0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADA4855-3YCPZ-R7

ADA4855-3YCPZ-R7

  • 厂商:

    AD(亚德诺)

  • 封装:

    LFCSP16_4X4MM_EP

  • 描述:

    IC OPAMP VFB 410MHZ RRO 16LFCSP

  • 数据手册
  • 价格&库存
ADA4855-3YCPZ-R7 数据手册
Single Supply, High Speed, Rail-to-Rail Output, Triple Op Amp ADA4855-3 Data Sheet –IN1 OUT1 –VS CONNECTION DIAGRAM 16 15 14 13 12 +VS NC 1 +IN2 2 11 OUT2 ADA4855-3 +IN3 5 6 7 8 –VS 9 –IN3 10 –IN2 PD 4 OUT3 NC 3 +VS NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD CONNECTED TO –VS. 07685-001 Voltage feedback architecture Rail-to-rail output swing: 0.1 V to 4.9 V High speed amplifiers 410 MHz, −3 dB bandwidth, G = 1 210 MHz, −3 dB bandwidth, G = 2 Slew rate: 870 V/µs 53 MHz, 0.1 dB large signal flatness 5.3 ns settling time to 0.1% with 2 V step High input common-mode voltage range −VS − 0.2 V to +VS − 1 V Supply range: 3 V to 5.5 V Differential gain error: 0.01% Differential phase error: 0.01° Low power 7.8 mA/amplifier typical supply current Power-down feature Available in 16-lead LFCSP +IN1 FEATURES Figure 1. APPLICATIONS Professional video Consumer video Imaging Instrumentation Base stations Active filters GENERAL DESCRIPTION The ADA4855-3 offers a typical low power of 7.8 mA per amplifier and is capable of delivering up to 57 mA of load current. It also features a power-down function for power sensitive applications that reduces the supply current down to 1 mA. The ADA4855-3 is available in a 16-lead LFCSP and is designed to work over the extended industrial temperature range of −40°C to +105°C. Rev. A 0 G=1 –1 G=2 G=5 –2 –3 –4 –5 –6 1 100 10 FREQUENCY (MHz) 1000 07685-004 The ADA4855-3 (triple) is a single-supply, rail-to-rail output operational amplifier. It provides excellent high speed performance with 410 MHz, −3 dB bandwidth and a slew rate of 870 V/µs. It has a wide input common-mode voltage range that extends from 0.2 V below ground to 1 V below the positive rail.In addition, the output voltage swings within 100 mV of either supply rail, making this rail-to-rail operational amplifier easy to use on singlesupply voltages as low as 3.3 V. NORMALIZED CLOSED-LOOP GAIN (dB) 1 Figure 2. Frequency Response Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2008–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADA4855-3 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Theory of Operation ...................................................................... 14 Applications ....................................................................................... 1 Applications Information .............................................................. 15 Connection Diagram ....................................................................... 1 Gain Configurations .................................................................. 15 General Description ......................................................................... 1 20 MHz Active Low-Pass Filter ................................................ 15 Revision History ............................................................................... 2 RGB Video Driver ...................................................................... 16 Specifications..................................................................................... 