Comparators and Reference Circuits ADCMP350/ADCMP352/ADCMP354/ADCMP356
FEATURES
Comparators with 0.6 V on-chip references Output stages: Open-drain active-low (ADCMP350) Push-pull active-low (ADCMP352) Open-drain active-high (ADCMP354) Push-pull active-high (ADCMP356) High voltage (up to 22 V) tolerance on VIN and open-drain output pins Low power consumption (10 µA) 10 nA input bias current 15 mV hysteresis 5 µs propagation delay Specified over −40°C to +125°C temperature range 4-lead SC70 package
FUNCTIONAL BLOCK DIAGRAMS
VCC
ADCMP350/ADCMP352
REF OUT (OD/PP) VIN
GND
VCC
ADCMP354/ADCMP356
VIN OUT (OD/PP) REF
04745-001
APPLICATIONS
Voltage detectors Microprocessor systems Computers Battery monitors Intelligent instruments Portable equipment
GND
`
Figure 1.
GENERAL DESCRIPTION
The ADCMP350/ADCMP352/ADCMP354/ADCMP356 parts are comparator and reference circuits suitable for use in general-purpose applications. The high voltage input and output structures will allow voltages of up to 22 V on the input of all devices and the output of the open-drain devices. High performance over the −40°C to +125°C temperature range makes them suitable for use in automotive and other thermally harsh applications, while low power consumption and spaceefficient SC70 packaging make them ideal for batter y-powered portable equipment.
Table 1. Selection Table
Part No. ADCMP350 ADCMP352 ADCMP354 ADCMP356 Reference Voltage (V) 0.6 0.6 0.6 0.6 Input Connection Inverting Inverting Noninverting Noninverting Output Open Drain Push-Pull Open Drain Push-Pull
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.
ADCMP350/ADCMP352/ADCMP354/ADCMP356 TABLE OF CONTENTS
Specifications..................................................................................... 3 Absolute Maximum Ratings............................................................ 4 ESD Caution .................................................................................. 4 Pin Configuration and Function Descriptions ............................. 5 Typical Performance Characteristics ............................................. 6 Applications........................................................................................9 Adding Hysteresis..........................................................................9 Voltage Detector ............................................................................9 Outline Dimensions ....................................................................... 10 Ordering Guide .......................................................................... 10
REVISION HISTORY
10/04—Revision 0: Initial Version
Rev. 0 | Page 2 of 12
ADCMP350/ADCMP352/ADCMP354/ADCMP356 SPECIFICATIONS
VCC = Full operating range, TA = –40°C to +125°C, unless otherwise noted. Table 2.
Parameter SUPPLY VCC Operating Voltage Range VIN Operating Voltage Range Supply Current VIN THRESHOLD RISING VIN THRESHOLD FALLING INPUT BIAS CURRENT THRESHOLD TEMPERATURE COEFFICIENT VIN TO OUT DELAY OUT VOLTAGE LOW OUT VOLTAGE HIGH OUTPUT RISE TIME OUTPUT FALL TIME OUTPUT LEAKAGE CURRENT Min 2.25 0 0.579 0.579 0.564 0.564 10 0.6 0.6 0.585 0.585 10 170 30 5 Typ Max 5.5 22 15 0.621 0.624 0.606 0.609 Unit V V µA V V V V nA µA ppm/°C µs V V ns ns µA Test Conditions/Comments
VCC = 3.3V, TA = −40°C to +85°C VCC = 3.3V, TA = −40°C to +125°C VCC = 3.3V, TA = −40°C to +85°C VCC = 3.3V, TA = −40°C to +125°C VIN = 0.6 V VIN = 22 V VIN = VTH to (VTH − 100 mV) VIN < VTH min, ISINK = 1.2 mA VIN > VTH max, ISOURCE = 500 µA, Push-pull only Cout = 15 pF Cout = 15 pF OUT = 22 V, open drain only
0.4 0.8 × VCC 30 45 1
Rev. 0 | Page 3 of 12
ADCMP350/ADCMP352/ADCMP354/ADCMP356 ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless other wise noted. Table 3.
Parameter VCC VIN OUT (Open Drain) OUT (Push-Pull) Operating Temperature Range Storage Temperature Range θJA Thermal Impedance, SC70 Lead Temperature Soldering (10 sec) Vapor Phase (60 sec) Infrared (15 sec) Rating −0.3 V to +6 V −0.3 V to +25 V −0.3 V to +25 V −0.3 V to (VCC + 0.3 V) −40°C to +125°C −65°C to +150°C 146°C/W 300°C 215°C 220°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 4 of 12
ADCMP350/ADCMP352/ADCMP354/ADCMP356 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
VIN 1
GND 2
3 OUT
Figure 2. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. 1 2 3 4 Mnemonic VIN GND OUT VCC Description Monitors Analog Input Voltage. Connected to inverting or noninverting input, depending on model number. Ground. Digital Output. Open-drain or push-pull options, depending on model number. Power Supply.
