0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADIS16209/PCBZ

ADIS16209/PCBZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    BOARD EVAL FOR ADIS16209

  • 数据手册
  • 价格&库存
ADIS16209/PCBZ 数据手册
High Accuracy, Dual-Axis Digital Inclinometer and Accelerometer ADIS16209 Data Sheet FEATURES FUNCTIONAL BLOCK DIAGRAM AUX ADC AUX DAC VREF ADIS16209 TEMPERATURE SENSOR DUAL-AXIS ACCELEROMETER CALIBRATION AND DIGITAL PROCESSING SIGNAL CONDITIONING AND CONVERSION CS SCLK SPI PORT DIN DIGITAL CONTROL SELF-TEST DOUT VDD POWER MANAGEMENT ALARMS AUXILIARY I/O GND RST DIO1 DIO2 07096-001 Dual-mode inclinometer system Dual-axis, horizontal operation, ±90° Single-axis, vertical operation, ±180° High accuracy, 0.1° Digital inclination data, 0.025° resolution Digital acceleration data, 0.244 mg resolution ±1.7 g accelerometer measurement range Digital temperature sensor output Digitally controlled bias calibration Digitally controlled sample rate Digitally controlled frequency response Dual alarm settings with rate/threshold limits Auxiliary digital I/O Digitally activated self-test Digitally activated low power mode SPI-compatible serial interface Auxiliary 12-bit ADC input and DAC output Single-supply operation: 3.0 V to 3.6 V 3500 g powered shock survivability Figure 1. APPLICATIONS Platform control, stabilization, and alignment Tilt sensing, inclinometers, leveling Motion/position measurement Monitor/alarm devices (security, medical, safety) Navigation GENERAL DESCRIPTION The ADIS16209 is a high accuracy, digital inclinometer that accommodates both single-axis (±180°) and dual-axis (±90°) operation. The standard supply voltage (3.3 V) and serial peripheral interface (SPI) enable simple integration into most industrial system designs. A simple internal register structure handles all output data and configuration features. This includes access to the following output data: calibrated acceleration, accurate incline angles, power supply, internal temperature, auxiliary analog and digital input signals, diagnostic error flags, and programmable alarm conditions. Rev. H Configurable operating parameters include sample rate, power management, digital filtering, auxiliary analog and digital output, offset/null adjustment, and self-test for sensor mechanical structure. The ADIS16209 is available in a 9.2 mm × 9.2 mm × 3.9 mm LGA package that operates over a temperature range of −40°C to +125°C. It can be attached using standard RoHS-compliant solder reflow processes. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2008–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADIS16209 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Introduction ................................................................................ 12 Applications ....................................................................................... 1 Register Structure ....................................................................... 12 Functional Block Diagram .............................................................. 1 SPI................................................................................................. 12 General Description ......................................................................... 1 Reading Sensor Data .................................................................. 12 Revision History ............................................................................... 2 Device Configuration ................................................................ 12 Specifications..................................................................................... 4 Output Data Registers................................................................ 15 Timing Specifications .................................................................. 6 Operation Control Registers ..................................................... 17 Timing Diagrams.......................................................................... 6 Calibration Registers .................................................................. 20 Absolute Maximum Ratings ............................................................ 7 Alarm Registers .......................................................................... 20 Thermal Resistance ...................................................................... 7 Applications Information .............................................................. 22 ESD Caution .................................................................................. 7 Power Supply Considerations ................................................... 22 Pin Configuration and Function Descriptions ............................. 8 Assembly...................................................................................... 22 Recommended Pad Geometry.................................................... 8 Interface Board ........................................................................... 23 Typical Performance Characteristics ............................................. 9 X-Ray Sensitivity ........................................................................ 23 Theory of Operation ...................................................................... 11 Outline Dimensions ....................................................................... 24 Basic Operation............................................................................... 12 Ordering Guide .......................................................................... 24 REVISION HISTORY 3/2019—Rev. G to Rev. H Added Endnote 1, Table 1; Renumbered Sequentially ................ 5 Deleted Figure 20; Renumbered Sequentially............................. 11 Changes to Basic Operation Section ............................................ 12 Added Introduction Section, Register Structure Section, Figure 20, SPI Section, Figure 21, Reading Sensor Data Section, Figure 22, Figure 23, and Device Configuration Section .......... 