3 Driving Multiple Video Loads .................................................. 16 5 V Operation ............................................................................... 3 PD (Power-Down) Pin .............................................................. 16 3.3 V Operation ............................................................................ 4 Single-Supply Operation ........................................................... 17 Absolute Maximum Ratings ............................................................ 5 Power Supply Bypassing ............................................................ 17 Thermal Resistance ...................................................................... 5 Layout .......................................................................................... 17 Maximum Power Dissipation ..................................................... 5 Outline Dimensions ....................................................................... 18 ESD Caution .................................................................................. 5 Ordering Guide .......................................................................... 18 Pin Configuration and Function Descriptions ............................. 6 Typical Performance Characteristics ............................................. 7 Test Circuits ..................................................................................... 13 REVISION HISTORY 2/13—Rev. 0 to Rev. A Change CP-16-4 Package to CP-26-23, Figure 1 .......................... 1 Change CP-16-4 Package to CP-26-23, Figure 4 .......................... 6 Updated Outline Dimensions ....................................................... 18 Changes to Ordering Guide .......................................................... 18 11/08—Revision 0: Initial Version Rev. A | Page 2 of 20 Data Sheet ADA4855-3 SPECIFICATIONS 5 V OPERATION TA = 25°C, VS = 5 V, G = 1, RL = 150 Ω, unless otherwise noted. Table 1. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1% NOISE/DISTORTION PERFORMANCE Harmonic Distortion (HD2/HD3) Crosstalk, Output to Output Input Voltage Noise Input Current Noise Differential Gain Error Differential Phase Error DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Offset Current Open-Loop Gain INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio OUTPUT CHARACTERISTICS Output Voltage Swing Linear Output Current per Amplifier POWER-DOWN Turn-On Time Turn-Off Time Bias Current Turn-On Voltage POWER SUPPLY Operating Range Quiescent Current per Amplifier Supply Current When Powered Down Power Supply Rejection Ratio Test Conditions Min Typ Max Unit VO = 0.1 V p-p VO = 2 V p-p VO = 0.1 V p-p, G = 2 VO = 2 V p-p, G = 2 VO = 2 V p-p VO = 2 V p-p, G = 2 VO = 2 V step VO = 2 V step (rise/fall) VO = 2 V step (rise/fall), G = 2 410 200 210 120 53 50 870 5.3/9.5 7.4/7 MHz MHz MHz MHz MHz MHz V/µs ns ns fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ f = 5 MHz, G = 2 f = 100 kHz f = 100 kHz G=2 G=2 −84/−105 −60/−66 −90 6.8 2 0.01 0.01 dBc dBc dBc nV/√Hz pA/√Hz % Degrees VO = 0.5 V to 4.5 V 1.3 5.5 −3.8 ±0.05 92 3 6.4 0.5 mV µV/°C µA µA dB VCM = –0.2 V to +4 V 94 MΩ pF V dB HD2 ≤ −60 dBc, RL = 10 Ω 0.1 to 4.9 57 V mA 78 1.2 0.3 −125 +VS − 1.25 ns µs µA µA V −VS − 0.2 On Off +VS − 1 3 ∆VS = 4.5 V to 5.5 V Rev. A | Page 3 of 20 5.5 7.8 1.1 96 V mA mA dB ADA4855-3 Data Sheet 3.3 V OPERATION TA = 25°C, VS = 3.3 V, G = 1, RL = 150 Ω, unless otherwise noted. Table 2. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1% NOISE/DISTORTION PERFORMANCE Harmonic Distortion (HD2/HD3) Crosstalk, Output to Output Input Voltage Noise Input Current Noise Differential Gain Error Differential Phase Error DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Offset Current Open-Loop Gain INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio OUTPUT CHARACTERISTICS Output Voltage Swing Linear Output Current per Amplifier POWER-DOWN Turn-On Time Turn-Off Time Turn-On Voltage POWER SUPPLY Operating Range Quiescent Current per Amplifier Supply Current When Powered Down Power Supply Rejection Ratio Test Conditions Min Typ Max Unit VO = 0.1 V p-p VO = 1.4 V p-p VO = 0.1 V p-p, G = 2 VO = 2 V p-p, G = 2 VO = 1.4 V p-p, G = 2 VO = 2 V step, G = 2 VO = 2 V step (rise/fall), G = 2 430 210 210 125 55 870 7.4/7.1 MHz MHz MHz MHz MHz V/µs ns fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ f = 5 MHz, G = 2 f = 100 kHz f = 100 kHz G=2 G=2 −76/−76 −68/−75 −88 6.8 2 0.01 0.01 dBc dBc dBc nV/√Hz pA/√Hz % Degrees VO = 0.5 V to 4.5 V 1.3 5.5 −3.8 0.05 92 mV µV/°C µA µA dB 6.4 0.5 VCM = –0.2 V to +3.2 V 94 MΩ pF V dB HD2 ≤ −60 dBc, RL = 10 Ω 0.1 to 3.22 40 V mA 78 1.2 +VS − 1.25 ns µs V −VS − 0.2 +VS − 1 3 ∆VS = 2.97 V to 3.63 V Rev. A | Page 4 of 20 5.5 7.5 0.95 94 V mA mA dB Data Sheet ADA4855-3 ABSOLUTE MAXIMUM RATINGS MAXIMUM POWER DISSIPATION 1 Rating 6V See Figure 3 (−VS − 0.2 V) to (+VS − 1 V) ±VS Observe power curves −65°C to +125°C −40°C to +105°C 300°C Specification is for device in free air. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The maximum power that can be safely dissipated by the ADA4855-3 is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately 150°C. Temporarily exceeding this limit may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of 175°C for an extended period can result in device failure. To ensure proper operation, it is necessary to observe the maximum power derating curves. 3.0 THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, θJA is specified for a device soldered in a circuit board for surface-mount packages. 2.5 2.0 1.5 1.0 0.5 07685-103 Parameter Supply Voltage Internal Power Dissipation1 Common-Mode Input Voltage Differential Input Voltage Output Short-Circuit Duration Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 10 sec) MAXIMUM POWER DISSIPATION (W) Table 3. 90 100 80 60 70 40 50 30 10 20 0 0 Unit °C/W –10 θJC 17.5 –20 θJA 67 –40 Package Type 16-Lead LFCSP –30 Table 4. AMBIENT TEMPERATURE (°C) Figure 3. Maximum Power Dissipation vs. Ambient Temperature ESD CAUTION Rev. A | Page 5 of 20 ADA4855-3 Data Sheet +IN1 –IN1 OUT1 –VS PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 16 15 14 13 12 +VS NC 1 11 OUT2 ADA4855-3 6 7 +VS 8 –VS 5 OUT3 9 –IN3 10 –IN2 PD 4 +IN3 NC 3 NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD CONNECTED TO –VS. 07685-003 +IN2 2 Figure 4. Pin Configuration Table 5. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 (EPAD) Mnemonic NC +IN2 NC PD +IN3 −IN3 OUT3 −VS +VS −IN2 OUT2 +VS −VS OUT1 −IN1 +IN1 Exposed Pad (EPAD) Description No Connect. Noninverting Input 2. No Connect. Power Down. Noninverting Input 3. Inverting Input 3. Output 3. Negative Supply. Positive Supply. Inverting Input 2. Output 2. Positive Supply. Negative Supply. Output 1. Inverting Input 1. Noninverting Input 1. The exposed pad must be connected to −VS. Rev. A | Page 6 of 20 Data Sheet ADA4855-3 TYPICAL PERFORMANCE CHARACTERISTICS T = 25°C, VS = 5V, G = 1, RF = 1 kΩ for G > 1, RL = 150 Ω, small signal VOUT = 100 mV p-p, and large signal VOUT = 2 V p-p, unless otherwise noted. 0 G=1 –1 G=2 G=5 –2 –3 –4 –5 –6 100 10 FREQUENCY (MHz) 1 1000 0 G=1 G=2 –1 –2 G=5 –3 –4 –5 –6 Figure 5. Small Signal Frequency Response vs. Gain 1 NORMALIZED CLOSED-LOOP GAIN (dB) G=1 0 –1 G=5 G=2 –3 –4 –5 0 G=1 VOUT = 1.4V p-p –1 –2 –3 G=5 VOUT = 2V p-p –4 –5 VS = 3.3V VS = 3.3V 1 100 10 FREQUENCY (MHz) 1000 –6 07685-005 –6 1 Figure 6. Small Signal Frequency Response vs. Gain 10 100 FREQUENCY (MHz) 1000 07685-008 –2 G=2 VOUT = 2V p-p Figure 9. Large Signal Frequency Response vs. Gain 1 1 CF = 4.4pF RL = 1kΩ CF = 6.6pF 0 CLOSED-LOOP GAIN (dB) 0 –1 RL = 150Ω –2 –3 –4 CF = 2.2pF –1 –2 –3 –4 –5 –5 1 100 10 FREQUENCY (MHz) 1000 –6 07685-006 –6 1 Figure 7. Small Signal Frequency Response vs. Load 10 100 FREQUENCY (MHz) 1000 Figure 10. Small Signal Frequency Response vs. Capacitive Load Rev. A | Page 7 of 20 07685-009 NORMALIZED CLOSED-LOOP GAIN (dB) 1000 Figure 8. Large Signal Frequency Response vs. Gain 1 CLOSED-LOOP GAIN (dB) 100 10 FREQUENCY (MHz) 1 07685-007 NORMALIZED CLOSED-LOOP GAIN (dB) 1 07685-004 NORMALIZED CLOSED-LOOP GAIN (dB) 1 Data Sheet 0.2 6.2 0.1 6.1 CLOSED-LOOP GAIN (dB) VS = 3.3V, VOUT = 1.4V p-p –0.1 VS = 5V, VOUT = 2V p-p –0.2 –0.3 1 10 100 FREQUENCY (MHz) 5.8 5.7 G=2 5.5 1000 1 10 100 FREQUENCY (MHz) Figure 11. 0.1 dB Flatness vs. Supply Voltage 1 0 75 –50 PHASE 50 GAIN (dB) –2 –3 –100 GAIN 25 –150 0 –200 –25 –250 –4 –6 07685-038 –5 1 10 100 FREQUENCY (MHz) 1000 –50 10 100k 1M 10M 100M 1G –300 10G –50 VOUT = 1V p-p VS = 3.3V RL = 1kΩ –60 –60 VOUT = 1V p-p RL = 1kΩ DISTORTION (dBc) –70 –65 –70 –75 HD2 –80 HD3 –85 1 FREQUENCY (MHz) –80 –90 –100 HD2 –110 –120 07685-014 DISTORTION (dBc) 10k Figure 15. Open-Loop Gain and Phase vs. Frequency –50 –90 0.1 1k FREQUENCY (Hz) Figure 12. Small Signal Frequency Response vs. Temperature –55 100 10 –130 0.1 40 Figure 13. Harmonic Distortion vs. Frequency HD3 07685-011 CLOSED-LOOP GAIN (dB) 100 TA = –40°C TA = +25°C –1 1000 Figure 14. 0.1 dB Flatness vs. Supply Voltage TA = +85°C TA = +105°C 0 07685-040 –0.5 VS = 3.3V 5.9 5.6 07685-037 –0.4 6.0 PHASE (Degrees) 0 VS = 5V 1 FREQUENCY (MHz) 10 Figure 16. Harmonic Distortion vs. Frequency Rev. A | Page 8 of 20 40 07685-035 CLOSED-LOOP GAIN (dB) ADA4855-3 Data Sheet ADA4855-3 –40 0 –50 –60 –40 OUT3 –60 IN2, IN3, OUT1 CROSSTALK (dB) OUT1 –80 –70 IN1, IN2, OUT3 –80 –90 IN1, IN3, OUT2 –100 OUT2 –110 07685-012 –100 –120 0.1 1 10 FREQUENCY (MHz) 100 07685-015 FORWARD ISOLATION (dB) –20 –120 1000 Figure 17. Forward Isolation vs. Frequency 1000 100 10 FREQUENCY (MHz) 1 Figure 20. Crosstalk vs. Frequency 0 –30 –10 –40 –20 –50 CMRR (dB) PSRR (dB) –30 –40 –PSRR +PSRR –50 –60 –70 –60 –70 –80 –80 0.1 1 10 FREQUENCY (MHz) –100 0.01 100 Figure 18. Power Supply Rejection Ratio (PSRR) vs. Frequency 0.1 1 10 FREQUENCY (MHz) 100 