Low Power, Programmable
Impact Sensor and Recorder
ADIS16240
Data Sheet
FEATURES
FUNCTIONAL BLOCK DIAGRAM
AN
ADIS16240
XA
YA
TRIPLE-AXIS
MEMS
ACCELEROMETER
ZA
ANALOGTO-DIGITAL
CONVERSION
AND
PROCESSING
VDD
POWER
MANAGEMENT
DIGITAL
CONTROL
AND
SPI
INTERFACE
TEMPERATURE
SENSOR
CMP1
CMP2
ALARM
DETECTION
EVENT TRIGGER
EVENT
CAPTURE
BUFFER
CS
SCLK
DIN
DOUT
RST
DIO1
DIO2
08133-001
Digital triple-axis accelerometer, ±19 g
Programmable event recorder
Internal and external trigger inputs
Automatic event data storage in nonvolatile flash
Low power operation
Sleep mode current: 100 µA
Continuous sampling current: 1 mA, 1 kSPS
Wake-up and record function
External trigger input and SPI trigger command
Peak acceleration sample-and-hold
Peak XYZ sum-of-squares output
1600 Hz (X, Y) and 550 Hz (Z) sensor bandwidth
Digitally controlled sample rate, up to 4096 SPS
Programmable alarms for condition monitoring
Programmable digital input/output lines
Data-ready output and alarm indicator output
Real-time clock
Digitally activated self-test
Embedded temperature sensor
Programmable power management
SPI-compatible serial interface
Auxiliary 10-bit ADC input
Two analog trigger inputs with programmable threshold
Single-supply operation: 2.4 V to 3.6 V
>4000 g powered shock survivability
Figure 1.
APPLICATIONS
Crash or impact detection
Condition monitoring of valuable goods
Safety, shut-off sensing
Impact event recording
Security sensing and tamper detection
GENERAL DESCRIPTION
The ADIS16240 is a fully integrated digital shock detection and
recorder system. It combines industry-leading iMEMS® technology
with a signal processing solution that optimizes dynamic performance for low power applications. The triple-axis sensing element
enables shock measurement in all directions, eliminating the need
for additional sensors and complex mechanical structures for
many applications. The digital serial peripheral interface (SPI)
uses four wires and is compatible with most processor platforms.
The SPI interface provides access to sensor data and a set of configuration registers that control such operational parameters as
offset bias correction, sample rate, sleep mode, peak detection,
and event capture.
Rev. C
The programmable event recorder offers two trigger modes. The
internal mode monitors continuous sampled data and triggers the
capture, based on the user-defined threshold. The external mode
uses the two comparator inputs and a user-defined threshold to
trigger the event captures. This function also provides user configuration controls for capture length, pretrigger data, and data storage.
Each event is stored with a header that captures temperature, power
supply, and time. Several power management features, including
sleep mode and a wake-up function, enable power optimization
with respect to specific mechanical system requirements.
The ADIS16240 is available in a 12 mm × 12 mm laminate-based
ball grid array (BGA) that meets IPC/JEDEC standards for Pb-free
solder reflow processing (J-STD-020C and J-STD-033).