12 Added Table 6 and Table 7; Renumbered Sequentially ............. 12 Added Figure 24, Memory Structure Section, Figure 25, and Figure 26 .......................................................................................... 13 Moved Table 8 ................................................................................. 14 Changes to Global Commands Section ....................................... 19 Change to the Power Supply Considerations Section................ 22 Added X-Ray Sensitivity Section .................................................. 23 Changes to Ordering Guide .......................................................... 24 8/2018—Rev. F to Rev. G Change to Note 5, Table 1 ................................................................ 4 Changes to Accelerometers Section ............................................. 12 Change to Digital Filtering Section .............................................. 14 Changes to Global Commands Section ....................................... 16 Changes to Assembly Section ....................................................... 19 Added Figure 23; Renumbered Sequentially .............................. 19 5/2017—Rev. E to Rev. F Changes to Figure 3 and Figure 4 ....................................................5 Change to Basic Operation Section ............................................. 11 1/2015—Rev. D to Rev. E Changes to Power Supply Considerations Section and Assembly Section ............................................................................ 19 Deleted VDD Ramp Rate Requirements Section and Transient Current Demand from ADIS16209 Section ............................... 19 Added Power-On Reset Function Section .................................. 19 Changes to Figure 23...................................................................... 20 6/2014—Rev. C to Rev. D Changes to Table 2.............................................................................5 Changes to Table 26 and Self-Test Section .................................. 15 Changes to Status Section.............................................................. 18 Added Power Supply Considerations Section ............................ 19 7/2012—Rev. B to Rev. C Changes to Endnote 5 in Table 1 .....................................................4 Changed Digital Input/Output Voltage to GND Maximum Rating from 5.5 V to 5.3 V ...............................................................6 Added 0x40 to 0x49 and 0x4A Addresses to Table 6 ................. 11 Changes to Output Data Registers Section ................................ 12 Changes to Digital Filtering Section ............................................ 14 Changes to Self-Test Section ......................................................... 15 Added Applications Information Section ................................... 18 Updated Outline Dimensions ....................................................... 19 Rev. H | Page 2 of 24 Data Sheet ADIS16209 8/2009—Rev. A to Rev. B Changes to Features Section ............................................................ 1 Changes to Input Low Voltage, VINL, Parameter, Table 1 .......... 4 Changes to Figure 18 and Figure 19 .............................................10 Changes to Table 7, Table 8, and Table 10 ....................................12 Updated Outline Dimensions ........................................................16 Changes to Ordering Guide ...........................................................16 7/2008—Rev. 0 to Rev. A Changes to Figure 19 ...................................................................... 10 Changes to Table 21 ........................................................................ 15 3/2008—Revision 0: Initial Version Rev. H | Page 3 of 24 ADIS16209 Data Sheet SPECIFICATIONS TA = 25°C, VDD = 3.3 V, tilt = 0°, unless otherwise noted. Table 1. Parameter HORIZONTAL INCLINE Input Range Relative Accuracy 1 Sensitivity VERTICAL ROTATION Input Range Relative Accuracy Sensitivity ACCELEROMETER Input Range 2 Nonlinearity2 Alignment Error Cross Axis Sensitivity Sensitivity ACCELEROMETER NOISE PERFORMANCE Output Noise Noise Density ACCELEROMETER FREQUENCY RESPONSE Sensor Bandwidth Sensor Resonant Frequency ACCELEROMETER SELF-TEST STATE 3 Output Change When Active TEMPERATURE SENSOR Output at 25°C Scale Factor ADC INPUT Resolution Integral Nonlinearity (INL) Differential Nonlinearity (DNL) Offset Error Gain Error Input Range Input Capacitance ON-CHIP VOLTAGE REFERENCE Accuracy Reference Temperature Coefficient Output Impedance DAC OUTPUT Resolution Relative Accuracy Differential Nonlinearity Offset Error Gain Error Output Range Output Impedance Output Settling Time Test Conditions Each axis Min Typ ±90 ±0.1 0.025 ±30° from horizon, AVG_CNT = 0x08 ±30° from horizon Rotational plane within ±30° of vertical −180 360° of rotation −40°C to +85°C Each axis 25°C Percentage of full scale X sensor to Y sensor −40°C to +85°C, VDD = 3.0 V to 3.6 V +180 ±1.7 0.243 706 ±0.1 ±0.1 ±2 0.244 ±0.2 0.245 g % Degrees % mg/LSB mg rms mg/√Hz rms 50 5.5 Hz kHz 1343 1973 LSB 1278 −0.47 LSB °C/LSB 12 ±2 ±1 ±4 ±2 ±40 70 Bits LSB LSB LSB LSB V pF V mV ppm/°C Ω 12 4 1 ±5 ±0.5 0 to 2.5 2 10 Bits LSB LSB mV % V Ω µs 2.5 20 2.5 At 25°C Degrees Degrees °/LSB 1.7 0.19 0 During acquisition Unit Degrees Degrees °/LSB ±0.25 0.025 AVG_CNT = 0x00 AVG_CNT = 0x00 At 25°C Max −10 +10 5 kΩ/100 pF to GND For Code 101 to Code 4095 Rev. H | Page 4 of 24 Data Sheet Parameter LOGIC INPUTS Input High Voltage, VINH Input Low Voltage, VINL Logic 1 Input High Current, IINH Logic 0 Input Low Current, IINL All Except RST RST 4 Input Capacitance, CIN DIGITAL OUTPUTS Output High Voltage, VOH Output Low Voltage, VOL SLEEP TIMER Timeout Period 5 START-UP TIME 6 Power-On Reset Recovery Sleep Mode Recovery FLASH MEMORY Endurance 7 Data Retention 8 CONVERSION RATE SETTING POWER SUPPLY Operating Voltage Range Power Supply Current ADIS16209 Test Conditions Min Typ Max Unit ±0.2 0.8 ±10 V V µA 2.0 VIH = 3.3 V VIL = 0 V −40 −1 10 ISOURCE = 1.6 mA ISINK = 1.6 mA −60 2.4 0.5 Time until data is available Fast mode, SMPL_PRD ≤ 0x07 Normal mode, SMPL_PRD ≥ 0x08 Fast mode, SMPL_PRD ≤ 0x07 Normal mode, SMPL_PRD ≥ 0x08 3.0 Normal mode, SMPL_PRD ≥ 0x08 Fast mode, SMPL_PRD ≤ 0x07 Sleep mode, −40°C to +85°C 0.4 V V 128 Seconds 150 190 30 70 2.5 20,000 20 1.04 TJ = 85°C 3.3 11 36 140 μA mA pF ms ms ms ms ms 2731 Cycles Years SPS 3.6 14 42 350 V mA mA µA X-ray exposure may degrade this performance metric. Guaranteed by iMEMS® packaged part testing, design, and/or characterization. 