Figure 21. Common-Mode Rejection Ratio (CMRR) vs. Frequency 100 07685-020 10 1 10 100 1k 10k 100k FREQUENCY (Hz) 1M VS = 5V VS = 3.3V 10 07685-017 VOLTAGE NOISE (nV/√Hz) 100 CURRENT NOISE (pA/√Hz) 07685-016 –100 0.01 –90 07685-013 –90 1 10 10M 100 1k 10k FREQUENCY (Hz) 100k Figure 22. Input Voltage Noise vs. Frequency Figure 19. Input Current Noise vs. Frequency Rev. A | Page 9 of 20 1M ADA4855-3 0.08 0.06 Data Sheet 1.5 VS = 3.3V VS = 5V CL = 2.2pF CL = 4.4pF CL = 6.6pF 0.04 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 1.0 0.02 0 –0.02 0.5 0 –0.5 –0.04 07685-018 –1.5 TIME (10ns/DIV) TIME (10ns/DIV) Figure 26. Large Signal Transient Response vs. Capacitive Load 0.08 0.08 0.06 0.06 0.02 CL = 2.2pF CL = 4.4pF CL = 6.6pF OUTPUT VOLTAGE (V) 0.04 0 –0.02 0.02 0 –0.02 –0.04 –0.06 –0.06 –0.08 VS = 3.3V –0.08 TIME (10ns/DIV) TIME (10ns/DIV) Figure 27. Small Signal Transient Response vs. Capacitive Load Figure 24. Small Signal Transient Response vs. Capacitive Load 1.5 CL = 2.2pF CL = 4.4pF CL = 6.6pF 0.04 –0.04 07685-019 OUTPUT VOLTAGE (V) Figure 23. Small Signal Transient Response vs. Supply Voltage 07685-023 –0.08 07685-022 –1.0 –0.06 23.7 RL = 150Ω RL = 1kΩ QUIESCENT CURRENT (mA) 0.5 0 –0.5 23.2 22.7 22.2 –1.5 21.7 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5 TIME (10ns/DIV) SUPPLY VOLTAGE (V) Figure 28. Quiescent Current vs. Supply Voltage Figure 25. Large Signal Transient Response vs. Load Resistance Rev. A | Page 10 of 20 07685-029 –1.0 07685-021 OUTPUT VOLTAGE (V) 1.0 Data Sheet ADA4855-3 4 2.5 2 × VIN 2.0 3 2 × VIN 1.5 2 VOUT VOLTAGE (V) 1 VOLTAGE (V) VOUT 1.0 0 –1 0.5 0 –0.5 –1.0 –2 –1.5 G=2 –4 –2.0 G=2 VIN = 3.3V –2.5 TIME (50ns/DIV) TIME (50ns/DIV) Figure 29. Output Overdrive Recovery Figure 32. Output Overdrive Recovery 3 2.0 VOUT = 1V p-p VS = 3.3V CL = 2.2pF CL = 4.4pF CL = 6.6pF 1.5 OUTPUT VOLTAGE (V) 0.4 VPD VOUT 0.2 0 –0.2 2 1.0 1 0.5 0 0 –0.5 –1 –1.0 –0.4 POWER-DOWN VOLTAGE (V) 0.6 07685-026 –2 –0.6 TIME (10ns/DIV) 07685-129 OUTPUT VOLTAGE (V) 07685-028 07685-025 –3 –1.5 –3 –2.0 TIME (1µs/DIV) Figure 30. Large Signal Transient Response vs. Capacitive Load Figure 33. Turn-On/Turn-Off Time 0.5 0.5 0.4 0.4 0.3 0.3 INPUT SETTLING TIME (%) 0.1 0 ERROR –0.1 –0.2 0.2 0.1 0 –0.1 ERROR –0.2 –0.3 –0.3 –0.4 –0.5 –0.4 07685-027 0.2 07685-024 SETTLING TIME (%) INPUT VS = 3.3V –0.5 TIME (2ns/DIV) TIME (2ns/DIV) Figure 34. Settling Time Figure 31. Settling Time Rev. A | Page 11 of 20 ADA4855-3 Data Sheet 0 100 OUTPUT IMPEDANCE (Ω) OFFSET VOLTAGE (mV) –10 –20 –30 VS = 3.3V –40 VS = 5V 10 1 0.1 –60 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 COMMON-MODE VOLTAGE (V) 4.5 0.01 0.1 5.0 Figure 35. Input Offset Voltage vs. Common-Mode Voltage 5.00 SATURATION VOLTAGE (mV) QUIESCENT CURRENT (mA) 4.95 23.2 23.0 22.8 22.6 VS = 3.3V 22.4 22.2 4.90 4.85 4.80 4.75 4.70 4.65 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 07685-032 22.0 Figure 36. Quiescent Current vs. Temperature 2.2 2.0 1.8 1.6 1.4 07685-034 1.2 –20 0 20 40 60 TEMPERATURE (°C) 80 4.60 0.01 0.1 1 LOAD CURRENT (mA) 10 Figure 39. Output Saturation Voltage vs. Load Current 2.4 OFFSET VOLTAGE (mV) 1000 VS = 5V 23.4 1.0 –40 10 100 FREQUENCY (MHz) Figure 38. Output Impedance vs. Frequency 23.6 21.8 –40 1 07685-039 0 07685-036 07685-031 –50 100 Figure 