0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADATE304BBCZ

ADATE304BBCZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    84-TFBGA,CSPBGA

  • 描述:

    IC DCL 84CSPBGA

  • 数据手册
  • 价格&库存
ADATE304BBCZ 数据手册
Data Sheet 200 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH ADATE304 FEATURES GENERAL DESCRIPTION Driver 3-level driver with high-Z mode and built-in clamps Precision trimmed output resistance Low leakage mode (typically VCL. Table 3. Min Typ Max Unit Test Level −1.0 −200 ±50 +6.75 +200 V mV D P Resolution 0.6 0.75 mV PF DNL ±1 mV CT mV P mV/°C CT Parameter VCH Range Uncalibrated Accuracy INL −40 Tempco VCL Range Uncalibrated Accuracy ±2 +40 −0.3 −1.25 −200 ±50 +5.75 +200 V mV D P Resolution 0.6 0.75 mV PF DNL ±1 mV CT mV P mV/°C CT mA mA mV P P P INL −40 Tempco DC CLAMP CURRENT LIMIT VCH VCL DUTGND VOLTAGE ACCURACY ±2 +40 0.5 −120 60 −7 −85 85 ±1 −60 120 +7 Test Conditions/Comments Driver high-Z, sinking 1 mA; VCH error measured at the calibration points of 0.0 V and 5.0 V Driver high-Z, sinking 1 mA; after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 0.0 V and 5.0 V Driver high-Z, sinking 1 mA; after two-point gain/offset calibration Driver high-Z, sinking 1 mA; after two-point gain/offset calibration; measured over VCH range of −1.0 V to +6.75 V Measured at calibration points Driver high-Z, sourcing 1 mA; VCL error measured at the calibration points of 0.0 V and 5.0 V Driver high-Z, sourcing 1 mA; after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 0.0 V and 5.0 V Driver high-Z, sourcing 1 mA; after two-point gain/offset calibration Driver high-Z, sourcing 1 mA; after two-point gain/offset calibration; measured over VCL range of −1.0 V to +5.75 V Measured at calibration points Driver high-Z, VCH = 0 V, VCL = −1.0 V, VDUTx = +5 V Driver high-Z, VCH = 6.75 V, VCL = 5.0 V, VDUTx = 0.0 V Over ±0.1 V range; measured at the endpoints of VCH and VCL functional range NORMAL WINDOW COMPARATOR VOH tests done with VOL = −1.25 V; VOL tests done with VOH = +6.75 V, unless otherwise specified. Table 4. Parameter DC SPECIFICATIONS Input Voltage Range Differential Voltage Range Comparator Input Offset Voltage Accuracy, Uncalibrated Comparator Threshold Resolution Comparator Threshold DNL Comparator Threshold INL Comparator Input Offset Voltage Tempco DUTGND Voltage Accuracy Min −1.25 ±0.1 −150 −7 Typ Max Unit Test Level ±30 +6.75 ±8.0 +150 V V mV D D P 0.6 1 mV PF ±1 ±1.3 +7 mV mV CT P µV/°C CT mV P ±100 −7 ±0.5 +7 Rev. C | Page 7 of 51 Test Conditions/Comments Offset measured at the calibration points of 0.0 V and 5.0 V After two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 0 V and 5 V After two-point gain/offset calibration After two-point gain/offset calibration; measured over VOH, VOL range of −1.25 V to +6.75 V Measured at calibration points Over ±0.1 V range; measured at endpoints of VOH and VOL functional range ADATE304 Parameter Comparator Uncertainty Range DC Hysteresis DC PSRR Digital Output Characteristics Internal Pull-Up Resistance to Comparator, COMP_VTT Pin VCOMP_VTT Range Common-Mode Voltage Data Sheet Min Typ 6.0 Test Level CB mV mV/V CB CT 60 Ω P 5.0 V V V mV mV ps D CT P CT P CB 0.5 ±5 40 50 3.3 VCOMP_VTT − 1.88 VCOMP_VTT − 2.075 Differential Voltage 400 Rise/Fall Time, 20% to 80% Unit mV Max VCOMP_VTT − 1.675 250 500 450 600 AC SPECIFICATIONS Propagation Delay, Input to Output 1.75 ns CB Propagation Delay Tempco 5 ps/°C CT 200 ps CB 50 ps CB 50 ps CB Overdrive, 250 mV and 1.0 V 75 ps CB Pulse Width, Sweep 1.6 ns to 10 ns 75 ps CB Duty Cycle, 5% to 95% 50 ps CB Minimum Pulse Width 2.0 ns CB Input Equivalent Bandwidth, Terminated ERT High-Z Mode, 3 V, 20% to 80% 500 MHz CB 2.5 ns CB Propagation Delay Matching High Transition to Low Transition High to Low Comparator Propagation Delay Change (with Respect To) Slew Rate, 800 ps, 1 ns, 1.2 ns, and 2.2 ns (10% to 90%) Rev. C | Page 8 of 51 Test Conditions/Comments VDUTx = 0 V, sweep comparator threshold to determine uncertainty region VDUTx = 0 V Measured at calibration points Pull 1 mA and 10 mA from Logic 1 leg and measure ΔV to calculate resistance; measured ΔV/9 mA; done for both comparator logic states Measured with 100 Ω differential termination Measured with no external termination Measured with 100 Ω differential termination Measured with no external termination Measured with each comparator leg terminated 50 Ω to GND Input transition time = 800 ps, 10% to 90%; measured with each comparator leg terminated 50 Ω to GND, unless otherwise specified VDUTx = 0 V to 1.0 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = +0.50 V, VOL = −1.25 V; low-side measurement: VOH = +6.75 V, VOL = +0.50 V VDUTx = 0 V to 1.0 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = +0.50 V, VOL = −1.25 V; low-side measurement: VOH = +6.75 V, VOL = +0.50 V VDUTx = 0 V to 1.0 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = +0.50 V, VOL = −1.25 V; low-side measurement: VOH = +6.75 V, VOL = +0.50 V VDUTx = 0 V to 1.0 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = +0.50 V, VOL = −1.25 V; low-side measurement: VOH = +6.75V, VOL = +0.50 V For 250 mV: VDUTx = 0 V to 0.5 V swing; for 1.0 V: VDUTx = 0 V to 1.25 V swing; Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = +0.25 V, VOL = −1.25 V; low-side measurement: VOH = +6.75 V, VOL = +0.25 V VDUTx = 0 V to 1.0 V swing @ 32.0 MHz, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = +0.5 V, VOL = −1.25 V; low-side measurement: VOH = +6.75 V, VOL = +0.5 V VDUTx = 0 V to 1.0 V swing @ 1.0 MHz, Driver VTERM mode, VT =0.0 V; high-side measurement: VOH = +0.50 V, VOL = −1.25 V; low-side measurement: VOH = +6.75 V, VOL = +0.50 V VDUTx = 0 V to 1.0 V swing, Driver VTERM mode, VT = 0.0 V; less than 12% amplitude degradation measured by shmoo VDUTx = 0 V to 1.0 V swing, Driver VTERM mode, VT = 0.0 V; as measured by shmoo VDUTx = 0 V to 3.0 V swing, driver high-Z; as measured by shmoo; input transition time of ~2000 ps, 10% to 90% Data Sheet ADATE304 DIFFERENTIAL COMPARATOR VOH tests done with VOL = −1.1 V, VOL tests done with VOH = +1.1 V, unless otherwise specified. Table 5. Parameter DC SPECIFICATIONS Input Voltage Range Operational Differential Voltage Range Maximum Differential Voltage Range Comparator Input Offset Voltage Accuracy, Uncalibrated VOH, VOL Resolution Min Unit Test Level +4.5 ±1.1 V V D D ±35 ±8 +150 V mV D P/CT 0.6 1 mV PF mV CT mV P µV/°C mV CT CB mV mV/V CB P −1.25 ±0.05 −150 VOH, VOL DNL VOH, VOL INL Max Typ ±1 −15 ±2.0 +15 VOH, VOL Offset Voltage Tempco Comparator Uncertainty Range ±200 18 DC Hysteresis CMRR 0.5 0.15 DC PSRR AC SPECIFICATIONS ±1.5 mV/V CT Propagation Delay, Input to Output 1.7 ns CB Propagation Delay Tempco 5 ps/°C CT 100 50 ps ps CB CB 1 Propagation Delay Matching High Transition to Low Transition High-to-Low Comparator Propagation Delay Change (with Respect To) Slew Rate, 800 ps, 1 ns, 1.2 ns, and 2.2 ns (10% to 90%) 60 ps CB Overdrive, 250 mV and 750 mV 100 ps CB Pulse Width, Sweep from 1.6 ns to 10 ns 75 ps CB Duty Cycle, 5% to 95% 60 ps CB Rev. C | Page 9 of 51 Test Conditions/Comments Offset measured at differential calibration points +1.0 V and −1.0 V, with common mode = 0.0 V After two-point gain/offset calibration; range/number of DAC bits as measured at differential calibration points +1.0 V and −1.0 V, with common mode = 0.0 V After two-point gain/offset calibration; common mode = 0.0 V After two-point gain/offset calibration; measured over VOH, VOL range of −1.1 V to +1.1 V, common mode = 0.0 V Measured at calibration points VDUTx = 0 V, sweep comparator threshold to determine uncertainty region VDUTx = 0 V Offset measured at common-mode voltage points of −1.5 V and +4.5 V, with differential voltage = 0.0 V Measured at calibration points Input transition time = 800 ps, 10% to 90%, measured with each comparator leg terminated 50 Ω to GND VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = +1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = +1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = +1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = +1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = +1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, for 250 mV: VDUT1 = 0 V to 0.5 V swing; for 750 mV: VDUT1 = 0 V to 1.0 V swing, Driver VTERM mode, VT = 0.0 V; VOH = −0.25 V; repeat for other DUT channel with comparator threshold = +0.25 V VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 32 MHz, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = +1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 1 MHz, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = +1.1 V, VOL = 0.0 V; repeat for other DUT channel ADATE304 Data Sheet Parameter Minimum Pulse Width Min Typ 2.5 Input Equivalent Bandwidth, Terminated Max 400 Unit ns Test Level CB MHz CB Test Conditions/Comments VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = +1.1 V, VOL = 0.0 V; less than 10% amplitude degradation measured by shmoo; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = +1.1 V, VOL = 0.0 V; less than 22% amplitude degradation measured by shmoo; repeat for other DUT channel ACTIVE LOAD See