3 Self-test response changes as the square of VDD. 4 The RST pin has an internal pull-up. 5 Guaranteed by design. 6 The times presented in this section represent the time it takes to start producing data in the output registers, after the minimum VDD reaches 3.0 V. They do not represent the settling time of the internal filters. Note that for the default SENS_AVG and AVG_CNT settings, the typical settling time is ~1.28 seconds. For faster settling times, reduce the AVG_CNT and SMPL_PRD settings. Note that the trade-off associated with faster settling times is noise and power. 7 Endurance is qualified as per JEDEC Standard 22 Method A117 and measured at −40°C, +25°C, +85°C, and +125°C. 8 Retention lifetime equivalent at junction temperature (TJ) 55°C as per JEDEC Standard 22 Method A117. Retention lifetime decreases with junction temperature. 1 2 Rev. H | Page 5 of 24 ADIS16209 Data Sheet TIMING SPECIFICATIONS TA = 25°C, VDD = 3.3 V, tilt = 0°, unless otherwise noted. Table 2. Parameter fSCLK Description Fast mode, SMPL_PRD ≤ 0x07 (fS ≥ 546 Hz) 2 Normal mode, SMPL_PRD ≥ 0x08 (fS ≤ 482 Hz)2 Chip select period, fast mode, SMPL_PRD ≤ 0x07 (fS ≥ 546 Hz)2 Chip select period, normal mode, SMPL_PRD ≥ 0x08 (fS ≤ 482 Hz)2 Chip select period, fast mode, SMPL_PRD ≤ 0x07 (fS ≥ 546 Hz)2 Chip select period, normal mode, SMPL_PRD ≥ 0x08 (fS ≤ 482 Hz)2 Chip select to clock edge Data output valid after SCLK edge Data input setup time before SCLK rising edge Data input hold time after SCLK rising edge Data output fall time Data output rise time CS high after SCLK edge tDATARATE tSTALL tCS tDAV tDSU tDHD tDF tDR tSFS 1 2 Min 1 0.01 0.01 32 42 10 12 48.8 Typ Max 2.5 1.0 Unit MHz MHz μs μs μs μs ns ns ns ns ns ns ns 100 24.4 48.8 5 5 12.5 12.5 5 Guaranteed by design, not tested. Note that fS means internal sample rate. TIMING DIAGRAMS tDATARATE tSTALL CS 07096-002 SCLK tSTALL = tDATARATE – 16/fSCLK Figure 2. SPI Chip Select Timing CS tCS tSFS 1 2 3 4 5 6 15 16 SCLK tDAV DB14 MSB DB13 tDSU DIN W/R DB12 DB11 A4 A3 DB10 DB2 DB1 LSB tDHD A6 A5 D1 D2 A2 07096-003 DOUT LSB Figure 3. SPI Timing (Utilizing SPI Settings Typically Identified as Phase = 1, Polarity = 1) DATA FRAME CS SCLK W/R A6 WRITE = 1 READ = 0 A5 A4 A3 A2 A1 REGISTER ADDRESS A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DATA FOR WRITE COMMANDS DON’T CARE FOR READ COMMANDS Figure 4. DIN Bit Sequence Rev. H | Page 6 of 24 DC0 07096-004 DIN Data Sheet ADIS16209 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter Acceleration (Any Axis, Unpowered) Acceleration (Any Axis, Powered) VDD to GND Digital Input/Output Voltage to GND Analog Inputs to GND Analog Inputs to GND Operating Temperature Range Storage Temperature Range Table 4. Package Characteristics Rating 3500 g 3500 g −0.3 V to +7.0 V −0.3 V to +5.3 V −0.3 to VDD + 0.3 V −0.3 to VDD + 0.3 V −40°C to +125°C −65°C to +150°C Package Type 16-Terminal LGA ESD CAUTION Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. H | Page 7 of 24 θJA 250°C/W θJC 25°C/W Device Weight 0.6 g ADIS16209 Data Sheet AUX ADC VDD 16 VREF GND PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 15 14 13 12 11 5 6 7 8 DIO2 DNC DNC TOP LOOK THROUGH VIEW (Not to Scale) DNC RST NOTES 1. DNC = DO NOT CONNECT TO THIS PIN. 2. THIS IS NOT AN ACTUAL TOP VIEW, BECAUSE THE PINS ARE NOT VISIBLE FROM THE TOP. THIS IS A LAYOUT VIEW THAT REPRESENTS THE PIN CONFIGURATION IF THE PACKAGE IS LOOKED THROUGH FROM THE TOP. THIS CONFIGURATION IS PROVIDED FOR PCB LAYOUT PURPOSES. 07096-005 ADIS16209 DIO1 3 CS DNC PIN 1 INDICATOR 2 DIN 4 DOUT AUX DAC 10 AX 9 SCLK 1 AY Figure 5. Pin Configuration Table 5. Pin Function Descriptions Pin No. 1 2 3 4 5, 6 7, 8, 10, 11 9 12 13 14 15 16 1 Mnemonic SCLK DOUT DIN CS DIO1, DIO2 DNC RST AUX DAC VDD AUX ADC VREF GND Type 1 I O I I I/O N/A I O S I O S Description SPI, Serial Clock. SPI, Data Output. SPI, Data Input. SPI, Chip Select. Digital Input/Output Pins. Do not connect to this pin. Reset, Active Low. Auxiliary DAC Output. Power Supply, 3.3 V. Auxiliary ADC Input. Precision Reference. Ground. S = supply; O = output; I = input. RECOMMENDED PAD GEOMETRY 2.6955 8× 4.1865 8× 0.670 12× 8.373 2× 5.391 4× 1.127 16× 9.2mm × 9.2mm STACKED LGA PACKAGE Figure 6. Example of a Pad Layout Rev. H | Page 8 of 24 07096-006 0.500 16× Data Sheet ADIS16209 TYPICAL PERFORMANCE CHARACTERISTICS 0.25 0.20 0.20 MAXIMUM INCLINE ERROR 0.15 0.15 0.10 ERROR (Degrees) 0.05 0 –0.05 –0.10 0 –0.05 –0.10 –0.15 –0.15 –0.20 –30 –20 –10 0 10 20 30 40 INCLINATION ANGLE (Degrees) –0.25 07096-018 –0.20 –40 0.05 0 100 200 300 400 ROTATIONAL ANGLE (Degrees) 07096-021 ERROR (Degrees) 0.10 Figure 10. Vertical Mode Rotational Error (Eight Parts), 25°C, 3.3 V Figure 7. Horizontal Inclination Error (Eight Parts), Autonull at Horizontal Position, Stable Temperature, 3.3 V 0.3 0.3 0.2 0.2 0.1 ERROR (Degrees) ERROR (Degrees) 0.1 0 –0.1 0 –0.1 –0.2 –0.3 –0.2 –20 0 20 40 60 80 TEMPERATURE (°C) 100 –0.5 –60 –40 –20 0 20 40 60 80 TEMPERATURE (°C) Figure 8. Maximum Incline Error Over a ±30° Incline Range (Eight Parts) Over Temperature, Autonull at Horizontal Position, 25°C, 3.3 V 100 07096-022 –40 07096-019 –0.3 –60 –0.4 