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2009–2012 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADIS16240
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
User Interface .................................................................................8
Applications ....................................................................................... 1
Capture ...........................................................................................8
Functional Block Diagram .............................................................. 1
Basic Operation .................................................................................9
General Description ......................................................................... 1
Memory Map .............................................................................. 10
Revision History ............................................................................... 2
Output Data Registers................................................................ 11
Specifications..................................................................................... 3
Event Recorder............................................................................ 12
Timing Specifications .................................................................. 4
Operational Control................................................................... 14
Absolute Maximum Ratings ............................................................ 5
Applications Information .............................................................. 17
ESD Caution .................................................................................. 5
Assembly...................................................................................... 17
Pin Configuration and Function Descriptions ............................. 6
Interface Printed Circuit Board (PCB) .................................... 17
Typical Performance Characteristics ............................................. 7
Outline Dimensions ....................................................................... 18
Theory of Operation ........................................................................ 8
Ordering Guide .......................................................................... 18
Sensing Element ........................................................................... 8
Data Sampling and Processing ................................................... 8
REVISION HISTORY
12/12—Rev. B to Rev. C
Changes to Features Section............................................................ 1
Removed Bias Voltage Sensitivity from Table 1............................ 3
Changes to Table 7 .......................................................................... 10
Changes to Event Recorder Section ............................................. 12
Added Flash Memory Endurance Management Section .......... 16
Updated Outline Dimensions ....................................................... 18
Changes to Ordering Guide .......................................................... 18
8/12—Rev. A to Rev. B
Updated Outline Dimensions ........................................................17
10/11—Rev. 0 to Rev. A
Added Applications Information Section, Figure 23, Figure 24,
Figure 25, Renumbered Sequentially ........................................... 16
Updated Outline Dimensions ....................................................... 18
Changes to Ordering Guide .......................................................... 18
4/09—Revision 0: Initial Version
Rev. C | Page 2 of 20
Data Sheet
ADIS16240
SPECIFICATIONS
TA = 25°C, VDD = 2.4 V to 3.6 V unless otherwise noted.
Table 1.
Parameter
ACCELEROMETER
Dynamic Range
Initial Sensitivity
Sensitivity Temperature Coefficient
Sensitivity Change with Supply Voltage
Nonlinearity
Sensor-to-Sensor Alignment Error
Cross-Axis Sensitivity
Initial Bias Error
Bias Temperature Coefficient
Output Noise
Noise Density
Bandwidth
Conditions
Axis
−40°C to +85°C
2.4 V < VDD < 3.6 V
Compare with best fit line
1
2
3
4
Typ
±16
±19
51.4
±0.01
6
±2
±0.1
±1
X, Y
−2.7
No external capacitance
No external capacitance
Sensor Resonant Frequency
Self-Test Change in Output Response
TEMPERATURE SENSOR SCALE FACTOR
ADC INPUT
Input Range
Resolution
Integral Nonlinearity, INL
Differential Nonlinearity, DNL
Offset Error
Gain Error
Input Capacitance
LOGIC INPUTS 1
Input High Voltage, VINH
Input Low Voltage, VINL
Logic 1 Input Current, IINH
Logic 0 Input Current, IINL
Input Capacitance, CIN
DIGITAL OUTPUTS
Output High Voltage, VOH
Output Low Voltage, VOL
START-UP TIME
Initial, Reset Recovery
FLASH MEMORY
Endurance 2
Data Retention 3
CONVERSION RATE SETTING
POWER SUPPLY
Average Supply Current 4
Sleep Mode Current
Min
X, Y
Z
X
Y
Z
−10
+10
+10
TEMP_OUT = 0x0133 (307) at 25°C
Max
+2.7
±1
24
480
1600
550
5.5
−21
+21
+36
0.244
0
−39
+39
+65
VDD
10
±1
±1
±1
±1
11
±2
±1.25
±2
±3
2.0
VIH = VDD
VIL = 0 V
±0.2
−40
10
ISOURCE = 1.6 mA
ISINK = 1.6 mA
0.8
±1
−60
2.4
2.4
SMPL_PRD = 0x1F, VDD = 2.5 V
1
100
g
mg/LSB
%
%
% FS
Degrees
%
g
mg/°C
mg rms
µg/√Hz
Hz
Hz
kHz
LSB
LSB
LSB
°C/LSB
V
Bits
LSB
LSB
LSB
LSB
pF
V
V
µA
μA
pF
0.4
V
V
32
ms
4096
3.6
Cycles
Years
SPS
V
mA
µA
10,000
20
TJ = 85°C
Unit
Note that the inputs are 5 V tolerant.
Endurance is qualified as per JEDEC Standard 22, Method A117 and measured at −40°C, +25°C, +85°C, and +105°C.
Retention lifetime equivalent at junction temperature (TJ) of 55°C as per JEDEC Standard 22, Method A117. Retention lifetime decreases with junction temperature.