the Truth Tables section and Table 29 for load control information. Table 6. Parameter DC SPECIFICATIONS Input Characteristics VCOM Voltage Range VDUT Range VCOM Accuracy, Uncalibrated Min −1.00 −1.25 −200 VCOM Resolution Typ Max Unit Test Level ±30 +6.50 +6.75 +200 V V mV D D P 0.6 1 mV PF VCOM DNL VCOM INL −7 ±1 ±2 +7 mV mV CT P DUTGND Voltage Accuracy −7 ±1 +7 mV P Output Characteristics IOL Maximum Source Current Uncalibrated Offset 12 −600 ±100 +600 mA µA D P Uncalibrated Gain −12 ±4 +12 % P Resolution 1.5 2 µA PF DNL ±3.0 µA CT +80 µA P 0.25 V P INL −80 ±20 90% Commutation Voltage IOH Maximum Sink Current Uncalibrated Offset 12 −600 ±100 +600 mA µA D P −12 ±4 +12 % P Resolution 1.5 2 µA PF DNL ±3.0 µA CT Uncalibrated Gain Test Conditions/Comments Load active on, RCV active, unless otherwise noted IOH = IOL = 6 mA, VCOM error measured at the calibration points of 0.0 V and 5.0 V IOH = IOL = 6 mA, after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 0.0 V and 5.0 V IOH = IOL = 6 mA, after two-point gain/offset calibration IOH = IOL = 6 mA, after two-point gain/offset calibration; measured over VCOM range of −1.00 V to +6.50 V Over ±0.1 V range; measured at end points of VCOM functional range IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL offset calculated from the calibration points of 1 mA and 11 mA IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL gain calculated from the calibration points of 1 mA and 11 mA IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/ offset calibration; range/number of DAC bits as measured at the calibration points of 1 mA and 11 mA IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/offset calibration IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/ offset calibration; measured over IOL range of 0 mA to 12 mA IOH = IOL = 12 mA, VCOM = 2.0 V, measure IOL reference at VDUTx = −1.0 V, measure IOL current at VDUTx = +1.75 V, ensure > 90% of reference current IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH offset calculated from the calibration points of 1 mA and 11 mA IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH gain calculated from the calibration points of 1 mA and 11 mA IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 1 mA and 11 mA IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point gain/offset calibration Rev. C | Page 10 of 51 Data Sheet Parameter INL ADATE304 Min −80 Typ ±20 90% Commutation Voltage Max +80 Unit µA Test Level P 0.25 V P Output Current Tempco AC SPECIFICATIONS Dynamic Performance Propagation Delay, Load Active On to Load Active Off; 50%,90% ±1.5 µA/°C CT 7.3 ns CB Propagation Delay, Load Active Off to Load Active On; 50%, 90% 10.3 ns CB Propagation Delay Matching 3.0 ns CB Load Spike 190 mV CB Settling Time to 90% 1.9 ns CB Test Conditions/Comments IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point gain/ offset calibration; measured over IOH range of 0 mA to 12 mA IOH = IOL =12 mA, VCOM = 2.0 V, measure IOH reference at VDUTx = 5.0 V, measure IOH current at VDUTx = 2.25 V, ensure > 90% of reference current Measured at calibration points Load active on, unless otherwise noted Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; measured from 50% point of RCVxP − RCVxN to 90% point of final output, repeat for drive low and high Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; measured from 50% point of RCVxP − RCVxN to 90% point of final output, repeat for drive low and high Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; active on vs. active off, repeat for drive low and high Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 0 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; repeat for drive low and high Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; measured at 90% of final value PMU FV is the force voltage, MV is the measure voltage, FI is the force current, MI is the measure current, FN is force nothing. Table 7. Parameter FORCE VOLTAGE (FV) Current Range A Current Range B Current Range C Current Range D Current Range E Force Input Voltage Range at Output for All Ranges Force Voltage Uncalibrated Accuracy for Range C Force Voltage Uncalibrated Accuracy for All Ranges Force Voltage Offset Tempco for All Ranges Force Voltage Gain Tempco for All Ranges Forced Voltage INL Min Max Unit Test Level +6.75 mA mA µA µA µA V D D D D D D +100 mV P ±25 mV CT ±25 µV/°C CT PMU enabled, FV, Range C, PE disabled, error measured at calibration points of 0.0 V and 5.0 V PMU enabled, FV, PE disabled, error measured at calibration points of 0.0 V and 5.0 V; repeat for each PMU current range Measured at calibration points for each PMU current range ±10 ppm/°C CT Measured at calibration points for each PMU current range mV P PMU enabled, FV, Range C, PE disabled, after two-point gain/offset calibration; measured over output range of −1.25 V to +6.75 V PMU enabled, FV, PE disabled, force −1.25 V, measure voltage while PMU sinking zero and full-scale current; measure ∆V; force 6.75 V, measure voltage while PMU sourcing zero and full-scale current; measure ∆V; repeat for each PMU current range mV mV CT CT Typ ±32 ±2 ±200 ±20 ±2 −1.25 −100 −7 ±25 ±2 +7 Force Voltage Compliance vs. Current Load Range A Range B to Range E ±4 ±1 Rev. C | Page 11 of 51 Test Conditions/Comments ADATE304 Parameter Current Limit, Source, and Sink Range A Range B to Range E DUTGND Voltage Accuracy Data Sheet Min Typ Max Unit Test Level 108 140 180 %FS P 120 145 180 %FS P −7 ±1 +7 mV P +6.75 V D µA CT µA P MEASURE CURRENT (MI) Measure Current, Pin DUTx Voltage Range for All Ranges Measure Current Uncalibrated Accuracy Range A Range B −1.25 ±500 −400 ±3.0 +400 Test Conditions/Comments PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx to 6.0 V; source: force 2.5 V, short DUTx to −1.0 V; Range A FS = 32 mA, 108% FS = 35 mA, 180% FS = 58 mA PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx to 6.0 V; source: force 2.5 V, short DUTx to −1.0 V; repeat for each PMU current range; example: Range B FS = 2 mA, 120 % FS = 2.4 mA, 180% FS = 3.6 mA Over ±0.1 V range; measured at endpoints of FV functional range VDUTx externally forced to 0.0V, unless otherwise specified; ideal MEASOUT transfer functions: VMEASOUT01 [V] = (IMEASOUT01 × 5/FSR) + 2.5 + VDUTGND I(VMEASOUT01) [A] = (VMEASOUT01 − VDUTGND − 2.5) × FSR/5 PMU enabled, FIMI, Range A, PE disabled, error at calibration points −25 mA and +25 mA, error = (I(VMEASOUT01) − IDUTx) PMU enabled, FIMI, Range B, PE disabled, error at calibration points −1.6 mA and +1.6 mA, error = (I(VMEASOUT01) − IDUTx) PMU enabled, FIMI, PE disabled, error at calibration points of ±80% FS, error = (I(VMEASOUT01)1 − IDUTx) PMU enabled, FIMI, PE disabled, error at calibration points of ±80% FS, error = (I(VMEASOUT01) − IDUTx) PMU enabled, FIMI, PE disabled, error at calibration points of ±80% FS, error = (I(VMEASOUT01) − IDUTx) Range C ± 2.00 µA CT Range D ±0.30 µA CT Range E ±0.08 µA CT ±2 ±25 ±5 ±1 µA/°C nA/°C nA/°C nA/°C CT CT CT CT Measured at calibration points Measured at calibration points Measured at calibration points Measured at calibration points ±2.5 % CT % P ±4 % CT PMU enabled, FIMI, PE disabled, gain error from calibration points ±80% FS PMU enabled, FIMI, Range B, PE disabled, gain error from calibration points ±1.6 mA PMU enabled, FIMI, PE disabled, gain error from calibration points ±80% FS Measured at calibration points ±300 ±50 ppm/°C ppm/°C CT CT ±0.05 %FSR CT %FSR P %FSR CT %FSR/V P mV CT Measure Current Offset Tempco Range A Range B Range C Range D and Range E Measure Current Gain Error, Nominal Gain = 1 Range A Range B −20 Range C to Range E Measure Current Gain Tempco Range A Range B to Range E Measure Current INL Range A Range B −0.02 Range B to Range E FVMI DUT Pin Voltage Rejection DUTGND Voltage Accuracy ±2 +20 +0.02 ±0.01 −0.01 +0.01 ±2.5 Rev. C | Page 12 of 51 PMU enabled, FIMI, Range A, PE disabled, after two-point gain/offset calibration, measured over FSR output of −32 mA to +32 mA PMU enabled, FIM,I Range B, PE disabled, after two-point gain/ offset calibration measured over FSR output of −2 mA to +2 mA PMU enabled, FIMI, PE disabled, after two-point gain/offset calibration; measured over FSR output PMU enabled, FVMI, Range B, PE disabled, force −1 V and +5 V into load of 1 mA; measure ∆I reported at MEASOUT01 Over ±0.1 V range; measured at endpoints of MI functional range Data Sheet Parameter FORCE CURRENT (FI) Force Current, DUTx Pin Voltage Range for All Ranges Force Current Uncalibrated Accuracy Range A ADATE304 Min Typ −1.25 Max Unit Test Level +6.75 V D −5.0 ±0.5 +5.0 mA P Range B −400 ±40 +400 µA P Range C −40 ±4 +40 µA P Range D −4 ±0.4 +4 µA P Range E −400 ±75 +400 nA P −20 ±1 ±80 ±4 ±4 +20 µA/°C nA/°C nA/°C % CT CT CT P ppm/°C ppm/°C CT CT Force Current Offset Tempco Range A Range B Range C to Range E Forced Current Gain Error, Nominal Gain = 1 Forced Current Gain Tempco Range A Range B to Range E Force Current INL Range A −500 ±75 −0.3 ±0.05 +0.3 %FSR P −0.2 ±0.015 +0.2 %FSR P −0.6 −1.0 ±0.06 ±0.1 +0.6 +1.0 %FSR %FSR P P −1.25 −25 ±2.0 +6.75 +25 V mV D P −0.2 ±10 ±0.01 +0.2 µV/°C % CT P Measure Voltage Gain Tempco