Rev. 0 | Page 5 of 12
04745-002
ADCMP350/ ADCMP352/ ADCMP354/ ADCMP356
4 VCC
ADCMP350/ADCMP352/ADCMP354/ADCMP356 TYPICAL PERFORMANCE CHARACTERISTICS
11.0 10.5 10.0 9.5
ICC (µA)
20 18
TA +85°C TA +25°C
SUPPLY CURRENT (µA)
16 14 12 10 8 6 4
TA +125°C
9.0 8.5 8.0 7.5 7.0 2.25 2.55 2.85 3.15 3.45 3.75 4.05 4.35 4.65 4.95 5.25 5.55 VCC (V) TA –40°C
2 0 2 4 6 8 10 12 14 16 18 20 22
05112-006
05112-019
05112-003
0 VIN (V)
Figure 3. ICC vs. VCC over Temperature.
700 680 660 640
IN LEAKAGE (µA)
Figure 6. Supply Current vs. Input Voltage
200 180 160 140 TA = +25°C TA = +85°C TA = +125°C
VTRIP (mV)
620
VTRIP TRIP RISING
600 580 560 540 520
05112-004
120 100
VTRIP TRIP FALLING
TA = –40°C 80 60 40 20
–25
–10
5
20
35
50
65
80
95
110
125
0
2
4
6
8
10
12
14
16
18
20
22
TEMPERATURE (°C)
VIN (V)
Figure 4. VIN Trip Threshold vs. Temperature.( VCC = 3.3V )
20 18 16 14
HYSTERESIS (mV)
Figure 7. Input Leakage vs. Input Voltage
1.0 0.9 0.8
HYSTERESIS
VIN LEAKAGE (µA)
0.7 0.6 TA = 25°C 0.5 0.4 0.3 0.2 0.1
12 10 8 6 4 2 –25 –10 5 20 35 50 65 80 95 110 125
05112-005
0 –40
0
0 0.3 0.6 0.9 1.2 1.5 1.8 VIN (V) 2.1 2.4 2.7 3.0 3.3
TEMPERATURE (°C)
Figure 5. VIN Trip Hysteresis vs. Temperature
Figure 8. VIN Leakage Current vs. VIN Voltage ( VCC = 3.8 V )
Rev. 0 | Page 6 of 12
05112-007
500 –40
0
ADCMP350/ADCMP352/ADCMP354/ADCMP356
200 190 TA = +125°C 180 170
10000 TA = +25°C 1000
OUTPUT VOLTAGE (mV)
IN LEAKAGE (µA)
160 150 140 130 120 110
TA = +85°C TA = +25°C TA = –40°C
TA = +85°C 100 TA = +125°C 10 TA = –40°C
1
05112-008
0.1
1
10
VCC (V)
OUTPUT SINK CURRENT (mA)
Figure 9. Input Leakage vs. Supply Voltage ( VIN = 22 V )
Figure 12. Output Voltage vs. Output Sink Current (Isink = 500 mA)
700 680
120
OUTPUT LOW VOLTAGE (mV)
660 640
100
VTRIP (mV)
620 600 580 560 540 520
80
VTRIP RISING
60
VTRIP FALLING
40
20
05112-009
VCC (V)
SUPPLY VOLTAGE (V)
Figure 10. VIN Trip Threshold vs. VCC
20 18 16
Figure 13. Output Low Voltage vs. Supply Voltage (Isink = 500 mA)
200 180 160 140
HYSTERESIS (mV)
14 12 HYSTERESIS 10 8 6 4 2
05112-020
FALL TIME (ns)
120 100 80 60 40 FALL TIME 20
05112-012
RISE TIME
0 2.25 2.55 2.85 3.15 3.45 3.75 4.05 4.35 4.65 4.95 5.25 5.55 VCC (V)
0 2.25 2.40 2.70 3.00 3.30 3.60 3.90 4.20 4.50 4.80 5.20 5.50 SUPPLY VOLTAGE (V)
Figure 11. VIN Trip Hysteresis vs. VCC
Figure 14. Fall Time vs. Supply Voltage
Rev. 0 | Page 7 of 12
05112-011
500 2.25 2.55 2.85 3.15 3.45 3.75 4.05 4.35 4.65 4.95 5.25 5.55
0 2.25 2.40 2.70 3.00 3.30 3.60 3.90 4.20 4.50 4.80 5.20 5.50
05112-010
100 2.25 2.55 2.85 3.15 3.45 3.75 4.05 4.35 4.65 4.95 5.25 5.55
0.1 0.01
ADCMP350/ADCMP352/ADCMP354/ADCMP356
100 90
SHORT-CIRCUIT SINK CURRENT (mA)
80 70 60 50 40 30 20 10
05112-013
1
CH1 = VIN
CH2 = VOUT
2
05112-015 05112-016
0 2.25 2.40 2.70 3.00 3.30 3.60 3.90 4.20 4.50 4.80 5.20 5.50 SUPPLY VOLTAGE (V)
CH1 20mV/DIV
CH2 1.00V/DIV
TIMEBASE: 10µs/DIV
Figure 15. Short-Circuit Sink Current vs. Supply Voltage ( Vcc = 3.3, PUSH-PULL Only)
25