Instantaneous current has periodic peaks at the sample rate that can reach 30 mA.
Rev. C | Page 3 of 20
ADIS16240
Data Sheet
TIMING SPECIFICATIONS
TA = 25°C, VDD = 3.3 V, unless otherwise noted.
Table 2.
Parameter
fSCLK
tDATARATE
tCS
tDAV
tDSU
tDHD
tDF
tDR
tSFS
1
2
Min1
0.01
60
120
Description
Serial clock rate2
Chip select period2
Chip select to clock edge
Data output valid after SCLK edge
Data input setup time before SCLK rising edge
Data input hold time after SCLK rising edge
Data output fall time
Data output rise time
CS high after SCLK edge
Max1
2.5
Typ
30
20
20
10
10
25
25
430
Unit
MHz
μs
ns
ns
ns
ns
ns
ns
ns
Guaranteed by design; typical specifications are not tested or guaranteed.
Based on sample rate selection.
Timing Diagrams
tDATARATE
08133-002
CS
SCLK
Figure 2. SPI Chip Select Timing
CS
tCS
tSFS
1
2
3
4
5
6
15
16
SCLK
tDAV
MSB
DB14
DB13
tDSU
DIN
W/R
A6
DB12
DB11
A4
A3
DB10
DB2
DB1
LSB
tDHD
A5
A2
D2
D1
Figure 3. SPI Timing (Utilizing SPI Settings Typically Identified as Phase = 1, Polarity = 1)
Rev. C | Page 4 of 20
LSB
08133-003
DOUT
Data Sheet
ADIS16240
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter
Acceleration
Any Axis, Unpowered
Any Axis, Powered
VDD to GND
Digital Input Voltage to GND
Analog Inputs to GND
Operating Temperature Range
Storage Temperature Range
Rating
2000 g
2000 g
−0.3 V to +3.6 V
−0.3 V to VDD + 0.3 V
−0.3 V to VDD + 0.3 V
−40°C to +85°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
Rev. C | Page 5 of 20
ADIS16240
Data Sheet
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
TOP VIEW
1 2
3 4 5 6 7 8
9 10 11
A
H
J
K
L
08133-004
B
C
D
E
F
G
NOTES
1. THE ACTUAL PINS ARE NOT
VISIBLE FROM THE TOP VIEW.
Figure 4. Pin Configuration (Top View)
A1
AZ X
AY
AY
AX
AX
08133-005
AZ
Figure 5. Axis Orientation of Device (Top View)
Table 4. Pin Function Descriptions
Pin No.
E10, E11
F10, F11
G10, G11
H10, H11
J10, J11
K9, L9
K8, L8
K7, L7
K6, L6
K3, L3
J1, J2
H1, H2
G1, G2
A5, B5
D4 to D8, E4, E8, F4, F8, G4, G8, H4 to H8
A1, A2, A10, A11, B1, B2, B10, B11, C3 to C9, D3, D9, E3, E9, F3, F9,
G3, G9, H3, H9, J3 to J9, K1, K2, K10, K11, L1, L2, L10, L11
A3, A4, A6 to A9, B3, B4, B6 to B9, C1, C2, C10, C11, D1, D2, D10,
D11, E1, E2, F1, F2, K4, K5, L4, L5
1
Mnemonic
SCLK
CS
DIN
DOUT
DIO2
DIO1
AN
CMP2
CMP1
RST
XA
YA
ZA
ST
VDD
GND
NC
I = input, O = output, I/O = input/output, S = supply.