Measure Voltage INL −7 25 ±1 +7 ppm/°C mV CT P Rejection of Measure V vs. IDUTx −1.5 ±0.1 +1.5 mV P Range B to Range E Force Current Compliance vs. Voltage Load Range A to Range D Range E MEASURE VOLTAGE Measure Voltage Range Measure Voltage Uncalibrated Accuracy Measure Voltage Offset Tempco Measure Voltage Gain Error Rev. C | Page 13 of 51 Test Conditions/Comments VDUTx externally forced to 0.0V, unless otherwise specified, ideal force current transfer function: IFORCE = (PMUDAC − 2.5) × (FSR/5) PMU enabled, FIMI, Range A, PE disabled, error at calibration points of −25 mA and +25 mA PMU enabled, FIMI, Range B, PE disabled, error at calibration points of −1.6 mA and 1.6 mA PMU enabled, FIMI, Range C, PE disabled, error at calibration points of ±80% FS PMU enabled, FIMI, Range D, PE disabled, error at calibration points of ±80% FS PMU enabled, FIMI, Range E, PE disabled, error at calibration points of ±80% FS Measured at calibration points Measured at calibration points Measured at calibration points PMU enabled, FIMI, PE disabled, gain error from calibration points of ±80% FS Measured at calibration points PMU enabled, FIMI, Range A, PE disabled, after two-point gain/offset calibration; measured over FSR output of −32 mA to +32 mA PMU enabled, FIMI, PE disabled, after two-point gain/offset calibration; measured over FSR output PMU enabled, FIMV, PE disabled; force positive full-scale current driving −1.25 V and +6.75 V, measure ∆I @ DUTx pin; force negative full-scale current driving −1.25 V and +6.75 V, measure ∆I @ DUTx pin PMU enabled, FVMV, Range B, PE disabled, error at calibration points of 0 V and 5 V, error = (VMEASOUT01 − VDUTx) Measured at calibration points PMU enabled, FVMV, Range B, PE disabled, gain error from calibration points of 0 V and 5 V Measured at calibration points PMU enabled, FVMV, Range B, PE disabled, after two-point gain/offset calibration; measured over output range of −1.25 V to +6.75 V PMU enabled, FVMV, Range D, PE disabled, force 0 V into load of −10 µA and +10 µA; measure ∆V reported at MEASOUT01 ADATE304 Data Sheet Typ Max Unit Test Level 25 +6.75 4 200 V mA Ω D D P −1 +1 µA P −25 +25 mA P −1.25 0.75 −300 +10 +4.75 6.75 +300 V V mV D D P Negative Clamp Voltage Droop −300 −10 +300 mV P Uncalibrated Accuracy −250 ±100 +250 mV P INL −70 ±5 +70 mV P ±1 mV CT 15 µs S 20 µs S 124 µs S 1015 µs S 3455 µs S Parameter MEASOUT01 DC CHARACTERISTICS MEASOUT01 Voltage Range DC Output Current MEASOUT01 Pin Output Impedance Output Leakage Current when Tristated Output Short-Circuit Current VOLTAGE CLAMPS Low Clamp Range (VCL) High Clamp Range (VCH) Positive Clamp Voltage Droop DUTGND Voltage Accuracy Min −1.25 SETTLING/SWITCHING TIMES Voltage Force Settling Time to 0.1% of Final Value Range A, 200 pF and 2000 pF Load Range B, 200 pF and 2000 pF Load Range C, 200 pF and 2000 pF Load Range D, 200 pF and 2000 pF Load Range E, 200 pF and 2000 pF Load Voltage Force Settling Time to 1.0% of Final Value Range A, 200 pF and 2000 pF Load Range B, 200 pF and 2000 pF Load Range C, 200 pF and 2000 pF Load Range D, 200 pF Load Range D, 2000 pF Load Range E, 200 pF Load Range E, 2000 pF Load Test Conditions/Comments PMU enabled, FVMV, PE disabled; source resistance: PMU force +6.75 V and load with 0 mA and +4 mA; sink resistance: PMU force −1.25 V and load with 0 mA and −4 mA; resistance = ∆V/∆I at MEASOUT01 pin Tested at −1.25 V and +6.75 V PMU enabled, FVMV, PE disabled; source: PMU force +6.75 V, short MEASOUT01 to −1.25 V; sink: PMU force −1.25 V, short MEASOUT01 to +6.75 V PMU enabled, FIMI, Range A, PE disabled, PMU clamps enabled, VCH = +5.0 V, VCL = −1.0 V, PMU force 2.0 mA and 32 mA into open; ∆V seen at DUTx pin PMU enabled, FIMI, Range A, PE disabled, PMU clamps enabled, VCH = +5.0 V, VCL = −1.0 V, PMU force −2.0 mA and −32 mA into open; ∆V seen at DUTx pin PMU enabled, FIMI, Range B, PE disabled, PMU clamps enabled, PMU force ±1 mA into open; VCH errors at calibration points 1.0 V and 5.0 V; VCL errors at the calibration points 0.0 V and 4.0 V PMU enabled, FIMI, Range B, PE disabled, PMU clamps enabled, PMU force ±1 mA into open; after two-point gain/offset calibration; measured over PMU clamp range Over ±0.1 V range; measured at endpoints of PMU clamp functional range SCAP = 330 pF, FFCAP = 220 pF PMU enabled, FV, PE disabled, program PMUDAC steps of 500 mV and 5.0 V; simulation of worst case, 2000 pF load, PMUDAC step of 5.0 V PMU enabled, FV, PE disabled, start with PMUDAC programmed to 0.0 V, program PMUDAC to 500 mV 14 µs CB 14 µs CB 14 µs CB 45 45 45 225 µs µs µs µs CB CB CB CB Rev. C | Page 14 of 51 Data Sheet Parameter Voltage Force Settling Time to 1.0% of Final Value Range A, 200 pF and 2000 pF Load Range B, 200 pF Load Range B, 2000 pF Load Range C, 200 pF Load Range C, 2000 pF Load Range D, 200 pF Load Range D, 2000 pF Load Range E, 200 pF Load Range E, 2000 pF Load Current Force Settling Time to 0.1% of Final Value Range A, 200 pF in Parallel with 120 Ω Range B, 200 pF in Parallel with 1.5 kΩ Range C, 200 pF in Parallel with 15.0 kΩ Range D, 200 pF in Parallel with 150 kΩ Range E, 200 pF in Parallel with 1.5 MΩ Current Force Settling Time to 1.0% of Final Value Range A, 200 pF in Parallel with 120 Ω Range B, 200 pF in Parallel with 1.5 kΩ Range C, 200 pF in Parallel with 15.0 kΩ Range D, 200 pF in Parallel with 150 kΩ Range E, 200 pF in Parallel with 1.5 MΩ INTERACTION AND CROSSTALK Measure Voltage Channel-toChannel Crosstalk Measure Current Channel-toChannel Crosstalk ADATE304 Min Unit Test Level 4.0 µs CB 4.2 4.2 5.8 19 50 210 360 610 µs µs µs µs µs µs µs µs CB CB CB CB CB CB CB CB Typ Max Test Conditions/Comments PMU enabled, FV, PE disabled, start with PMUDAC programmed to 0.0 V, program PMUDAC to 5.0 V PMU enabled, FI, PE disabled, start with PMUDAC programmed to 0 current, program PMUDAC to FS current 8.2 µs S 9.4 µs S 30 µs S 281 µs S 2668 µs S PMU enabled, FI, PE disabled, start with PMUDAC programmed to 0 current, program PMUDAC to FS current 4.2 µs CB 4.3 µs CB 8.1 µs CB 205 µs CB 505 µs CB ±0.125 %FSR CT ±0.01 %FSR CT Rev. C | Page 15 of 51 PMU enabled, FIMV, PE disabled, Range B, forcing 0 mA into 0 V load; other channel: Range A, forcing a step of 0 mA to 25 mA into 0 V load; report ∆V of MEASOUT01 pin under test; 0.125% × 8.0 V = 10 mV PMU enabled, FVMI, PE disabled, Range E, forcing 0 V into 0 mA current load; other channel: Range E, forcing a step of 0 V to 5 V into 0 mA current load; report ∆V of MEASOUT01 pin under test; 0.01% × 5.0 V = 0.5 mV ADATE304 Data Sheet EXTERNAL SENSE (PMUS_CHx) Table 8. Parameter EXTERNAL SENSE (PMUS_CHX) Voltage Range Input Leakage Current Min Max Unit Test Level Test Conditions/Comments +6.75 +20 V nA D P Tested at −1.25 V and +6.75 V Typ Max Unit Test Level Test Conditions/Comments 1 +0.1 100 V μA D P Tested at −100 mV and +100 mV Test Conditions/Comments Typ −1.25 −20 DUTGND INPUT Table 9. Parameter DUTGND INPUT Input Voltage Range, Referenced to GND Input Bias Current Min −0.1 SERIAL PERIPHERAL INTERFACE Table 10. Parameter SERIAL PERIPHERAL INTERFACE Serial Input Logic High Serial Input Logic Low Input Bias Current SCLK Clock Rate SCLK Pulse Width SCLK Crosstalk on DUTx Pin Serial Output Logic High Serial Output Logic Low Update Time Min 1.8 0 −10 Typ 1 50 9 8 VCC − 0.4 Max Unit Test Level VCC 0.7 +10 V V μA MHz ns mV V PF PF P PF CT CB PF V μs PF D VCC 0 0.8 10 Rev. C | Page 16 of 51 Tested at 0.0 V and 3.3 V PE disabled, PMU FV enabled and forcing 0 V Sourcing 2 mA Sinking 2 mA Maximum delay time required for the part to enter a stable state after a serial bus Data Sheet ADATE304 HVOUT DRIVER Table 11. Parameter VHH BUFFER Voltage Range Output High Max Unit Test Level VPLUS − 3.25 V V D P 5.9 V P ±100 +500 mV P 1 1.21 1.5 mV/°C mV CT PF ±15 +30 mV P mV CT 10 Ω P 60 100 mA P −100 −60 mA P 200 ns CB 26 ns CB ±125 mV CB Min Typ 5.9 13.5 Output Low Accuracy Uncalibrated −500 Offset Tempco Resolution INL −30 DUTGND Voltage Accuracy ±1 Output Resistance 1 DC Output Current Limit Source DC Output Current Limit Sink Rise Time (From VL or VH to VHH) Fall Time (From VHH to VL or VH) Preshoot, Overshoot, and Undershoot VL/VH BUFFER Voltage Range Accuracy Uncalibrated −0.1 −500 Offset Tempco Resolution INL −20 DUTGND Voltage Accuracy ±100 +6.0 +500 V mV D P 1 0.61 0.75 mV/°C mV CT PF ±4 +20 mV P mV CT 50 Ω P ±2 Output Resistance 45 48 DC Output Current Limit Source DC Output Current Limit Sink 60 100 mA P −100 −60 mA P Rise Time (VL to VH) 11 ns CB Fall Time (VH to VL) 11.3 ns CB Preshoot, Overshoot, and Undershoot ±54 mV CB Rev. C | Page 17 of 51 Test Conditions/Comments VHH = (VT + 1 V) × 2 + DUTGND VPLUS = 16.75 V nominal; in this condition, VHVOUT max = 13.5 V VHH mode enabled, RCV active, VHH level = full scale, sourcing 15 mA VHH mode enabled, RCV active, VHH level = zero scale, sinking 15 mA VHH mode enabled, RCV active, VHVOUT error measured at the calibration points of 7 V and 12 V Measured at calibration points VHH mode enabled, RCV active, after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 7 V and 12 V VHH mode enabled, RCV active, after two-point gain/offset calibration; measured over VHH range