0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADAS3022SCPZ-EP-RL

ADAS3022SCPZ-EP-RL

  • 厂商:

    AD(亚德诺)

  • 封装:

    VFQFN40

  • 描述:

    IC ADC 16BIT 40LFCSP

  • 数据手册
  • 价格&库存
ADAS3022SCPZ-EP-RL 数据手册
16-Bit, 1 MSPS, 8-Channel Data Acquisition System ADAS3022-EP Enhanced Product FEATURES Ease of use—16-bit, 1 MSPS complete data acquisition system High impedance, 8-channel input: >500 MΩ Differential input voltage range: ±24.576 V maximum High input common-mode rejection: >100 dB User-programmable input ranges Channel sequencer with individual channel gains On-chip 4.096 V reference and buffer Auxiliary input—direct interface to PulSAR® ADC inputs No latency or pipeline delay (SAR architecture) Serial 4-wire, 1.8 V to 5 V SPI-/SPORT-compatible interface 40-Lead LFCSP package (6 mm × 6 mm) ENHANCED FEATURES Supports defense and aerospace applications (AQEC standard) Military temperature range (such as −55°C to +105°C) Controlled manufacturing baseline One assembly/test site Enhanced product change notification Qualification data available on request an 8-channel, low leakage multiplexer; a high impedance programmable gain instrumentation amplifier (PGIA) stage with high common-mode rejection; a precision, low drift 4.096 V reference and buffer; and a 16-bit charge redistribution analogto-digital converter (ADC) with a successive approximation register (SAR) architecture. The ADAS3022-EP can resolve eight single-ended inputs or four fully differential inputs up to ±24.576 V when using ±15 V supplies. In addition, the device can accept the commonly used bipolar differential, bipolar single-ended, pseudo bipolar, or pseudo unipolar input signals, as shown in Table 1, thus enabling the use of almost any direct sensor interface. The ADAS3022-EP simplifies design challenges by eliminating signal buffering, level shifting, amplification/attenuation, common-mode rejection, settling time, and any other analog signal conditioning challenge while allowing a smaller form factor, faster time to market, and lower cost. Additional application and technical information can be found in the ADAS3022 data sheet. APPLICATIONS Table 1. Typical Input Range Selection Multichannel data acquisition and system monitoring Process controls Power line monitoring Automated test equipment Instrumentation Signal (V) Differential ±1 ±2.5 ±5 ±10 Single Ended 0 to 1 0 to 2.5 0 to 5 0 to 10 GENERAL DESCRIPTION The ADAS3022-EP is a complete 16-bit, 1 MSPS, successive approximation–based, analog-to-digital data acquisition system that is manufactured on Analog Devices, Inc., proprietary iCMOS® high voltage industrial process technology. The device integrates Rev. 0 Input Range, VIN (V) ±1.28 ±2.56 ±5.12 ±10.24 ±1.28 ±2.56 ±5.12 ±10.24 Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADAS3022-EP Enhanced Product TABLE OF CONTENTS Features .............................................................................................. 1 Absolute Maximum Ratings ......................................................... 10 Enhanced Features............................................................................ 1 ESD Caution................................................................................ 10 Applications ....................................................................................... 1 Pin Configuration and Function Descriptions........................... 11 General Description ......................................................................... 1 Typical Performance Characteristics ........................................... 13 Revision History ........................................................................... 2 Outline Dimensions ....................................................................... 21 Functional Block Diagram .............................................................. 3 Ordering Guide .......................................................................... 21 Specifications..................................................................................... 4 Timing Specifications .................................................................. 