0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADAU1962AWBSTZ

ADAU1962AWBSTZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    LQFP80

  • 描述:

    IC DAC 24BIT V-OUT 80LQFP

  • 数据手册
  • 价格&库存
ADAU1962AWBSTZ 数据手册
12-Channel, High Performance, 192 kHz, 24-Bit DAC ADAU1962A Data Sheet FEATURES GENERAL DESCRIPTION Differential or single-ended voltage DAC output 114 dB DAC dynamic range, A-weighted, differential −97 dB total harmonic distortion plus noise (THD + N), differential 110 dB DAC dynamic range, A-weighted, single-ended −95 dB THD + N, single-ended 2.5 V digital and 3.3 V analog and input/output (I/O) supplies 249 mW total quiescent power Phase-locked loop (PLL) generated or direct master clock Low electromagnetic interference (EMI) design Linear regulator driver to generate digital supply Supports 24-bit and 32 kHz to 192 kHz sample rates Low propagation 192 kHz sample rate mode Log volume control with autoramp function Temperature sensor with digital readout ±3°C accuracy SPI and I2C controllable for flexibility Software-controllable clickless mute Software power-down Right justified, left justified, I2S, and TDM modes Master and slave modes with up to 12-channel input/output 80-lead LQFP package Qualified for automotive applications The ADAU1962A is a high performance, single-chip digital-toanalog converter (DAC) that provides 12 DACs with differential or single-ended outputs using the Analog Devices, Inc., patented multibit sigma-delta (Σ-Δ) architecture. A serial peripheral interface (SPI)/I2C port is included, allowing a microcontroller to adjust volume and many other parameters. The ADAU1962A operates from 2.5 V digital and 3.3 V analog supplies. A linear regulator is included to generate the digital supply voltage from the analog supply voltage. The ADAU1962A is available in an 80-lead LQFP. The ADAU1962A is designed for low EMI. This consideration is apparent in both the system and circuit design architectures. By using the on-board PLL to derive the internal master clock from an external left-right frame clock (LRCLK), the ADAU1962A can eliminate the need for a separate high frequency master clock and can be used with or without a bit clock. The DACs are designed using the latest Analog Devices continuous time architectures to further minimize EMI. By using 2.5 V digital supplies, power consumption is minimized, and the digital waveforms are a smaller amplitude, further reducing emissions. Note that throughout this data sheet, multifunction pins, such as SCLK/SCL, are referred to by the entire pin name or by a single function of the pin, for example, SCLK, when only that function is relevant. APPLICATIONS Automotive audio systems Home theater systems Digital audio effects processors FUNCTIONAL BLOCK DIAGRAM DIGITAL AUDIO INPUT ADAU1962A SERIAL DATA PORT DAC DAC DAC ANALOG AUDIO OUTPUTS DAC DAC DIGITAL FILTER AND VOLUME CONTROL DAC SDATA IN SDATA IN CLOCKS TIMING MANAGEMENT AND CONTROL (CLOCK AND PLL) DAC DIGITAL FILTER AND VOLUME CONTROL DAC DAC ANALOG AUDIO OUTPUTS DAC DAC DAC SPI/I2C CONTROL PORT CONTROL DATA INPUT/OUTPUT INTERNAL TEMP SENSOR 11371-001 PRECISION VOLTAGE REFERENCE Figure 1. Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2013–2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADAU1962A Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1  PLL and Clock Control 0 Register ........................................... 25  Applications ....................................................................................... 1  PLL and Clock Control 1 Register ........................................... 26  General Description ......................................................................... 1  Block Power-Down and Thermal Sensor Control 1 Register27  Functional Block Diagram .............................................................. 1  Power-Down Control 2 Register .............................................. 28  Revision History ............................................................................... 2  Power-Down Control 3 Register .............................................. 29  Specifications..................................................................................... 3  Thermal Sensor Temperature Readout Register .................... 29  Analog Performance Specifications: TA = 25°C ....................... 3  DAC Control 0 Register ............................................................ 30  Analog Performance Specifications: TA = 105°C ..................... 4  DAC Control 1 Register ............................................................ 31  Crystal Oscillator Specifications................................................. 