Figure 11. Vertical Mode Error (Eight Parts) vs. Temperature, 0° to 360°, 3.3 V 0.3 0.15 0.2 0.10 0.1 ERROR (Degrees) 0 –0.05 –0.10 –0.1 –0.2 –0.3 –0.15 –0.4 3.0 3.3 SUPPLY VOLTAGE (V) 3.6 –0.5 07096-020 –0.20 0 3.0 3.3 SUPPLY VOLTAGE (V) Figure 9. Maximum Incline Error Over a ±30° Incline Range (Eight Parts) Over Supply Voltage, Autonull Horizontal Position, 25°C, 3.3 V 3.6 07096-023 ERROR (Degrees) 0.05 Figure 12. Vertical Mode Error (Eight Parts) vs. Supply Voltage, 0° to 360°, 25°C Rev. H | Page 9 of 24 ADIS16209 Data Sheet 3.5 VDD = 3.0V, 3.3V, 3.6V TEMP = –40°C, +25°C, +85°C 3.0 25 2.5 ERROR (Degrees) 20 15 10 5 1.5 0.5 0 –0.38 –0.26 –0.14 –0.02 0.10 0.22 0.34 0.46 SENSITIVITY ERROR (%) VDD = 3.0V, 3.3V, 3.6V TEMP = –40°C, +25°C, +85°C 18 16 14 12 10 8 6 4 –6.0 –4.4 –2.8 –1.2 0.4 2.0 3.6 5.2 BIAS ERROR (mg) 07096-014 2 0 10 20 30 40 50 60 70 OFF-VERTICAL TILT (Degrees) Figure 15. Error vs. Off-Vertical Tilt, 25°C, 3.3 V Figure 13. Accelerometer Output Sensitivity Error Distribution 20 0 Figure 14. Accelerometer Output Bias Error Distribution Rev. H | Page 10 of 24 80 90 07096-015 0 –0.50 PERCENTAGE OF POPULATION (%) 2.0 1.0 07096-013 PERCENTAGE OF POPULATION (%) 30 Data Sheet ADIS16209 THEORY OF OPERATION The ADIS16209 tilt sensing system uses gravity as its only stimulus, and a MEMS accelerometer as its sensing element. MEMS accelerometers typically employ a tiny, spring-loaded structure that is interlaced with a fixed pick-off finger structure. The spring constant of the floating structure determines how far it moves when subjected to a force. This structure responds to dynamic forces associated with acceleration and to static forces, such as gravity. θx GRAVITY = 1g HORIZON Figure 16. Single-Axis Tilt Theory Diagram θx θx HORIZON Figure 17. Dual-Axis Tilt Theory Diagram 1 5 4 8 1 16 13 12 13 8 4 XINCL_OUT = 0° YINCL_OUT = 0° 16 9 12 8 9 5 07096-008 ax 9 5 0° ≤ XINCL_OUT ≤ 90° YINCL_OUT = 0° 07096-011 4 ay 0° TILT LEVEL PLANE 13 12 07096-007 θx Figure 16 and Figure 17 illustrate how the accelerometer responds to gravity, according to its orientation, with respect to gravity. Figure 16 displays the configuration for the incline angle outputs, and Figure 17 displays the configuration used for the rotational angle position. This configuration provides greater measurement range than a single axis. The ADIS16209 incorporates the signal processing circuit that converts acceleration into an incline angle, and it corrects for several known error sources that would otherwise degrade the accuracy level. 1 16 ax XINCL_OUT = 0° 0° ≤ YINCL_OUT ≤ 90° 16209 0° +30° +90° +120° +180° –150° –90° –60° XACCL_OUT –1g –0.866g 0g 0.5g +1g +0.866g 0g –0.5g YACCL_OUT 0g +0.5g +1g +0.866g 0g –0.5g –1g –0.866g ROT_OUT NOTES 1. ROT_OUT = 180° IS 1 LSB DIFFERENT THAN ROT_OUT = –179.975°. Figure 19. Vertical Angle Orientation Rev. H | Page 11 of 24 07096-012 16209 1g 9 20 16 9 20 16 9 20 16 16209 16209 GRAVITY 9 20 16 Figure 18. Horizontal Incline Angle Orientation ADIS16209 Data Sheet BASIC OPERATION INTRODUCTION Table 7. Generic Master Processor SPI Settings When using the factory default configuration for all user configurable control registers, the ADIS16209 initializes itself and automatically starts a continuous process of sampling, processing, and loading calibrated incline angle and acceleration data into the output registers. Processor Setting Master SCLK ≤ 2.5 MHz All communication between the ADIS16209 and an external processor involves either reading the contents of an output register or writing configuration (or command) information to a control register (see Figure 20). The output data registers include the latest sensor data, error flags, and identification information. The control registers include sample rate, filtering, calibration, self-test, input/output line operation, and error flags. Each user accessible register has two bytes (upper and lower), each of which has a unique address. See Table 8 for a detailed list of all user registers, along with the corresponding addresses. SENSOR SIGNAL PROCESSING OUTPUT REGISTERS TEMPERATURE SENSOR CONTROLLER CONTROL REGISTERS 07096-220 SPI DUAL-AXIS ACCELEROMETER SCLK ≤ 1 MHz1 SPI Mode 3 MSB First Mode 16-Bit Mode READING SENSOR DATA Reading a single register requires two 16-bit cycles on the SPI: one to request the contents of a register and another to receive those contents. The 16-bit command code (see Figure 26) for a read request on the SPI has three parts: the read bit (R/W = 0), either address of the register, [A6:A0], and eight don’t care bits, [DC7:DC0]. Figure 22 shows an example that includes two register reads in succession. This example starts with DIN = 0x0C00 to request the contents of the XINCL_OUT register and follows with 0x0E00 to request the contents of the YINCL_OUT register. The sequence in Figure 22 also shows full duplex mode of operation, which means that the ADIS16465 can receive requests on DIN while also transmitting data out on DOUT within the same 16-bit SPI cycle. Figure 20. Basic Operation of the ADIS16209 DIN 0x0C00 0x0E00 NEXT ADDRESS XINCL_OUT YINCL_OUT SPI The SPI provides access to the user registers (see Table 8). Figure 21 shows the most common connections between the ADIS16209 and a SPI master device, which is often an embedded processor that has an SPI-compatible interface. SCLK Figure 22. SPI Read Example Figure 23 shows an example of the four SPI signals when reading the PROD_ID register in a repeating pattern. This pattern can be helpful when troubleshooting the SPI interface setup and communications because the signals are the same for each 16-bit sequence, except during the first cycle. SCK DIN MOSI DOUT MISO CS SCLK DIN Figure 21. Electrical Connection Diagram DOUT = 0011 1111 0101 0001 = 0x3F51 (16209) Table 6. Generic SPI Master Pin Mnemonics and Functions Mnemonic SS SCLK MOSI MISO DIN = 0100 1010 0000 0000 = 0x4A00 DOUT 