8 REVISION HISTORY 6/2017—Revision 0: Initial Version Rev. 0 | Page 2 of 21 Enhanced Product ADAS3022-EP FUNCTIONAL BLOCK DIAGRAM VDDH DIFF PAIR IN0/IN1 DIFF TO COM AVDD DVDD VIO RESET ADAS3022-EP PD CNV LOGIC/ INTERFACE IN0 BUSY IN1 CS IN2 IN3 IN4/IN5 IN4 PulSAR® PGIA MUX DIN IN5 IN6/IN7 SDO IN6 IN7 COM SCK ADC TEMP SENSOR REFIN BUF AUX+ REF AUX– VSSH AGND DGND REFx Figure 1. Rev. 0 | Page 3 of 21 15983-001 IN2/IN3 ADAS3022-EP Enhanced Product SPECIFICATIONS VDDH = 15 V ± 5%, VSSH = −15 V ± 5%, AVDD = DVDD = 5 V ± 5%, VIO = 1.8 V to AVDD, internal voltage reference (VREF) = 4.096 V, sampling frequency (fS) = 1 MSPS unless otherwise noted. All specifications TMIN to TMAX, unless otherwise noted. Table 2. Parameter RESOLUTION ANALOG INPUTS—IN[7:0], COM Operating Input Voltage Range Differential Input Voltage Range, VIN Input Impedance, ZIN Channel Off Leakage Channel On Leakage Common-Mode Voltage Range (VCM) 2 Test Conditions/Comments Min 16 VIN VIN+ − VIN− PGIA gain = 0.16, VIN = 49.15 V p-p PGIA gain = 0.2, VIN = 40.96 V p-p PGIA gain = 0.4, VIN = 20.48 V p-p PGIA gain = 0.8, VIN = 10.24 V p-p PGIA gain = 1.6, VIN = 5.12 V p-p PGIA gain = 3.2, VIN = 2.56 V p-p PGIA gain = 6.4, VIN = 1.28 V p-p Transient Response DC ACCURACY No Missing Codes Integral Linearity Error Differential Linearity Error Transition Noise Gain Error Gain Error Temperature Drift Max Unit 1 Bits −VSSH + 2.5 VDDH − 2.5 V −6 × VREF −5 × VREF −2.5 × VREF −1.25 × VREF −0.625 × VREF −0.3125 × VREF −0.1563 × VREF 500 +6 × VREF +5 × VREF +2.5 × VREF +1.25 × VREF +0.625 × VREF +0.3125 × VREF +0.1563 × VREF V V V V V V V MΩ nA nA −5.12 −7.68 −8.96 −9.60 −9.92 +5.12 +7.68 +8.96 +9.60 +9.92 V V V V V −VREF +VREF V 0 0 0 0 1000 500 250 125 520 kSPS kSPS kSPS kSPS ns +2 +3 +5 +1.0 +1.25 +1.25 Bits LSB LSB LSB LSB LSB LSB +9 0.1 LSB LSB LSB LSB ppm/°C ±0.6 ±0.02 VIN+, VIN−; full-scale differential inputs PGIA gain = 0.4 PGIA gain = 0.8 PGIA gain = 1.6 PGIA gain = 3.2 PGIA gain = 6.4 ANALOG INPUTS—AUX+, AUX− Differential Input Voltage Range THROUGHPUT Conversion Rate Typ One channel and one pair Two channels and two pairs Four channels and four pairs Eight channels Full-scale step PGIA gain = 0.16, 0.2, 0.4, 0.8, and 1.6 PGIA gain = 3.2 PGIA gain = 6.4 PGIA gain = 0.16, 0.2, 0.4, 0.8, and 1.6 PGIA gain = 3.2 PGIA gain = 6.4 External reference PGIA gain = 0.16, 0.2, 0.4, 0.8, and 1.6 PGIA gain = 3.2 PGIA gain = 6.4 External reference, all PGIA gains, TA = 25°C External reference, all PGIA gains Rev. 0 | Page 4 of 21 16 −2 −3 −5 −0.9 −0.9 −0.9 ±0.6 ±1.0 ±1.5 ±0.6 ±0.75 ±0.75 5 7 11 −9 Enhanced Product Parameter Offset Error Offset Error Temperature Drift Total Unadjusted Error AC ACCURACY 3 Signal-to-Noise Ratio (SNR) Signal-to-Noise-and-Distortion (SINAD) Dynamic Range Total Harmonic Distortion (THD) Spurious-Free Dynamic Range (SFDR) Channel to Channel Crosstalk Common-Mode Rejection Ratio (CMRR) −3 dB Input Bandwidth ADAS3022-EP Test Conditions/Comments External reference, TA = 25°C PGIA gain = 0.16, 0.2, 0.4, and 0.8 PGIA gain = 1.6 PGIA gain = 3.2 PGIA gain = 6.4 External reference PGIA gain = 0.16, 0.2, 0.4, and 0.8 PGIA gain = 1.6 PGIA gain = 3.2 PGIA gain = 6.4 External reference, ambient temperature (TA) = 25°C PGIA gain = 0.16, 0.2, 0.4, 0.8, 1.6, and 3.2 PGIA gain = 6.4 fIN = 10 kHz PGIA gain = 0.16 PGIA gain = 0.2 PGIA gain = 0.4 PGIA gain = 0.8 PGIA gain = 1.6 PGIA gain = 3.2 PGIA gain = 6.4 Input frequency (fIN) = 10 kHz PGIA gain = 0.16 PGIA gain = 0.2 PGIA gain = 0.4 PGIA gain = 0.8 PGIA gain = 1.6 PGIA gain = 3.2 PGIA gain = 6.4 fIN = 10 kHz, −60 dB input PGIA gain = 0.16 PGIA gain = 0.2 PGIA gain = 0.4 PGIA gain = 0.8 PGIA gain = 1.6 PGIA gain = 3.2 PGIA gain = 6.4 fIN = 10 kHz, all PGIA gains fIN = 10 kHz, all PGIA gains Min Typ Max Unit 1 −3.0 −4.0 −7.5 −12.5 +0.2 +0.2 +0.2 +0.2 +3.0 +4.0 +7.5 +12.5 LSB LSB LSB LSB 0.1 0.2 0.4 0.8 0.5 1.0 2.0 4.0 ppm/°C ppm/°C ppm/°C ppm/°C +9 +15 LSB LSB −9 −15 90.0 90.0 89.5 89.0 88.0 86.0 83.0 91.5 91.5 91.5 91.0 89.7 86.8 84.5 dB dB dB dB dB dB dB 88.0 88.0 88.5 88.5 87.5 85.5 82.5 90.0 90.0 91.0 90.5 89.5 86.5 84.0 dB dB dB dB dB dB dB 91.0 91.0 90.5 90.0 89.0 86.0 83.5 92.0 92.0 91.5 91.0 90.0 87.0 85.0 −100 101 dB dB dB dB dB dB dB dB dB −120 dB 110.0 105.0 98.0 98.0 8 dB dB dB dB MHz fIN = 10 kHz, all channels inactive fIN = 2 kHz PGIA gain = 0.16, 0.2, 0.4, and 0.8 PGIA gain = 1.6 PGIA gain = 3.2 PGIA gain = 6.4 −40 dBFS Rev. 0 | Page 5 of 21 90.0 90.0 90.0 90.0 ADAS3022-EP Parameter AUXILIARY ADC INPUT CHANNEL DC Accuracy Integral Nonlinearity Error Differential Nonlinearity Error Gain Error Offset Error AC Performance SNR SINAD THD SFDR INTERNAL REFERENCE REF1 and REF2 Output Voltage