Rev. C | Page 6 of 20
Type 1
I
I
I
O
I/O
I/O
I
I
I
I
O
O
O
I
S
S
Description
SPI Serial Clock
SPI Chip Select, Active Low
SPI Data Input
SPI Data Output
Multifunction Digital Input/Output 2
Multifunction Digital Input/Output 1
Analog Input Channel
Analog Comparator Input 2
Analog Comparator Input 1
Reset, Active Low, No Pull-Up Resistor
X-Axis Accelerometer Filter Pin
Y-Axis Accelerometer Filter Pin
Z-Axis Accelerometer Filter Pin
Self-Test Input Control Line
Power Supply, 3.3 V
Ground
No Connect
Data Sheet
ADIS16240
TYPICAL PERFORMANCE CHARACTERISTICS
2.8
30mA PEAK
2.3
1.8
CURRENT
1
1.3
08133-106
0.8
0.3
0
500
1000
1500 2000 2500 3000
SAMPLE RATE (SPS)
3500
4000
08133-108
SUPPLY CURRENT (mA)
3.3
4500
CH1 20.0V
M40.0µs
A CH1
T
40.5304µs
17.2mV
Figure 9. Instantaneous Supply Current
Figure 6. Supply Current vs. Sample Rate
1.6
1.4
1.0
0.8
CURRENT
0.6
1
0.4
08133-107
0.2
08133-109
SUPPLY CURRENT (mA)
30mA PEAK
1.2
0
2.4
2.6
2.8
3.0
3.2
CH1 50.0V
3.6
3.4
M40.0µs
A CH1
T
40.5304µs
SUPPLY VOLTAGE (V)
Figure 7. Supply Current vs. Supply Voltage
Figure 10. Instantaneous Supply Current
1.5
3.6V
3.0V
1.3
1.2
1.1
2.4V
1.0
08133-110
SUPPLY CURRENT (mA)
1.4
0.9
–40 –30 –20 –10
0 10 20 30 40
TEMPERATURE (°C)
50
60
70
80
90
Figure 8. Supply Current vs. Temperature
Rev. C | Page 7 of 20
73.0mV
ADIS16240
Data Sheet
THEORY OF OPERATION
The ADIS16240 is a triple-axis accelerometer system for shock
detection and recording applications. This sensing system collects
data autonomously and makes it available to any processor system
that supports a 4-wire serial peripheral interface (SPI).
SENSING ELEMENT
Digital shock sensing starts with the triple-axis MEMS sensing
element in the ADIS16240. This element provides a linear motionto-electrical transducer function. Figure 11 provides a basic
physical diagram of the sensing element and its response to
linear acceleration. It uses a fixed frame and a moving frame to
form a differential capacitance network that responds to linear
acceleration. Tiny springs tether the moving frame to the fixed
frame and govern the relationship between acceleration and
physical displacement. A modulation signal on the moving plate
feeds through each capacitive path into the fixed frame plates
and into a demodulation circuit, which produces the electrical
signal that is proportional to the acceleration acting on the device.
ANCHOR
MOVABLE
FRAME
FIXED
PLATES
UNIT SENSING
CELL
UNIT
FORCING
CELL
Data collection and configuration commands both use the SPI,
which consists of four wires. The chip select (CS) signal activates
the SPI interface, and the serial clock (SCLK) synchronizes the
serial data lines. The serial input data clocks into DIN on the rising
edge of SCLK, and the serial output data clocks out of DOUT on
the falling edge of SCLK. Many digital processor platforms
support this interface with dedicated serial ports and simple
instruction sets.
User Registers
The user registers provide addressing for all input/output
operations on the SPI interface. Each 16-bit register has its own
unique bit assignment and has two 7-bit addresses: one for its
upper byte and one for its lower byte. Table 7 provides a memory
map for each register and identifies output registers as read only
(R) and configuration registers as either read/write (R/W) or write
only (W). The control registers use a dual-memory structure. The
SRAM controls operation while the part is on and facilitates all user
configuration inputs. The flash memory provides nonvolatile storage for the control registers that are identified with a “yes” in the
flash backup column in Table 7. Storing configuration data in the
flash memory requires a manual command (see GLOB_CMD[3]
in Table 24). When the device starts up from an initial power-up
or reset, the flash memory contents load into the SRAM. Then
the device starts producing data according to the configuration
in the control registers.