07096-223 CS EMBEDDED PROCESSOR/ DSP/FPGA SS 07096-009 ADIS16209 DOUT 07096-222 REGISTER STRUCTURE Description ADIS16209 operates as slave Maximum serial clock rate SMPL_PRD < 0x08 Maximum serial clock rate SMPL_PRD ≥ 0x08 CPOL = 1 (polarity), CPHA = 1 (phase) Bit sequence, see Figure 26 for coding Shift register and data length Figure 23. SPI Signal Pattern, Repeating Read of the PROD_ID Register DEVICE CONFIGURATION Function Slave select Serial clock Master output, slave input Master input, slave output Embedded processors typically use control registers to configure serial ports for communicating with SPI slave devices, such as the ADIS16209. Table 7 provides a list of common settings that describe the SPI protocol of the ADIS16209. The initialization routine of the master processor typically establishes these settings using firmware commands to write them to the control registers. Each configuration register contains 16 bits (two bytes). Bits[7:0] contain the low byte, and Bits[15:8] contain the high byte of each register. Each byte has its own unique address in the user register map (see Table 8). Updating the contents of a register requires writing to both bytes in the following sequence: low byte first, high byte second. The only exception to this requirement is when writing to the COMMAND register. When using this register to trigger a command, only write to the low byte to trigger the command. Writing to the high byte after triggering a command can interrupt the operation, which the low byte triggers. Rev. H | Page 12 of 24 Data Sheet ADIS16209 update the settings in the flash memory bank. The manual flash memory update command (Register COMMAND, Bit 3, see Table 31) provides a convenient method for saving all of these settings to the flash memory bank at one time. A yes in the Flash Backup column of Table 8 identifies the registers that have storage support in the flash memory bank. There are three parts to coding an SPI command (see Figure 26) that write a new byte of data to a register: the write bit (R/W = 1), the address of the byte, [A6:A0], and the new data for that location, [DC7:DC0]. Figure 24 shows a coding example for writing 0x0001 to the SMPL_PRD register (see Table 24). In Figure 24, the 0xB601 command writes 0x01 to Address 0x36 (lower byte) and the 0xB700 command writes 0x00 to Address 0x37 (upper byte). MANUAL FLASH BACKUP CS NONVOLATILE FLASH MEMORY VOLATILE SRAM SCLK (NO SPI ACCESS) SPI ACCESS 0xB700 07096-225 0xB601 07096-224 DIN START-UP RESET Figure 25. SRAM and Flash Memory Diagram Figure 24. SPI Sequence for Writing 0x0001 to the SMPL_PRD Register Memory Structure Figure 25 shows a functional diagram for the memory structure of the ADIS16209. The flash memory bank contains the operational code, unit specific calibration coefficients, and user configuration settings. During initialization (power application or reset recover), this information loads from the flash memory into the static random access memory (SRAM), which supports all normal operation, including register access through the SPI port. Writing to a configuration register using the SPI updates the SRAM location of the register but does not automatically CS DIN DOUT R/W D15 A6 A5 A4 A3 A2 A1 A0 DC7 DC6 DC5 DC4 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 DC3 DC2 D3 D2 DC1 DC0 D1 D0 R/W D15 A6 A5 D14 D13 NOTES 1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0. 2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE FOR OTHER DEVICES. Figure 26. SPI Communication Bit Sequence Rev. H | Page 13 of 24 07096-226 SCLK ADIS16209 Data Sheet Table 8. User Register Map Name ENDURANCE SUPPLY_OUT XACCL_OUT YACCL_OUT AUX_ADC TEMP_OUT XINCL_OUT YINCL_OUT ROT_OUT XACCL_NULL YACCL_NULL XINCL_NULL YINCL_NULL ROT_NULL R/W R R R R R R R R R R/W R/W R/W R/W R/W Flash Backup Yes No No No No No No No No Yes Yes Yes Yes Yes ALM_MAG1 ALM_MAG2 ALM_SMPL1 ALM_SMPL2 ALM_CTRL R/W R/W R/W R/W R/W AUX_DAC GPIO_CTRL MSC_CTRL SMPL_PRD AVG_CNT SLP_CNT STATUS COMMAND R/W R/W R/W R/W R/W W R W PROD_ID R Yes Yes Yes Yes Yes No No No No Yes Yes Yes No No No Yes Address 0x00 0x02 0x04 0x06 0x08 0x0A 0x0C 0x0E 0x10 0x12 0x14 0x16 0x18 0x1A 0x1C to 0x1F 0x20 0x22 0x24 0x26 0x28 0x2A to 0x2F 0x30 0x32 0x34 0x36 0x38 0x3A 0x3C 0x3E 0x40 to 0x49 0x4A Size (Bytes) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 6 2 2 2 2 2 2 2 2 10 2 Function Diagnostics, flash write counter (16-bit binary) Output, power supply Output, x-axis acceleration Output, y-axis acceleration Output, auxiliary ADC Output, temperature Output, ±90° x-axis inclination Output, ±90° y-axis inclination Output, ±180° vertical rotational position Calibration, x-axis acceleration offset null Calibration, y-axis acceleration offset null Calibration, x-axis inclination offset null Calibration, y-axis inclination offset null Calibration, vertical rotation offset null Reserved, do not write to these locations Alarm 1, amplitude threshold Alarm 2, amplitude threshold Alarm 1, sample period Alarm 2, sample period Alarm, source control register Reserved Auxiliary DAC data Operation, digital I/O configuration and data Operation, data-ready and self-test control Operation, sample rate configuration Operation, filter configuration Operation, sleep mode control Diagnostics, system status register Operation, system command register Reserved Product identification = 0x3F51 Rev. H | Page 14 of 24 Reference Table 20 Table 10 Table 11 Table 22 Table 18 Table 13 Table 14 Table 16 Table 32 Table 32 Table 33 Table 33 Table 33 Table 34 Table 34 Table 35 Table 35 Table 36 Table 30 Table 29 Table 28 Table 24 Table 26 Table 25 Table 37 Table 31 N/A Data Sheet ADIS16209 OUTPUT DATA REGISTERS Table 9 provides the data configuration for each output data register in the ADIS16209. Starting with the MSB of the upper byte, each output data register has the following bit sequence: new data (ND) flag, error/alarm (EA) flag, followed by 14 data bits. The data bits are LSB justified, and in the case of the 12-bit data formats, the remaining two bits are not used. The ND flag indicates that unread data resides in the output data registers. This flag clears and returns to 0 during an output register read sequence. It returns to 1 after the next internal sample update cycle completes. The EA flag indicates an error condition. The STATUS register contains all of the error flags and provides the ability to investigate the root cause. Table 9. Output Data Register Formats Register SUPPLY_OUT XACCL_OUT YACCL_OUT AUX_ADC TEMP_OUT XINCL_OUT2 YINCL_OUT2 ROT_OUT3 Bits 14 14 14 12 12 14 14 14 Format Binary, 3.3 V = 0x2A3D Twos complement Twos complement Binary, 2 V = 0x0CCC Binary, 25°C = 0x04FE Twos complement Twos complement Twos complement Scale1 0.30518 mV 0.24414 mg 0.24414 mg 0.6105 mV −0.47°C 0.025° 0.025° 0.025° 1 Scale denotes quantity per LSB. 2 Range is −90° to +90°. 3 Range is −179.975° to +180°. Accelerometers The accelerometers respond to both static (gravity) and dynamic acceleration using the polarity shown in Figure 27. AY 0° TILT LEVEL PLANE 1 16 AX 13 12 5 Table 10. XACCL_OUT (Base Address = 0x04), Read Only Bits 15 14 [13:0] Bits 15 14 [13:0] Description New data bit = 1, when register contains un-read data Error/alarm = 1, when STATUS ≠ 0x0000 y-axis accelerometer output data, twos complement, 1 LSB = 0.24414 mg, 0 g = 0x0000 Table 12. Accelerometer Data Format Examples Acceleration (g) +1.7 +1.0 +0.00048828 +0.00024414 0 −0.00024414 −0.00048828 −1.0 −1.7 8 9 XINCL_OUT = 0° YINCL_OUT = 0° Description New data bit = 1, when register contains un-read data Error/alarm = 1, when STATUS ≠ 0x0000 x-axis accelerometer output data, twos complement, 1 LSB = 0.24414 mg, 0 g = 0x0000 Table 11. YACCL_OUT (Base Address = 0x06), Read Only 07096-024 4 The XACCL_OUT (see Table 10) and YACCL_OUT (see Table 11) registers provide access to acceleration data for each axis. For example, set DIN = 0x0400 to request data from the x-axis register on the next 16-bit SPI sequence. After reading the contents of one of these registers, mask off the upper two bits, convert the remaining 14-bit, twos complement number into a decimal equivalent, and then multiply that number by 0.024414 to convert the measurement into units of acceleration (mg). Table 12 provides several examples of this data format. Figure 27. Accelerometer Polarity Rev. H | Page 15 of 24 Decimal +6,963 +4,096 +2 +1 0 −1 −2 −4096 −27,853 Hex 0x1B33 0x1000 0x0002 0x0001 0x0000 0x3FFF 0xFFFE 0x3000 0xE4CD Binary xx01 1011 0011 0011 xx01 0000 0000 0000 xx00 0000 0000 0010 xx00 0000 0000 0001 xx00 0000 0000 0000 xx11 1111 1111 1111 xx11 1111 1111 1110 xx11 0000 0000 0000 xx10 0100 1100 1101 ADIS16209 Data Sheet Horizontal Incline Angle Table 17. Vertical Incline Angle Data Format Examples The XINCL_OUT (see Table 13) and YINCL_OUT (see Table 14) registers provide access to acceleration data for each axis. For example, set DIN = 0x0400 to request data from the x-axis register on the next 16-bit SPI sequence. After reading the contents of one of these registers, mask off the upper two bits, convert the remaining 14-bit, twos complement number into a decimal equivalent, and then multiply that number by 0.025 to convert the measurement into units of angle (°). Table 15 provides several examples of this data format. Internal Temperature Table 13. XINCL_OUT (Base Address = 0x0C), Read Only Bits 15 14 [13:0] Description New data bit = 1, when register contains un-read data Error/alarm = 1, when STATUS ≠ 0x0000 x-axis inclinometer output data, twos complement, 0° = 0x0000, 1 LSB = 0.025°/LSB, ±90° range Table 14. YINCL_OUT (Base Address = 0x0E), Read Only Bits 15 14 [13:0] Description New data bit = 1, when register contains un-read data Error/alarm = 1, when STATUS ≠ 0x0000 y-axis inclinometer output data, twos complement, 0° = 0x0000, 1 LSB = 0.025°/LSB, ±90° range Table 15. Horizontal Incline Angle Data Format Examples Orientation +90° − 0.025° +0.05° +0.025° 0° −0.025° −0.05° −90° Decimal +3,599 +2 +1 0 −1 −2 −3,600 Hex 0x0E0F 0x0002 0x0001 0x0000 0x3FFF 0x3FFE 0x31F1 Binary 0000 1110 0000 1111 xx00 0000 0000 0010 xx00 0000 0000 0001 xx00 0000 0000 0000 xx11 1111 1111 1111 xx11 1111 1111 1110 xx11 0001 1111 0001 Orientation +180° − 0.025° +0.05° +0.025° 0° −0.025° −0.05° −180° Decimal +7,199 +2 +1 0 −1 −2 −7,200 Hex 0x1C1F 0x0002 0x0001 0x0000 0x3FFF 0x3FFE 0x23E0 Binary xx01 1100 0001 1111 xx00 0000 0000 0010 xx00 0000 0000 0001 xx00 0000 0000 0000 xx11 1111 1111 1111 xx11 1111 1111 1110 xx10 0011 1110 0000 The TEMP_OUT register (see Table 18) provides access to an internal temperature measurement. Set DIN = 0x0A00 to request the contents of this register. Mask off the upper four bits, then convert the remaining 12-bit binary number into a decimal equivalent, subtract 1278, multiply it by −0.47 and add 25 to convert this number into °C. See Table 19 for examples of this format. Note that this internal temperature measurement provides an indicator of condition changes, not an absolute measurement of conditions outside of the package. Table 18. TEMP_OUT (Base Address = 0x0A), Read Only Bits [15:0] Description Internal temperature data, binary format, sensitivity = −0.47°/LSB, 25°C = 1278 LSB = 0x04FE Table 19. Internal Temperature Data Format Examples Temperature (°C) +125 25 + 0.47 +25 25 − 0.047 0 −40 LSB 1065 1277 1278 1279 1331 1416 Hex 0x0429 0x04FD 0x04FE 0x04FF 0x0533 0x0588 Binary xxxx 0100 0010 1001 xxxx 0100 1111 1101 xxxx 0100 1111 1110 xxxx 0100 1111 1111 xxxx 0101 0011 0011 xxxx 0101 1000 1000 Vertical Incline Angle Power Supply The ROT_OUT register (see Table 16) provides access to incline angle data for each axis. For example, set DIN = 0x1000 to request data from this register on the next 16-bit SPI sequence. After reading the contents of one of these