REF1 and REF2 Output Current REF1 and REF2 Temperature Drift REF1 and REF2 Line Regulation Internal Reference Buffer Only REFIN Output Voltage4 Turn-On Settling Time EXTERNAL REFERENCE Voltage Range Current Drain TEMPERATURE SENSOR Output Voltage Temperature Sensitivity DIGITAL INPUTS Logic Levels Input Voltage Low, VIL Input Voltage High, VIH Input Low Current, IIL Input High Current, IIH DIGITAL OUTPUTS5 Data Format Output Low Voltage, VOL Output High Voltage, VOH POWER SUPPLIES VIO AVDD DVDD VDDH6 VSSH6 Enhanced Product Test Conditions/Comments Min Typ Max Unit1 −1.5 −0.8 −2.5 −5 ±0.5 ±0.6 ±0.2 ±0.2 +1.5 +1.0 +2.5 +5 LSB LSB LSB LSB 90.0 89.5 93.0 92.5 −105 110 4.088 4.096 250 ±5 ±1 External reference Internal reference TA = 25°C TA = 25°C REFEN = 1 REFEN = 0 AVDD = 5 V ± 5% TA = 25°C CREFIN, CREF1, CREF2 = 10 μF and 0.1 μF 2.495 REFx input REFIN input (buffered) VREF = 4.096 V 4.000 TA = 25 °C 20 4 2.500 100 4.096 2.5 100 dB dB dB dB 4.104 2.505 4.104 2.505 275 800 VIO > 3 V VIO ≤ 3 V VIO > 3 V VIO ≤ 3 V −0.3 −0.3 0.7 × VIO 0.9 × VIO −1 −1 +0.3 × VIO +0.1 × VIO VIO + 0.3 VIO + 0.3 +1 +1 VIO − 0.3 VDDH > input voltage + 2.5 V VSSH < input voltage − 2.5 V Rev. 0 | Page 6 of 21 1.8 4.75 4.75 14.25 −15.75 5 5 15 −15 μV/V μV/V V ms V V μA mV μV/°C Twos complement 0.4 ISINK = +500 μA ISOURCE = −500 μA PD = 0 V μA ppm/°C ppm/°C AVDD + 0.3 5.25 5.25 15.75 −14.25 V V V V μA μA V V V V V V V Enhanced Product Parameter VDDH Capacitance, IVDDH Current at VSSH Supply, IVSSH Current at AVDD, IAVDD Current at DVDD, IDVDD Current at VIO, IVIO Power Supply Sensitivity At TA = 25°C TEMPERATURE RANGE Specified Performance ADAS3022-EP Test Conditions/Comments PGIA gain = 0.16 PGIA gain = 0.2 PGIA gain = 0.4 PGIA gain = 0.8 PGIA gain = 1.6 PGIA gain = 3.2 PGIA gain = 6.4 All PGIA gains, PD = 1 PGIA gain = 0.16 PGIA gain = 0.2 PGIA gain = 0.4 PGIA gain = 0.8 PGIA gain = 1.6 PGIA gain = 3.2 PGIA gain = 6.4 All PGIA gains, PD = 1 PGIA gain = 6.4, reference buffer enabled All other PGIA gains, reference buffer enabled PGIA gain = 6.4, reference buffer disabled All other PGIA gains, reference buffer disabled All PGIA gains, PD = 1 All PGIA gains, PD = 0 All PGIA gains, PD = 1 VIO = 3.3 V, PD = 0 PD = 1 Min −3.0 −3.0 −3.5 −5.5 −9.5 −17.5 −17.5 −55 1 Max 3.5 3.5 4.0 5.5 9.5 17.5 17.5 21.0 19.0 Unit1 mA mA mA mA mA mA mA μA mA mA mA mA mA mA mA μA mA mA 14 12 17.5 16.0 mA mA 100 2.5 10 0.30 10 External reference PGIA gain = 0.16, 0.2, 0.4, and 0.8; VDDH/VSSH ± 5% PGIA gain = 3.2, VDDH/VSSH ± 5% PGIA gain = 6.4, VDDH/VSSH ± 5% PGIA gain = 0.16, AVDD/DVDD ± 5% PGIA gain = 0.2, AVDD/DVDD ± 5% PGIA gain = 0.4, AVDD/DVDD ± 5% PGIA gain = 0.8, AVDD/DVDD ± 5% PGIA gain = 1.6, AVDD/DVDD ± 5% PGIA gain = 3.2, AVDD/DVDD ± 5% PGIA gain = 6.4, AVDD/DVDD ± 5% TMIN to TMAX Typ 3.0 3.0 3.5 5.0 8.5 15.5 15.5 100 −2.5 −2.5 −3.0 −4.5 −8.0 −15 −15 10 18 16 3.5 1.2 μA mA μA mA μA ±0.5 LSB ±1.0 ±2.0 ±0.6 ±0.8 ±1.0 ±1.5 ±2.0 ±3.5 ±7.0 LSB LSB LSB LSB LSB LSB LSB LSB LSB +105 °C LSB means least significant bit and changes depending on the voltage range. The common-mode voltage (VCM) for a PGIA gain of 0.16 or 0.2 is 0 V. 3 All ac accuracy specifications expressed in decibels are referred to a full-scale range (FSR) and tested with an input signal at 0.5 dB below full scale, unless otherwise noted. 4 This is the output from the internal band gap reference. 5 There is no pipeline delay. Conversion results are available immediately after a conversion is complete. 6 The differential input common-mode voltage (VCM) range changes according to the maximum input range selected and the high voltage power supplies (VDDH and VSSH). Note that the specified operating input voltage of any input pin requires 2.5 V of headroom from the VDDH and VSSH supplies; therefore, (VSSH + 2.5 V) ≤ INx/COM ≤ (VDDH − 2.5 V). 