0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADIS16505-2BMLZ

ADIS16505-2BMLZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    Modular

  • 描述:

    ADIS16505-2BMLZ

  • 数据手册
  • 价格&库存
ADIS16505-2BMLZ 数据手册
Precision, Miniature MEMS IMU ADIS16505 Data Sheet FEATURES GENERAL DESCRIPTION Triaxial, digital gyroscope ±125°/sec, ±500°/sec, ±2000°/sec dynamic range models 2.3°/hr in-run bias stability (ADIS16505-1) 0.13°/√hr angular random walk, x-axis and y-axis, 1 σ (ADIS16505-1) ±0.25° axis to axis misalignment error Triaxial, digital accelerometer, ±78.4 m/sec² dynamic range 26.5 μm/sec² in-run bias stability (x-axis and y-axis) Triaxial, delta angle and delta velocity outputs Factory calibrated sensitivity, bias, and axial alignment Calibration temperature range: −40°C to +85°C SPI compatible data communications Programmable operation and control Automatic and manual bias correction controls Data ready indicator for synchronous data acquisition External sync modes: direct, scaled, and output On demand self-test of inertial sensors On demand self-test of flash memory Single-supply operation (VDD): 3.0 V to 3.6 V 14,700 m/sec2 mechanical shock survivability Operating temperature range: −40°C to +105°C The ADIS16505 is a precision, miniature microelectromechanical system (MEMS) inertial measurement unit (IMU) that includes a triaxial gyroscope and a triaxial accelerometer. Each inertial sensor in the ADIS16505 combines with signal conditioning that optimizes dynamic performance. The factory calibration characterizes each sensor for sensitivity, bias, alignment, linear acceleration (gyroscope bias), and point of percussion (accelerometer location). As a result, each sensor has dynamic compensation formulas that provide accurate sensor measurements over a broad set of conditions. The ADIS16505 provides a simplified, cost effective method for integrating accurate, multiaxis inertial sensing into industrial systems, especially when compared with the complexity and investment associated with discrete designs. All necessary motion testing and calibration are part of the production process at the factory, greatly reducing system integration time. Tight orthogonal alignment simplifies inertial frame alignment in navigation systems. The serial peripheral interface (SPI) and register structure provide a simple interface for data collection and configuration control. The ADIS16505 is available in a 100-ball, ball grid array (BGA) package that is approximately 15 mm × 15 mm × 5 mm. APPLICATIONS Navigation, stabilization, and instrumentation Unmanned and autonomous vehicles Smart agriculture and construction machinery Factory/industrial automation, robotics Virtual/augmented reality Internet of Moving Things FUNCTIONAL BLOCK DIAGRAM DR SELF TEST RST POWER MANAGEMENT INPUT/OUTPUT OUTPUT DATA REGISTERS TRIAXIAL GYROSCOPE TRIAXIAL ACCELEROMETER CONTROLLER CALIBRATION AND FILTERS GND CS SPI USER CONTROL REGISTERS SCLK DIN DOUT CLOCK ADIS16505 SYNC 17328-001 TEMPERATURE SENSOR VDD Figure 1. Rev. C Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2019–2020 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADIS16505 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1  SPI ................................................................................................ 17  Applications ...................................................................................... 1  Data Ready (DR) ........................................................................ 17  General Description ......................................................................... 1  Reading Sensor Data .................................................................. 18  Functional Block Diagram .............................................................. 1  Burst Read Function .................................................................. 19  Revision History ............................................................................... 2  Latency ......................................................................................... 21  Specifications .................................................................................... 3  Device Configuration ................................................................ 21  Timing Specifications .................................................................. 6  Memory Structure ...................................................................... 21  Absolute Maximum Ratings ....................................................... 7  User Register Memory Map.......................................................... 22  Thermal Resistance ...................................................................... 7  User Register Defintions ............................................................... 24  ESD Caution.................................................................................. 