ANCHOR
MANUAL
FLASH
BACKUP
Figure 11. MEMS Sensor Diagram
NONVOLATILE
FLASH MEMORY
DATA SAMPLING AND PROCESSING
(NO SPI ACCESS)
The analog acceleration signals feed into an analog-to-digital
converter stage that passes digitized data into the controller for
data processing and capture. The ADIS16240 runs autonomously,
based on the configuration in the user control registers.
(SPI ACCESS)
START-UP
RESET
Figure 13. Control Registers—SRAM and Flash Memory Diagram
CAPTURE
CAPTURE
BUFFER
CONTROL
REGISTERS
The ADIS16240 offers a recorder function that captures
acceleration information based on either internal or external
triggers. The buffer memory is 3 × 8192 samples and is capable
of storing multiple trigger events.
SPI SIGNALS
MEMS
SENSOR
SPI PORT
OUTPUT
REGISTERS
CONTROLLER
VOLATILE
SRAM
08133-009
MOVING
PLATE
SPI Interface
08133-007
ACCELERATION
PLATE
CAPACITORS
USER INTERFACE
INPUT/OUTPUT
FUNCTIONS
08133-008
CLOCK
Figure 12. Simplified Sensor Signal Processing Diagram
Rev. C | Page 8 of 20
Data Sheet
ADIS16240
BASIC OPERATION
VDD
User registers govern all data collection and configuration. Table 7
provides a memory map that includes all user registers, along with
references to bit assignment tables that follow the generic assignments in Figure 15.
15
14
13
12
11
10
9
8
7
6
UPPER BYTE
VDD
5
4
3
2
1
0
08133-011
The ADIS16240 starts up automatically when it has a valid power
supply and begins producing digital acceleration data in the output
registers. When using the factory-default configuration, DIO1
serves as a data-ready indicator signal that can drive a processor
interrupt function. Figure 14 shows a schematic for connecting
to a SPI-compatible processor platform, referred to as the SPI
master.
LOWER BYTE
Figure 15. Generic Register Bit Assignments
SPI Write Commands
ADIS16240
SYSTEM PROCESSOR
SPI MASTER
Master processors write to the control registers, one byte at a
time, using the bit assignments shown in Figure 18. The programmable registers in Table 7 provide controls for optimizing sensor
operation and for starting various automated functions. For
example, set GLOB_CMD[8] = 1 (DIN = 0xCB01) to wake up the
device.
SPI SLAVE
SS
CS
SCLK
SCLK
MOSI
DIN
MISO
DOUT
IRQ1
DIO1
IRQ2
DIO2
08133-010
CS
Figure 14. Electrical Hook-Up Diagram
DIN
Figure 16. SPI Sequence for a Wake-Up Command (DIN = 0xCB01)
Table 5. Generic Master Processor Pin Names and Functions
Some configurations require writing both bytes to a register,
which takes two separate 16-bit sequences. See GLOB_CMD[3]
in Table 24 for backing up configuration data in nonvolatile
flash memory.
Function
Slave select.
Interrupt request inputs.
Master output, slave input.
Master input, slave output.
Serial clock.
SPI Read Commands
The ADIS16240 SPI interface supports full duplex serial communication (simultaneous transmit and receive) and uses the bit
sequence shown in Figure 18. Processor platforms typically
support SPI communication with general-purpose serial ports that
require some configuration in their control registers. Table 6 lists
the most common settings that require attention when
initializing a pro-cessor serial port for communication with the
ADIS16240.
Table 6. Generic Master Processor SPI Settings
Processor Setting
Master
SCLK Rate ≤ 2.5 MHz
SPI Mode 3 (1,1)
MSB First
16-Bit
Description
The ADIS16240 operates as a slave.
Bit rate setting.
Clock polarity/phase (CPOL = 1, CPHA = 1).
Bit sequence.
Shift register/data length.