2 Rev. 0 | Page 7 of 21 ADAS3022-EP Enhanced Product TIMING SPECIFICATIONS VDDH = 15 V ± 5%, VSSH = −15 V ± 5%, AVDD = DVDD = 5 V ± 5%, VIO = 1.8 V to AVDD, internal reference, VREF = 4.096 V, fS = 1 MSPS unless otherwise noted. All specifications TMIN to TMAX, unless otherwise noted. Table 3. Parameter Time Between Conversions Warp Mode, 1 CMS = 0 Normal Mode (Default), CMS = 1 Conversion Time: CNV Rising Edge to Data Available Warp Mode, CMS = 0 Normal Mode (Default), CMS = 1 Auxiliary ADC Input Channel Acquisition Time CNV Pulse Width CNV High to Hold Time (Aperture Delay) CNV High to Busy Delay Safe Data Access Time During Conversion Quiet Conversion Time (BUSY High) Warp Mode, CMS = 0 Normal Mode (Default), CMS = 1 Data Access During Quiet Conversion Time Warp Mode, CMS = 0 Normal Mode (Default), CMS = 1 SCK Period SCK Low Time SCK High Time SCK Falling Edge to Data Valid SCK Falling Edge to Data Valid Delay VIO > 4.5 V VIO > 3.0 V VIO > 2.7 V VIO > 2.3 V VIO > 1.8 V CS/RESET/PD Low to SDO VIO > 4.5 V VIO > 3.0 V VIO > 2.7 V VIO > 2.3 V VIO > 1.8 V CS/RESET/PD High to SDO High Impedance DIN Valid Setup Time from SCK Rising Edge DIN Valid Hold Time from SCK Rising Edge CNV Rising to CS RESET/PD High Pulse 1 Symbol tCYC Min Typ 1 1.1 Max Unit 1000 µs µs tCONV 825 925 tACQ tCH tAD tCBD tDDC tQUIET 520 500 ns ns ns ns ns ns ns 400 500 ns ns 200 300 ns ns ns ns ns ns 12 18 24 25 37 ns ns ns ns ns 15 16 18 23 28 25 ns ns ns ns ns ns ns ns ns ns 1000 600 10 2 tDDCA tSCK tSCKL tSCKH tSDOH tSDOD 15 5 5 4 tEN tDIS tDINS tDINH tCCS tRH Exceeding the maximum time has an effect on the accuracy of the conversion. Rev. 0 | Page 8 of 21 4 4 5 5 Enhanced Product ADAS3022-EP Timing Diagrams 500µA IOL 70% VIO 30% VIO tDELAY tDELAY 500µA 15983-002 CL 50pF IOH tCYC EOC EOC SOC POWER UP CONVERSION (n – 1) UNDEFINED 0.8V OR 0.5V2 Figure 3. Voltage Levels for Timing tACQ PHASE 2V OR VIO – 0.5V1 0.8V OR 0.5V2 12V IF VIO > 2.5V; VIO – 0.5V IF VIO < 2.5V. 20.8V IF VIO > 2.5V; 0.5V IF VIO < 2.5V. Figure 2. Load Circuit for Digital Interface Timing SOC 2V OR VIO – 0.5V1 15983-003 1.4V TO SDO ACQUISITION (n) UNDEFINED tDDC tQUIET tDAC NOTE 1 NOTE 2 NOTE 1 ACQUISITION (n + 1) UNDEFINED CONVERSION (n) UNDEFINED CONVERSION (n + 1) UNDEFINED CNV BUSY tDDCA NOTE 5 NOTE 2 tAD NOTE 4 CS X 1 16/32 NOTE 3 SCK 1 16 DIN CFG INVALID CFG (n + 2) CFG (n + 2) CFG (n + 3) SDO DATA INVALID DATA (n – 1) INVALID DATA (n – 1) INVALID DATA (n) INVALID EOC EOC ACQUISITION (n + 2) PHASE DATA (n) INVALID EOC ACQUISITION (n + 3) CONVERSION (n + 2) CFG (n + 3) ACQUISITION (n + 4) CONVERSION (n + 3) CONVERSION (n + 4) CNV BUSY CS 1 16 1 16 1 DIN CFG (n + 4) CFG (n + 4) CFG (n + 5) CFG (n + 5) CFG (n + 6) CFG (n + 6) SDO DATA (n + 1) INVALID DATA (n + 1) INVALID DATA (n + 2) DATA (n + 2) DATA (n + 3) DATA (n + 3) NOTES 1. DATA ACCESS CAN OCCUR DURING A CONVERSION ( tDDC ), AFTER A CONVERSION (tDAC ), OR BOTH DURING AND AFTER A CONVERSION. THE CONVERSION RESULT AND THE CFG REGISTER ARE UPDATED AT THE END OF A CONVERSION (EOC). 2. DATA ACCESS CAN ALSO OCCUR UP TO tDDCA WHILE BUSY IS ACTIVE (SEE THE ADAS3022 DATA SHEET FOR DETAILS). ALL OF THE BUSY TIME CAN BE USED TO ACQUIRE DATA. 3. A TOTAL OF 16 SCK FALLING EDGES IS REQUIRED FOR A CONVERSION RESULT. AN ADDITIONAL 16 EDGES ARE REQUIRED TO READ BACK THE CFG RESULT ASSOCIATED WITH THE CURRENT CONVERSION. 4. CS CAN BE HELD LOW OR CONNECTED TO CNV. CS WITH FULL INDEPENDENT CONTROL IS SHOWN IN THIS FIGURE. 5. FOR OPTIMAL PERFORMANCE, DATA ACCESS SHOULD NOT OCCUR DURING THE SAMPLING EDGE. A MINIMUM TIME OF THE APERTURE DELAY (tAD) SHOULD ELAPSE PRIOR TO DATA ACCESS. Figure 4. General Timing Diagram Rev. 0 | Page 9 of 21 15983-028 SCK ADAS3022-EP Enhanced Product ABSOLUTE MAXIMUM RATINGS Table 4. Parameter Analog Inputs/Outputs INx, COM to AGND AUX+, AUX− to AGND REFx to AGND REFIN to AGND REFN to AGND Ground Voltage Differences AGND, RGND, DGND Supply Voltages VDDH to AGND VSSH to AGND AVDD, DVDD, VIO to AGND ACAP, DCAP, RCAP to GND Digital Inputs/Outputs CNV, DIN, SCK, RESET, PD, CS to DGND SDO, BUSY to DGND Internal Power Dissipation Junction Temperature Storage Temperature Range Thermal Impedance θJA θJC Rating VSSH − 0.3 V to VDDH + 0.3 V −0.3 V to AVDD + 0.3 V AGND − 0.3 V to AVDD + 0.3 V AGND − 0.3 V to +2.7 V ±0.3 V Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. ESD CAUTION ±0.3 V −0.3 V to +16.5 V +0.3 V to −16.5 V −0.3 V to +7 V −0.3 V to +2.7 V −0.3 V to VIO + 0.3 V −0.3 V to VIO + 0.3 V 2W 125°C −65°C to +125°C 44.1°C/W 0.28°C/W Rev. 0 | Page 10 of 21 Enhanced Product ADAS3022-EP 40 39 38 37 36 35 34 33 32 31 AUX– VDDH VSSH REFN REFN RGND REF2 REF1 REFIN RCAP PIN CONFIGURATION AND FUNCTION DESCRIPTIONS ADAS3022-EP TOP VIEW (Not to Scale) 30 29 28 27 26 25 24 23 22 21 NC NC AVDD DVDD ACAP DCAP AGND AGND DGND DGND NOTES 1. NC = NO CONNECT. THIS PIN IS NOT INTERNALLY CONNECTED. 