registers, mask off the upper two bits, convert the remaining 14-bit, twos complement number into a decimal equivalent, and then multiply that number by 0.025 to convert the measurement into units of angle (°). Table 17 provides several examples of this data format. The SUPPLY_OUT register (see Table 20) provides a digital measurement for the supply voltage on the VDD pins (see Figure 5). Set DIN = 0x0200 to request the contents of this register. See Table 21 for examples of this data format. Table 16. ROT_OUT (Base Address = 0x10), Read Only Bits 15 14 [13:0] Description New data bit = 1, when register contains un-read data Error/alarm = 1, when STATUS ≠ 0x0000 Vertical inclinometer output data, twos complement, 0° = 0x0000, 1 LSB = 0.025°/LSB, ±180° range Table 20. SUPPLY_OUT (Base Address = 0x02), Read Only Bits 15 14 [15:0] Description New data bit = 1, when register contains un-read data Error/alarm = 1, when STATUS ≠ 0x0000 Power supply measurement data, binary format, 1 LSB = 0.00030518 V, 0 V = 0x0000 Table 21. Power Supply Data Format Examples Supply Level (V) 3.6 3.3 + 0.00030518 3.3 3.3 − 0.00030518 3.0 Rev. H | Page 16 of 24 LSB 11,796 10,814 10,813 10,812 9,830 Hex 0x2E14 0x2A3E 0x2A3D 0x2A3C 0x2666 Binary xx10 1110 0001 0100 xx10 1010 0011 1110 xx10 1010 0011 1101 xx10 1010 0011 1100 xx10 0110 0110 0110 Data Sheet ADIS16209 Auxiliary ADC Table 25. SLP_CNT Bit Descriptions The AUX_ADC register (see Table 22) provides a digital measurement for the AUX_ADC input pin (see Figure 5). Set DIN = 0x0800 to request the contents of this register. See Table 23 for examples of this data format. Bit 15:8 7:0 Table 22. AUX_ADC (Base Address = 0x08), Read Only Bits 15 14 [13:12] [15:0] Description New data bit = 1, when register contains un-read data Error/alarm = 1, when STATUS ≠ 0x0000 Not used Auxiliary ADC data, binary format, 1 LSB = 0.0006105 V, 0 V = 0x0000 Table 23. Auxiliary ADC Data Format Examples Supply Level (V) 2.5 0.001221 0.0006105 0 LSB 4095 2 1 0 Hex 0xFFF 0x002 0x001 0x000 Binary xxxx 1111 1111 1111 xxxx 0000 0000 0010 xxxx 0000 0000 0001 xxxx 0000 0000 0000 OPERATION CONTROL REGISTERS Internal Sample Rate The SMPL_PRD register controls the ADIS16209 internal sample rate and has two parts: a selectable time base and a multiplier. The following relationship produces the sample rate: Description Not used Data bits, 0.5 seconds/LSB For example, writing 0x08 to the SLP_CNT register places the ADIS16209 into sleep mode for 4 sec. The only way to stop this process is to remove power or reset the device. Digital Filtering The AVG_CNT register controls the moving average digital filter, which determines the size of the moving average filter in eight power-of-two step sizes (that is, 2M = 1, 2, 4, 16, 32, 64, 128, and 256). Filter setup requires one simple step: write the appropriate M factor to the assigned bits in the AVG_CNT register. Note that the default settings for AVG_CNT and SMPL_PRD provide the best accuracy but require approximately 1.28 seconds to settle. Table 26. AVG_CNT Bit Descriptions Bit 15:4 3:0 Description (Default = 0x0008) Not used Power-of-two step size, maximum binary value = 1000 The following equation offers a frequency response relationship for this filter: HA( f )  tS = tB × NS + 122.07 μs sin(   N  f  t S ) N  sin(   f  t S ) 20 Table 24. SMPL_PRD Bit Descriptions Description (Default = 0x0014) Not used Time base (tB): 0 = 244.14 μs, 1 = 7.568 ms Increment setting (NS) An example calculation of the default sample period follows: SMPL_PRD = 0x01, B7 − B0 = 00000001 N=4 0 N = 128 MAGNITUDE (dB) Bit 15:8 7 6:0 (Default = 0x0000) B7 = 0 → tB = 244.14 μs, B6 … B0 = 000000001 → NS = 1 N = 16 –20 –40 –60 –80 tS = tB × NS + 122.07 μs = 244.14 × 1 + 122.07 = 366.21 μs The sample rate setting has a direct impact on the SPI data rate capability. For sample rates ≥546 SPS, the SPI SCLK can run at a rate up to 2.5 MHz. For sample rates or < M C ? where: NDS is the number of samples in ALM_SMPLx. y(n) is the sampled output data. MC is the magnitude for comparison in ALM_MAGx. > or < is determined by the MSB in ALM_MAGx. Table 34. ALM_MAG1/ALM_MAG2 Bit Designations Bit 15 14 13:0 Description (Default = 0x0000) Comparison polarity: 1 = greater than, 0 = less than Not used Data bits, matches format of trigger source selection Table 35. ALM_SMPL1/ALM_SMPL2 Bit Designations Bit 15:8 7:0 Description (Default = 0x0001) Not used Data bits: number of samples (both 0x00 and 0x01 = 1) Table 36. ALM_CTRL Bit Descriptions Bit 15:12 Value 0000 0001 0010 0011 0100 0101 0110 0111 1000 11:8 7 6 5 4 3 2 1 0 1 Description (Default = 0x0000) Trigger source, Alarm 2 Disabled Power supply X-acceleration Y-acceleration Auxiliary ADC Temperature sensor X-axis incline angle Y-axis incline angle Rotational position Trigger source, Alarm 1, same as Bits[15:12] Not used Alarm 2 rate-of-change control: 1 = enabled Alarm 1 rate-of-change control: 1 = enabled Alarm 2 filter: 1 = filtered data, 0 = no filter1 Alarm 1 filter: 1 = filtered data, 0 = no filter1 Alarm indicator, using DIO1/DIO2: 1 = enabled Alarm indicator polarity: 1 = active high Alarm indicator line select: 1 = DIO2, 0 = DIO1 Incline and vertical angles always use filtered data in this comparison. Rev. H | Page 20 of 24 Data Sheet ADIS16209 Status Table 37. STATUS Bit Descriptions The STATUS register provides a series of error flags that provide indicator functions for common system-level issues. After reading the contents of this register, set COMMAND[4] = 1 (DIN = 0xBE10) to reset all of its flags to zero. Bit 15:10 9 8 7:6 5 4 3 2 1 0 Rev. H | Page 21 of 24 Description (Default = 0x0000) Not used Alarm 2 status: 1 = active, 0 = inactive Alarm 1 status: 1 = active, 0 = inactive Not used Self-test diagnostic error flag: 1 = error condition, 0 = normal operation Not used SPI communications failure: 1 = error condition, 0 = normal operation Flash