37. Offset Drift vs. Temperature Rev. A | Page 12 of 20 100 Data Sheet ADA4855-3 TEST CIRCUITS +VS 10µF +VS + 10µF + 1kΩ 0.1µF 0.1µF VIN VOUT VIN RL 49.9Ω 0.1µF 1kΩ 0.1µF 1kΩ VOUT 53.6Ω RL 1kΩ 10µF + 0.1µF 07685-041 0.1µF –VS 07685-044 + 10µF –VS Figure 40. Noninverting Load Configuration Figure 43. Common-Mode Rejection +VS +VS 10µF + 49.9Ω AC 0.1µF VOUT VOUT RL RL 49.9Ω AC 07685-042 0.1µF –VS –VS Figure 41. Positive Power Supply Rejection Figure 44. Negative Power Supply Rejection +VS +VS 10µF 10µF + + RF RG 0.1µF RF 0.1µF 0.1µF 0.1µF VOUT VIN CL 49.9Ω VOUT VIN RL RL 49.9Ω 10µF –VS + 07685-043 + 10µF 0.1µF 0.1µF –VS Figure 42. Typical Capacitive Load Configuration 07685-046 RG 07685-045 + 10µF Figure 45. Typical Noninverting Gain Configuration Rev. A | Page 13 of 20 ADA4855-3 Data Sheet THEORY OF OPERATION Besides a novel input stage, the ADA4855-3 employs the Analog Devices, Inc., patented rail-to-rail output stage. This output stage makes efficient use of the power supplies, allowing the op amp to drive up to three video loads to within 350 mV of the positive power rail. In addition, this output stage provides the amplifier with very fast overdrive characteristics, which is an important property in video applications. The ADA4855-3 comes in a 16-lead LFCSP that has an exposed thermal pad for lower operating temperature. This pad is internally connected to the negative rail. To avoid printed circuit board (PCB) layout problems, the ADA4855-3 features a new pinout flow that is optimized for video applications. As shown in Figure 4, the noninverting input and output pins of each amplifier are adjacent to each other for ease of layout. The ADA4855-3 is fabricated in Analog Devices dielectrically isolated eXtra Fast Complementary Bipolar 3 (XFCB3) process, which results in the outstanding speed and dynamic range displayed by the amplifier. +VS C1 Gm2 +IN –IN R C –VS Figure 46. High Level Design Schematic Rev. A | Page 14 of 20 OUT Gm1 07685-147 The ADA4855-3 is a voltage feedback op amp that employs a new input stage that achieves a high slew rate while maintaining a wide common-mode input range. The input common-mode range of the ADA4855-3 extends from 200 mV below the negative rail to 1 V below the positive rail. This feature makes the ADA4855-3 ideal for single-supply applications. In addition, this new input stage does not sacrifice noise performance for slew rate. At 6.8 nV/√Hz, the ADA4855-3 is one of the lowest noise rail-to-rail output video amplifiers in the market. Data Sheet ADA4855-3 APPLICATIONS INFORMATION GAIN CONFIGURATIONS 20 MHz ACTIVE LOW-PASS FILTER The ADA4855-3 is a single-supply, high speed, voltage feedback amplifier. Table 6 provides a convenient reference for quickly determining the feedback and gain set resistor values and bandwidth for common gain configurations. The ADA4855-3 triple amplifier lends itself to higher order active filters. Figure 49 shows a 20 MHz, 6-pole, Sallen-Key low-pass filter. R7 1kΩ R8 261Ω Table 6. Recommended Values and Frequency Performance1 RG N/A 1 kΩ 200 Ω – VIN R1 232Ω C1 15pF C2 6.6pF Conditions: VS = 5 V, TA = 25°C, RL = 150 Ω. Figure 47 and Figure 48 show the typical noninverting and inverting configurations and recommended bypass capacitor values. +VS R9 R10 1kΩ 261Ω – R3 309Ω 10µF 0.1µF VIN OUT1 U1 OP AMP + R2 1.69kΩ C3 15pF OUT2 U2 OP AMP + R4 1.87kΩ C4 4.3pF + ADA4855-3 VOUT 0.1µF – R11 R12 1kΩ 261Ω – 0.1µF R5 261Ω 10µF RF C5 33pF 07685-047 –VS RG OUT3 VOUT C6 3pF Figure 49. 