2. CONNECT THE EXPOSED PADDLE TO VSSH. 15983-004 CS DIN RESET NC PD SCK VIO SDO BUSY CNV 11 12 13 14 15 16 17 18 19 20 IN0 1 IN1 2 IN2 3 IN3 4 AUX+ 5 IN4 6 IN5 7 IN6 8 IN7 9 COM 10 Figure 5. Pin Configuration Table 5. Pin Function Descriptions Pin No. 1 to 4 5 6 to 9 10 Mnemonic IN0 to IN3 AUX+ IN4 to IN7 COM Type1 AI AI AI AI 11 CS DI 12 DIN DI 13 RESET DI 14, 29, 30 15 NC PD N/A DI 16 SCK DI 17 VIO P 18 SDO DO 19 BUSY DO 20 21, 22 23, 24 25 CNV DGND AGND DCAP DI P P P 26 ACAP P Description Input Channel 0 to Input Channel 3. Auxiliary Input Channel Positive Input. Input Channel 4 to Input Channel 7. IN[7:0] Common Channel Input. The IN[7:0] input channels can be referenced to a common point. The maximum voltage on this pin is ±10.24 V for all PGIA gains except for a PGIA gain of 0.16, in which case, the maximum voltage on this pin is ±12.228 V. AUX+ and AUX− are not referenced to COM. Chip Select. Active low signal. Enables the digital interface for writing and reading data. Use this pin when sharing the serial bus. For a dedicated ADAS3022-EP serial interface, CS can be tied to DGND or CNV to simplify the interface. Data Input. Serial data input used for writing the 16-bit configuration word (CFG) that is latched on SCK rising edges. CFG is an internal register that is updated on the rising edge of the end of a conversion, which is the falling edge of BUSY. The configuration register can be written to during and after a conversion. Asynchronous Reset. A low to high transition resets the ADAS3022-EP. The current conversion, if active, is aborted and CFG is reset to the default state. No Connect. This pin is not connected internally. Power-Down. A low to high transition powers down the ADAS3022-EP, minimizing the bias current. Note that this pin must be held high until the user is ready to power on the device; after powering on the device, the user must wait 100 ms until the reference is enabled and then wait for the completion of two dummy conversions before the device is ready to convert. Serial Clock Input. The DIN and SDO data sent to and from the ADAS3022-EP are synchronized with SCK. Digital Interface Supply. Nominally, this supply is at the same voltage as the supply of the host interface: 1.8 V, 2.5 V, 3.3 V, or 5 V. Serial Data Output. The conversion result is output on this pin and is synchronized to SCK falling edges. The conversion result is output in twos complement format. Busy Output. An active high signal on this pin indicates that a conversion is in process. Reading or writing data during the quiet conversion phase (tQUIET) may cause incorrect bit decisions. Convert Input. A conversion is initiated on the rising edge of this pin. Digital Ground. Connect these pins to the system digital ground plane. Analog Ground. Connect these pins to the system analog ground plane. Internal 2.5 V Digital Regulator Output. Decouple this internally regulated output using a 10 μF capacitor and a 0.1 μF local capacitor. Internal 2.5 V Analog Regulator Output. This regulator supplies power to the internal ADC core and all of the supporting analog circuits with the exception of the internal reference. Decouple this internally regulated output using a 10 μF capacitor and a 0.1 μF local capacitor. Rev. 0 | Page 11 of 21 ADAS3022-EP Enhanced Product Pin No. 27 28 31 Mnemonic DVDD AVDD RCAP Type1 P P P 32 REFIN AI/O 33, 34 REF1, REF2 AI/O 35 36, 37 RGND REFN P P 38 VSSH P 39 VDDH P 40 AUX− EPAD AI Description Digital 5 V Supply. Decouple this supply using a 10 μF capacitor and a 0.1 μF local capacitor. Analog 5 V Supply. Decouple this supply using a 10 μF capacitor and a 0.1 μF local capacitor. Internal 2.5 V Analog Regulator Output. This regulator supplies power to the internal reference. Decouple this pin using a 1 μF capacitor connected to RCAP and a 0.1 μF local capacitor. Internal 2.5 V Band Gap Reference Output, Reference Buffer Input, or Reference Power-Down Input. See the Voltage Reference Input/Output section of the ADAS3022 data sheet for more information. Reference Input/Output. Regardless of the reference method, these pins need individual decoupling using external 10 μF ceramic capacitors connected as close to REF1, REF2, and REFN as possible. REF1 and REF2 must be tied together externally. Reference Supply Ground. Connect this pin to the system analog ground plane. Reference Input/Output Ground. Connect the 10 μF capacitors on REF1 and REF2 to these pins, and connect these pins to the system analog ground plane. High Voltage Analog Negative Supply. Nominally, the supply of this pin should be −15 V. Decouple this pin using a 10 μF capacitor and a 0.1 μF local capacitor. High Voltage Analog Positive Supply. Nominally, the supply of this pin should be +15 V. Decouple this pin using a 10 μF capacitor and a 0.1 μF local capacitor. Auxiliary Input Channel Negative Input. Exposed Paddle. Connect the exposed paddle to VSSH. 1 AI = analog input, AI/O = analog input/output, DI = digital input, DO = digital output, N/A = not applicable, and P = power. Rev. 0 | Page 12 of 21 Enhanced Product ADAS3022-EP TYPICAL PERFORMANCE CHARACTERISTICS VDDH = 15 V, VSSH = −15 V, AVDD = DVDD = 5 V, VIO = 1.8 V to AVDD, unless otherwise noted. 