7  Gyroscope Data .......................................................................... 24  Pin Configuration and Function Descriptions ............................ 8  Delta Angles ................................................................................ 28  Typical Performance Characteristics ........................................... 11  Delta Velocity ............................................................................. 29  Gyroscopes .................................................................................. 11  Calibration .................................................................................. 31  Accelerometers ........................................................................... 14  Applications Information ............................................................. 38  Theory of Operation ...................................................................... 15  Assembly and Handling Tips ................................................... 38  Introduction ................................................................................ 15  Power Supply Considerations .................................................. 39  Clock Control ............................................................................. 15  Evaluation Tools......................................................................... 39  Bartlett Window Filter ............................................................... 16  Packaging and Ordering Information ......................................... 41  Calibration................................................................................... 16  Outline Dimensions ................................................................... 41  Decimation Filter ....................................................................... 16  Ordering Guide .......................................................................... 41  Register Structure ....................................................................... 16  REVISION HISTORY 10/2020—Rev. B to Rev. C Change to Linear Acceleration Effect Parameter, Table 1.......... 3 Changes to Figure 29 ..................................................................... 15 Changes to SPI Section and Figure 34 ......................................... 17 Changes to Burst Read Function .................................................. 19 Changes to Table 27 ....................................................................... 26 Changes to Figure 64 and Figure 65 ............................................ 40 Changes to Ordering Guide .......................................................... 41 7/2020—Rev. A to Rev. B Changes to Table 1 ........................................................................... 3 Changes to Table 3 and Table 4...................................................... 7 Changes to Clock Control Section ............................................... 15 Changes to Figure 44 and Figure 45 ............................................ 20 Changes to Table 9 ......................................................................... 23 Changes to Table 11 ....................................................................... 24 Changes to Table 102 and Table 106 ........................................... 33 Changes to Table 108 and Table 110 ........................................... 34 Deleted Table 111 and Table 112; Renumbered Sequentially........34 Deleted Bias Correction Update Section .........................................35 Changes to Table 113, Table 115, Table 117, Table 119, and Table 121 ...................................................................................................36 Changes to Table 129 and Table 131 ........................................... 37 Changes to Figure 65 ..................................................................... 40 10/2019—Revision A: Initial Version Rev. C | Page 2 of 41 Data Sheet ADIS16505 SPECIFICATIONS Case temperature (TC) = 25°C, VDD = 3.3 V, angular rate = 0°/sec, and dynamic range = ±2000°/sec ± 1 g, unless otherwise noted. 1 g is the acceleration due to gravity and assumed to be 9.8 m/sec2. Table 1. Parameter GYROSCOPES Dynamic Range Sensitivity Error over Temperature Misalignment Error1 Nonlinearity2 Bias Repeatability3 In-Run Bias Stability Angular Random Walk Error over Temperature Linear Acceleration Effect Vibration Rectified Error (VRE) Test Conditions/Comments Min ADIS16505-1 ADIS16505-2 ADIS16505-3 ADIS16505-1, 16-bit data format ADIS16505-2, 16-bit data format ADIS16505-3, 16-bit data format ADIS16505-1, 32-bit data format ADIS16505-2, 32-bit data format ADIS16505-3, 32-bit data format ADIS16505-1, −40°C ≤ TC ≤ +85°C, 1σ ADIS16505-2, −40°C ≤ TC ≤ +85°C, 1σ ADIS16505-3, −40°C ≤ TC ≤ +85°C, 1σ Axis to axis, −40°C ≤ TC ≤ +85°C, 1 σ ADIS16505-1, full scale (FS) = 125°/sec ADIS16505-2, FS = 500°/sec ADIS16505-3, FS = 2000°/sec ±125 ±500 ±2000 −40°C ≤ TC ≤ +85°C, 1 σ, x-axis and z-axis −40°C ≤ TC ≤ +85°C, 1 σ, y-axis ADIS16505-1, 1 σ, x-axis ADIS16505-1, 1 σ, y-axis ADIS16505-1, 1 σ, z-axis ADIS16505-2, 1 σ, x-axis ADIS16505-2, 1 σ, y-axis ADIS16505-2, 1 σ, z-axis ADIS16505-3, 1 σ, x-axis ADIS16505-3, 1 σ, y-axis ADIS16505-3, 1 σ, z-axis ADIS16505-1, x-axis and y-axis, 1 σ ADIS16505-1, z-axis, 1 σ ADIS16505-2, x-axis and y-axis, 1 σ ADIS16505-2, z-axis, 1 σ ADIS16505-3, x-axis and y-axis, 1 σ ADIS16505-3, z-axis, 1 σ −40°C ≤ TC ≤ +85°C, 1 σ, x-axis and z-axis −40°C ≤ TC ≤ +85°C, 1 σ, y-axis X-axis, 1 σ Y-axis, 1 σ Z-axis, 1 σ X-axis, random vibration, 19.6 m/sec2 rms, 50 Hz to 2 kHz Y-axis, random vibration, 19.6 m/sec2 rms, 50 Hz to 2 kHz Z-axis, random vibration, 19.6 m/sec2 rms, 50 Hz to 2 kHz Rev. C | Page 3 of 41 Typ Max Unit 160 40 10 10,485,760 2,621,440 655,360 ±0.5 ±0.5 ±0.3 ±0.25 0.2 0.2 0.2 °/sec °/sec °/sec LSB/°/sec LSB/°/sec LSB/°/sec LSB/°/sec LSB/°/sec LSB/°/sec % % % Degrees %FS %FS %FS 0.14 1.4 1.5 2.3 1.7 2.2 2.7 1.6 7.5 8.1 4.9 0.13 0.19 0.15 0.2 0.29 0.32 ±0.3 ±0.7 0.572 × 10−3 1.02 × 10−3 0.045 × 10−3 3.1 × 10−6 °/sec °/sec °/hr °/hr °/hr °/hr °/hr °/hr °/hr °/hr °/hr °/√hr °/√hr °/√hr °/√hr °/√hr °/√hr °/sec °/sec (°/sec)/(m/sec2) (°/sec)/(m/sec2) (°/sec)/(m/sec2) (°/sec)/(m/sec2)2 5.6 × 10−6 (°/sec)/(m/sec2)2 0.3 × 10−6 (°/sec)/(m/sec2)2 ADIS16505 Parameter Output Noise Rate Noise Density 3 dB Bandwidth Sensor Resonant Frequency ACCELEROMETERS4 Dynamic Range Sensitivity Error over Temperature Repeatability3 Misalignment Error Nonlinearity Bias Repeatability3 In-Run Bias Stability X-Axis and Y-Axis Z-Axis Velocity Random Walk X-Axis and Y-Axis Z-Axis Error over Temperature Output Noise X-Axis and Y-Axis Z-Axis Noise Density X-Axis and Y-Axis Z-Axis 3 dB Bandwidth Sensor Resonant Frequency TEMPERATURE SENSOR Scale Factor Data Sheet Test Conditions/Comments No filtering, 1 σ, 25°C ADIS16505-1, x-axis, y-axis ADIS16505-1, z-axis ADIS16505-2, x-axis, y-axis ADIS16505-2, z-axis ADIS16505-3, all axes Frequency = 10 Hz to 40 Hz ADIS16505-1, x-axis and y-axis ADIS16505-1, z-axis ADIS16505-2, x-axis and y-axis ADIS16505-2, z-axis ADIS16505-3, x-axis and y-axis ADIS16505-3, z axis ADIS16505-1, ADIS16505-2, x-axis and y-axis ADIS16505-1, ADIS16505-2, z-axis ADIS16505-3, x-axis and y-axis ADIS16505-3, z-axis X-axis, y-axis Z-axis Each axis Min Typ 68 × 10−3 104 × 10−3 82 × 10−3 116 × 10−3 152 × 10−3 181 × 10−3 Max Unit °/sec rms °/sec rms °/sec rms °/sec rms °/sec rms 3.0 × 10−3 4.3 × 10−3 3.4 × 10−3 4.6 × 10−3 6.1 × 10−3 480 590 573 639 66 78 °/sec/√Hz rms °/sec/√Hz rms °/sec/√Hz rms °/sec/√Hz rms °/sec/√Hz rms °/sec/√Hz rms Hz Hz Hz Hz kHz kHz 32-bit data format −40°C ≤ TC ≤ +85°C, 1 σ −40°C ≤ TC ≤ +85°C, 1 σ Axis to axis, −40°C ≤ TC ≤ +85°C, 1 σ Best fit straight line, ±19.6 m/sec2 Best fit straight line, ±78.4 m/sec2, x-axis Best fit straight line, ±78.4 m/sec2, y-axis and z-axis 26,756,268 ±0.07 ±0.1 ±0.05 0.25 0.5 1.5 m/sec2 LSB/(m/sec2) % % Degrees %FS %FS %FS −40°C ≤ TC ≤ +85°C, 1 σ 1σ 19.6 × 10−3 m/sec2 26.5 × 10−6 43.1 × 10−6 m/sec2 m/sec2 0.009 0.012 ±9.8 × 10−3 m/sec/√hr m/sec/√hr m/sec2 4.8 × 10−3 6.07 × 10−3 m/sec2 rms m/sec2 rms X-axis and y-axis Z-axis 167 × 10−6 243 × 10−6 750 2.4 2.2 m/sec2/√Hz rms m/sec2/√Hz rms Hz kHz kHz Output = 0x0000 at 0°C (±5°C) 0.1 °C/LSB ±78.4 1σ −40°C ≤ TC ≤ +85°C, 1 σ No filtering f = 10 Hz to 40 Hz, no filtering Rev. C | Page 4 of 41 Data Sheet Parameter LOGIC INPUTS5 Input Voltage High, VIH Low, VIL RST Pulse Width Input Current Logic 1, IIH Logic 0, IIL All Pins Except RST RST Pin Input Capacitance, CIN DIGITAL OUTPUTS Output Voltage High, VOH Low, VOL FLASH MEMORY Data Retention7 FUNCTIONAL TIMES8 Power-On Start-Up Time Reset Recovery Time9 Factory Calibration Restore Flash Memory Backup Flash Memory Test Time Self Test Time10 CONVERSION RATE Initial Clock Accuracy Sync Input Clock POWER SUPPLY, VDD Power Supply Current11 ADIS16505 Test Conditions/Comments Min Typ Max Unit 0.8 V V μs 10 μA 10 μA mA pF 2.0 1 VIH = 3.3 V VIL = 0 V 0.33 10 Source current (ISOURCE) = 0.5 mA Sink current (ISINK) = 2.0 mA Endurance6 TJ = 85°C Time until data is available 2.4 0.4 10,000 20 310 255 136 70 30 24 2000 3 GLOB_CMD, Bit 7 = 1 (see Table 112) GLOB_CMD, Bit 1 = 1 (see Table 112) GLOB_CMD, Bit 3 = 1 (see Table 112) GLOB_CMD, Bit 4 = 1 (see Table 112) GLOB_CMD, Bit 2 = 1 (see Table 112) Operating voltage range Normal mode, VDD = 3.3 V 1 1.9 3.0 44 2.1 3.6 55 V V Cycles Years ms ms ms ms ms ms SPS % kHz V mA Cross-axis sensitivity is the sine of this number. This measurement is based on the deviation from a best fit linear model. 3 Bias repeatability provides an estimate for long-term drift in the bias, as observed during 500 hours of high temperature operating life (HTOL) at 105°C. 4 All specifications associated with the accelerometers relate to the full-scale range of ±8 g, unless otherwise noted. 5 The digital input/output signals use a 3.3 V system. 