of 5.9 V to 13.5 V Over ±0.1 V range; measured at endpoints of VHH functional range VHH mode enabled, RCV active, source: VHH = 10.0 V, IHVOUT = 0 mA and 15 mA; sink: VHH = 6.5 V, IHVOUT = 0 mA and −15 mA; ∆V/∆I VHH mode enabled, RCV active, VHH = 10.0 V, short HVOUT pin to 5.9 V, measure current VHH mode enabled, RCV active, VHH = 6.5 V, short HVOUT pin to 14.1 V, measure current VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH = 3.0 V; 20% to 80%, for DATA = high and DATA = low VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH = 3.0 V; 20% to 80%, for DATA = high and DATA = low VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH = 3.0 V; for DATA = high and DATA = low VHH mode enabled, RCV inactive, error measured at the calibration points 0 V and 5 V Measured at calibration points VHH mode enabled, RCV inactive, after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points 0 V and 5 V VHH mode enabled, RCV inactive, after two-point gain/offset calibration; measured over range of −0.1 V to +6.0 V Over ±0.1 V range; measured at endpoints of VH and VL, functional range VHH mode enabled, RCV inactive, source: VH = 3.0 V, IHVOUT = +1 mA and +50 mA; sink: VL = 2.0 V, IHVOUT = −1 mA and −50 mA; ∆V/∆I VHH mode enabled, RCV inactive, VH = +6.0 V, short HVOUT pin to −0.1 V, DATA high, measure current VHH mode enabled, RCV inactive, VL = −0.1 V, short HVOUT pin to +6.0 V, DATA low, measure current VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V, toggle DATA; 20% to 80% VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V, toggle DATA; 20% to 80% VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V, toggle DATA ADATE304 Data Sheet OVERVOLTAGE DETECTOR (OVD) Table 12. Parameter DC CHARACTERISTICS Programmable Voltage Range Accuracy Uncalibrated Min Typ −2.25 −200 Max Unit Test Level +7.0 +200 V mV D P mV CB Test Conditions/Comments OVD offset errors measured at programmed levels of +7.0 V and −2.25 V Hysteresis LOGIC OUTPUT CHARACTERISTICS Off State Leakage 112 10 1000 nA P Maximum On Voltage @ 100 μA 0.2 0.7 V P Propagation Delay 1.9 μs CB Max Unit Test Level Test Conditions/Comments +7.5 V kΩ D CT PMUDAC = 0.0 V, FV, I = 0, 200 μA; ∆V/∆I Disable OVD alarm, apply 3.3 V to OVD pin, measure leakage current Activate alarm, force 100 μA into OVD pin, measure active alarm voltage For OVD high: DUTx = 0 V to +6 V swing, OVD high = +3.0 V, OVD low = −2.25 V; for OVD low: DUTx = 0 V to +6 V swing, OVD high = +7.0 V, OVD low = +3.0 V 16-BIT DAC MONITOR MUX Table 13. Parameter DC CHARACTERISTICS Programmable Voltage Range Output Resistance Min Typ −2.5 16 Rev. C | Page 18 of 51 Data Sheet ADATE304 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 14. Parameter Supply Voltages Positive Supply Voltage (VDD to GND) Positive VCC Supply Voltage (VCC to GND) Negative Supply Voltage (VSS to GND) Supply Voltage Difference (VDD to VSS) Reference Ground (DUTGND to GND) AGND to DGND VPLUS Supply Voltage (VPLUS to GND) Input Voltages Input Common-Mode Voltage Short-Circuit Voltage1 High Speed Input Voltage2 High Speed Differential Input Voltage3 VREF DUTx I/O Pin Current DCL Maximum Short-Circuit Current4 Temperature Operating Temperature, Junction Storage Temperature Range Rating Table 15. Thermal Resistance −0.5 V to +11.5 V −0.5 V to +4.0 V −6.25 V to +0.5 V −1.0 V to +16.5 V −0.5 V to +0.5 V −0.5 V to +0.5 V −0.5 V to +17.5 V VSS to VDD −3.0 V to +8.0 V 0.0 V to VCC 0.0 V to VCC −0.5 V to +5.5 V ±140 mA Package Type 84-Ball CSP_BGA θJA 31.1 EXPLANATION OF TEST LEVELS D Definition S Design verification simulation P 100% production tested PF Functionally checked during production test CT Characterized on tester CB Characterized on bench ESD CAUTION 125°C −65°C to +150°C 1 RL = 0 Ω, VDUT continuous short-circuit condition (VH, VL, VT, high-Z, VCOM, clamp modes). 2 DATAxP, DATAxN, RCVxP, RCVxN, under source RL = 0 Ω. 3 DATAxP to DATAxN, RCVxP, RCVxN. 4 RL = 0 Ω, VDUTx = –3 V to +8 V; DCL current limit. Continuous short-circuit condition. ADATE304 must current limit and survive continuous short circuit. Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. C | Page 19 of 51 θJC 0.51 ADATE304 Data Sheet PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 10 9 8 7 6 5 4 3 2 1 A HVOUT PMUS_CH0 VSSO_0 (DRIVE) DUT0 VDDO_0 (DRIVE) VDDO_1 (DRIVE) DUT1 VSSO_1 (DRIVE) PMUS_CH1 TEMPSENSE B VPLUS SCAP0 VSS AGND VDD VDD AGND VSS SCAP1 VDD/VDD_ TMPSNS C FFCAP_0B AGND DATA0N VSS VDD VDD VSS DATA1N AGND FFCAP_1B D OVD_CH0 VDD DATA0P DATA1P VDD OVD_CH1 E FFCAP_0A VSS RCV0N RCV1N VSS FFCAP_1A F AGND AGND RCV0P RCV1P AGND AGND COMP_QL0P COMP_QL0N COMP_VTT0 H COMP_QH0P COMP_QH0N COMP_VTT1 COMP_QL1N COMP_QL1P AGND VSS VDD VDD VSS AGND COMP_QH1N COMP_QH1P J AGND AGND AGND RST SDIN DGND DAC16_MON AGND AGND AGND K VREF_GND VREF AGND VCC SCLK SDOUT CS AGND DUTGND MEASOUT01/ TEMPSENSE Figure 2. Pin Configuration Rev. C | Page 20 of 51 07279-002 G Data Sheet ADATE304 Table 16. Pin Function Descriptions Pin No. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 D1 D2 D3 D8 D9 D10 E1 E2 E3 E8 E9 E10 F1 F2 F3 F8 F9 F10 G1 G2 G3 G8 Mnemonic TEMPSENSE PMUS_CH1 VSSO_1 (Drive) DUT1 VDDO_1 (Drive) VDDO_0 (Drive) DUT0 VSSO_0 (Drive) PMUS_CH0 HVOUT VDD/VDD_TMPSNS SCAP1 VSS AGND VDD VDD AGND VSS SCAP0 VPLUS FFCAP_1B AGND DATA1N VSS VDD VDD VSS DATA0N AGND FFCAP_0B OVD_CH1 VDD DATA1P DATA0P VDD OVD_CH0 FFCAP_1A VSS RCV1N RCV0N VSS FFCAP_0A AGND AGND RCV1P RCV0P AGND AGND COMP_QL1P COMP_QL1N COMP_VTT1 COMP_VTT0 Description Temperature Sense Output PMU External Sense Path Channel 1 Driver Output Supply (−5.0 V) Channel 1 Device Under Test Channel 1 Driver Output Supply (+10.75 V) Channel 1 Driver Output Supply (+10.75 V) Channel 0 Device Under Test Channel 0 Driver Output Supply (−5.0 V) Channel 0 PMU External Sense Path Channel 0 High Voltage Driver Output Temperature Sense Supply (+10.75 V) PMU Stability Capacitor Connection Channel 1 (330 pF) Supply (−5.0 V) Analog Ground Supply (+10.75 V) Supply (+10.75 V) Analog Ground Supply (−5.0 V) PMU Stability Capacitor Connection Channel 0 (330 pF) Supply (+16.75 V) PMU Feedforward Capacitor Connection B Channel 1 (220 pF) Analog Ground Driver Data Input (Negative) Channel 1 Supply (−5.0 V) Supply (+10.75 V) Supply (+10.75 V) Supply (−5.0 V) Driver Data Input (Negative) Channel 0 Analog Ground PMU Feedforward Capacitor Connection B Channel 0 (220 pF) Overvoltage Detection Flag Output Channel 1 Supply (+10.75 V) Driver Data Input (Positive) Channel 1 Driver Data Input (Positive) Channel 0 Supply (+10.75 V) Overvoltage Detection Flag Output Channel 0 PMU Feedforward Capacitor Connection A Channel 1 (220 pF) Supply (−5.0 V) Receive Data Input (Negative) Channel 1 Receive Data Input (Negative) Channel 0 Supply (−5.0 V) PMU Feedforward Capacitor Connection A Channel 0 (220 pF) Analog Ground Analog Ground Receive Data Input (Positive) Channel 1 Receive Data Input (Positive) Channel 0 Analog Ground Analog Ground Low-Side Comparator Output (Positive) Channel 1 Low-Side Comparator Output (Negative) Channel 1 Comparator Supply Termination Channel 1 Comparator Supply Termination Channel 0 Rev. C | Page 21 of 51 ADATE304 Data Sheet Pin No. G9 G10 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 K1 Mnemonic COMP_QL0N COMP_QL0P COMP_QH1P COMP_QH1N AGND VSS VDD VDD VSS AGND COMP_QH0N COMP_QH0P AGND AGND AGND DAC16_MON DGND SDIN RST AGND AGND AGND MEASOUT01/TEMPSENSE K2 K3 K4 K5 K6 K7 K8 K9 K10 DUTGND AGND CS SDOUT SCLK VCC AGND VREF VREF_GND Description Low-Side Comparator Output (Negative) Channel 0 Low-Side Comparator Output (Positive) Channel 0 High-Side Comparator Output (Positive) Channel 1 High-Side Comparator Output (Negative) Channel 1 Analog Ground Supply (−5.0 V) Supply (+10.75 V) Supply (+10.75 V) Supply (−5.0 V) Analog Ground High-Side Comparator Output (Negative) Channel 0 High-Side Comparator Output (Positive) Channel 0 Analog Ground Analog Ground Analog Ground 16-Bit DAC Monitor Mux Output Digital Ground Serial Peripheral Interface (SPI) Data In Serial Peripheral Interface (SPI) Reset Analog Ground Analog Ground Analog Ground Muxed Output Shared by PMU MEASOUT Channel 0, PMU MEASOUT Channel 1/ Temperature Sense and Temperature Sense GND Reference DUT Ground Reference Analog Ground Serial Peripheral Interface (SPI) Chip Select Serial Peripheral Interface (SPI) Data Out Serial Peripheral Interface (SPI) Clock Supply (+3.3 V) Analog Ground +5 V DAC Reference Voltage DAC Ground Reference Rev. C | Page 22 of 51 Data Sheet ADATE304 TYPICAL PERFORMANCE CHARACTERISTICS 1.8 0.30 1.6 0.5V 0.25 3V 1.4 1.2 VOLTAGE (V) VOLTAGE (V) 0.20 0.15 0.2V 0.10 2V 1.0 0.8 0.6 1V 0.4 0.05 0.2 0 0 2 4 6 8 10 12 14 16 18 20 TIME (ns) –0.2 Figure 3. Driver Small Signal Response; VH = 0.2 V, 0.5 V; VL = 0.0 V; 50 Ω Termination 1.0 1.5 2.0 3.0 2.5 TIME (ns) 3.5 4.0 4.5 5.0 1.8 1.6 3V 1.6 3V 1.4 1.4 1.2 1.2 0.8 0.6 1V 2V 1.0 0.8 0.6 0.4 0.4 0.2 0.2 0 0 2 4 6 8 10 12 TIME (ns) 14 16 18 20 –0.2 07279-004 0 1V 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 TIME (ns) Figure 4. Driver Large Signal Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination 07279-007 VOLTAGE (V) 2V 1.0 –0.2 0.5 Figure 6. 