4  DAC Control 2 Register ............................................................ 32  Digital Input/Output Specifications........................................... 5  DAC Individual Channel Mutes 1 Register ............................ 33  Power Supply Specifications........................................................ 5  DAC Individual Channel Mutes 2 Register ............................ 34  Digital Filters ................................................................................. 6  Master Volume Control Register.............................................. 35  Timing Specifications .................................................................. 6  DAC 1 Volume Control Register .............................................. 35  Absolute Maximum Ratings............................................................ 8  DAC 2 Volume Control Register .............................................. 36  Thermal Resistance ...................................................................... 8  DAC 3 Volume Control Register .............................................. 36  ESD Caution .................................................................................. 8  DAC 4 Volume Control Register .............................................. 37  Pin Configuration and Function Descriptions ............................. 9  DAC 5 Volume Control Register .............................................. 37  Typical Performance Characteristics ........................................... 12  DAC 6 Volume Control Register .............................................. 38  Typical Application Circuits.......................................................... 13  DAC 7 Volume Control Register .............................................. 38  Theory of Operation ...................................................................... 14  DAC 8 Volume Control Register .............................................. 39  DACs ............................................................................................ 14  DAC 9 Volume Control Register .............................................. 39  Clock Signals ............................................................................... 14  DAC 10 Volume Control Register............................................ 40  Power-Up and Reset ................................................................... 16  DAC 11 Volume Control Register............................................ 40  Standalone Mode ........................................................................ 16  DAC 12 Volume Control Register............................................ 41  I C Control Port .......................................................................... 16  Pad Strength Register ................................................................. 41  Serial Control Port: SPI Control Mode ................................... 19  DAC Power Adjust 1 Register ................................................... 42  Power Supply and Voltage Reference ....................................... 20  DAC Power Adjust 2 Register ................................................... 43  Serial Data Ports—Data Format ............................................... 20  DAC Power Adjust 3 Register ..................................................... 44  Time-Division Multiplexed (TDM) Modes ............................ 21  Outline Dimensions ....................................................................... 48  Temperature Sensor ................................................................... 21  Ordering Guide .......................................................................... 48  Additional Modes ....................................................................... 23  Automotive Products ................................................................. 48  2 Register Summary .......................................................................... 24  Register Details ............................................................................... 25  REVISION HISTORY 3/16—Rev. 0 to Rev. A Changes to Table 4 ............................................................................ 