6 Endurance is qualified as per JEDEC Standard 22, Method A117, measured at −40°C, +25°C, +85°C, and +125°C. 7 The data retention specification assumes a junction temperature (TJ) of 85°C per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ. 8 These times do not include thermal settling and internal filter response times, which may affect overall accuracy. 9 The RST line must be in a low state for at least 10 μs to ensure a proper reset initiation and recovery. 10 The self test time can extend when using external clock rates lower than 2000 Hz. 11 Power supply current transients can reach 100 mA during initial startup or reset recovery. 2 Rev. C | Page 5 of 41 ADIS16505 Data Sheet TIMING SPECIFICATIONS TA = 25°C, VDD = 3.3 V, unless otherwise noted. Table 2. Parameter fSCLK tSTALL tREADRATE tCS Description Serial clock Stall period between data Read rate Chip select to SCLK edge tDAV tDSU tDHD tSCLKR, tSCLKF tDR, tDF tSFS t1 DOUT valid after SCLK edge DIN setup time before SCLK rising edge DIN hold time after SCLK rising edge SCLK rise/fall times DOUT rise/fall times CS high after SCLK edge Input sync positive pulse width; direct sync mode, MSC_CTRL[3:2] = 01 (binary, see Table 106) Input sync to data ready valid transition, no SPI traffic, direct sync mode, MSC_CTRL[3:2] = 01 (binary, see Table 106) Input sync to data ready valid transition, full SPI traffic2, direct sync mode, MSC_CTRL[3:2] = 01 (binary, see Table 106) Data invalid time Input sync period tSTDR tNV t2 1 2 Min 0.1 16 24 200 Normal Mode Typ Max 2.1 Burst Read Mode Min Typ Max 0.1 1.1 N/A1 200 25 25 25 50 25 50 5 5 12.5 12.5 5 5 0 5 12.5 12.5 0 5 Unit MHz μs μs ns ns ns ns ns ns ns μs 305 305 μs 405 405 μs 23 μs μs 23 500 500 N/A means not applicable. Full SPI traffic is defined as a transfer of 64 16-bit registers using an SCLK frequency of 2 MHz. Reading the sensor values from the previous data sample proportionally increases the tSTDR on the current cycle. Timing Diagrams tSCLKR CS tSCLKF tCS tSFS SCLK 2 3 4 5 tDAV MSB DOUT R/W 15 16 tDR DB14 DB13 tDSU DIN 6 DB12 DB11 DB10 tDHD A6 A5 DB2 DB1 LSB tDF A4 A3 A2 D2 D1 17328-002 1 LSB Figure 2. SPI Timing and Sequence Diagram tREADRATE tSTALL 17328-003 CS SCLK Figure 3. Stall Time and Data Rate Timing Diagram t2 tSTDR t1 DR tNV 17328-004 SYNC Figure 4. Input Clock Timing Diagram, Direct Sync Mode, Register MSC_CTRL[3:2] = 01 (Binary) Rev. C | Page 6 of 41 Data Sheet ADIS16505 THERMAL RESISTANCE ABSOLUTE MAXIMUM RATINGS Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. Table 3. Parameter Mechanical Shock Survivability Any Axis, Unpowered, 0.5 ms , ½ Sine. VDD to GND Digital Input Voltage to GND Digital Output Voltage to GND Temperature Range Calibration Operating Storage1 Barometric Pressure 1 Rating The ADIS16505 is a multichip module that includes many active components. The values in Table 4 identify the thermal response of the hottest component inside of the ADIS16505, with respect to the overall power dissipation of the module. This approach enables a simple method for predicting the temperature of the hottest junction, based on either ambient or case temperature. 14,700 m/sec2 −0.3 V to +3.6 V −0.3 V to VDD + 0.2 V −0.3 V to VDD + 0.2 V −40°C to +85°C −40°C to +105°C −65°C to +150°C 2 bar For example, when the ambient temperature is 70°C, the hottest junction temperature (TJ) inside of the ADIS16505 is 76.7°C. TJ = θJA × VDD × IDD + 70°C Extended exposure to temperatures that are lower than −40°C or higher than +105°C can adversely affect the accuracy of the factory calibration. TJ = 107.1°C/W × 3.3 V × 0.044 A + 70°C Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. TJ = 85.6°C Table 4. Package Characteristics Package Type ML-100-13 1 θJA1 107.1°C/W θJC2 74.7°C/W Device Weight 3V DR VDD 17328-026 IRQ 33Ω DR 17328-027 SPI PULSING INDICATES DATA PRODUCTION Figure 34. Electrical Connection Diagram START-UP TIME Table 6. Generic SPI Master Pin Names and Functions Figure 36. Data Ready Response During Startup Function Slave select Serial clock Master output, slave input Master input, slave output Interrupt request SOFTWARE RESET COMMAND GLOB_CMD, BIT 7 = 1 DR PULSING RESUMES DR Embedded processors typically configure their serial ports for communicating with SPI slave devices such as the ADIS16505 by using control registers on the processor itself. Table 7 lists the SPI protocol settings for the ADIS16505. RESET RECOVERY TIME 17328-029 Mnemonic SS SCLK MOSI MISO IRQ 17328-028 DR Table 6 provides an example list of pin names for the SPI port in an embedded processor. Figure 37. Data Ready Response During Reset Recovery (Register GLOB_CMD, Bit 7 = 1) RST PIN RELEASED Table 7. Generic Master Processor SPI Settings 1 Description ADIS16505 operates as slave Maximum serial clock rate CPOL = 1 (polarity), CPHA = 1 (phase) Bit sequence, see Figure 40 for coding Shift register and data length RST DR PULSING RESUMES DR RESET RECOVERY