50 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V, 50 Ω Termination 1.8 VOLTAGE (V) 0 07279-006 –0.05 07279-003 0 Figure 7. 100 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination 6 1.6 5V 3V 1.4 5 1.2 VOLTAGE (V) 3V 3 2 2V 1.0 0.8 0.6 1V 1V 1 0.4 0 0 2 4 6 8 10 12 TIME (ns) 14 16 18 20 0 Figure 5. Driver Large Signal Response; VH = 1.0 V, 3.0 V, 5.0 V; VL = 0.0 V; 500 Ω Termination 0 1 2 3 4 5 6 TIME (ns) 7 8 9 Figure 8. Response at 200 MH; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination Rev. C | Page 23 of 51 10 07279-008 –1 0.2 07279-005 VOLTAGE (V) 4 ADATE304 Data Sheet 1.6 0.6 3V 1.4 0.5 1.2 2V VOLTAGE (V) 0.8 0.6 1V 0.2 0.1 0.4 0.5V 0 0.2 0 1 2 3 4 5 6 7 8 9 10 TIME (ns) –0.1 07279-009 0 0.3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 TIME (ns) 07279-012 VOLTAGE (V) 0.4 1.0 Figure 12. Driver Active (VH and VL) to and from VTERM Transition; VH = 1.0 V, VT = 0.5 V, VL = 0.0 V Figure 9. 300 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination 1.2 1.0 2V 0.9 1.0 0.8 0.8 VOLTAGE (V) VOLTAGE (V) 0.7 0.6 0.5 1V 0.4 0.3 0.6 0.4 0.2 0.5V 0.2 0 0.5 1.0 1.5 2.0 2.5 3.0 TIME (ns) 3.5 4.0 4.5 5.0 –0.2 07279-010 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 TIME (ns) 07279-013 0 0.1 Figure 13. Driver Active (VH and VL) to and from VTERM Transition; VH = 2.0 V, VT = 1.0 V, VL = 0.0 V Figure 10. 400 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, VL = 0.0 V; 50 Ω Termination 1.6 1.2 1.4 1.0 1.2 1.0 VOLTAGE (V) VOLTAGE (V) 0.8 0.6 0.4 0.8 0.6 0.4 0.2 0.2 250 300 FREQUENCY (MHz) 350 07279-011 200 –0.2 0 2 4 6 8 10 TIME (ns) Figure 11. Driver Toggle Rate, VH = 2.0 V, VL = 0.0 V, 50 Ω Termination Rev. C | Page 24 of 51 12 14 16 18 20 07279-014 0 0 Figure 14. Driver Active (VH and VL) to and from VTERM Transition; VH = 3.0 V, VT = 1.5 V, VL = 0.0 V Data Sheet ADATE304 20 20 2V POS 0 TRAILING EDGE ERROR (ps) 0.2V POS –20 –40 –60 –60 2 3 4 PULSEWIDTH (ns) 5 6 7 8 9 10 –100 1 2 3 4 PULSEWIDTH (ns) 5 6 7 8 9 10 07279-018 1 Figure 15. Driver Minimum Pulse Width; VH = 0.2 V, VL = 0.0 V Figure 18. Driver Minimum Pulse Width; VH = 2.0 V, VL = 0.0 V 20 20 0.5V NEG –20 0.5V POS TRAILING EDGE ERROR (ps) 0 0 –40 –60 3V POS –20 3V NEG –40 –60 –80 –80 1 2 3 4 PULSEWIDTH (ns) 5 6 7 8 9 10 –100 07279-016 TRAILING EDGE ERROR (ps) –40 1 Figure 16. Driver Minimum Pulse Width; VH = 0.5 V, VL = 0.0 V 2 3 4 PULSE WIDTH (ns) 5 6 7 8 9 10 07279-019 –80 2V NEG –20 –80 07279-015 TRAILING EDGE ERROR (ps) 0.2V NEG 0 Figure 19. Driver Minimum Pulse Width; VH = 3.0 V, VL = 0.0 V 1.0 20 1V NEG 0.5 LINEARITY ERROR (mV) 1V POS –20 –40 –60 0 –0.5 –1.0 –100 1 2 3 4 PULSEWIDTH (ns) 5 6 7 8 9 10 –2.0 –2 –1 0 1 2 3 4 5 DRIVER OUTPUT VOLTAGE (V) Figure 20. Driver VH Linearity Error Figure 17. Driver Minimum Pulse Width; VH = 1.0 V, VL = 0.0 V Rev. C | Page 25 of 51 6 7 07279-020 –1.5 –80 07279-017 TRAILING EDGE ERROR (ps) 0 ADATE304 Data Sheet 120 1.0 100 0 –0.5 –1.0 –1 0 1 2 3 4 DRIVER OUTPUT VOLTAGE (V) 5 6 60 40 20 0 –20 –2 07279-021 –1.5 –2 80 –1 0 1 2 3 VDUTx (V) 4 5 6 7 07279-024 DRIVER OUTPUT CURRENT (mA) LINEARITY ERROR (mV) 0.5 Figure 24. Driver Output Current Limit; Driver Programmed to −1.25 V; VDUTx Swept from −1.25 V to +6.75 V Figure 21. Driver VL Linearity Error 0.8 20 0.6 0 0.2 0 –0.2 –0.4 –0.6 –0.8 –1.0 –1 0 1 2 3 4 5 DRIVER OUTPUT VOLTAGE (V) 6 7 Figure 22. Driver VT Linearity Error –60 –80 –100 –1 0 1 2 3 VDUTx (V) 4 5 6 7 Figure 25. Driver Output Current Limit; Driver Programmed to 6.75 V; VDUTx Swept from −1.25 V to +6.75 V 8 48.0 7 47.8 6 LINEARITY ERROR (mV) 47.6 47.4 47.2 47.0 46.8 46.6 5 4 3 2 1 0 –1 46.4 –40 –20 0 20 DRIVER OUTPUT CURRENT (mA) 40 60 –3 –1 0 1 2 3 4 VL PROGRAMMED VOLTAGE (V) Figure 26. HVOUT VL Linearity Error Figure 23. Driver Output Resistance vs. Output Current Rev. C | Page 26 of 51 5 6 07279-026 –2 46.2 –60 07279-023 DRIVER OUTPUT RESISTANCE (Ω) –40 –120 –2 07279-022 –1.2 –2 –20 07279-025 DRIVER OUTPUT CURRENT (mA) LINEARITY ERROR (mV) 0.4 Data Sheet ADATE304 1.0 3 RISE INPUT 2 0.8 0 RISE SHMOO VOLTAGE (V) LINEARITY ERROR (mV) 1 –1 –2 –3 0.6 0.4 –4 FALL SHMOO 0.2 –5 –6 6 7 13 12 10 11 8 9 VL PROGRAMMED VOLTAGE (V) 14 07279-027 5 0 Figure 27. HVOUT VHH Linearity Error 0 0.6 1.2 1.8 2.4 3.0 TIME (ns) 07279-030 FALL INPUT –7 Figure 30. Comparator Shmoo, 1.0 V Input, 0.7 ns (10% to 90%) Input, 50 Ω Terminated 1.0 80 RISE INPUT 0.8 60 50 VOLTAGE (V) 40 30 RISE SHMOO 0.6 0.4 20 FALL SHMOO 10 0.2 0 3 2 VHVOUT (V) 1 4 5 6 07279-028 0 0 0 0.6 2.4 1.8 3.0 TIME (ns) Figure 31. Comparator Shmoo, 1.5 V Input, 1.0 ns (10% to 90%) Input, 50 Ω Terminated Figure 28. HVOUT VH Current Limit; VH = −0.1 V; VHVOUT Swept from −0.1 V to +6.0 V 80 1.6 RISE INPUT 60 40 1.2 VOLTAGE (V) 20 0 –20 RISE SHMOO 0.8 0.4 –40 FALL SHMOO –60 FALL INPUT –80 5 6 7 8 9 10 11 VHVOUT (V) 12 13 14 Figure 29. HVOUT VHH Current Limit; VHH = 10.0 V; VHVOUT Swept from −5.9 V to +14.1 V 15 0 07279-029 HVOUT DRIVER CURRENT (mA) 1.2 07279-031 FALL INPUT –10 –1 0 0.6 1.2 1.8 TIME (ns) 2.4 3.0 07279-032 HVOUT DRIVER CURRENT (mA) 70 Figure 32. Comparator Shmoo, 1.5 V Input, 1.0 ns (10% to 90%) Input, 50 Ω Terminated Rev. C | Page 27 of 51 ADATE304 Data Sheet 10 0.6 0.4 0 LINEARITY ERROR (mV) –20 –30 –40 1V POS –50 1V NEG 0 –0.2 –0.4 –0.6 –0.8 –1.0 –1.2 –60 2 3 4 PULSEWIDTH (ns) 5 6 7 –1.6 –2 07279-035 1 8 9 10 Figure 33. Comparator Minimum Pulse Width, 1.0 V 0 1 2 3 4 5 PROGRAMMED THRESHOLD VOLTAGE (V) 6 7 Figure 36. Comparator Threshold Linearity –2.5 DIFFERENTIAL COMPARATOR OFFSET (mV) 100 TOTAL 75 50 25 RISING 0 FALLING –25 –50 0.5 1.0 1.5 2.0 INPUT SLEWRATE (10%-90%) (ns) 2.5 –2.6 –2.7 –2.8 –2.9 –3.0 –3.1 –3.2 –2 07279-036 PROPAGATION DELAY VARIATION (ps) –1 07279-038 –1.4 –70 Figure 34. Comparator Slew Rate Dispersion, Input Swing = 1.5 V, Comparator Threshold = 0.75 V –1 0 1 2 3 INPUT COMMON-MODE VOLTAGE (V) 4 07279-039 TRAILING EDGE ERROR (ps) 0.2 –10 5 Figure 37. Differential Comparator CMRR 15 1.8 1.6 10 LOAD CURRENT (mA) 1.4 VOLTAGE (V) 1.2 1.0 0.8 0.6 0.4 5 0 –5 –10 0 5 10 15 20 25 TIME (ns) 30 35 40 45 50 –15 –2 07279-037 0 Figure 35. Comparator Output Waveform, COMP_QH0P, COMP_QH0N Rev. C | Page 28 of 51 –1 0 1 2 VDUTx (V) 3 4 5 6 Figure 38. Active Load Commutation Response; VCOM = 2.0 V; IOH = IOL = 12 mA 07279-040 0.2 ADATE304 6 4 5 2 4 0 3 –2 2 –4 1 –6 0 2 4 6 8 ACTIVE LOAD CURRENT (mA) 10 12 0 –2 Figure 39. Active Load Current Linearity –1 0 1 2 3 VDUTx (V) 4 5 6 7 30 40 07279-044 IDUTx (nA) 6 07279-041 LINEARITY ERROR (µA) Data Sheet Figure 42. DUTx Pin Leakage in High-Z Mode 0.8 40 0.6 20 0.2 LINEARITY ERROR (µA) LINEARITY ERROR (mV) 0.4 0 –0.2 –0.4 –0.6 –0.8 0 –20 –40 –60 –80 –1.0 0 1 2 3 4 VCOM VOLTAGE (V) 5 6 7 –120 –40 07279-042 0.8 6.0 0.6 LINEARITY ERROR (µA) 5.5 5.0 4.5 4.0 3.5 0.4 0.2 0 –0.2 –0.4 –1 0 1 2 3 VDUTx (V) 4 5 6 7 –0.6 –2.0 07279-043 IDUTx (nA) –20 –10 0 10 20 PMU OUTPUT CURRENT (mA) Figure 43. PMU Force Current Range A Linearity Figure 40. Active Load VCOM Linearity 3.0 –2 –30 –1.5 –1.0 –0.5 0 0.5 1.0 PMU OUTPUT CURRENT (mA) 1.5 Figure 44. PMU Force Current Range B Linearity Figure 41. DUTx Pin Leakage in Low Leakage Mode Rev. C | Page 29 of 51 2.0 07279-046 –1.4 –1 07279-045 –100 –1.2 ADATE304 Data Sheet 4 0.06 3 PMU VOLTAGE ERROR (mV) 0.02 0 –0.02 –0.04 1 0 –1 –2 –3 –0.15 –0.10 –0.05 0 0.05 0.10 PMU OUTPUT CURRENT (mA) 0.15 0.20 –4 –40 07279-047 –0.06 –0.20 2 Figure 45. PMU Force Current Range C Linearity –30 –20 –10 0 10 IDUTx (mA) 20 30 40 07279-050 LINEARITY ERROR (µA) 0.04 Figure 48. PMU Force Voltage Range A Output Voltage Error at 6.75 V vs. Output Current 4 0.006 3 PMU VOLTAGE ERROR (mV) 0.002 0 –0.002 –0.004 1 0 –1 –2 0.020 –4 –40 07279-048 0.015 Figure 46. PMU Force Current Range D Linearity –30 –20 –10 0 10 IDUTx (mA) 20 30 40 07279-051 –3 –0.006 –0.020 –0.015 –0.010 –0.005 0 0.005 0.010 PMU OUTPUT CURRENT (mA) Figure 49. PMU FV Range A Output Voltage Error at −1.25 V vs. Output Current 0.0006 0.6 0.0004 PMU VOLTAGE ERROR (mV) 0.4 0.0002 0 –0.0002 –0.0004 0.2 0 –0.2 –0.0006 –0.4 –0.0008 –0.0020 –0.0015 –0.0010 –0.0050 0 0.0050 0.0010 0.0015 0.0020 PMU OUTPUT CURRENT (mA) –0.6 –2.0 Figure 47. PMU Force Current Range E Linearity 07279-049 LINEARITY ERROR (µA) 2 –1.5 –1.0 –0.5 0 0.5 IDUTx (mA) 1.0 1.5 2.0 07279-052 LINEARITY ERROR (µA) 0.004 Figure 50. PMU FV Range B Output Voltage Error at 6.75 V vs. Output Current Rev. C | Page 30 of 51 Data Sheet ADATE304 0.7 0.6 0.6 PMU CURRENT ERROR (µA) 0.2 0 –0.2 –0.4 0.4 0.3 0.2 0.1 0 –1.5 –1.0 –0.5 0 0.5 IDUTx (mA) 1.0 1.5 2.0 –0.1 –2 07279-053 –0.6 –2.0 0.5 Figure 51. PMU FV Range B Output Voltage Error at −1.25 V vs. Output Current –1 0 1 2 3 VDUTx (V) 4 5 6 07279-056 PMU VOLTAGE ERROR (mV) 0.4 7 Figure 54. PMU FI Range B Output Current Error at −2 mA vs. Output Voltage; Output Voltage Is Pulled Externally 5 0.7 0.6 0 PMU CURRENT ERROR (µA) –10 –15 –20 –25 0.3 0.2 0.1 0 –0.1 –0.2 –1 0 1 2 3 VDUTx (V) 4 5 6 7 –0.3 –2 07279-054 –30 –2 0.4 Figure 52. PMU FI Range A Output Current Error at −32 mA vs. Output Voltage; Output Voltage Is Pulled Externally –1 0 1 2 3 VDUTx (V) 4 5 6 07279-057 PMU CURRENT ERROR (µA) 0.5 –5 7 Figure 55. PMU FI Range B Output Current Error at +2 mA vs. Output