5 7/13—Revision 0: Initial Version Rev. A | Page 2 of 48 Data Sheet ADAU1962A SPECIFICATIONS Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications. Master clock = 12.288 MHz (48 kHz fS, 256 × fS mode), input sample rate = 48 kHz, measurement bandwidth = 20 Hz to 20 kHz, word width = 24 bits, load capacitance (digital output) = 20 pF, load current (digital output) = ±1 mA or 1.5 kΩ to ½ DVDD supply, input voltage high = 2.0 V, input voltage low = 0.8 V, analog audio output resistive load = 3100 Ω per pin, unless otherwise noted. ANALOG PERFORMANCE SPECIFICATIONS: TA = 25°C Specifications guaranteed at supply voltages of AVDDx = 3.3 V, DVDD = 2.5 V, ambient temperature1 (TA) = 25°C, unless otherwise noted. Table 1. Parameter DIGITAL-TO-ANALOG CONVERTERS Dynamic Range (DNR) No Filter (RMS) With A-Weighted Filter (RMS) No Filter (RMS) With A-Weighted Filter (RMS) Total Harmonic Distortion + Noise Differential Output Single-Ended Output Full-Scale Differential Output Voltage Full-Scale Single-Ended Output Voltage Gain Error Offset Error Gain Drift Interchannel Isolation Interchannel Phase Deviation Volume Control Step Volume Control Range De-Emphasis Gain Error Output Resistance at Each Pin REFERENCE Temperature Sensor Reference Voltage Common-Mode Reference Output External Reference Voltage Source REGULATOR Input Supply Voltage Regulated Output Voltage TEMPERATURE SENSOR Temperature Accuracy Temperature Readout Range Temperature Readout Step Size Temperature Sample Rate 1 Test Conditions/Comments Min Typ 20 Hz to 20 kHz, −60 dB input Differential output Differential output Single-ended output Single-ended output 105.5 108.5 102.5 105.5 111 114 107 110 Two channels running −1 dBFS All channels running −1 dBFS Two channels running −1 dBFS All channels running −1 dBFS −97 −97 −95 −95 2.00 (2.83) 1.00 (1.41) −10 −25 −30 −6 Max Unit dB dB dB dB −85 −85 −80 −80 +10 +25 +30 100 0 0.375 95.25 ±0.6 33 dB dB dB dB V rms (V p-p) V rms (V p-p) % mV ppm/°C dB Degrees dB dB dB Ω TS_REF pin CM pin CM pin 1.40 1.40 1.50 1.50 1.50 1.56 1.56 V V V VSUPPLY pin VSENSE pin 3.14 2.25 3.3 2.50 3.46 2.59 V V +3 +140 °C °C °C Hz −3 −60 1 0.25 Functionally guaranteed at −40°C to +125°C case temperature. Rev. A | Page 3 of 48 6 ADAU1962A Data Sheet ANALOG PERFORMANCE SPECIFICATIONS: TA = 105°C Specifications guaranteed at supply voltages of AVDDx = 3.3 V, DVDD = 2.5 V, ambient temperature1 (TA) = 105°C, unless otherwise noted. Table 2. Parameter DIGITAL-TO-ANALOG CONVERTERS Dynamic Range (DNR) No Filter (RMS) With A-Weighted Filter (RMS) No Filter (RMS) With A-Weighted Filter (RMS) Total Harmonic Distortion + Noise Differential Output Single-Ended Output Full-Scale Differential Output Voltage Full-Scale Single-Ended Output Voltage Gain Error Offset Error Gain Drift Interchannel Isolation Interchannel Phase Deviation Volume Control Step Volume Control Range De-Emphasis Gain Error Output Resistance at Each Pin REFERENCE Temperature Sensor Reference Voltage Common-Mode Reference Output External Reference Voltage Source REGULATOR Input Supply Voltage Regulated Output Voltage TEMPERATURE SENSOR Temperature Accuracy Temperature Readout Range Temperature Readout Step Size Temperature Sample Rate 1 Test Conditions/Comments Min Typ 20 Hz to 20 kHz, −60 dB input Differential output Differential output Single-ended output Single-ended output 106.5 109.5 101.5 104.5 110 113 108 110 Two channels running −1 dBFS All channels running −1 dBFS Two channels running −1 dBFS All channels running −1 dBFS −92 −92 −90 −90 2.00 (2.83) 1.00 (1.41) −10 −25 −30 −6 Max Unit dB dB dB dB −83 −83 −80 −80 +10 +25 +30 100 0 0.375 95.25 ±0.6 33 dB dB dB dB V rms (V p-p) V rms (V p-p) % mV ppm/°C dB Degrees dB dB dB Ω TS_REF pin CM pin CM pin 1.40 1.40 1.50 1.50 1.50 1.56 1.56 V V V VSUPPLY pin VSENSE pin 3.14 2.25 3.3 2.50 3.46 2.55 V V +3 +140 °C °C °C Hz −3 −60 1 0.25 6 Functionally guaranteed at −40°C to +125°C case temperature. CRYSTAL OSCILLATOR SPECIFICATIONS Table 3. Parameter TRANSCONDUCTANCE TA = 25°C TA = 105°C Min Typ Max Unit 6.4 5.2 7 to 10 7.5 to 8.5 14 12 mmhos mmhos Rev. A | Page 4 of 48 Data Sheet ADAU1962A DIGITAL INPUT/OUTPUT SPECIFICATIONS −40°C < TA < +105°C, IOVDD = 3.3 V ± 5%, unless otherwise noted. Table 4. Parameter DIGITAL INPUT High Level Input Voltage (VIH) Low Level Input Voltage (VIL) Input Leakage INPUT CAPACITANCE DIGITAL OUTPUT High Level Output Voltage (VOH) Low Level Output Voltage (VOL) Test Conditions/Comments Min Typ Max Unit 0.3 × IOVDD 10 10 5 V V μA μA pF 0.1 × IOVDD V V 0.7 × IOVDD IIH at VIH = 3.3 V IIL at VIL = 0 V IOH = 1 mA IOL = 1 mA 0.8 × IOVDD POWER SUPPLY SPECIFICATIONS Table 5. Parameter SUPPLIES Voltage Analog Current Normal Operation Power-Down Digital Current Normal Operation Power-Down PLL Current Normal Operation Power-Down Input/Output Current Normal Operation Power-Down QUIESCENT DISSIPATION—DITHER INPUT Operation All Supplies Analog Supply Digital Supply PLL Supply I/O Supply Power-Down, All Supplies POWER SUPPLY REJECTION RATIO Signal at Analog Supply Pins Test Conditions/Comments Min Typ Max Unit AVDDx DVDD PLLVDD IOVDD VSUPPLY