TIME A burst mode read requires this value to be ≤1 MHz (see Table 2 for more information). Rev. C | Page 17 of 41 Figure 38. Data Ready Response During Reset (RST = 0) Recovery 17328-030 Processor Setting Master SCLK ≤ 2 MHz1 SPI Mode 3 MSB First Mode 16-Bit Mode ADIS16505 Data Sheet Reading a single register requires two 16-bit cycles on the SPI: one to request the contents of a register and another to receive those contents. The 16-bit command code (see Figure 40) for a read request on the SPI has three parts: the read bit (R/W = 0), either address of the register, [A6:A0], and eight don’t care bits, [DC7:DC0]. Figure 39 shows an example that includes two register reads in succession. This example starts with DIN = 0x0C00 to request the contents of the Z_GYRO_LOW register, and follows with 0x0E00 to request the contents of the Z_GYRO_OUT register. The sequence in Figure 39 also shows full duplex mode of operation, which means that the ADIS16505 can receive DIN 0x0E00 NEXT ADDRESS Z_GYRO_LOW Z_GYRO_OUT 0x0C00 DOUT Figure 39. SPI Read Example Figure 41 provides an example of the four SPI signals when reading the PROD_ID register (see Table 120) in a repeating pattern. This pattern can be helpful when troubleshooting the SPI interface setup and communications because the signals are the same for each 16-bit sequence, except during the first cycle. CS DOUT R/W D15 A6 A5 A4 A3 A2 A1 A0 DC7 DC6 DC5 DC4 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 DC3 DC2 D3 DC1 DC0 D1 D0 D2 R/W D15 A6 A5 D14 D13 NOTES 1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0. 2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE FOR OTHER DEVICES. Figure 40. SPI Communication Bit Sequence CS SCLK DIN = 0x7200 = 0111 0010 0000 0000 DOUT HIGH-Z HIGH-Z DOUT = 0100 0000 0111 1001 = 0x4079 = 16505 (PROD_ID) Figure 41. SPI Signal Pattern, Repeating Read of the PROD_ID Register Rev. C | Page 18 of 41 17328-060 DIN 17328-033 SCLK DIN 17328-031 requests on DIN while also transmitting data out on DOUT within the same 16-bit SPI cycle. READING SENSOR DATA Data Sheet ADIS16505 The burst read function provides a way to read a batch of output data registers, using a continuous stream of bits, at a rate of up to 1 MHz (SCLK). This method does not require a stall time between each 16-bit segment (see Figure 3). As shown in Figure 42, start this mode by setting DIN = 0x6800, and then read each of the registers in the sequence out of DOUT while keeping CS low for the entire data transfer sequence. However, keeping the CS pin low after a burst transfer is complete may delay the next data ready pulse and may potentially interfere with the processing of the next IMU sample. The three options for burst mode include: scaled sync mode on or off, BURST32 enabled and disabled, and BURST_SEL = 0 or BURSET_SEL = 1. This results in eight possible burst data formats. Scaled Sync Mode Enabled vs. Disabled The only differences in the burst data format between these two modes are the final two bytes in a burst. In scaled sync mode, the final two bytes are the values of the TIME_STAMP registers. When scaled sync mode is disabled, the final two bytes are the values in the DATA_CNTR registers. As always, Bits[15:8] appear before Bits[7:0] in both modes. For the rest of this section, it is assumed that scaled sync mode is disabled. In 16-bit burst mode with BURST_SEL = 0, a burst contains calibrated gyroscope and accelerometer data in 16-bit format. This mode is particularly appropriate for cases where there is no decimation nor filtering. Not only is the sample rate high (~2 kSPS), the lower 16 bits are not used unless the user is averaging or filtering. 1 2 3 0x6800 DIAG_STAT X_GYRO_OUT CHECKSUM 17328-034 DOUT 16-Bit Burst Mode with BURST_SEL = 1 In 16-bit burst mode with BURST_SEL = 1, a burst contains calibrated delta angle and delta velocity data in 16-bit format. This mode is particularly appropriate for cases where there is no decimation nor filtering. Not only is the sample rate high (~2 kSPS), the lower 16 bits are not used. CS 1 2 3 11 SCLK DIN 0x6800 DIAG_STAT X_DELTANG_ OUT CHECKSUM Figure 43. Burst Read Sequence with BURST_SEL = 1 The sequence of registers (and checksum value) in the burst read includes the following registers and value: DIAG_STAT, X_DELTANG_OUT, Y_DELTANG_OUT, Z_DELTANG_OUT, X_DELTVEL_OUT, Y_DELTVEL_OUT, Z_DELTVEL_OUT, TEMP_OUT, DATA_ CNTR, and the checksum value. In these cases, use the following formula to verify the 16-bit checksum value, treating each byte in the formula as an independent, unsigned, 8-bit number: 11 SCLK DIN Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] + X_GYRO_OUT, Bits[15:8] + X_GYRO_OUT, Bits[7:0] + Y_GYRO_OUT, Bits[15:8] + Y_GYRO_OUT, Bits[7:0] + Z_GYRO_OUT, Bits[15:8] + Z_GYRO_OUT, Bits[7:0] + X_ACCL_OUT, Bits[15:8] + X_ACCL_OUT, Bits[7:0] + Y_ACCL_OUT, Bits[15:8] + Y_ACCL_OUT, Bits[7:0] + Z_ACCL_OUT, Bits[15:8] + Z_ACCL_OUT, Bits[7:0] + TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits[7:0] + DATA_CNTR, Bits[15:8] + DATA_CNTR, Bits[7:0] DOUT 16-Bit Burst Mode with BURST_SEL = 0 CS In these cases, use the following formula to verify the 16-bit checksum value, treating each byte in the formula as an independent, unsigned, 8-bit number: 17328-056 BURST READ FUNCTION Figure 42. Burst Read Sequence with BURST_SEL = 0 The sequence of registers (and checksum value) in the burst read includes the following registers and value: DIAG_STAT, X_GYRO_OUT, Y_GYRO_OUT, Z_GYRO_OUT, X_ACCL_ OUT, Y_ACCL_OUT, Z_ACCL_OUT, TEMP_OUT, DATA_ CNTR, and the checksum value. Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] + X_DELTANG_OUT, Bits[15:8] + X_DELTANG_OUT, Bits[7:0] + Y_DELTANG_OUT, Bits[15:8] + Y_DELTANG_OUT, Bits[7:0] + Z_DELTANG_OUT, Bits[15:8] + Z_DELTANG_OUT, Bits[7:0] + X_DELTVEL_OUT, Bits[15:8] + X_DELTVEL_OUT, Bits[7:0] + Y_DELTVEL_OUT, Bits[15:8] + Y_DELTVEL_OUT, Bits[7:0] + Z_DELTVEL_OUT, Bits[15:8] + Z_DELTVEL_OUT, Bits[7:0] + TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits[7:0] + DATA_CNTR, Bits[15:8] + DATA_CNTR, Bits[7:0] Rev. C | Page 19 of 41 ADIS16505 Data Sheet 32-Bit Burst Mode with BURST_SEL = 0 32-Bit Burst Mode with BURST_SEL = 1 In 32-bit burst mode with BURST_SEL = 0, a burst contains calibrated gyroscope and accelerometer data in 32-bit format. This mode is appropriate for cases where there is averaging (decimation) and/or low-pass filtering of the data. In 32-bit burst mode with BURST_SEL = 1, a burst contains calibrated delta angle and delta velocity data in 32-bit format. This mode is appropriate for cases where there is averaging (decimation) and/or low-pass filtering of the data. 1 2 3 17 CS SCLK DOUT 2 3 17 SCLK 0x6800 DIAG_STAT X_GYRO_LOW 17328-057 DIN 1 CHECKSUM DIN DOUT 0x6800 DIAG_STAT X_DELTANG_ LOW CHECKSUM 17328-058 CS Figure 44. Burst Read Sequence with BURST_SEL = 0 Figure 45. Burst Read Sequence with BURST_SEL = 1 The sequence of registers (and checksum value) in the burst read includes the following registers and value: DIAG_STAT, X_GYRO_LOW, X_GYRO_OUT, Y_GYRO_LOW, Y_GYRO_OUT, Z_GYRO_LOW, Z_GYRO_OUT, X_ACCL_LOW, X_ACCL_OUT, Y_ACCL_LOW, Y_ACCL_OUT, Z_ACCL_LOW, Z_ACCL_OUT, TEMP_OUT, DATA_ CNTR, and the checksum value. In these cases, use the following formula to verify the 16-bit checksum value, treating each byte in the formula as an independent, unsigned, 8-bit number: The sequence of registers (and checksum value) in the burst read includes the following registers and value: DIAG_STAT, X_DELTANG_LOW, X_DELTANG_OUT, Y_DELTANG_LOW, Y_DELTANG_OUT, Z_DELTANG_LOW, Z_DELTANG_OUT, X_DELTVEL_LOW, X_DELTVEL_OUT, Y_DELTVEL_LOW, Y_DELTVEL_OUT, Z_DELTVEL_LOW, Z_DELTVEL_OUT, TEMP_OUT, DATA_ CNTR, and the checksum value. In these cases, use the following formula to verify the 16-bit checksum value, treating each byte in the formula as an independent, unsigned, 8-bit number: Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] + X_GYRO_LOW, Bits[15:8] + X_GYRO_LOW, Bits[7:0] + X_GYRO_OUT, Bits[15:8] + X_GYRO_OUT, Bits[7:0] + Y_GYRO_LOW, Bits[15:8] + Y_GYRO_LOW, Bits[7:0] + Y_GYRO_OUT, Bits[15:8] + Y_GYRO_OUT, Bits[7:0] + Z_GYRO_LOW, Bits[15:8] + Z_GYRO_LOW, Bits[7:0] + Z_GYRO_OUT, Bits[15:8] + Z_GYRO_OUT, Bits[7:0] + X_ACCL_LOW, Bits[15:8] + X_ACCL_LOW, Bits[7:0] + X_ACCL_OUT, Bits[15:8] + X_ACCL_OUT, Bits[7:0] + Y_ACCL_LOW, Bits[15:8] + Y_ACCL_LOW, Bits[7:0] + Y_ACCL_OUT, Bits[15:8] + Y_ACCL_OUT, Bits[7:0] + Z_ACCL_LOW, Bits[15:8] + Z_ACCL_LOW, Bits[7:0] + Z_ACCL_OUT, Bits[15:8] + Z_ACCL_OUT, Bits[7:0] + TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits[7:0] + DATA_CNTR, Bits[15:8] + DATA_CNTR, Bits[7:0] Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] + X_DELTANG_LOW, Bits[15:8] + X_DELTANG_LOW, Bits[7:0] + X_DELTANG_OUT, Bits[15:8] + X_DELTANG_OUT, Bits[7:0] + Y_DELTANG_LOW, Bits[15:8] + Y_DELTANG_LOW, Bits[7:0] + Y_DELTANG_OUT, Bits[15:8] + Y_DELTANG_OUT, Bits[7:0] + Z_DELTANG_LOW, Bits[15:8] + Z_DELTANG_LOW, Bits[7:0] + Z_DELTANG_OUT, Bits[15:8] + Z_DELTANG_OUT, Bits[7:0] + X_DELTVEL_LOW, Bits[15:8] + X_DELTVEL_LOW, Bits[7:0] + X_DELTVEL_OUT, Bits[15:8] + X_DELTVEL_OUT, Bits[7:0] + Y_DELTVEL_LOW, Bits[15:8] + Y_DELTVEL_LOW, Bits[7:0] + Y_DELTVEL_OUT, Bits[15:8] + Y_DELTVEL_OUT, Bits[7:0] + Z_DELTVEL_LOW, Bits[15:8] + Z_DELTVEL_LOW, Bits[7:0] + Z_DELTVEL_OUT, Bits[15:8] + Z_DELTVEL_OUT, Bits[7:0] + TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits[7:0] + DATA_CNTR, Bits[15:8] + DATA_CNTR, Bits[7:0] Rev. C | Page 20 of 41 Data Sheet ADIS16505 LATENCY Table 8 contains the group delay for each inertial sensor when the ADIS16505 is operating with the factory default settings for the FILT_CTRL (see Table 101) and DEC_RATE (see Table 109) registers. data for that location, [DC7:DC0]. Figure 46 shows a coding example for writing 0x0004 to the FILT_CTRL register (see Table 102). In Figure 46, the 0xDC04 command writes 0x04 to Address 