Voltage; Output Voltage Is Pulled Externally 10 0.0025 0 0.0020 PMU CURRENT ERROR (µA) –20 –30 –40 –50 –60 –70 0.0010 0.0005 0 –0.0005 –80 –1 0 1 2 3 VDUTx (V) 4 5 6 7 –0.0010 –2 07279-055 –90 –2 0.0015 Figure 53. PMU FI Range A Output Current Error at +32 mA vs. Output Voltage; Output Voltage Is Pulled Externally –1 0 1 2 3 VDUTx (V) 4 5 6 7 07279-058 PMU CURRENT ERROR (µA) –10 Figure 56. PMU FI Range E Output Current Error at −2 μA vs. Output Voltage; Output Voltage Is Pulled Externally Rev. C | Page 31 of 51 ADATE304 Data Sheet 0.0020 (100mV/DIV) PMU CURRENT ERROR (µA) 0.0015 0.0010 0.0005 C1 –1 0 1 2 3 VDUTx (V) 4 5 6 7 Figure 57. PMU FI Range E Output Current Error at +2 μA vs. Output Voltage; Output Voltage Is Pulled Externally (500ps/DIV) 07279-062 –0.0005 –2 07279-059 0 Figure 60. Eye Diagram, 400 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V 0.5 PMU VOLTAGE ERROR (mV) 0.4 (100mV/DIV) 0.3 0.2 C1 0.1 0 1 2 VDUTx (V) 3 4 5 Figure 61. Eye Diagram, 600 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V (200mV/DIV) Figure 58. PMU Measure Current Range B CMRR, Externally Pulling 1 mA, FVMI C1 (1ns/DIV) 07279-061 (100mV/DIV) (200ps/DIV) 07279-063 –1 C1 (500ps/DIV) Figure 59. Eye Diagram, 200 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V 07279-065 –0.1 –2 07279-060 0 Figure 62. Eye Diagram, 400 Mbps, PRBS31; VH = 2.0 V, VL = 0.0 V Rev. C | Page 32 of 51 Data Sheet ADATE304 SPI DETAILS tCH SCLK tCL tCSSA tCSSD tCSHA tCSHD CS tCSW tDH tDS SDOUT DATA[15] DATA[14] DO_15LAST DO_14LAST CH[1] R/W DO_13LAST DO_12LAST ADDR[1] DO_2LAST ADDR[0] DO_1LAST DO_0LAST 07279-067 SDIN tDO Figure 63. SPI Timing Diagram Table 17. Serial Peripheral Interface Timing Requirements Symbol tCH tCL tCSHA tCSSA tCSHD tCSSD tDH tDS tDO tCSW tCSTP 1 Parameter SCLK minimum high SCLK minimum low CS assert hold CS assert setup CS deassert hold CS deassert setup SDIN hold SDIN setup SDOUT data out CS minimum between assertions 1 CS minimum directly after a read request Minimum delay after CS is deasserted before SCLK can be stopped (not shown in Figure 63); this allows any internal operations to complete An extra cycle is needed after a read request to prime the read data into the SPI shift register. Rev. C | Page 33 of 51 Min 9.0 9.0 3.0 3.0 3.0 3.0 3.0 3.0 Max 15.0 2 3 16 Unit ns ns ns ns ns ns ns ns ns SCLK cycles SCLK cycles SCLK cycles ADATE304 Data Sheet DEFINITION OF SPI WORD Table 18. Channel Selection The SPI can accept variable length words, depending on the operation. At most, the word length equals 24 bits: 16 bits of data, two channel selects, one read/write (R/W) selector, and a 5-bit address. Channel 1 0 Channel 0 0 0 1 1 1 0 1 Depending on the operation, the data can be smaller or, in the case of a read operation, nonexistent. Channel Selected NOP (no channel selected, no register changes) Channel 0 selected Channel 1 selected Channel 0 and Channel 1 selected Table 19. R/W Definition R/W 0 Description Current register specified by address shifts out of SDOUT on next shift operation Current data written to the register specified by address and channel select 1 Example 1: 16-Bit Write DATA[15:0] CH[1:0] R/W 07279-068 Write 16 bits of data to a register or DAC; ignore unused MSBs. For example, Bit 15 and Bit 14 are ignored, and Bit 13 through Bit 0 are applied to the 14-bit DAC. ADDR[4:0] Figure 64. 16-Bit Write Example 2: 14-Bit Write DATA[13:0] CH[1:0] R/W ADDR[4:0] 07279-069 Write 14 bits of data to the DAC. Figure 65. 14-Bit Write Example 3a: 2-Bit Write DATA[1:0] CH[1:0] R/W ADDR[4:0] 07279-070 Write two bits of data to the 2-bit register. Figure 66. 2-Bit Write Example 3b: 2-Bit Write DATA[15:0] CH[1:0] R/W ADDR[4:0] 07279-071 Write two bits of data to the 2-bit register. Bit 15 through Bit 2 are ignored and Bit 1 through Bit 0 are applied to the register. Figure 67. 2-Bit Write Example 4: Read Request DATA[15:0] CH[1:0] R/W = 0 ADDR[4:0] CH[1:0] R/W ADDR[4:0] Figure 68. Read Request Rev. C | Page 34 of 51 07279-072 Read request and follow with a second instruction (can be NOP) to clock out the data. Data Sheet ADATE304 WRITE OPERATION CS INPUT SCLK INPUT SDIN INPUT DATA[2] DATA[1] DATA[0] DATA[15] DATA[14] DATA[13] 0 1 2 13 14 15 CH[1] CH[0] R/W 16 17 18 SDOUT OUTPUT ADDR[4] 19 ADDR[3] 20 ADDR[2] 21 ADDR[1] 22 X ADDR[0] 24 23 25 X 07279-073 NOTES 1. R/W = 1. 2. X = DON’T CARE. Figure 69. 16-Bit SPI Write CS INPUT SCLK INPUT SDIN INPUT DATA[1] DATA[0] 0 SDOUT OUTPUT 1 CH[1] CH[0] R/W 2 3 4 X ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0] 5 6 7 8 9 10 11 X 07279-074 NOTES 1. R/W = 1. 2. X = DON’T CARE. Figure 70. 2-Bit SPI Write Rev. C | Page 35 of 51 ADATE304 Data Sheet READ OPERATION If another operation is shifted in, it must shift in at least eight bits of data to read back the previous specified data. The NOP address can be used for this read if there is no need to read/write another register. To maintain the clarity of the operation, it is strongly recommended that the NOP address be used for all reads. The read operation is a two-stage operation. First, a word is shifted in, specifying which register to read. CS is deasserted for three clock cycles, and then a second word is shifted in to obtain the readback data. This second word can be either another operation or an NOP address. Any register read that is fewer than 16 bits has zeros filled in the top bits to make it a 16-bit word. CS INPUT SCLK INPUT SDIN INPUT X READ INSTRUCTION SDOUT OUTPUT X NOP X READ DATA 07279-075 X NOTES 1. X = DON’T CARE. Figure 71. SPI Read Overview CS INPUT SCLK INPUT SDIN INPUT DATA[15:0], VALUE IS A DON’T CARE 0 1 2 13 14 CH[1] CH[0] R/W 16 17 18 15 SDOUT OUTPUT X ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0] 19 20 21 22 23 24 25 23 24 25 07279-076 X NOTES 1. X = DON’T CARE. Figure 72. SPI Read—Details of Read Request CS INPUT SCLK INPUT SDIN INPUT DATA[15:0], VALUE IS A DON’T CARE 0 SDOUT OUTPUT 1 2 RDATA[15] RDATA[14] 13 RDATA[2] CH[1] 16 14 15 RDATA[1] RDATA[0] CH[0] 17 ADDR[4:0] = 0x00 (NOP) R/W = 1 18 19 21 22 X X 07279-077 NOTES 1. RDATA IS THE REGISTER VALUE BEING READ. 2. X = DON’T CARE. 20 Figure 73. SPI Read—Details of Read Out Rev. C | Page 36 of 51 Data Sheet ADATE304 RESET OPERATION The ADATE304 contains an asynchronous reset feature. The ADATE304 can be reset to the default values shown in Table 20 by utilizing the RST pin. To initiate the reset operation, deassert the RST pin for a minimum of 100 ns and deassert the CS pin for a minimum of two SCLK cycles. 100ns MINIMUM RST SCLK MINIMUM OF TWO SCLK EDGES AFTER ASSERTING RST BEFORE RESUMING NORMAL OPERATION. Figure 74. Reset Operation Rev. C | Page 37 of 51 07279-078 CS ADATE304 Data Sheet REGISTER MAP The ADDR[4:0] bits determine the destination register of the data being written to the ADATE304. Table 20. Register Selection DATA[15:0] N/A 1 DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[15:0] DATA[2:0] DATA[2:0] DATA[9:0] DATA[2:0] DATA[0] DATA[1:0] DATA[1:0] DATA[2:0] N/A 1 CH[1:0] N/A CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1] CH[0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] N/A R/W N/A R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R N/A ADDR[4:0] 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14 to 0x1F Register Selected NOP VH DAC level VL DAC level VT/VCOM DAC level VOL DAC level VOH DAC level VCH DAC level VCL DAC level V(IOH ) DAC level V(IOL ) DAC level OVD high level OVD low level PMUDAC level PE/PMU enable Channel state PMU state PMU measure enable Differential comparator enable 16-bit DAC monitor OVD_CHx alarm mask OVD_CHx alarm state Reserved N/A means not applicable. Rev. C | Page 38 of 51 Reset State N/A 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 16384d 000b 000b 0d 000b 0b 00b 01b N/A N/A Data Sheet ADATE304 DETAILS OF REGISTERS Table 21. PE/PMU Enable (ADDR[4:0] = 0x0C) Bit DATA[2] Name PMU enable DATA[1] Force VT DATA[0] PE disable Description 0 = disable PMU force output and clamps, place PMU in MV mode 1 = enable PMU force output When set to 0, the PMU state bits are ignored, except for the PMU sense path (DATA[7]) 0 = normal driver operation 1 = force driver to VT See Table 29 for complete functionality of this bit 0 = enable driver functions 1 = disable driver (low leakage) See Table 29 for complete functionality of this bit Table 22. Channel State (ADDR[4:0] = 0x0D) Bit DATA[2] Name HV mode select DATA[1] Load enable DATA[0] Driver high-Z or VT Description 0 = HV driver in low impedance. 1 = enable HV driver. This bit affects Channel 0 only. Ensure that the Channel 0 bit in SPI write is active. Channel 1 bit in SPI write is don’t care. 0 = disable load. 1 = enable load. See Table 29 for complete functionality of this bit. 0 = enable Driver high-Z function. 