AVDDx = 3.3 V 3.14 2.25 2.25 3.14 3.14 3.3 2.5 2.5 3.3 3.3 3.46 3.46 3.46 3.46 3.46 V V V V V DVDD = 2.5 V fS = 48 kHz to 192 kHz No MCLK or I2S PLLVDD = 2.5 V fS = 48 kHz to 192 kHz 45 1 mA μA 30 4 mA μA 5 1 mA μA 4 1 mA μA 249 148 75 13 13 0 mW mW mW mW mW mW 88 85 85 75 dB dB dB dB IOVDD = 3.3 V MCLK = 256 × fS, 48 kHz AVDDx = 3.3 V, DVDD/PLLVDD = 2.5 V, IOVDD = 3.3 V AVDDx = 3.3 V, 12.4 mW per channel DVDD = 2.5 V PLLVDD = 2.5 V IOVDD = 3.3 V 1 kHz, 200 mV p-p, differential 20 kHz, 200 mV p-p, differential 1 kHz, 200 mV p-p, single-ended 20 kHz, 200 mV p-p, single-ended Rev. A | Page 5 of 48 ADAU1962A Data Sheet DIGITAL FILTERS Table 6. Parameter DAC INTERPOLATION FILTER Pass Band Pass-Band Ripple Transition Band Stop Band Stop-Band Attenuation Propagation Delay Mode Factor 48 kHz mode, typical at 48 kHz 96 kHz mode, typical at 96 kHz 192 kHz mode, typical at 192 kHz 48 kHz mode, typical at 48 kHz 96 kHz mode, typical at 96 kHz 192 kHz mode, typical at 192 kHz 48 kHz mode, typical at 48 kHz 96 kHz mode, typical at 96 kHz 192 kHz mode, typical at 192 kHz 48 kHz mode, typical at 48 kHz 96 kHz mode, typical at 96 kHz 192 kHz mode, typical at 192 kHz 48 kHz mode, typical at 48 kHz 96 kHz mode, typical at 96 kHz 192 kHz mode, typical at 192 kHz 48 kHz mode, typical at 48 kHz 96 kHz mode, typical at 96 kHz 192 kHz mode, typical at 192 kHz 192 kHz low propagation delay mode, typical at 192 kHz 0.4535 × fS 0.3646 × fS 0.3646 × fS Min Typ Max 22 35 70 ±0.01 ±0.05 ±0.1 0.5 × fS 0.5 × fS 0.5 × fS 0.5465 × fS 0.6354 × fS 0.6354 × fS 24 48 96 26 61 122 68 68 68 25/fS 11/fS 8/fS 2/fS 521 115 42 10 Unit kHz kHz kHz dB dB dB kHz kHz kHz kHz kHz kHz dB dB dB μs μs μs μs TIMING SPECIFICATIONS −40°C < TA < +105°C, DVDD = 2.5 V ± 10%, unless otherwise noted. Table 7. Parameter INPUT MASTER CLOCK (MCLKI) AND RESET tMH fMCLK fBCLK tPDR tPDRR PLL Lock Time Output Duty Cycle, MCLKO Pin Description Min Master clock duty cycle, DAC clock source = PLL clock at 256 × fS, 384 × fS, 512 × fS, and 768 × fS DAC clock source = direct MCLKI at 512 × fS (bypass onchip PLL) MCLKI frequency of the MCLKI/XTALI pin, PLL mode Direct MCLKI 512 × fS mode DBCLK pin frequency, PLL mode Low Recovery, reset to active output MCLKI input of the MCLKI/XTALI pin DLRCLK pin input 256 × fS VCO clock Rev. A | Page 6 of 48 Typ Max Unit 40 60 % 40 60 % 6.9 40.5 27.1 27.0 MHz MHz MHz ns ms 10 50 60 ms ms % 15 300 40 Data Sheet ADAU1962A Parameter SPI PORT fSCLK tSCH tSCL tMOS tMOH tSSS tSSH tSSHIGH tMIE tMID tMIH tMITS Description See Figure 19 SCLK frequency, not shown in Figure 19 SCLK high SCLK low MOSI setup, time to SCLK rising MOSI hold, time from SCLK rising SS setup, time to SCLK rising SS hold, time from SCLK falling SS high MISO enable from SS falling MISO delay from SCLK falling MISO hold from SCLK falling, not shown in Figure 19 MISO tristate from SS rising 2 IC fSCL tSCLL tSCLH tSCS See Figure 2 and Figure 15 SCL clock frequency SCL low SCL high Setup time (start condition), relevant for repeated start condition Hold time (start condition), first clock generated after this period Setup time (stop condition) Data setup time SDA and SCL rise time SDA and SCL fall time Bus-free time between stop and start See Figure 21 DBCLK high, slave mode DBCLK low, slave mode DLRCLK setup, time to DBCLK rising, slave mode DLRCLK hold from DBCLK rising, slave mode DLRCLK skew from DBCLK falling, master mode DSDATAx setup to DBCLK rising DSDATAx hold from DBCLK rising tSCH tSSH tDS tSR tSF tBFT DAC SERIAL PORT tDBH tDBL tDLS tDLH tDLS tDDS tDDH tDS tSCH Min tSF tSCS Figure 2. I2C Timing Diagram Rev. A | Page 7 of 48 tSSH MHz ns ns ns ns ns ns ns ns ns ns ns 30 1.3 0.6 0.6 400 kHz μs μs μs 0.6 μs 0.6 100 1.3 μs ns ns ns μs 10 10 10 5 −8 10 5 ns ns ns ns ns ns ns 300 300 tSCLH tSCLL 10 30 tSCH tBFT Unit 30 30 11371-002 SCL Max 35 35 10 10 10 10 10 SDA tSR Typ +8 ADAU1962A Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 8. Parameter Analog (AVDDx) Input/Output (IOVDD) Digital (DVDD) PLL (PLLVDD) VSUPPLY Input Current (Except Supply Pins) Analog Input Voltage (Signal Pins) Digital Input Voltage (Signal Pins) Operating Temperature Range (Case) Storage Temperature Range Rating −0.3 V to +3.6 V −0.3 V to +3.6 V −0.3 V to +3.6 V −0.3 V to +3.6 V −0.3 V to +3.6 V ±20 mA –0.3 V to AVDDx + 0.3 V −0.3 V to DVDD + 0.3 V −40°C to +125°C −65°C to +150°C θJA represents junction-to-ambient thermal resistance, and θJC represents the junction-to-case thermal resistance. All characteristics are for a 4-layer board with a solid ground plane. Table 9. Thermal Resistance Package Type 80-Lead LQFP ESD CAUTION Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. A | Page 8 of 48 θJA 42.3 θJC 10.0 Unit °C/W Data Sheet ADAU1962A DAC_BIAS3 1 AGND2 69 CM 70 TS_REF 71 DAC5P 72 DAC5N 73 DAC6P 74 DAC7P DAC7N 75 DAC6N DAC8P 76 DAC8N DAC11P 77 DAC9P DAC11N 78 DAC9N DAC12P 79 DAC10N DAC12N 80 DAC10P AGND3 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 68 67 66 65 64 63 62 61 60 DAC_BIAS2 PIN 1 INDICATOR DAC_BIAS4 2 59 DAC_BIAS1 AVDD3 3 58 AVDD2 NC 4 57 DAC4N NC 5 56 DAC4P NC 6 55 DAC3N NC 7 54 DAC3P NC 8 53 DAC2N NC 9 52 DAC2P ADAU1962A NC 10 51 DAC1N TOP VIEW (Not to Scale) NC 11 50 DAC1P AVDD4 12 49 AVDD1 AGND4 13 48 AGND1 PLLGND 14 47 PU/RST LF 15 46 SA_MODE PLLVDD 16 45 SS/ADDR0/SA MCLKI/XTALI 17 44 SCLK/SCL XTALO 18 43 MISO/SDA/SA MCLKO 19 42 MOSI/ADDR1/SA DVDD 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 DGND VSENSE VDRIVE VSUPPLY DGND DBCLK DLRCLK DVDD DGND SA1 SA2 DSDATA6 DSDATA5 DSDATA4 DSDATA3 DSDATA2 DSDATA1 IOVDD DGND NOTES 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN. 2. SEE THE STANDALONE MODE SECTION (TABLE 13 AND TABLE 14) FOR THE SA_MODE SETTINGS FOR PIN 31, PIN 32, PIN 42, PIN 43, AND PIN 45. 11371-003 21 IOVDD 41 DVDD Figure 3. Pin Configuration Table 10. Pin Function Descriptions Pin No. 1 2 3 4 to 11 12 13 14 15 16 17 18 19 20, 29, 41 21, 26, 30, 40 22, 39 23 Mnemonic1, 2 DAC_BIAS3 DAC_BIAS4 AVDD3 NC AVDD4 AGND4 PLLGND LF PLLVDD MCLKI/XTALI XTALO MCLKO DVDD DGND IOVDD VSENSE Type3 I I PWR NC PWR GND GND O PWR I O O PWR GND PWR I 24 VDRIVE O Description DAC Bias 3. AC couple with a 470 nF to AGND3. DAC Bias 4. AC couple with a 470 nF to AVDD3. Analog Power. No Connect. Do not connect to these pins. Analog Power. Analog Ground. PLL Ground. PLL Loop Filter. Reference the LF pin to PLLVDD. PLL Power. Apply 2.5 V to power the PLL. Master Clock Input/Input to Crystal Inverter. This is a multifunction pin. Output from Crystal Inverter. Master Clock Output. Digital Power, 2.5 V. Digital Ground. Power for Digital Input and Output Pins, 3.3 V. 2.5 V Regulator Output, Pass Transistor Collector. Bypass VSENCE with a 10 μF capacitor in parallel with a 100 nF capacitor. Pass Transistor Base Driver. Rev. A | Page 9 of 48 ADAU1962A Data Sheet Pin No. 25 Mnemonic1, 2 VSUPPLY Type3 I 27 28 31 DBCLK DLRCLK SA1 I/O I/O I 32 SA2 I 33 34 35 36 37 38 42 DSDATA6 DSDATA5 DSDATA4 DSDATA3 DSDATA2 DSDATA1 MOSI/ADDR1/SA I I I I I I I 43 MISO/SDA/SA I/O 44 45 SCLK/SCL SS/ADDR0/SA I I 46 SA_MODE I 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 PU/RST AGND1 AVDD1 DAC1P DAC1N DAC2P DAC2N DAC3P DAC3N DAC4P DAC4N AVDD2 DAC_BIAS1 DAC_BIAS2 AGND2 CM I GND PWR O O O O O O O O PWR I I GND O 63 TS_REF O 64 65 66 67 68 69 70 71 72 73 74 75 DAC5P DAC5N DAC6P DAC6N DAC7P DAC7N DAC8P DAC8N DAC9P DAC9N DAC10P DAC10N O O O O O O O O O O O O Description 3.3 V Voltage Regulator Input, Pass Transistor Emitter. Bypass VSUPPLY with a 10 μF capacitor in parallel with a 100 nF capacitor. Bit Clock for DACs. Frame Clock for DACs. Standalone Mode, Time Domain Multiplexed (SA_MODE TDM) State. See the Standalone Mode section, Table 13, and Table 14 for more information. Standalone Mode, Time Domain Multiplexed (SA_MODE TDM) State. See the Standalone Mode section, Table 13, and Table 14 for more information. DAC11 and DAC 12 Serial Data Input. DAC9 and DAC 10 Serial Data Input. DAC7 and DAC 8 Serial Data Input. DAC5 and DAC 6 Serial Data Input. DAC3 and DAC 4 Serial Data Input. DAC1 and DAC 2 Serial Data Input. Master Output Slave Input (SPI)/Address 1 (I2C)/SA_MODE State (see the Standalone Mode section and Table 13). Master Output Slave Input (SPI)/Control Data Input (I2C)/SA_MODE State (see the Standalone Mode section and Table 13). Serial Clock Input (SPI)/Control Clock Input (I2C) Slave Select (SPI) (Active Low)/Address 0 (I2C)/SA_MODE State (see the Standalone Mode section and Table 13). Standalone Mode. This pin allows mode control of ADAU1962A using Pin 42, Pin 43, and Pin 45, Pin 31, and Pin 32 (high active). See Table 13 and Table 14 for more information. Power-Up/Reset (Active Low). See the Power-Up and Reset section for more information. Analog Ground. Analog Power. DAC1 Positive Output. DAC1 Negative Output. DAC2 Positive Output. DAC2 Negative Output. DAC3 Positive Output. DAC3 Negative Output. DAC4 Positive Output. DAC4 Negative Output. Analog Power. DAC Bias 1. AC couple Pin 59 with a 470 nF capacitor to AVDD2. DAC Bias 2. AC couple Pin 60 with a 470 nF capacitor to AGND2. Analog Ground. Common-Mode Reference Filter Capacitor Connection. Bypass the CM pin with a 10 μF capacitor in parallel with a 100 nF capacitor to AGND2. This reference can be shut off in the PLL_CLK_CTRL1 register (Register 0x01) and the pin can be driven with an outside voltage