0x5C (lower byte) and the 0xDD00 command writes 0x00 to Address 0x5D (upper byte). CS Table 8. Group Delay with No Filtering 1 Group Delay (ms)1 1.57 1.51 1.51 1.29 DIN 0xDC04 17328-035 SCLK 0xDD00 Figure 46. SPI Sequence for Writing 0x0004 to FILT_CTRL In this context, latency represents the time between the motion (linear acceleration and/or angular rate of rotation) and the time that the representative data is available in the output data register. MEMORY STRUCTURE When the FILT_CTRL register is not equal to 0, the group delay contribution of the Bartlett window filter (in terms of sample cycles) is equal to N (see Table 102). When the DEC_RATE register is not equal to 0, the group delay contribution of the decimation filter (in terms of sample cycles) is equal D + 1, divided by 2 (see Table 110). Data Acquisition The total latency is equal to the sum of the group delay and the data acquisition time, which represents the time it takes the system processor to read the data from the output data registers of the ADIS16505. For example, when using the burst read function, with an SCLK rate of 1 MHz, the data acquisition time is equal to 176 μs (11 segments × 16 SCLKs/segment × 1 μs/SCLK). Figure 47 provides a functional diagram for the memory structure of the ADIS16505. The flash memory bank contains the operational code, unit specific calibration coefficients, and user configuration settings. During initialization (power application or reset recover), this information loads from the flash memory into the static random access memory (SRAM), which supports all normal operation including register access through the SPI port. Writing to a configuration register using the SPI updates the SRAM location of the register but does not automatically update its settings in the flash memory bank. The manual flash memory update command (Register GLOB_CMD, Bit 3, see Table 112) provides a convenient method for saving all of these settings to the flash memory bank at one time. A yes in the flash backup column of Table 9 identifies the registers that have storage support in the flash memory bank. MANUAL FLASH BACKUP DEVICE CONFIGURATION Each configuration register contains 16 bits (two bytes). Bits[7:0] contain the low byte, and Bits[15:8] contain the high byte. Each byte has its own unique address in the user register map (see Table 9). Updating the contents of a register requires writing to both of its bytes in the following sequence: low byte first, high byte second. There are three parts to coding a SPI command (see Figure 40) that write a new byte of data to a register: the write bit (R/W = 1), the address of the byte, [A6:A0], and the new Rev. C | Page 21 of 41 NONVOLATILE FLASH MEMORY VOLATILE SRAM (NO SPI ACCESS) SPI ACCESS START-UP RESET Figure 47. SRAM and Flash Memory Diagram 17328-036 Inertial Sensor Accelerometer Gyroscope (X-Axis) Gyroscope (Y-Axis) Gyroscope (Z-Axis) ADIS16505 Data Sheet USER REGISTER MEMORY MAP Table 9. User Register Memory Map (N/A Means Not Applicable) Name Reserved DIAG_STAT X_GYRO_LOW X_GYRO_OUT Y_GYRO_LOW Y_GYRO_OUT Z_GYRO_LOW Z_GYRO_OUT X_ACCL_LOW X_ACCL_OUT Y_ACCL_LOW Y_ACCL_OUT Z_ACCL_LOW Z_ACCL_OUT TEMP_OUT TIME_STAMP Reserved DATA_CNTR X_DELTANG_LOW X_DELTANG_OUT Y_DELTANG_LOW Y_DELTANG_OUT Z_DELTANG_LOW Z_DELTANG_OUT X_DELTVEL_LOW X_DELTVEL_OUT Y_DELTVEL_LOW Y_DELTVEL_OUT Z_DELTVEL_LOW Z_DELTVEL_OUT Reserved XG_BIAS_LOW XG_BIAS_HIGH YG_BIAS_LOW YG_BIAS_HIGH ZG_BIAS_LOW ZG_BIAS_HIGH XA_BIAS_LOW XA_BIAS_HIGH YA_BIAS_LOW YA_BIAS_HIGH ZA_BIAS_LOW ZA_BIAS_HIGH Reserved FILT_CTRL RANG_MDL R/W N/A R R R R R R R R R R R R R R R N/A R R R R R R R R R R R R R N/A R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W N/A R/W R Flash Backup N/A No No No No No No No No No No No No No No No N/A No No No No No No No No No No No No No N/A Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes N/A Yes No Address 0x00, 0x01 0x02, 0x03 0x04, 0x05 0x06, 0x07 0x08, 0x09 0x0A, 0x0B 0x0C, 0x0D 0x0E, 0x0F 0x10, 0x11 0x12, 0x13 0x14, 0x15 0x16, 0x17 0x18, 0x19 0x1A, 0x1B 0x1C, 0x1D 0x1E, 0x1F 0x20, 0x21 0x22, 0x23 0x24, 0x25 0x26, 0x27 0x28, 0x29 0x2A, 0x2B 0x2C, 0x2D 0x2E, 0x2F 0x30, 0x31 0x32, 0x33 0x34, 0x35 0x36, 0x37 0x38, 0x39 0x3A, 0x3B 0x3C to 0x3F 0x40, 0x41 0x42, 0x43 0x44, 0x45 0x46, 0x47 0x48, 0x49 0x4A, 0x4B 0x4C, 0x4D 0x4E, 0x4F 0x50, 0x51 0x52, 0x53 0x54, 0x55 0x56, 0x57 0x58 to 0x5B 0x5C, 0x5D 0x5E, 0x5F Default N/A 0x0000 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 N/A 0x0000 N/A1 Rev. C | Page 22 of 41 Register Description Reserved Output, system error flags Output, x-axis gyroscope, low word Output, x-axis gyroscope, high word Output, y-axis gyroscope, low word Output, y-axis gyroscope, high word Output, z-axis gyroscope, low word Output, z-axis gyroscope, high word Output, x-axis accelerometer, low word Output, x-axis accelerometer, high word Output, y-axis accelerometer, low word Output, y-axis accelerometer, high