1 = enable Driver VTERM function. See Table 29 for complete functionality of this bit. Table 23. PMU State (ADDR[4:0] = 0x0E) 1, 2 Bit DATA[9:8] Name PMU input selection DATA[7] PMU sense path DATA[6] DATA[5] Reserved PMU clamp enable DATA[4] PMU measure voltage or current DATA[3] PMU force voltage or current DATA[2:0] PMU range 1 2 Description 00 = VDUTGND (calibrated for 0.0 V voltage reference) 01 = 2.5 V + VDUTGND (calibrated for 0.0 A current reference) 1X = PMUDAC 0 = internal sense 1 = external sense 0 = disable clamps 1 = enable clamps 0 = measure voltage mode 1 = measure current mode 0 = force voltage mode 1 = force current mode 0XX = 2 μA range 100 = 20 μA range 101 = 200 μA range 110 = 2 mA range 111 = 32 mA range Note that when ADDR[4:0] = 0x0C, the PMU enable bit (DATA[2]) = 0, PMU force outputs and clamps are disabled, and the PMU is placed into measure voltage mode. PMU State DATA[9:8] and DATA[6:0] are ignored, and only the DATA[7] PMU sense path is valid. X means don’t care. Rev. C | Page 39 of 51 ADATE304 Data Sheet Table 24. PMU Measure Enable (ADDR[4:0] = 0x0F) 1 Bit DATA[2:1] Name MEASOUT01 select DATA[0] MEASOUT01 output enable 1 Description 00 = PMU MEASOUT Channel 0 01 = PMU MEASOUT Channel 1 10 = Temperature sensor ground reference 11 = Temperature sensor 0 = MEASOUT01 is tristated 1 = MEASOUT01 is enabled This register is written to or read from when either of the CH[1:0] bits is 1. Table 25. Differential Comparator Enable (ADDR[4:0] = 0x10) 1 Bit DATA[0] 1 Name Differential Comparator Enable Description 0 = differential comparator is disabled; the Channel 0 normal window comparator (NWC) outputs are located on Channel 0 1 = differential comparator is enabled; the differential comparator outputs are located on Channel 0 This register is written to or read from when either of the CH[1:0] bits is 1. Table 26. DAC16_MON (16-Bit DAC Monitor) (ADDR[4:0] = 0x11) 1 Bit DATA[1] Name 16-Bit DAC mux enable DATA[0] 16-Bit DAC mux select 1 Description 0 = 16-bit DAC mux is tristated 1 = 16-bit DAC mux is enabled 0 = 16-bit DAC Channel 0 1 = 16-bit DAC Channel 1 This register is written to or read from when either of the CH[1:0] bits is 1. Table 27. OVD_CHx Alarm Mask (ADDR[4:0] = 0x12) Bit DATA[1] Name PMU mask DATA[0] OVD mask Description 0 = disable PMU alarm flag 1 = enable PMU alarm flag 0 = disable OVD alarm flag 1 = enable OVD alarm flag Table 28. OVD_CHx Alarm State (ADDR[4:0] = 0x13) 1 Bit DATA[2] Name PMU clamp flag DATA[1] OVD high flag DATA[0] OVD low flag 1 Description 0 = PMU is not clamped 1 = PMU is clamped 0 = DUT voltage < OVD high voltage 1 = DUT voltage > OVD high voltage 0 = DUT voltage > OVD low voltage 1 = DUT voltage < OVD low voltage This register is a read-only register. Rev. C | Page 40 of 51 Data Sheet ADATE304 USER INFORMATION POWER SUPPLY CONSIDERATIONS Power Supply Decoupling Power Supply Sequencing The ADATE304 is a high performance device that requires close attention to power supply decoupling to deliver the best performance. The use of full power planes with low inductance capacitors placed as close to the power pins as possible is recommended. The following power connections are the most important: It is recommended that the power supplies be brought up in the following order: 1. 2. 3. 4. 5. Grounds (DGND, AGND, VREF_GND) VSS VCC, VCOMP_VTT, and VREF VDD VPLUS    If the HVOUT pin is not used, the VPLUS supply can be connected to VDD.  VPLUS to AGND (for the HVOUT driver) VDD to VSS near the DUTx pin (for the driver) VDD and VSS to AGND near the DUTx pin (for the comparators) VCC to DGND (for the digital) Additionally, large bulk capacitors (that is, 10 μF) must be used on every power supply on the printed circuit board (PCB). TRUTH TABLES Table 29. Driver and Load Truth Table1 PE Disable DATA[0] ADDR[4:0] = 0x0C 1 Registers Force VT Load Enable DATA[1] DATA[1] ADDR[4:0] = 0x0C ADDR[4:0] = 0x0D X X Driver High-Z/VT DATA[0] ADDR[4:0] = 0x0D X DATAx X RCVx X Driver State High-Z without clamps Load State Power-down 0 0 1 0 X 0 X 0 X 0 X 0 VT VL Power-down Power-down 0 0 0 0 0 0 0 0 0 1 1 0 High-Z with clamps VH Power-down Power-down 0 0 0 0 0 0 0 1 1 0 1 0 High-Z with clamps VL Power-down Power-down 0 0 0 0 0 0 1 1 0 1 1 0 VT VH Power-down Power-down 0 0 0 0 0 1 1 0 1 0 1 0 VT VL Power-down Active off 0 0 0 0 1 1 0 0 0 1 1 0 High-Z with clamps VH Active on Active off 0 0 0 0 1 1 0 1 1 0 1 0 High-Z with clamps VL Active on Active on 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 High-Z with clamps VH High-Z with clamps Active on Active on Active on 1 Signals X means don’t care. Table 30. HVOUT Truth Table1 HVOUT Mode Select DATA[2] ADDR[4:0] =0x0D 1 1 1 0 1 Channel 0 RCV 1 0 0 X Channel 0 DATA X 0 1 X HVOUT Driver Output VHH mode; VHH = (VT + 1 V) × 2 + DUTGND (Channel 0 VT DAC) VL (Channel 0 VL DAC) VH (Channel 0 VH DAC) Disabled (HVOUT pin set to 0 V low impedance) X means don’t care. Rev. C | Page 41 of 51 ADATE304 Data Sheet Table 31. Comparator Truth Table Differential Comparator Enable DATA[0] ADDR[4:0] = 0x10 0 1 COMP_QH0 Normal window mode Logic high: VOH0 < VDUT0 Logic low: VOH0 > VDUT0 Differential comparator mode Logic high: VOH0 < VDUT0 − VDUT1 Logic low: VOH0 > VDUT0 − VDUT1 COMP_QL0 Normal window mode Logic high: VOL0 < VDUT0 Logic low: VOL0 > VDUT0 Differential comparator mode Logic high: VOL0 < VDUT0 − VDUT1 Logic low: VOL0 > VDUT0 − VDUT1 Rev. C | Page 42 of 51 COMP_QH1 Normal window mode Logic high: VOH1 < VDUT1 Logic low: VOH1 > VDUT1 Normal window mode Logic high: VOH1 < VDUT1 Logic low: VOH1 > VDUT1 COMP_QL1 Normal window mode Logic high: VOL1 < VDUT1 Logic low: VOL1 > VDUT1 Normal window mode Logic high: VOL1 < VDUT1 Logic low: VOL1 > VDUT1 Data Sheet ADATE304 DETAILS OF DACS vs. LEVELS • There are ten 14-bit DACs per channel. These DACs provide levels for the driver, comparator, load currents, VHH buffer, OVD, and clamp levels. There are three versions of output levels as follows: • −2.5 V to +7.5 V and tracks DUTGND. Controls the VH, VL, VT/VCOM/VHH, VOH, VOL, VCH, and VCL levels. • −3.0 V to +7.0 V and tracks DUTGND. Controls the OVD levels. −2.5 V to +7.5 V and does not track DUTGND. Controls the IOH and IOL levels. There is one 16-bit DAC per channel. This DAC provides the levels for the PMU. The output level is as follows: • −2.5 V to +7.5 V and tracks DUTGND; controls the PMU levels. Table 32. Level Transfer Functions DAC Transfer Function VOUT = 2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.5 × (VREF − VREF_GND) + VDUTGND Code = [VOUT − VDUTGND + 0.5 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))] VOUT = 4.0 × (VREF − VREF_GND) × (Code/(214)) − 1.0 × (VREF − VREF_GND) + 2.0 + VDUTGND Code = [VOUT − VDUTGND − 2.0 + 1.0 × (VREF − VREF_GND)] × [(214)/(4.0 × (VREF − VREF_GND))] VOUT = 2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.6 × (VREF − VREF_GND) + VDUTGND Code = [VOUT − VDUTGND + 0.6 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.5 × (VREF − VREF_GND)] × (0.012/5.0) Code = [(IOUT × (5.0/0.012)) + 0.5 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))] VOUT = 2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) + VDUTGND Code = [VOUT − VDUTGND + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.050/5.0) Code = [(IOUT × (5.0/0.050)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.004/5.0) Code = [(IOUT × (5.0/0.004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.0004/5.0) Code = [(IOUT × (5.0/0.0004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.00004/5.0) Code = [(IOUT × (5.0/0.00004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) − 0.5 × (VREF − VREF_GND) − 2.5] × (0.000004/5.0) Code = [(IOUT × (5.0/0.000004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] 1 Programmable Range 1 (All 0s to All 1s) −2.5 V to +7.5 V −3.0 V to +17.0 V Levels VH, VL, VT/VCOM, VOL, VOH, VCH, VCL VHH −3.0 V to +7.0 V OVD −6 mA to +18 mA IOH, IOL −2.5 V to +7.5 V PMUDAC −50 mA to +50 mA PMUDAC (PMU FI Range A) PMUDAC (PMU FI Range B) PMUDAC (PMU FI Range C) PMUDAC (PMU FI Range D) PMUDAC (PMU FI Range E) −4 mA to +4 mA −400 μA to +400 μA −40 μA to +40 μA −4 μA to +4 μA Programmable range includes a margin outside the specified part performance, allowing for offset/gain calibration. Table 33. Load Transfer Functions Load Level IOL IOH 1 Transfer Function 1 V(IOL)/5 V × 12 mA V(IOH)/5 V × 12 mA V(IOH)and V(IOL) DAC levels are not referenced to DUTGND. Table 34. PMU Transfer Functions PMU Mode Force Voltage Measure Voltage Force Current Measure Current 1 Transfer Functions VOUT = PMUDAC VMEASOUT01 = VDUTx (internal sense) or VMEASOUT01 = VPMUS_CHx (external sense) IOUT = [PMUDAC − (VREF/2)]/(R 1 × 5) VMEASOUT01 = (VREF/2) + VDUTGND + (IDUTx × 5 × R1) R = 15.5 Ω for Range A; 250 Ω for Range B; 2.5 kΩ for Range C; 25 kΩ for Range D; 250 kΩ for Range E. Table 35. PMU User Required Capacitors Capacitor 220 pF 220 pF 330 pF 330 pF Location Across Pin C10 (FFCAP_0B) and Pin E10 (FFCAP_0A) Across Pin C1 (FFCAP _1B) and Pin E1 (FFCAP_1A) Between GND and Pin B9 (SCAP0) Between GND and Pin B2 (SCAP1) Rev. C | Page 43 of 51 ADATE304 Data Sheet Table 36. Temperature Sensor Temperature 0K 300 K xK Output 0V 3V (x K) × 10 mV/K Table 37. Power Supply Ranges Parameter Nominal VDD Nominal VSS Driver VH range VL range VT range Functional Amplitude Reflection Clamp VCH Range VCL Range Comparator Input Voltage Range Active Load VCOM Range PMU Force Voltage Range Measure Voltage Range Force Current Voltage Range Measure Current Voltage Range Low Clamp Range High Clamp