Reading data on the SPI requires two consecutive 16-bit
sequences. The first sequence transmits the read command on
DIN, and the second sequence receives the resulting data from
DOUT. The 7-bit register address can represent either the upper
or lower byte address for the target register. For example, DIN
can be either 0x0200 or 0x0300 when reading the SUPPLY_OUT
register. The SPI operates in full duplex mode, which means that
the master processor can read the output data from DOUT while
using the same SCLK pulses to transmit a new command on
DIN. In Figure 17, the second SPI segment sets up the device to
read YACCL_OUT on the following SPI segment (not shown).
SPI SEGMENT 1
SPI SEGMENT 2
CS
SCLK
DIN = 0x0600 TO READ YACCL_OUT
DIN
DOUT
DIN = 0x0400 PRODUCES XACCL_OUT CONTENTS ON
DOUT DURING THE NEXT SPI SEGMENT
Figure 17. Example SPI Read Sequence
Rev. C | Page 9 of 20
DOUT = 0x802B = 2.21g, NEW DATA
08133-013
Pin Name
SS
IRQ1, IRQ2
MOSI
MISO
SCLK
08133-012
SCLK
ADIS16240
Data Sheet
MEMORY MAP
Note that all registers are two bytes. All unused memory locations are reserved for future use.
Table 7. User Register Memory Map
Register
Name
FLASH_CNT
SUPPLY_OUT
XACCL_OUT
YACCL_OUT
ZACCL_OUT
AUX_ADC
TEMP_OUT
XPEAK_OUT
YPEAK_OUT
ZPEAK_OUT
XYZPEAK_OUT
CAPT_BUF1
CAPT_BUF2
DIAG_STAT
EVNT_CNTR
CHK_SUM
XACCL_OFF
YACCL_OFF
ZACCL_OFF
CLK_TIME
CLK_DATE
CLK_YEAR
WAKE_TIME
WAKE_DATE
ALM_MAG1
ALM_MAG2
ALM_CTRL
XTRIG_CTRL
CAPT_PNTR
CAPT_CTRL
GPIO_CTRL
MSC_CTRL
SMPL_PRD
GLOB_CMD
2
Flash
Backup
Yes
No
No
No
No
No
No
No
No
No
No
No 2
No2
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
Yes
Yes
Register
Address 1
0x00
0x02
0x04
0x06
0x08
0x0A
0x0C
0x0E
0x10
0x12
0x14
0x16
0x18
0x1A
0x1C
0x1E
0x20
0x22
0x24
0x2E
0x30
0x32
0x34
0x36
0x38
0x3A
0x3C
0x3E
0x40
0x42
0x44
0x46
0x48
0x4A
Default
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
0x0000
0x0000
N/A
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x9000
0x9000
0x0000
0x0000
0x0000
0x0022
0x0000
0x0006
0x001F
N/A
Bit
Assignments
See Table 35
See Table 10
See Table 9
See Table 9
See Table 9
See Table 8
See Table 11
See Table 9
See Table 9
See Table 9
See Table 8
See Table 18
See Table 19
See Table 28
See Table 21
See Table 34
See Table 27
See Table 27
See Table 27
See Table 29
See Table 30
See Table 31
See Table 32
See Table 33
See Table 13
See Table 13
See Table 12
See Table 15
See Table 20
See Table 17
See Table 26
See Table 25
See Table 23
See Table 24
Function
Flash memory write count
Output, power supply
Output, x-axis accelerometer
Output, y-axis accelerometer
Output, z-axis accelerometer
Output, auxiliary ADC input
Output, temperature
Output, x-axis acceleration peak
Output, y-axis acceleration peak
Output, z-axis acceleration peak
Output, sum-of-squares acceleration peak
Output, Capture Buffer 1, X and Y acceleration
Output, Capture Buffer 2, Z acceleration
Diagnostic, error flags
Diagnostic, event counter
Diagnostic, check sum value from firmware test
Calibration, x-axis acceleration offset adjustment
Calibration, y-axis acceleration offset adjustment
Calibration, z-axis acceleration offset adjustment
Clock, hour and minute
Clock, month and day
Clock, year
Wake-up setting, hour and minute
Wake-up setting, month and day
Alarm 1 amplitude threshold
Alarm 2 amplitude threshold
Alarm control
Capture, external trigger control
Capture, address pointer
Capture, configuration and control
General-purpose digital input/output control
Miscellaneous control
Internal sample period (rate) control
System command
Each register contains two bytes. The address of the lower byte is displayed. The address of the upper byte is equal to the address of the lower byte plus 1.