20 MHz, 6-Pole Low-Pass Filter Figure 47. Noninverting Gain Configuration The filter has a gain of approximately 6 dB and flat frequency response out to 14 MHz. This type of filter is commonly used at the output of a video DAC as a reconstruction filter. The frequency response of the filter is shown in Figure 50. RF +VS U3 OP AMP + R6 1.43kΩ 07685-049 1 RF 0Ω 1 kΩ 1 kΩ Large Signal 0.1 dB Flatness (MHz) 53 50 6 10µF 10 0.1µF – OUT2 OUT1 –10 ADA4855-3 MAGNITUDE (dB) VOUT 0.1µF + 0.1µF 10µF –VS –20 –30 –40 –50 07685-048 VIN OUT3 0 RG –60 –70 Figure 48. Inverting Gain Configuration 1 10 FREQUENCY (MHz) 100 Figure 50. 20 MHz, Low-Pass Filter Frequency Response Rev. A | Page 15 of 20 200 07685-050 Gain 1 2 5 −3 dB SS BW (MHz) 200 120 45 ADA4855-3 Data Sheet 6.5 RGB VIDEO DRIVER 6.0 Figure 51 shows a typical RGB driver application using dual supplies. The gain of the amplifier is set at +2, where RF = RG = 1 kΩ. The amplifier inputs are terminated with shunt 75 Ω resistors, and the outputs have series 75 Ω resistors for proper video matching. In Figure 51, the PD pin is not shown connected to any signal source for simplicity. If the power-down function is not used, it is recommended that the PD pin be tied to the positive supply or be left floating (not connected). RL = 150Ω RL = 75Ω RL = 50Ω MAGNITUDE (dB) 5.5 5.0 4.5 4.0 VOUT = 2V p-p G=2 3.5 75Ω 1kΩ 1kΩ VIN (R) 75Ω 2.5 VOUT (R) 07685-153 3.0 1 10 FREQUENCY (MHz) –VS 16 15 14 PD (POWER-DOWN) PIN 13 0.1µF VIN (G) 75Ω 1 12 2 11 ADA4855-3 3 10 PD 4 9 5 6 7 +VS 75Ω VOUT (G) 1kΩ 1kΩ +VS 0.1µF 8 + 10µF 0.1µF 0.1µF VIN (B) –VS 75Ω 75Ω 1kΩ VOUT (B) 07685-051 1kΩ Figure 51. RGB Video Driver DRIVING MULTIPLE VIDEO LOADS Each amplifier in the ADA4855-3 can drive up to three video loads simultaneously, as shown in Figure 52. When driving three video loads, the ADA4855-3 maintains its excellent performance for 0.1 dB flatness and 3 dB bandwidth. Figure 53 shows the large signal frequency response of the ADA4855-3 with three different load configurations: 150 Ω, 75 Ω and 50 Ω. The ADA4855-3 is equipped with a PD (power-down) pin for all three amplifiers. This allows the user to reduce the quiescent supply current when an amplifier is inactive. The power-down threshold levels are derived from the voltage applied to the +VS pin. When used in single-supply applications, this is especially useful with conventional logic levels. The amplifier is enabled when the voltage applied to the PD pin is greater than +VS − 1.25 V. In a single-supply application, the voltage threshold is typically +3.75 V, and in a ±2.5 V dualsupply application, the voltage threshold is typically +1.25 V. The amplifier is also enabled when the PD pin is left floating (not connected). However, the amplifier is powered down when the voltage on the PD pin is lower than 2.5 V from +VS. If the PD pin is not used, it is best to connect it to the positive supply. Table 7. Power-Down Voltage Control PD Pin 5V ±2.5 V 3V Not Active Active >3.75 V 1.25 V 1.75 V
ADA4855-3YCPZ-R7 价格&库存

很抱歉,暂时无法提供与“ADA4855-3YCPZ-R7”相匹配的价格&库存,您可以联系我们找货

免费人工找货