2.0 1.00 GAIN = 0.16, 0.2, 0.4, 0.8, AND 1.6 INL MAX = +0.649 INL MIN = –0.592 FOR ALL GAINS 0.75 0.50 0.5 0.25 0 –0.5 –0.25 –1.0 –0.50 –1.5 –0.75 –2.0 0 8192 16384 24576 32768 40960 49152 57344 65536 CODE –1.00 0 8192 16384 24576 32768 40960 49152 57344 65536 CODE Figure 9. Differential Nonlinearity (DNL) vs. Code for All PGIA Gains Figure 6. Integral Nonlinearity (INL) vs. Code, PGIA Gain = 0.16, 0.2, 0.4, 0.8, and 1.6 400,000 2.0 GAIN = 3.2 INL MAX = +1.026 INL MIN = –0.948 1.5 GAIN = 0.16, 0.2, 0.4, 0.8, 1.6 350,000 300,000 0.5 250,000 COUNT 1.0 0 300,200 200,000 152,600 CODE 0 6,400 600 CODE IN HEX Figure 10. Histogram of a DC Input at Code Center, PGIA Gain = 0.16, 0.2, 0.4, 0.8, and 1.6 Figure 7. Integral Nonlinearity vs. Code, PGIA Gain = 3.2 400,000 2.0 GAIN = 6.4 INL MAX = +0.558 INL MIN = –1.319 GAIN = 3.2 350,000 300,000 0.5 250,000 213,200 200,000 50,000 –2.0 0 25,500 CODE 1,600 8003 57344 65536 8002 49152 8001 40960 8000 32768 7FFF 24576 7FFE 16384 7FFD 8192 7FFC 0 15983-106 22,700 1,400 CODE IN HEX Figure 11. Histogram of a DC Input at Code Center, PGIA Gain = 3.2 Figure 8. Integral Nonlinearity vs. Code, PGIA Gain = 6.4 Rev. 0 | Page 13 of 21 15983-119 –1.5 129,000 118,400 8009 –1.0 100,000 8008 150,000 8007 –0.5 8006 0 8005 COUNT 1.0 8004 1.5 INL (LSB) 15983-117 57344 65536 8009 49152 8008 40960 8007 32768 8006 24576 8005 16384 8004 8192 8003 0 8002 –2.0 52,300 8001 50,000 8000 –1.5 7FFF 100,000 7FFE –1.0 7FFD 150,000 7FFC –0.5 15983-105 INL (LSB) 0 15983-108 DNL (LSB) 1.0 15983-101 INL (LSB) 1.5 ADAS3022-EP Enhanced Product 400,000 100 EXTERNAL REFERENCE GAIN = 6.4 fS = 1000kSPS GAIN = 6.4 90 350,000 80 300,000 70 COUNT COUNT 250,000 200,000 157,300 151,900 150,000 60 50 40 30 82,000 75,100 20 50,000 21,700 0 0 15983-120 8009 8008 8007 8006 8005 8004 8003 8002 8001 8000 7FFF 7FFE 7FFD 7FFC 10 18,400 2,400 100 200 300 0 CODE IN HEX 0.4 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 OFFSET DRIFT (ppm/°C) Figure 15. Offset Drift, PGIA Gain = 6.4 Figure 12. Histogram of a DC Input at Code Center, PGIA Gain = 6.4 100 120 112 EXTERNAL REFERENCE GAIN = 0.16, 0.2, 0.4, 0.8, AND 1.6 fS = 1000kSPS 90 fS = 1000kSPS EXTERNAL 2.5V REFERENCE INTERNAL BUFFER 100 80 70 80 60 COUNT COUNT 0.8 15983-157 100,000 50 72 60 40 40 30 23 20 20 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 OFFSET DRIFT (ppm/°C) 0 15983-155 0 0 1 2 3 4 5 6 7 8 REFERENCE BUFFER DRIFT (ppm/°C) 9 10 15983-140 2 0 Figure 16. Reference Buffer Drift, External 2.5 V Reference Figure 13. Offset Drift, PGIA Gain = 0.16, 0.2, 0.4, 0.8, and 1.6 120 100 fS = 1000kSPS EXTERNAL REFERENCE GAIN = 3.2 fS = 1000kSPS 90 INTERNAL 2.5V REFERENCE INTERNAL BUFFER 100 80 80 COUNT 60 50 60 46 40 38 40 35 30 30 20 20 15 15 11 10 10 6 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 OFFSET DRIFT (ppm/°C) 1.8 2.0 0 0 1 2 3 4 5 6 7 8 9 1 10 11 12 13 14 15 REFERENCE BUFFER DRIFT (ppm/°C) Figure 17. Reference Buffer Drift, Internal 2.5 V Reference Figure 14. Offset Drift, PGIA Gain = 3.2 Rev. 0 | Page 14 of 21 15983-141 2 0 15983-156 COUNT 70 Enhanced Product ADAS3022-EP 0 0 –60 –40 –80 –100 –120 –60 –80 –100 –120 –140 –140 –160 –160 –180 0 100 200 300 400 500 FREQUENCY (kHz) –180 15983-121 0 300 400 500 Figure 21. 10 kHz FFT, PGIA Gain = 0.8 0 GAIN = 0.2 fS = 1000kSPS fIN = 10.1kHz SNR = 91.4dB SINAD = 89.9dB THD = –94.7dB SFDR = 94.8dB –40 –60 –40 –80 –100 –120 –60 –80 –100 –120 –140 –140 –160 –160 100 200 300 400 500 FREQUENCY (kHz) –180 15983-122 –180 0 GAIN = 1.6 fS = 1000kSPS fIN = 10.1kHz SNR = 89.8dB SINAD = 89.7dB THD = –106dB SFDR = 107dB –20 AMPLITUDE (dBFS) –20 0 100 200 300 400 500 FREQUENCY (kHz) Figure 19. 10 kHz FFT, PGIA Gain = 0.2 15983-125 0 AMPLITUDE (dBFS) 200 FREQUENCY (kHz) Figure 18. 10 kHz FFT, PGIA Gain = 0.16 Figure 22. 