Figure 17. Propagation Delay Timing, 10 mV Overdrive
20
1
CH1 = VIN
PROPAGATION DELAY (µs)
tPLH
15
10
tPHL
5
2
CH2 = VOUT
10
20
30
40
50
60
70
80
90
100 110 120 130
INPUT OVERDRIVE (mV)
05112-014
0
CH1 100mV/DIV
CH2 1.00V/DIV
TIMEBASE: 10µs/DIV
Figure 16. Propagation Delay vs. Input Overdrive ( Vcc = 3.3, PUSH-PULL Only)
Figure 18. Propagation Delay Timing, 100 mV Overdrive
Rev. 0 | Page 8 of 12
ADCMP350/ADCMP352/ADCMP354/ADCMP356 APPLICATIONS
ADDING HYSTERESIS
To prevent oscillations at the output caused by noise or slowly moving signals passing the switching threshold, positive feedback can be used to add hysteresis to the noninverting parts (ADCMP354 and ADCMP356). For the noninverting configuration shown in Figure 19, two resistors are used to create different switching thresholds, depending on whether the input signal is increasing or decreasing in magnitude. When the input voltage is increasing, the threshold is above VREF, and when it’s decreasing, the threshold is below VREF. The upper input threshold level is given by
VIN
VOLTAGE DETECTOR
The ADCMP35x parts can be used to monitor voltages, such as batter y monitoring or threshold detectors. Using a resistor divider at the input to select the appropriate trip voltage, the comparator can be configured to give a logic output when the input passes that threshold. Figure 20 shows the typical configuration of the ADCMP354 for monitoring a supply to indicate that the voltage is above a certain level.
VCC = 5V
ADM331 ADCMP354
VREF = 0.6V R1 VIN OUT
RPULLUP
V IN_HI =
where VREF = 0.6 V.
VREF (R1 + R2 ) − VCC R1 R2
R1
05112-018
The lower input threshold level is given by V IN_LO = VREF (R1 + R2 ) R2
Figure 20. Voltage Detector Application
The hysteresis is the difference between these voltage levels and is given by
∆V IN = VCC R1 R2
VCC = 5V
ADM331 ADCMP354 VREF = 0.6V VIN R1
RPULLUP
OUT
RLOAD
VIN
R2
Figure 19. Noninverting Comparator Configuration with Hysteresis
05112-017
Rev. 0 | Page 9 of 12
ADCMP350/ADCMP352/ADCMP354/ADCMP356 OUTLINE DIMENSIONS
1.35 1.15 2.20 1.80
4 3
2.40 1.80
1
2
PIN 1 0.65 BSC 1.00 0.80 *0.50 BSC
1.10 0.80 0.18 0.10 0.30 0.10
0.10 MAX 0.30 0.15
SEATING 0.70 PLANE 0.50 0.10 COPLANARITY
*PACKAGE OUTLINE CORRESPONDS IN FULL TO EIAJ SC82 EXCEPT FOR WIDTH OF PIN-2 AS SHOWN
Figure 21. 4-Lead Thin Shrink Small Outline Transistor Package [SC70] (EIAJ SC82 body) (KS-4) Dimensions shown in millimeters
ORDERING GUIDE
Model ADCMP350YKS-REEL7 ADCMP352YKS-REEL7 ADCMP354YKS-REEL7 ADCMP356YKS-REEL7 Temperature Range –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C Package Description 4-Lead SC70 4-Lead SC70 4-Lead SC70 4-Lead SC70 Branding M0Z M11 M13 M15 Package Option KS-4 KS-4 KS-4 KS-4
Rev. 0 | Page 10 of 12
ADCMP350/ADCMP352/ADCMP354/ADCMP356 NOTES
Rev. 0 | Page 11 of 12
ADCMP350/ADCMP352/ADCMP354/ADCMP356 NOTES
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05112-0-10/04(0)
Rev. 0 | Page 12 of 12
很抱歉,暂时无法提供与“ADCMP356”相匹配的价格&库存,您可以联系我们找货
免费人工找货