source. Voltage Reference Filter Capacitor Connection. Bypass Pin 63 with a 10 μF capacitor in parallel with a 100 nF capacitor to AGND2. DAC5 Positive Output. DAC5 Negative Output. DAC6 Positive Output. DAC6 Negative Output. DAC7 Positive Output. DAC7 Negative Output. DAC8 Positive Output. DAC8 Negative Output. DAC9 Positive Output. DAC9 Negative Output. DAC10 Positive Output. DAC10 Negative Output. Rev. A | Page 10 of 48 Data Sheet Pin No. 76 77 78 79 80 1 2 3 Mnemonic1, 2 DAC11P DAC11N DAC12P DAC12N AGND3 ADAU1962A Type3 O O O O GND Description DAC11 Positive Output. DAC11 Negative Output. DAC12 Positive Output. DAC12 Negative Output. Analog Ground. AVDD1, AVDD2, AVDD3, and AVDD4 are referred to elsewhere in this document as AVDDx when AVDDx means any or all of the ADVD pins. DAC Channel 1 to DAC Channel 12 pins are referred to elsewhere in this document as DACx, DACxP, or DACxN when it means any or all of the DAC channel pins. I = input, O = output, I/O = input/output, PWR = power, and GND = ground, and NC = no connect. Rev. A | Page 11 of 48 ADAU1962A Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 0.05 0.20 0.04 0.15 0.03 0.10 MAGNITUDE (dB) MAGNITUDE (dB) 0.02 0.01 0 –0.01 0.05 0 –0.05 –0.02 –0.10 –0.03 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 FREQUENCY (FACTORED TO fS) –0.20 0 –20 –20 –30 –30 MAGNITUDE (dB) 0 –10 –40 –50 –60 –80 –90 –90 –100 –100 0.4 0.5 0.6 0.7 0.8 0.9 0.30 0.35 0.40 1.0 –60 –70 0.3 0.25 –50 –80 FREQUENCY (FACTORED TO fS) 0.20 –40 –70 1.0 11371-005 MAGNITUDE (dB) 0 0.2 0.15 Figure 6. DAC Pass-Band Filter Response, 96 kHz –10 0.1 0.10 FREQUENCY (FACTORED TO fS) Figure 4. DAC Pass-Band Filter Response, 48 kHz 0 0.05 11371-006 0 11371-004 –0.05 11371-007 –0.15 –0.04 Figure 5. DAC Stop-Band Filter Response, 48 kHz 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 FREQUENCY (FACTORED TO fS) Figure 7. DAC Stop-Band Filter Response, 96 kHz Rev. A | Page 12 of 48 Data Sheet ADAU1962A TYPICAL APPLICATION CIRCUITS Typical application circuits are shown in Figure 8 to Figure 13. Recommended loop filters for DLRCLK and MCLKI/XTALI modes of the PLL reference are shown in Figure 8. Output filters for the DAC outputs are shown in Figure 10 to Figure 13, and an external regulator circuit is shown in Figure 9. When pins for multiple outputs are referred to generically in this datasheet, there is an x in place of the number. For example, DACxP refers to DAC1P through DAC12P. DLRCLK LF VSENSE 2.5V + 10µF 11371-013 100nF Figure 9. Recommended 2.5 V Regulator Circuit 562Ω DACxP PLLVDD 10µF + 237Ω 11371-008 OUTPUTxP 2.7nF Figure 8. Recommended Loop Filters for DLRCLK and MCLKI/XTALI PLL Reference Modes DACxN 10µF + 237Ω OUTPUTxN 49.9kΩ 11371-009 49.9kΩ Figure 10. Typical DAC Output Passive Filter Circuit (Differential) 10µF 475Ω 2.7nF OUTPUTxP 49.9kΩ 11371-010 DACxP + PLLVDD FZT953 C 390pF 3.32kΩ E B VDRIVE 5.6nF 2.2nF 3.3V 1kΩ MCLKI/XTALI 39nF 10µF + Figure 11. Typical DAC Output Passive Filter Circuit (Single-Ended) 1.1nF AD8672ARZ DACxP 1.50kΩ 1.54kΩ 5 100Ω 7 4.7µF + OUTPUTxP 6 +12V DC 422Ω 2.49kΩ 100kΩ 8 0.1µF 4.7µF 0.1µF 4.7µF + 1nF 4.7µF 1nF 4.7µF + V+ V– 4 + + 100kΩ –12V DC DACxN 2 1.50kΩ 422Ω 2.49kΩ 100Ω 1 1.54kΩ 3 4.7µF + OUTPUTxN 11371-011 AD8672ARZ 1.1nF Figure 12. Typical DAC Output Active Filter Circuit (Differential) 1.1nF 1.50kΩ 1.54kΩ AD8672ARZ 100Ω 4.7µF + DACxP 1nF 422Ω 2.49kΩ 4.7µF OUTPUTxP 100kΩ + Figure 13. Typical DAC Output Active Filter Circuit (Single-Ended) Rev. A | Page 13 of 48 11371-012 LF 100nF VSUPPLY ADAU1962A Data Sheet THEORY OF OPERATION DACs The 12 ADAU1962A DAC channels are differential for improved noise and distortion performance and are voltage output for simplified connection. The DACs include on-chip digital interpolation filters with 68 dB stop-band attenuation and linear phase response, operating at an oversampling ratio of 256× (48 kHz range), 128× (96 kHz range), or 64× (192 kHz range). Each channel has its own independently programmable attenuator, adjustable in 255 steps in increments of 0.375 dB. Digital inputs are supplied through six serial data input pins (two channels on each pin), a common frame clock (DLRCLK), and a bit clock (DBCLK). Alternatively, any one of the TDM modes can be used to access up to 12 channels on a single TDM data line. The ADAU1962A has a low propagation delay mode; this mode is an option for an fS of 192 kHz and is enabled in Register DAC_CTRL0[2:1]. By setting these bits to 0b11, the propagation delay is reduced by the amount shown in Table 6. The shorter delay is achieved by reducing the amount of digital filtering; the negative impact of selecting this mode is reduced audio frequency response