The event capture buffer is also stored in flash, but the CAPT_BUFx registers, which only contain a single sample, are not stored in nonvolatile flash.
CS
SCLK
DIN
DOUT
R/W
D15
A6
A5
A4
A3
A2
A1
A0
DC7
DC6
DC5
DC4
DC3
DC2
DC1
DC0
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
NOTES
1. DOUT BITS ARE BASED ON THE PREVIOUS 16-BIT SEQUENCE, WHEN R/W = 0.
Figure 18. SPI Communication Bit Sequence
Rev. C | Page 10 of 20
R/W
D15
A6
A5
D14
D13
08133-014
1
Read/
Write
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
W
Data Sheet
ADIS16240
OUTPUT DATA REGISTERS
Table 9. Accelerometer Data Output Format1
Each output data register uses the bit assignments shown in
Figure 19. The ND flag indicates that unread data resides in the
register. This flag clears and returns to 0 after reading the register.
It returns to 1 after the next internal sample updates the register
with new data. When the data-ready function (the DIO1 and
DIO2 pins and the MSC_CTRL register; see Table 25) drives
data collection, the ND bit is always high and does not require
validation. The EA flag indicates that one of the error flags in the
DIAG_STAT register (see Table 28) is active (true).
Binary
01 0011 0111
…
00 0000 0010
00 0000 0001
00 0000 0000
11 1111 1111
11 1111 1110
…
10 1100 1001
ND
EA
x
x
x
x
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
08133-015
MSB FOR 10-BIT OUTPUT
1
Figure 19. Output Register Bit Assignments
Table 8. Output Data Register Formats
Register
SUPPLY_OUT
XACCL_OUT
YACCL_OUT
ZACCL_OUT
AUX_ADC
TEMP_OUT
XPEAK_OUT1
YPEAK_OUT1
ZPEAK_OUT1
XYZPEAK_OUT2
Bits
10
10
10
10
10
10
10
10
10
12
Format
Binary, 0 V = 0x0000
Twos complement
Twos complement
Twos complement
Binary, 0 V = 0x0000
Binary, 25°C = 0x0133
Twos complement
Twos complement
Twos complement
Binary, 0 g2 = 0x0000
Scale
4.88 mV
51.4 mg
51.4 mg
51.4 mg
VDD/1024
0.244°C
51.4 mg
51.4 mg
51.4 mg
0.676 g2
Function requires MSC_CTRL[14] = 1.
2
Function requires MSC_CTRL[15] = 1.
1
Processing Sensor Data
Processing sensor data starts with reading the appropriate output
data register using the SPI. For example, use DIN = 0x0E00
to read the XPEAK_OUT register. Use the ND and EA bits to
validate new data and normal operating status, if necessary. Then
mask off all of the nondata bits and calculate the data, using the
format and scale information shown in Table 8. For example,
XACCL_OUT[9:0] and XYZPEAK_OUT[11:0] contain all
relevant data for their function. Table 9, Table 10, and Table 11
provide output code examples for each output register.
Hex
0x137
…
0x002
0x001
0x000
0x3FF
0x3FE
…
0x2C9
Codes
+311
…
+2
+1
0
−1
−2
…
−311
Acceleration
+16 g
…
+102.8 mg
+51.4 mg
0
−51.4 mg
−102.8 mg
…
−16 g
The XACCL_OUT register is located at Address 0x05[15:8] and Address 0x04[7:0].
The YACCL_OUT register is located at Address 0x07[15:8] and Address 0x06[7:0].
The ZACCL_OUT register is located at Address 0x09[15:8] and Address 0x08[7:0].
The XPEAK_OUT register is located at Address 0x0F[15:8] and Address 0x0E[7:0].