word Output, z-axis accelerometer, low word Output, z-axis accelerometer, high word Output, temperature Output, time stamp Reserved New data counter Output, x-axis delta angle, low word Output, x-axis delta angle, high word Output, y-axis delta angle, low word Output, y-axis delta angle, high word Output, z-axis delta angle, low word Output, z-axis delta angle, high word Output, x-axis delta velocity, low word Output, x-axis delta velocity, high word Output, y-axis delta velocity, low word Output, y-axis delta velocity, high word Output, z-axis delta velocity, low word Output, z-axis delta velocity, high word Reserved Calibration, offset, gyroscope, x-axis, low word Calibration, offset, gyroscope, x-axis, high word Calibration, offset, gyroscope, y-axis, low word Calibration, offset, gyroscope, y-axis, high word Calibration, offset, gyroscope, z-axis, low word Calibration, offset, gyroscope, z-axis, high word Calibration, offset, accelerometer, x-axis, low word Calibration, offset, accelerometer, x-axis, high word Calibration, offset, accelerometer, y-axis, low word Calibration, offset, accelerometer, y-axis, high word Calibration, offset, accelerometer, z-axis, low word Calibration, offset, accelerometer, z-axis, high word Reserved Control, Bartlett window FIR filter Measurement range (model specific) identifier Data Sheet Name MSC_CTRL UP_SCALE DEC_RATE Reserved GLOB_CMD Reserved FIRM_REV FIRM_DM FIRM_Y PROD_ID SERIAL_NUM USER_SCR_1 USER_SCR_2 USER_SCR_3 FLSHCNT_LOW FLSHCNT_HIGH 1 ADIS16505 R/W R/W R/W R/W N/A W N/A R R R R R R/W R/W R/W R R Flash Backup Yes Yes Yes N/A No N/A Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Address 0x60, 0x61 0x62, 0x63 0x64, 0x65 0x66, 0x67 0x68, 0x69 0x6A to 0x6B 0x6C, 0x6D 0x6E, 0x6F 0x70, 0x71 0x72, 0x73 0x74, 0x75 0x76, 0x77 0x78, 0x79 0x7A, 0x7B 0x7C, 0x7D 0x7E, 0x7E Default 0x00C1 0x07D0 0x0000 N/A N/A N/A N/A N/A N/A 0x4079 N/A N/A N/A N/A N/A N/A See Table 103 for the model specific default value for this register. Rev. C | Page 23 of 41 Register Description Control, input/output and other miscellaneous options Control, scale factor for input clock, scaled sync mode Control, decimation filter (output data rate) Reserved Control, global commands Reserved Identification, firmware revision Identification, date code, day and month Identification, date code, year Identification, device number (0x4079 = 16,505 decimal) Identification, serial number User Scratch Register 1 User Scratch Register 2 User Scratch Register 3 Output, flash memory write cycle counter, lower word Output, flash memory write cycle counter, upper word ADIS16505 Data Sheet USER REGISTER DEFINTIONS Bits 2 Addresses 0x02, 0x03 Default 0x0000 Access R Flash Backup No 1 Table 11. DIAG_STAT Bit Assignments Bits [15:11] 10 9 8 7 6 5 4 3 Description Reserved. Accelerometer failure. A 1 indicates failure of the accelerometer at the conclusion of the self test (Register GLOB_CMD, Bit 2, see Table 112). If this error occurs, repeat the same test. If this error persists, replace the ADIS16507. Motion during this test may cause a false failure. Gyroscope 2 failure. A 1 indicates failure of Gyroscope 2 at the conclusion of the self test (Register GLOB_CMD, Bit 2, see Table 112). If this error occurs, repeat the same test. If this error persists, replace the ADIS16507. Motion during this test may cause a false failure. Gyroscope 1 failure. A 1 indicates failure of Gyroscope 1 at the conclusion of the self test (Register GLOB_CMD, Bit 2, see Table 112). If this error occurs, repeat the same test. If this error persists, replace the ADIS16507. Motion during this test may cause a false failure. Clock error. A 1 indicates that the internal data sampling clock (fSM, see Figure 30) does not synchronize with the external clock, which only applies when using scaled sync mode (Register MSC_CTRL, Bits[3:2] = 10, see Table 106). When this error occurs, adjust the frequency of the clock signal on the SYNC pin to operate within the appropriate range. Memory failure. A 1 indicates a failure in the flash memory test (Register GLOB_CMD, Bit 4, see Table 112), which involves a comparison between a cyclic redundancy check (CRC) calculation of the present flash memory and a CRC calculation from the same memory locations at the time of initial programming (during the production process). If this error occurs, repeat the same test. If this error persists, replace the ADIS16505. Sensor failure. A 1 indicates failure of at least one sensor, at the conclusion of the self test (Register GLOB_CMD, Bit 2, see Table 112). If this error occurs, repeat the same test. If this error persists, replace the ADIS16505. Motion during this test may cause a false failure. Standby mode. A 1 indicates that the voltage across VDD and GND is
ADIS16505-2BMLZ 价格&库存

很抱歉,暂时无法提供与“ADIS16505-2BMLZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ADIS16505-2BMLZ
    •  国内价格
    • 1+5690.13053

    库存:1