10 kHz FFT, PGIA Gain = 1.6 0 0 GAIN = 0.4 fS = 1000kSPS fIN = 10.1kHz SNR = 91.2dB SINAD = 91.0dB THD = –103dB SFDR = 104dB –40 –60 –40 –80 –100 –120 –60 –80 –100 –120 –140 –160 –160 –180 100 200 300 400 FREQUENCY (kHz) 500 15983-123 –140 0 GAIN = 3.2 fS = 1000kSPS fIN = 10.1kHz SNR = 87.6dB SINAD = 87.5dB THD = –105dB SFDR = 106dB –20 AMPLITUDE (dBFS) –20 AMPLITUDE (dBFS) 100 Figure 20. 10 kHz FFT, PGIA Gain = 0.4 –180 0 100 200 300 400 FREQUENCY (kHz) Figure 23. 10 kHz FFT, PGIA Gain = 3.2 Rev. 0 | Page 15 of 21 500 15983-126 AMPLITUDE (dBFS) –40 GAIN = 0.8 fS = 1000kSPS fIN = 10.1kHz SNR = 90.7dB SINAD = 90.6dB THD = –107dB SFDR = 106dB –20 AMPLITUDE (dBFS) –20 15983-124 GAIN = 0.16 fS = 1000kSPS fIN = 10.1kHz SNR = 91.7dB SINAD = 89.2dB THD = –92.5dB SFDR = 92.5dB ADAS3022-EP Enhanced Product –55 0 –20 –60 –65 –70 –75 –80 THD (dB) AMPLITUDE (dBFS) –40 GAIN = 0.4, GAIN = 0.8, GAIN = 1.6, GAIN = 3.2, GAIN = 0.4, GAIN = 0.8, GAIN = 1.6, GAIN = 3.2, –60 GAIN = 6.4 fS = 1000kSPS fIN = 10.1kHz SNR = 85.7dB SINAD = 85.6dB THD = –101dB SFDR = 103dB –80 –100 –0.5dBFS –0.5dBFS –0.5dBFS –0.5dBFS –10dBFS –10dBFS –10dBFS –10dBFS –85 –90 –95 –100 –120 –105 –140 –110 –115 –160 100 200 400 300 500 FREQUENCY (kHz) –125 15983-127 0 10 1 100 1000 FREQUENCY (kHz) Figure 24. 10 kHz FFT, PGIA Gain = 6.4 15983-304 –120 –180 Figure 27. THD vs. Frequency –60 100 INTERNAL REFERENCE CHANNEL 4 TO COM, SEQUENCER DISABLED VIN = –0.5dBFS ON CHANNEL 0 TO CHANNEL 3, CHANNEL 5 TO CHANNEL 7 fS = 1000kSPS –70 95 –80 CROSSTALK (dB) 85 80 75 70 1 –0.5dBFS –0.5dBFS –0.5dBFS –0.5dBFS –10dBFS –10dBFS –10dBFS –10dBFS 10 –90 –100 –110 –120 –130 100 1000 FREQUENCY (kHz) –140 0 20 40 60 80 100 120 180 200 Figure 28. Crosstalk vs. Frequency Figure 25. SNR vs. Frequency 100 130 GAIN = 0.16 GAIN = 0.20 GAIN = 0.40 GAIN = 0.80 GAIN = 1.60 GAIN = 3.20 GAIN = 6.40 95 120 90 110 CMRR (dB) 80 75 70 GAIN = 0.4, –0.5dBFS GAIN = 0.8, –0.5dBFS GAIN = 1.6, –0.5dBFS GAIN = 3.2, –0.5dBFS GAIN = 0.4, –10dBFS GAIN = 0.8, –10dBFS GAIN = 1.6, –10dBFS GAIN = 3.2, –10dBFS 60 55 50 1 10 90 80 COMMON-MODE AMPLITUDE = 20.48V p-p INTERNAL REFERENCE fS = 1000kSPS 70 100 FREQUENCY (kHz) 1000 15983-302 65 100 60 1 10 100 1k FREQUENCY (Hz) Figure 29. CMRR vs. Frequency Figure 26. SINAD vs. Frequency Rev. 0 | Page 16 of 21 10k 100k 15983-139 85 SINAD (dB) 160 140 FREQUENCY (kHz) 15983-300 GAIN = 0.4, GAIN = 0.8, GAIN = 1.6, GAIN = 3.2, GAIN = 0.4, GAIN = 0.8, GAIN = 1.6, GAIN = 3.2, 15983-303 SNR (dB) 90 Enhanced Product ADAS3022-EP –55 PSRR VDDH AVDD, GAIN = 0.2 AVDD, GAIN = 3.2 20 PSRR VSSH AVDD, GAIN = 1.6 AVDD, GAIN = 6.4 GAIN = 0.2 GAIN = 1.6 –60 AVDD CURRENT (mA) –65 –70 –75 –80 –85 –90 GAIN = 0.8 GAIN = 6.4 16 14 12 0.1 1 10 100 FREQUENCY (kHz) 10 10 Figure 30. Power Supply Rejection Ration (PSRR) vs. Frequency GAIN = 0.2 GAIN = 1.6 Figure 33. AVDD Current vs. Throughput, Internal Reference 15 GAIN = 0.8 GAIN = 6.4 GAIN = 0.4 GAIN = 3.2 GAIN = 0.2 GAIN = 1.6 18 GAIN = 0.8 GAIN = 6.4 GAIN = 0.4 GAIN = 3.2 AVDD CURRENT (mA) 14 17 16 15 14 13 12 11 10 4.8 4.9 5.0 5.1 5.2 5.3 AVDD SUPPLY (V) 9 15983-130 13 4.7 1000 10 100 1000 THROUGHPUT (kSPS) Figure 31. AVDD Current vs. AVDD Supply, Internal Reference 15983-135 19 100 THROUGHPUT (kSPS) 15983-134 –95 –100 0.01 AVDD CURRENT (mA) GAIN = 0.4 GAIN = 3.2 18 15983-301 POWER SUPPLY REJECTION RATIO (dB) –50 Figure 34. AVDD Current vs. Throughput, External Reference 15 4.5 GAIN = 0.2 GAIN = 1.6 4.0 GAIN = 0.4 GAIN = 3.2 GAIN = 0.8 GAIN = 6.4 14 DVDD CURRENT (mA) 13 12 3.0 2.5 2.0 1.5 11 10 4.7 4.8 GAIN = 0.4 GAIN = 3.2 4.9 GAIN = 0.8 GAIN = 6.4 5.0 5.1 1.0 5.2 5.3 AVDD SUPPLY (V) Figure 32. AVDD Current vs. AVDD Supply, External Reference 0.5 10 100 THROUGHPUT (kSPS) Figure 35. DVDD Current vs. Throughput Rev. 0 | Page 17 of 21 1000 15983-136 GAIN = 0.2 GAIN = 1.6 15983-131 AVDD CURRENT (mA) 3.5 ADAS3022-EP Enhanced Product 0 18 GAIN = 0.2 GAIN = 1.6 fS = 1000kSPS GAIN = 0.8 GAIN = 6.4 GAIN = 0.4 GAIN = 3.2 –2 –4 VSSH CURRENT (mA) VDDH CURRENT (mA) 15 12 9 6 –6 –8 –10 –12 –14 –16 3 100 1000 THROUGHPUT (kSPS) 15983-137 10 –20 –50 –40 –30 –20 –10 10 20 30 40 50 GAIN = 0.8 GAIN = 6.4 70 60 90 80 Figure 39. VSSH Current vs. Temperature 19.5 0 fS = 1000kSPS GAIN = 0.2 GAIN = 1.6 GAIN = 0.4 GAIN = 3.2 GAIN = 0.8 GAIN = 6.4 19.0 AVDD CURRENT (mA) –3 –6 –9 –12 –15 17.5 17.0 16.5 GAIN = 0.8 GAIN = 6.4 –18 10 18.0 100 1000 THROUGHPUT (kSPS) 16.0 –50 –40 –30 –20 –10 18 GAIN = 0.2 GAIN = 1.6 