and increased out-of-band energy. Because AVDD is supplied with 3.3 V, each analog output pin has a nominal common-mode (CM) dc level of 1.5 V. With a 0 dB full-scale digital input signal, each pin swings approximately ±1.42 V peak (2.83 V p-p and 2 V rms). Therefore, the voltage swing differentially across the two pins is 5.66 V p-p (4 V rms). The differential analog outputs require a single-order passive differential resistor-capacitor (RC) filter only to provide the specified DNR performance; see Figure 10 or Figure 11 for an example filter. The outputs can easily drive differential inputs on a separate printed circuit board (PCB) through cabling as well as differential inputs on the same PCB. If more signal level is required, or if a more robust filter is needed, a single op amp gain stage designed as a second-order, low-pass Bessel filter can be used to remove the high frequency out-ofband noise present on each pin of the differential outputs. The choice of components and design of this circuit is critical to yield the full DNR of the DACs (see the recommended passive and active circuits in Figure 10, Figure 11, Figure 12, and Figure 13). The differential filter can be built into an active difference amplifier to provide a single-ended output with gain, if necessary. Note that the use of op amps with low slew rate or low bandwidth can cause high frequency noise and tones to fold down into the audio band; exercise care when selecting these components. The ADAU1962A offers control over the analog performance of the DACs; it is possible to program the registers to reduce the power consumption with the trade-off of lower SNR and THD + N. Table 11. DAC Power vs. Performance Register Setting Total AVDDx Current SNR THD + N (−1 dBFS Signal) Best Performance 45 mA Reference Reference The reduced power consumption is the result of changing the internal bias current to the analog output amplifiers. Register DAC_POWER1 to Register DAC_POWER3 present four basic settings for the DAC power vs. performance in each of the 12 channels: best performance, good performance, lower power, and lowest power. Alternatively, in Register PLL_CLK_CTRL1[7:6], the LOPWR_MODE bits offer global control over the power and performance for all 12 channels. To select the lower power or lowest power settings, set Bit 7 and Bit 6 of the DAC_POWERx registers to 0b10 or 0b11, respectively. The default setting is 0b00. This setting allows the channels to be controlled individually using the DAC_POWERx registers. The data presented in Table 11 shows the result of setting all 12 channels to each of the four settings. The SNR and THD + N specifications are shown in relation to the measured performance of a device at the best performance setting. The voltage at CM, the common-mode reference pin, can be used to bias the external op amps that buffer the output signals (see the Power Supply and Voltage Reference section). CLOCK SIGNALS Upon powering the ADAU1962A and asserting the PU/RST pin high, the part starts in either standalone mode (SA_MODE) or program mode, depending on the state of SA_MODE (Pin 46). The clock functionality of SA_MODE is described in the Standalone Mode section. In program mode, the default for the ADAU1962A is for the MCLKO pin to feed a buffered output of the MCLKI signal on the MCLKI/XTALI pin. The default for the DLRCLK and DBCLK ports is slave mode; the DAC must be driven with a coherent set of master clock, frame clock, and bit clock signals to function. The MCLKO pin can be programmed to provide different clock signals using Register PLL_CLK_CTRL1[5:4]. The default, 0b10, provides a buffered copy of the clock signal that is driving the MCLKI pin. Two modes, 0b00 and 0b01, provide low jitter clock signals. The b00 setting yields a clock rate between 4 MHz and 6 MHz, and the b01 setting yields a clock rate between 8 MHz and 12 MHz. Both of these clock frequencies are scaled as ratios of master clock automatically inside the ADAU1962A. As an example, an input to MCLKI of 8.192 MHz and a setting of 0b00 yield an MCLKO frequency of (8.192/2) = 4.096 MHz. Alternatively, an MCLKI of 36.864 MHz and a setting of 0b01 yield an MCLKO frequency of (36.864/3) = 12.288 MHz. The 0b11 setting disables the MCLKO pin. Good Performance 40 mA −0.2 dB −1.8 dB Rev. A | Page 14 of 48 Low Power 35 mA −1.5 dB −3.0 dB Lowest Power 30 mA −14.2 dB −5.8 dB Data Sheet ADAU1962A After the PU/RST pin is asserted high, the PLL_CLK_CTRLx registers (Register 0x00 and Register 0x01) can be programmed. The on-chip PLL can be selected to use the clock appearing at the MCLKI/XTALI pin at a frequency of 256, 384, 512, or 768 times the sample