPLANARITY 0.075 0.270 0.240 0.210 0.340 0.320 0.300 08-30-2012-A SEATING PLANE Figure 61. 8-Ball Wafer Level Chip Scale Package [WLCSP] (CB-8-2) Dimensions shown in millimeters 3.20 3.00 2.80 8 3.20 3.00 2.80 1 5.15 4.90 4.65 5 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.40 0.25 6° 0° 0.23 0.09 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 62. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Rev. E | Page 19 of 24 0.80 0.55 0.40 100709-B 0.15 0.05 COPLANARITY 0.10 ADA4505-1/ADA4505-2/ADA4505-4 Data Sheet 5.10 5.00 4.90 14 8 4.50 4.40 4.30 6.40 BSC 1 7 PIN 1 0.65 BSC 0.15 0.05 COPLANARITY 0.10 1.20 MAX 0.20 0.09 0.30 0.19 0.75 0.60 0.45 8° 0° SEATING PLANE 061908-A 1.05 1.00 0.80 COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 Figure 63. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters 0.25 BSC 0.25 BSC 3 1.50 1.46 1.42 2 0.25 BSC 0.25 BSC 1 A BALL A1 IDENTIFIER 0.50 BSC 3.00 2.96 2.92 B 2.00 BSC 0.50 BSC C 0.50 BSC D E 0.50 BSC TOP VIEW BOTTOM VIEW (BALL SIDE UP) (BALL SIDE DOWN) 0.650 0.595 0.540 0.380 0.355 0.330 END VIEW 1.00 BSC SEATING PLANE 0.340 0.320 0.300 0.270 0.240 0.210 Figure 64. 14-Ball Wafer Level Chip Scale Package [WLCSP] (CB-14-1) Dimensions shown in millimeters Rev. E | Page 20 of 24 09-07-2012-A COPLANARITY 0.10 Data Sheet ADA4505-1/ADA4505-2/ADA4505-4 ORDERING GUIDE Model 1 ADA4505-1ARJZ-R2 ADA4505-1ARJZ-RL ADA4505-1ARJZ-R7 ADA4505-1ACBZ-R7 ADA4505-1ACBZ-RL ADA4505-2ACBZ-RL ADA4505-2ACBZ-R7 ADA4505-2ARMZ ADA4505-2ARMZ-RL ADA4505-4ARUZ ADA4505-4ARUZ-RL ADA4505-4ACBZ-RL ADA4505-4ACBZ-R7 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 6-Ball WLCSP 6-Ball WLCSP 8-Ball WLCSP 8-Ball WLCSP 8-Lead MSOP 8-Lead MSOP 14-Lead TSSOP 14-Lead TSSOP 14-Ball WLCSP 14-Ball WLCSP Z = RoHS Compliant Part. Rev. E | Page 21 of 24 Package Option RJ-5 RJ-5 RJ-5 CB-6-7 CB-6-7 CB-8-2 CB-8-2 RM-8 RM-8 RU-14 RU-14 CB-14-1 CB-14-1 Branding A2D A2D A2D A2F A2F A21 A21 A21 A21 A2A A2A ADA4505-1/ADA4505-2/ADA4505-4 Data Sheet NOTES Rev. E | Page 22 of 24 Data Sheet ADA4505-1/ADA4505-2/ADA4505-4 NOTES Rev. E | Page 23 of 24 ADA4505-1/ADA4505-2/ADA4505-4 Data Sheet NOTES ©2008–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07416-0-8/17(E) Rev. E | Page 24 of 24
ADA4505-2ARMZ 价格&库存

很抱歉,暂时无法提供与“ADA4505-2ARMZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ADA4505-2ARMZ
    •  国内价格
    • 1+8.05000

    库存:33

    ADA4505-2ARMZ
      •  国内价格
      • 1+28.98871
      • 10+16.61548
      • 50+14.14084
      • 100+12.72676
      • 500+10.95915

      库存:807