update failed: 1 = error condition, 0 = normal operation Power supply greater than 3.625 V: 1 > 3.625 V, 0 ≤ 3.625 V (normal) Power supply less than 2.975 V: 1 < 2.975 V, 0 ≥ 2.975 V (normal) ADIS16209 Data Sheet APPLICATIONS INFORMATION POWER SUPPLY CONSIDERATIONS Filter Settling The ADIS16209 is a precision sensing system that uses an embedded processor for critical interface and signal processing functions. Supporting this processor requires a low impedance power supply, which can manage transient current demands that happen during normal operation, as well as during the start-up process. Transient current demands start when the voltage on the VDD pin reaches ~2.1 V. Therefore, it is important for the voltage on the VDD pin to reach 3 V as quickly as possible. Linear VDD ramp profiles that reach 3 V in 100 µs provide reliable results when used in conjunction with design practices that support low dynamic source impedance. The ADP1712 is a linear regulator that can support the recommended ramp profile. See the ADIS1620x/21x/22x Power Regulator Suggestion page for a reference design for using this regulator with the ADIS16209. The SMPL_PRD and AVG_CNT settings have a direct impact on the filter settling during turn-on. For example, when using the default settings for these filters, the SUPPLY_OUT register takes approximately 1.28 seconds to settle. During this time, the SUPPLY_OUT register experiences a linear rise (assuming that VDD is stable and greater than 3.0 V) and the low-voltage flag (STATUS[0]) is low. When the SUPPLY_OUT register reaches a value that exceeds 2.975 V, the STATUS[0] flag automatically lowers. Power-On-Reset Function The ADIS16209 has a power-on-reset (POR) function that triggers a reset if the voltage on the VDD pin fails to transition between 2.35 V and 2.7 V within 128 ms. Transient Current from VDD Ramp Rate Because the ADIS16209 contains 2 μF of decoupling capacitance on VDD and some systems may use additional filtering capacitance, the VDD ramp rate will have a direct impact on initial transient current requirements. Use this formula to estimate the transient current, associated with a particular capacitance (C) and VDD ramp rate (dV/dt). When developing a process flow for installing ADIS16209 devices on PCBs, see the JEDEC standard document J-STD020C for reflow temperature profile and processing information. The ADIS16209 can use the Sn-Pb eutectic process and the Pbfree eutectic process from this standard, with one exception: the peak temperature exposure is 240°C. For a more complete list of assembly process suggestion, see the ADIS162xx LGA Assembly Guidelines page at the Engineer Zone/MEMS Community website. Figure 29 provides an example pad layout for the location of the ADIS16209 on a printed circuit board (PCB). dt 1.178 BSC (8 PLCS) 0.670 BSC (12 PLCS) 7.873 BSC (2 PLCS) 1.127 BSC (16 PLCS) For example, if VDD transitions from 0 V to +3.3 V in 33 µs, dV/dt is equal to 100000V/S (3.3 V/33 µs). When charging the internal 2 µF capacitor (no external capacitance), the charging current for this ramps rate is 200 mA, during the 33 µs ramp time. This relationship provides a tool for evaluating the initial charging currents against the current limit thresholds of system power supplies, which can cause power supply interruptions and the appearance of failed start-ups. This may also be important for maintaining surge current ratings of any series elements as well Rev. H | Page 22 of 24 0.500 BSC (16 PLCS) Figure 29. Example Pad Layout 07096-123 i (t ) = C dV ASSEMBLY ADIS16209 1.100 Data Sheet INTERFACE BOARD The ADIS16209/PCBZ provides the ADIS16209 function on a 1.2 inch × 1.3 inch PCB, which simplifies the connection to an existing processor system. The four mounting holes accommodate either M2 (2 mm) or Type 2-56 machine screws. These boards are made of IS410 material and are 0.063 inches thick. The second level assembly uses a SAC305-compatible solder composition (Pb-free), which has a presolder reflow thickness of approximately 0.005 inches. The pad pattern on the ADIS16209/PCBZ matches that shown in Figure 31. J1 and J2 are dual-row, 2 mm (pitch) connectors that work with a number of ribbon cable systems, including 3M Part Number 152212-0100-GB (ribbon-crimp connector) and 3M Part Number 3625/12 (ribbon cable). 1.050 2 × 0.925 C1 4 × Ø0.087 M2×0.4 2 × 0.000 0.150 6 2 7 8 3 9 10 4 6 10 1 4 2 3 13 11 12 16 RST ADC SCLK DAC CS DIO2 DOUT DIO1 DIN DNC DNC VDD DNC GND VREF DNC C1 1µF J2 14 12 6 5 7 10 8 11 15 1 3 11 Figure 31. PCB Assembly View and Dimensions 12 X-RAY SENSITIVITY 10 7 Exposure to high dose rate X-rays, such as those in production systems that inspect solder joints in electronic assemblies, may affect accelerometer bias errors. For optimal performance, avoid exposing the ADIS16209 to this type of inspection. 9 8 10 4 8 5 9 2 5 07096-025 7 07096-026 5 ADIS16209 9 0.865 1 2 × 0.900 J1 4 0.035 2 × 0.000 2 3 0.200 1 12 U1 iSensor J1/J2 PIN NUMBERS 11 J2 J1 2 × 0.673 Figure 30. Electrical Schematic Rev. H | Page 23 of 24 ADIS16209 Data Sheet OUTLINE DIMENSIONS 5.391 BSC (4×) 2.6955 BSC (8×) 9.35 9.20 SQ 9.05 13 PIN 1 INDICATOR 1.000 BSC (16×) 16 12 1 8.373 BSC (2×) 0.797 BSC (12×) 9 4 8 0.200 MIN (ALL SIDES) TOP VIEW 5 BOTTOM VIEW 0.373 BSC (16×) 5.00 TYP 121409-C 3.90 MAX SIDE VIEW Figure 32. 16-Terminal Stacked Land Grid Array [LGA] (CC-16-2) Dimensions shown in millimeters ORDERING GUIDE Model 1 ADIS16209CCCZ ADIS16209/PCBZ EVAL-ADIS2Z 1 Temperature Range −40°C to +125°C Package Description 16-Terminal Stacked Land Grid Array [LGA] Evaluation Board Evaluation System Z = RoHS Compliant Part. ©2008–2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07096-0-3/19(H) Rev. H | Page 24 of 24 Package Option CC-16-2
ADIS16209/PCBZ 价格&库存

很抱歉,暂时无法提供与“ADIS16209/PCBZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ADIS16209/PCBZ
    •  国内价格
    • 1+1000.15568

    库存:0