The YPEAK_OUT register is located at Address 0x11[15:8] and Address 0x10[7:0].
The ZPEAK_OUT register is located at Address 0x13[15:8] and Address 0x12[7:0].
When MSC_CTRL[14] = 1, the XPEAK_OUT, YPEAK_OUT,
and ZPEAK_OUT registers track the peak acceleration in each
acceleration output register. When MSC_CTRL[15] = 1, use the
following equation to calculate the root mean square (rms) of all
three peak registers, where 1 LSB = 0.822 g:
XYZrms = XYZPEAK _ OUT
Set GLOB_CMD[5] = 1 to reset these registers to 0x0000.
Table 10. Power Supply Data Output Format1
Binary
10 1110 0010
…
10 1010 0101
10 1010 0100
10 1010 0011
…
01 1110 1100
1
Hex
0x2E2
…
0x2A5
0x2A4
0x2A3
…
0x1EC
Codes
738
…
677
676
675
…
492
Power Supply (V)
3.6
…
3.30488
3.3
3.29502
…
2.4
The SUPPLY_OUT register is located at Address 0x03[15:8] and Address 0x02[7:0].
Table 11. Temperature Data Output Format1
Binary
10 0010 1001
…
01 0011 0100
01 0011 0011
01 0011 0010
…
00 0010 1001
1
Hex
0x229
…
0x134
0x133
0x132
…
0x029
Codes
553
…
308
307
306
…
41
Temperature (°C)
+85°C
…
+25.244°C
+25°C
+24.756°C
…
−40°C
The TEMP_OUT register is located at Address 0x0D[15:8] and Address 0x0C[7:0].
Rev. C | Page 11 of 20
ADIS16240
Data Sheet
EVENT RECORDER
The ADIS16240 provides a 3 × 8192 (8-bit) buffer memory for
capturing and storing (in flash) transient acceleration data on
all three axes (x, y, and z). There are a number of user controls for
tailoring the event recorder for optimal system-level operation.
Alarm 1 and Alarm 2 provide internal and external trigger
options for starting a data capture sequence.
Internal Trigger Setup
Select the trigger data source for Alarm 1 and Alarm 2 using
ALM_CTRL[15:8] (see Table 12). The ALM_MAG1 and ALM_
MAG2 registers contain threshold magnitude and direction
settings for Alarm 1 and Alarm 2, respectively. The format for
the data bits in these registers matches the trigger data source,
which is set using ALM_CTRL[15:8]. For example, if ALM_
CTRL[15:12] equals 0010, then the format matches that of
XACCL_OUT: 10-bit, twos complement, with 1 LSB = 51.4 mg
of acceleration.
Table 12. ALM_CTRL Register Bit Descriptions1
Bit
[15:12]
[11:8]
[7:6]
5
4
3
2
1
0
1
Description (Default = 0x0000)
Alarm 2 source selection
0000 = disabled
0001 = power supply voltage (SUPPLY_OUT)
0010 = x acceleration (XACCL_OUT)
0011 = y acceleration (YACCL_OUT)
0100 = z acceleration (ZACCL_OUT)
0101 = auxiliary ADC voltage (AUX_ADC)
0110 = temperature (TEMP_OUT)
0111 = XYZ peak acceleration (XYZPEAK_OUT)
1000 = external trigger
Alarm 1 source selection (same as Alarm 2)
Unused
Alarm 2 capture trigger: 1 = enabled, 0 = disabled
Alarm 1 capture trigger: 1 = enabled, 0 = disabled
Unused
Alarm indicator enable: 1 = enabled, 0 = disabled
Alarm indicator polarity: 1 = positive, 0 = negative
Alarm indicator pin: 1 = DIO2, 0 = DIO1
1
Description
Set Alarm 1 and Alarm 2 to ZACCL_OUT
Set Alarm 1 to trigger on a measured acceleration
that has a magnitude of >2.57 g
Set Alarm 2 to trigger on a measured acceleration
that has a magnitude of