Range OVD Range 1 +10.75 V −5.00 V Range 2 +10.0 V −5.75 V −1.15 V to +6.75 V −1.25 V to +6.65 V −1.25 V to +6.75 V 8.0 V −1.9 V to +6.0 V −2.0 V to +5.9 V −2.0 V to +6.0 V 8.0 V −1.0 V to +6.75 V −1.25 V to +5.75 V −1.25 V to +6.75 V −1.00 V to +6.50 V −1.0 V to +6.0 V −2.0 V to +5.0 V −2.0 V to +6.0 V −1.75 V to +5.75 V −1.25 V to +6.75 V −1.25 V to +6.75 V −1.25 V to +6.75 V −1.25 V to +6.75 V −1.25 V to +4.75 V 0.75 V to 6.75 V −2.25 V to +7.0 V −2.0 V to +6.0 V −2.0 V to +6.0 V −2.0 V to +6.0 V −2.0 V to +6.0 V −2.0 V to +4.0 V 0.0 V to 6.0 V −3.0 V to +7.0 V Table 38. Default Test Conditions (Range 1) Name VH DAC Level VL DAC Level VT/VCOM DAC Level VOL DAC Level VOH DAC Level VCH DAC Level VCL DAC Level IOH DAC Level IOL DAC Level OVD Low DAC Level OVD High DAC Level PMUDAC DAC Level PE/PMU Enable Channel State PMU State PMU Measure Enable Differential Comparator Enable 16-Bit DAC Monitor OVD_CHx Alarm Mask Data Input Receive Input DUTx Pin Comparator Output Default Test Condition +2.0 V +0.0 V +1.0 V −1.0 V +6.0 V +7.5 V −2.5 V 0.0 A 0.0 A −2.5 V +6.5 V 0.0 V 0x0000: PMU disabled, VT not forced through driver, PE enabled 0x0000: HV mode disabled, load disabled, VTERM inactive 0x0000: Input of DUTGND, internal sense, clamps disabled, FVMV, Range E 0x0000: MEASOUT01 pin tristated 0x0000: Normal window comparator mode 0x0000: DAC16_MON tristated 0x0000: disable alarm functions Logic low Logic low Unterminated Unterminated Rev. C | Page 44 of 51 Data Sheet ADATE304 RECOMMENDED PMU MODE SWITCHING SEQUENCES PMU Force Voltage Mode to PMU Force Current Mode To minimize any possible aberrations and voltage spikes on the DUT output, specific mode switching sequences are recommended for the following transitions: • • • PMU disable to PMU enable. PMU force voltage mode to PMU force current mode. PMU force current mode to PMU force voltage mode. PMU Disable to PMU Enable Step 1. Table 42 lists the state of registers in force voltage mode. Table 42. Register PE/PMU Enable Register, ADDR[4:0] = 0x0C PMU State Register, ADDR[4:0] = 0x0E Note that, in Table 39 through Table 49, X indicates the don’t care bit. Step 1. Table 39 lists the state of the registers in PMU disabled mode. Table 39. Register PE/PMU Enable Register, ADDR[4:0] = 0x0C PMU State Register, ADDR[4:0] = 0x0E Bits DATA[2] Setting 0 DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] XX X X X X X XXX Bits DATA[2] Setting 1 DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] XX X X X X 0 XXX Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 43). Table 43. Register PMU State Register, ADDR[4:0] = 0x0E Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 40). Bits DATA[9:8] Setting 01 DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] X X X X 1 DATA[2:0] 0XX Table 40. Register PMU State Register, ADDR[4:0] = 0x0E Bits DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] Setting 1X or 00 X X X X 0 DATA[2:0] XXX Comments Set desired input selection Table 44. Register VIN 16-Bit DAC, ADDR[4:0] = 0x0B This bit must be set to force voltage mode to reduce aberrations Set desired range Setting 1 Bits DATA[15:0] Setting X Comments Update the VIN 16-Bit DAC register to the desired value Step 4. Write to Register ADDR[4:0] = 0x0E (see Table 45). Table 45. Table 41. Bits DATA[2] Set to force current mode The 2 μA range has the minimum offset current Step 3. Write to Register ADDR[4:0] = 0x0B (see Table 44). Step 3. Write to Register ADDR[4:0] = 0x0C (see Table 41). Register PE/PMU Enable Register, ADDR[4:0] = 0x0C Comments Set 2.5 V + DUTGND input selection Comments PMU is now enabled in force voltage mode Register PMU State Register, ADDR[4:0] = 0x0E Rev. C | Page 45 of 51 Bits DATA[9:8] Setting 1X DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] X X X X 1 XXX Comments Set VIN input selection Set to the desired current range ADATE304 Data Sheet Transition from PMU Force Current Mode to PMU Force Voltage Mode Step 1. Table 46 lists the state of the registers in force current mode. Table 46. Register PE/PMU Enable Register, ADDR[4:0] = 0x0C PMU State Register, ADDR[4:0] = 0x0E Bits DATA[2] DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 1 XX X X X X 1 XXX Step 3. Write to Register ADDR[4:0] = 0x0B (see Table 48). Table 48. Register VIN 16-Bit DAC, ADDR[4:0] = 0x0B Setting 00 DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] X X X X 0 DATA[2:0] XXX Comments Update the VIN 16-Bit DAC register to the desired value Table 49. Register PMU State Register, ADDR[4:0] = 0x0E Table 47. Bits DATA[9:8] Setting X Step 4. Write to Register ADDR[4:0] = 0x0E (see Table 49). Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 47). Register PMU State Register, ADDR[4:0] = 0x0E Bits DATA[15:0] Comments Set DUTGND input selection Set to force voltage mode Set to the desired current range Rev. C | Page 46 of 51 Bits DATA[9:8] Setting 1X DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] X X X X 0 DATA[2:0] XXX Comments Set VIN input selection Force voltage mode Data Sheet ADATE304 BLOCK DIAGRAMS VCL VCH PE DISABLE DATA[0] (ADDR[4:0] = 0x0C) FORCES SWITCH OPEN WHEN 1 VH ROUT = 47Ω (TRIMMED) DRIVER VL DUT DATA VT DRIVER HIGH-Z/VT DATA[0] (ADDR[4:0] = 0x0D) VT BUFFER WHEN 1 HIGH-Z BUFFER WHEN 0 V(IOH) RCV VCOM FORCE VT DATA[1] (ADDR[4:0] = 0x0C) OVERRIDES THE RCV PIN AND FORCES VTERM MODE ON THE DRIVER AND LOAD POWER-DOWN MODE V(IOL) 07279-079 LOAD ENABLE DATA[1] (ADDR[4:0] = 0x0D) FORCES SWITCHES OPEN AND POWERS DOWN LOAD WHEN 0 Figure 75. Driver and Load Block Diagram ~5Ω VHH = (VT + 1V) × 2 + DUTGND HVOUT VH VL DATA 48Ω HV MODE SELECT DATA[2] (ADDR [4:0] = 0x0D) DISABLES HV DRIVER AND FORCES 0V ON HVOUT WHEN 0 Figure 76. HVOUT Driver Output Stage Rev. C | Page 47 of 51 07279-080 RCV (SHOWN IN RCV = 0 STATE) ADATE304 Data Sheet DUT0 VOL0 VOH0 DUT1 DU T0 – DUT0– DU T1 DUT1 DIFFERENTIAL BUFFER VOL0 – VOH NWC + + VOL NWC – – VOH DMC + 2:1 COMP_QH0 MUX DIFFERENTIAL COMPARATOR ENABLE DATA[0] (ADDR[4:0] = 0x10) 2:1 COMP_QL0 MUX + VOL DMC – 07279-081 VOH0 NOTES 1. DIFFERENTIAL COMPARATOR ONLY ON CHANNEL 0. Figure 77. Comparator Block Diagram COMPARATOR OUTPUT (AB) VTT = 3.3V RECEIVER OUT HIGH = 1.55V 50Ω OUT CM = 1.42V OUT LOW = 1.30V 50Ω GND Figure 78. Comparator Output Scheme Rev. C | Page 48 of 51 07279-082 100Ω Data Sheet ADATE304 PMU MEASURE V/I DATA[4] (ADDR[4:0] = 0x0E) PMU SENSE PATH DATA[7] (ADDR[4:0] = 0x0E) EXTERNAL DUT SENSE PIN MEASURE V MEASURE I MEASOUT01 SELECT DATA[2:1] (ADDR[4:0] = 0x0F) MUX MUX PMU FORCE V/I DATA[3] (ADDR[4:0] = 0x0E) MEASURE OUT CH[1] PMU V/I TEMP SENSE GND REF TEMP SENSE 10kΩ IN-AMP G = 5 2.5 + DUTGND REF MUX MUX MEASOUT01 OUTPUT ENABLE DATA[0] (ADDR[4:0] = 0x0F) ONE PER DEVICE 225kΩ 2µA PMU INPUT SELECTION DATA[9:8] (ADDR[4:0] = 0x0E) 20µA 22.5kΩ 200µA 2.25kΩ 250Ω DUTx 15.5Ω 2mA MV VIN 2.5V + DUTGND DUTGND FFCAP_xA MUX PMU CLAMP ENABLE DATA[5] (ADDR[4:0] = 0x0E) 330pF SCAPx (EXTERNAL) 32mA BUFFER FFCAP_xB CRA = 220pF VCH VCL 32mA NOTES 1. SWITCHES CONNECTED WITH DOTTED LINES REPRESENT PMU RANGE DATA[2:0] (ADDR[4:0] = 0x0E); WHEN PMU ENABLE D ATA[2] = 0 (ADDR[4:0] = 0x0C), ALL SWITCHES OPEN AND PMU POWERS DOWN. 2. THE EXTERNAL SENSE PATH MUST CLOSE THE LOOP TO ENABLE THE CLAMPS TO OPERATE CORRECTLY. 3. 32mA RANGE HAS ITS OWN OUTPUT BUFFER. 4. 32mA BUFFER TRISTATES WHEN NOT IN USE. Figure 79. PMU Block Diagram Rev. C | Page 49 of 51 07279-083 MEASURE V (AT OUTPUT OF SENSE MUX) ADATE304 Data Sheet (ADDR[4:0] = 0x12) DATA[0] OVD MASK ENABLES OVD FLAGS TO ALARM OVD_CHx PIN 6.5V 1 OVD HIGH LEVEL DAC (ADDR[4:0] = 0x0A, CH[1]) OVD_CHx SHORT-CIRCUIT CURRENT = 100µA DUT ADATE304 –2.5V 1 OVD LOW LEVEL DAC (ADDR[4:0] = 0x0A, CH[0]) PMU V/I CLAMP FLAG (ADDR[4:0] = 0x12) DATA[1] PMU MASK ENABLES PMU V/I FLAG TO ALARM OVD_CHx PIN (ADDR[4:0] = 0x13) 2 DATA[2] DATA[1] DATA[0] OVD HIGH/LOW LEVEL DAC IS SHARED BY EACH CHANNEL; THEREFORE, ONLY ONE OVD HIGH/LOW VOLTAGE LEVEL CAN BE SET PER CHIP. THE OVD DACs PROVIDE A VOLTAGE RANGE OF –3V TO +7V. THE RECOMMENDED HIGH/LOW SETTINGS ARE +6.5V/–2.5V. (THESE VALUES NEED TO BE PROGRAMMED BY THE USER UPON STARTUP/RESET.) 2THIS IS A READ ONLY REGISTER THAT ALLOWS THE USER TO DETERMINE THE CAUSE OF THE ACTIVE OVD FLAG. Figure 80. OVD Block Diagram Rev. C | Page 50 of 51 07279-084 1THE Data Sheet ADATE304 OUTLINE DIMENSIONS A1 BALL CORNER 9.10 9.00 SQ 8.90 A1 BALL CORNER 10 9 8 7 6 5 4 3 2 1 A B C 7.20 BSC SQ 6.731 BSC SQ D E F 0.80 BSC G H J K *1.20 1.09 1.00 BOTTOM VIEW 0.90 REF DETAIL A DETAIL A 0.36 REF 0.38 0.33 0.28 SEATING PLANE 0.53 0.48 0.43 BALL DIAMETER 0.83 0.76 0.69 COPLANARITY 0.12 *COMPLIANT TO JEDEC STANDARDS MO-219 WITH EXCEPTION TO PACKAGE HEIGHT. 07-06-2012-A TOP VIEW Figure 81. 84-Ball Chip Scale Package Ball Grid Array [CSP_BGA] (BC-84-2) Dimensions shown in millimeters ORDERING GUIDE Model 1 ADATE304BBCZ 1 Temperature Range −40°C to +85°C Package Description 84-Ball Chip Scale Package Ball Grid Array [CSP_BGA] Z = RoHS Compliant Part. ©2008–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07279-0-10/17(C) Rev. C | Page 51 of 51 Package Option BC-84-2
ADATE304BBCZ 价格&库存

很抱歉,暂时无法提供与“ADATE304BBCZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货