rate (fS), referenced to the 48 kHz mode from the master clock select (MCS) setting, as described in Table 12. In 96 kHz mode, the master clock frequency stays at the same absolute frequency; therefore, the actual multiplication rate is divided by 2. In 192 kHz mode, the actual multiplication rate is divided by 4. For example, if the ADAU1962A is programmed in 256 × fS mode, the frequency of the master clock input is 256 × 48 kHz = 12.288 MHz. If the ADAU1962A is then switched to 96 kHz operation (by writing to DAC_CTRL0[2:1]), the frequency of the master clock remains at 12.288 MHz, which is an MCS ratio of 128 × fS in this example. Therefore, in 192 kHz mode, MCS becomes 64 × fS. The internal clock for the digital core varies by mode: 512 × fS (48 kHz mode), 256 × fS (96 kHz mode), or 128 × fS (192 kHz mode). By default, the on-board PLL generates this internal master clock from an external clock. The PLL must be powered and stable before using the ADAU1962A as a source for quality audio. The PLL is enabled by reset and does not require writing to the I2C or SPI port for normal operation. With the PLL enabled, the performance of the ADAU1962A is not affected by jitter as high as a 300 ps rms time interval error (TIE). When the internal PLL is disabled, use an independent crystal oscillator to generate the master clock. When using the ADAU1962A in direct master clock mode, power down the PLL in the PDN_THRMSENS_CTRL_1 register. For direct master clock mode, a frequency of 512 × fS (referenced to 48 kHz mode) must be fed into the MCLKI pin, and the CLK_SEL bit in the PLL_CLK_CTRL1 register must be set to 1. However, for the device to function, 2.5 V power must be connected to the PLLVDD pin. The PLL of the ADAU1962A can also be programmed to run from an external LRCLK. Setting the PLLIN bits in the PLL_CLK_CTRL0 register to 0b01, and connecting the appropriate loop filter to the LF pin (see Figure 8), the PLL generates all of the necessary internal clocks for operation with no external master clock. This mode reduces the number of high frequency signals in the design, reducing EMI emissions. It is possible to further reduce EMI emissions of the circuit by using the internal bit clock generation setting of the BCLK_GEN bit in the DAC_CTRL1 register. Setting the BCLK_GEN bit to 1 (internal) and the SAI_MS bit to 0 (slave), the ADAU1962A generates its own bit clock; this configuration works with the PLL input register (PLL_CLK_CTRL0[7:6]) set to either MCLKI/XTALI or DLRCLK. The clock on the DLRCLK pin is the only required clock in DLRCLK PLL mode. Table 12. MCS and fS Modes Frequency Sample Select DAC_CTRL0[2:1] fS (kHz) Bit Setting 32 44.1 48 64 88.2 96 128 176.4 192 0b00 0b00 0b00 0b01 0b01 0b01 0b10 or 0b11 0b10 or 0b11 0b10 or 0b11 Setting 0, 0b00 Master Clock Ratio (MHz) 256 × fS 8.192 256 × fS 11.2896 256 × fS 12.288 128 × fS 8.192 128 × fS 11.2896 128 × fS 12.288 64 × fS 8.192 64 × fS 11.2896 64 × fS 12.288 Master Clock Select (MCS), PLL_CLK_CTRL0[2:1] Setting 1, 0b01 Setting 2, 0b10 Master Clock Master Clock Ratio (MHz) Ratio (MHz) 384 × fS 12.288 512 × fS 16.384 384 × fS 16.9344 512 × fS 22.5792 384 × fS 18.432 512 × fS 24.576 192 × fS 12.288 256 × fS 16.384 192 × fS 16.9344 256 × fS 22.5792 192 × fS 18.432 256 × fS 24.576 96 × fS 12.288 128 × fS 16.384 96 × fS 16.9344 128 × fS 22.5792 96 × fS 18.432 128 × fS 24.576 Rev. A | Page 15 of 48 Setting 3, 0b11 Master Clock Ratio (MHz) 768 × fS 24.576 768 × fS 33.8688 768 × fS 36.864 384 × fS 24.576 384 × fS 33.8688 384 × fS 36.864 192 × fS 24.576 192 × fS 33.8688 192 × fS 36.864 ADAU1962A Data Sheet POWER-UP AND RESET Power sequencing for the ADAU1962A must start with AVDDx and IOVDD, followed by DVDD. It is very important that AVDDx be settled at a regulated voltage and that IOVDD be within 10% of regulated voltage before applying DVDD. When using the internal regulator of the ADAU1962A, this timing occurs by default. To guarantee proper startup, pull the PU/RST pin low by an external resistor and then drive it high after the power supplies have stabilized. The PU/RST can also be pulled high using a simple RC network. When both SA_MODE (Pin 46) and SS/ADDR0/SA (Pin 45) are set high, TDM mode is selected. Table 14 shows the available TDM modes; these modes are set by connecting Pin 31 (SA1) and Pin 32 (SA2) to GND or IOVDD. Table 14. TDM Modes Pin No. 31 to 32 Setting 00 01 10 11 Function TDM4, DLRCLK pulse TDM8, DLRCLK pulse TDM16, DLRCLK pulse TDM8, DLRCLK 50% duty cycle Driving the PU/RST pin low puts the part into a very low power state (
ADAU1962AWBSTZ 价格&库存

很抱歉,暂时无法提供与“ADAU1962AWBSTZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货