GAIN = 0.4 GAIN = 3.2 10 20 30 40 50 70 60 80 90 Figure 40. AVDD Current vs. Temperature Figure 37. VSSH Current vs. Throughput 20 0 TEMPERATURE (°C) 15983-144 GAIN = 0.4 GAIN = 3.2 15983-138 GAIN = 0.2 GAIN = 1.6 18.5 1.0 GAIN = 0.8 GAIN = 6.4 0.9 fS = 1000kSPS VIO = 3.3V fS = 1000kSPS GAIN = 0.2 GAIN = 1.6 GAIN = 0.4 GAIN = 3.2 GAIN = 0.8 GAIN = 6.4 0.8 DVDD CURRENT (mA) 16 14 12 10 8 6 0.7 0.6 0.5 0.4 0.3 0.2 2 0.1 0 –50 –40 –30 –20 –10 0 10 20 30 40 50 60 TEMPERATURE (°C) 70 80 90 15983-142 4 0 –50 –40 –30 –20 –10 0 10 20 30 40 50 60 70 TEMPERATURE (°C) Figure 41. DVDD Current vs. Temperature Figure 38. VDDH Current vs. Temperature Rev. 0 | Page 18 of 21 80 90 15983-146 VSSH CURRENT (mA) 0 GAIN = 0.4 GAIN = 3.2 TEMPERATURE (°C) Figure 36. VDDH Current vs. Throughput VDDH CURRENT (mA) GAIN = 0.2 GAIN = 1.6 15983-143 –18 0 Enhanced Product ADAS3022-EP 5 4.00 fS = 1000kSPS GAIN = 0.2 GAIN = 1.6 GAIN = 0.4 GAIN = 3.2 GAIN = 0.8 GAIN = 6.4 4 3.75 3 GAIN ERROR (LSB) VIO CURRENT (mA) 3.50 3.25 3.00 2.75 2 GAIN = 0.16 GAIN = 0.2 GAIN = 0.4 GAIN = 0.8 GAIN = 1.6 GAIN = 3.2 GAIN = 6.4 fS = 1000kSPS EXTERNAL REFERENCE 1 0 –1 –2 2.50 –3 2.25 10 20 30 40 50 60 70 80 90 TEMPERATURE (°C) –5 –50 –40 –30 –20 –10 15983-145 0 50 60 70 80 90 70 80 90 70 80 90 Figure 45. Gain Error vs. Temperature Figure 42. VIO Current vs. Temperature 12 100 fS = 1000kSPS GAIN = 0.16 GAIN = 0.2 GAIN = 0.4 GAIN = 0.8 GAIN = 1.6 GAIN = 3.2 GAIN = 6.4 96 94 8 OFFSET ERROR (LSB) 98 SNR (dB) 0 10 20 30 40 TEMPERATURE (°C) 15983-149 –4 2.00 –50 –40 –30 –20 –10 92 90 88 86 84 GAIN = 0.16 GAIN = 0.2 GAIN = 0.4 GAIN = 0.8 GAIN = 1.6 GAIN = 3.2 GAIN = 6.4 fS = 1000kSPS EXTERNAL REFERENCE 4 0 –4 –8 0 10 20 30 40 50 60 70 80 90 TEMPERATURE (°C) –12 –50 –40 –30 –20 –10 15983-147 80 –50 –40 –30 –20 –10 Figure 43. SNR vs. Temperature –85 –90 20 30 40 50 60 5 GAIN = 0.16 GAIN = 0.2 GAIN = 0.4 GAIN = 0.8 GAIN = 1.6 GAIN = 3.2 GAIN = 6.4 fS = 1000kSPS 4 EXTERNAL REFERENCE 3 2 –95 –100 –105 GAIN ERROR 1 0 –1 OFFSET ERROR –2 –110 –3 –115 0 10 20 30 40 50 TEMPERATURE (°C) Figure 44. THD vs. Temperature 60 70 80 90 –5 –50 –40 –30 –20 –10 0 10 20 30 40 TEMPERATURE (°C) 50 60 15983-151 –4 –120 –50 –40 –30 –20 –10 15983-148 THD (dB) 10 Figure 46. Offset Error vs. Temperature ERROR (LSB) –80 0 TEMPERATURE (°C) 15983-150 82 Figure 47. Offset and Gain Errors of the AUX +/AUX− ADC Channel Pair vs. Temperature Rev. 0 | Page 19 of 21 ADAS3022-EP Enhanced Product 5200 5000 4800 4600 4400 4200 4000 3800 3400 –50 –40 –30 –20 –10 0 10 20 30 40 50 60 70 90 80 TEMPERATURE (°C) 20 16 10 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 –0.5dBFS –3.5 –4.5 10k GAIN = 0.4 GAIN = 1.6 GAIN = 6.4 100k 1M FREQUENCY (Hz) 10M 15983-153 NORMALIZED CLOSED-LOOP GAIN (dB) fS = 1000kSPS GAIN = 0.2 GAIN = 0.8 GAIN = 3.2 12 8 5 4 0 0 100 200 300 400 500 600 700 800 900 0 1000 THROUGHPUT (kSPS) Figure 50. Temperature Sensor Output Error vs. Throughput 0 –4.0 24 15 Figure 48. Temperature Sensor Output Code vs. Temperature 0.5 28 20 15983-152 3600 TA = 25°C INTERNAL REFERENCE Figure 49. Large Signal Frequency Response vs. Gain Rev. 0 | Page 20 of 21 TEMPERATURE SENSOR OUTPUT ERROR (°C) TEMP SENSOR OUTPUT CODE (LSB) 5400 32 25 15983-154 TEMPERATURE SENSOR OUTPUT ERROR (mV) 5600 Enhanced Product ADAS3022-EP OUTLINE DIMENSIONS 0.30 0.25 0.18 40 31 30 1 0.50 BSC TOP VIEW 1.00 0.95 0.85 0.45 0.40 0.35 11 20 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF SEATING PLANE *4.70 4.60 SQ 4.50 EXPOSED PAD 21 PIN 1 INDICATOR 10 BOTTOM VIEW 0.25 MIN FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. *COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-5 WITH THE EXCEPTION OF THE EXPOSED PAD DIMENSION. 11-22-2013-B PIN 1 INDICATOR 6.10 6.00 SQ 5.90 Figure 51. 40-Lead Lead Frame Chip Scale Package [LFCSP] 6 mm × 6 mm Body and 0.95 mm Package Height (CP-40-15) Dimensions shown in millimeters (See the ADAS3022 Data Sheet for Additional Information) ORDERING GUIDE Model1 ADAS3022SCPZ-EP ADAS3022SCPZ-EP-RL EVAL-ADAS3022EDZ 1 Temperature Range −55°C to +105°C −55°C to +105°C Package Description 40-Lead Lead Frame Chip Scale Package [LFCSP] 40-Lead Lead Frame Chip Scale Package [LFCSP] Evaluation Board Z = RoHS Compliant Part. ©2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D15983-0-6/17(0) Rev. 0 | Page 21 of 21 Package Option CP-40-15 CP-40-15
ADAS3022SCPZ-EP-RL 价格&库存

很抱歉,暂时无法提供与“ADAS3022SCPZ-EP-RL”相匹配的价格&库存,您可以联系我们找货

免费人工找货