0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADL5354-EVALZ

ADL5354-EVALZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    EVALBOARDFORADL5354

  • 数据手册
  • 价格&库存
ADL5354-EVALZ 数据手册
2200 MHz to 2700 MHz, Dual-Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun ADL5354 MNGM COMM MNON MNOP MNLE VPOS MNLG NC 35 34 33 32 31 30 29 28 27 LOI2 2 26 VGS2 COMM 3 25 VGS1 VPOS 4 24 VGS0 COMM 5 23 LOSW VPOS 6 22 PWDN COMM 7 21 VPOS DVCT ADL5354 8 20 COMM NC 18 DVLG 17 VPOS 16 DVLE 15 DVON 14 DVOP 13 19 LOI1 COMM 12 DVIN 9 09118-001 MNCT VPOS 10 Cellular base station receivers Transmit observation receivers Radio link downconverters MNIN 1 DVGM 11 APPLICATIONS FUNCTIONAL BLOCK DIAGRAM VPOS RF frequency range of 2200 MHz to 2700 MHz IF frequency range of 30 MHz to 450 MHz Power conversion gain: 8.6 dB SSB noise figure of 10.6 dB Input IP3 of 26.1 dBm Input P1dB of 10.6 dBm Typical LO power of 0 dBm Single-ended, 50 Ω RF and LO input ports High isolation SPDT LO input switch Single-supply operation: 3.3 V to 5 V Exposed paddle, 6 mm × 6 mm, 36-lead LFCSP 1500 V HBM/500 V FICDM ESD performance 36 FEATURES Figure 1. GENERAL DESCRIPTION The ADL5354 uses a highly linear, doubly balanced, passive mixer core along with integrated RF and local oscillator (LO) balancing circuitry to allow single-ended operation. The ADL5354 incorporates the RF baluns, allowing for optimal performance over a 2200 MHz to 2700 MHz RF input frequency range. The balanced passive mixer arrangement provides good LO-to-RF leakage, typically better than −37 dBm, and excellent intermodulation performance. The balanced mixer core also provides extremely high input linearity, allowing the device to be used in demanding cellular applications where in-band blocking signals may otherwise result in the degradation of dynamic performance. A high linearity IF buffer amplifier follows the passive mixer core to yield a typical power conversion gain of 8 dB and can be used with a wide range of output impedances. commensurate with the desired level of performance. For low voltage applications, the ADL5354 is capable of operation at voltages as low as 3.3 V with substantially reduced current. For low voltage operation, an additional logic pin is provided to power down (~300 μA) the circuit when desired. The ADL5354 is fabricated using a BiCMOS high performance IC process. The device is available in a 6 mm × 6 mm, 36-lead LFCSP and operates over a −40°C to +85°C temperature range. An evaluation board is also available. Table 1. Passive Mixers RF Frequency (MHz) 500 to 1700 1200 to 2500 2200 to 2700 Single Mixer ADL5367 ADL5365 Single Mixer and IF Amp ADL5357 ADL5355 ADL5353 Dual Mixer and IF Amp ADL5358 ADL5356 ADL5354 The ADL5354 provides two switched LO paths that can be used in time division duplex (TDD) applications where it is desirable to ping-pong between two local oscillators. LO current can be externally set using a resistor to minimize dc current Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved. ADL5354 TABLE OF CONTENTS Features .............................................................................................. 1 Spur Tables ...................................................................................... 15 Applications....................................................................................... 1 5 V Performance......................................................................... 15 Functional Block Diagram .............................................................. 1 3.3 V Performance...................................................................... 15 General Description ......................................................................... 1 Circuit Description......................................................................... 16 Revision History ............................................................................... 2 RF Subsystem.............................................................................. 16 Specifications..................................................................................... 3 LO Subsystem ............................................................................. 16 5 V Performance........................................................................... 4 Applications Information .............................................................. 18 3.3 V Performance........................................................................ 4 Basic Connections...................................................................... 18 Absolute Maximum Ratings............................................................ 5 IF Port .......................................................................................... 18 ESD Caution.................................................................................. 5 Bias Resistor Selection ............................................................... 18 Pin Configuration and Function Descriptions............................. 6 Mixer VGS Control DAC .......................................................... 18 Typical Performance Characteristics ............................................. 7 Evaluation Board ............................................................................ 20 5 V Performance........................................................................... 7 Outline Dimensions ....................................................................... 22 3.3 V Performance...................................................................... 14 Ordering Guide .......................................................................... 22 REVISION HISTORY 2/11—Revision 0: Initial Version Rev. 0 | Page 2 of 24 ADL5354 SPECIFICATIONS VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted. Table 2. Parameter RF INPUT INTERFACE Return Loss Input Impedance RF Frequency Range OUTPUT INTERFACE Output Impedance IF Frequency Range DC Bias Voltage 1 LO INTERFACE LO Power Return Loss Input Impedance LO Frequency Range POWER-DOWN (PWDN) INTERFACE 2 PWDN Threshold Logic 0 Level Logic 1 Level PWDN Response Time PWDN Input Bias Current 1 2 Test Conditions/Comments Min Tunable to >20 dB over a limited bandwidth Typ Unit 2700 dB Ω MHz 450 5.5 Ω||pF MHz V 20 50 2200 Differential impedance, f = 200 MHz Externally generated Max 230||0.75 30 3.3 −6 5.0 0 13 50 1750 +10 2670 1.0 0.4 1.4 Device enabled, IF output to 90% of its final level Device disabled, supply current < 5 mA Device enabled Device disabled Apply supply voltage from external circuit through choke inductors. PWDN function is intended for use with VS ≤ 3.6 V only. Rev. 0 | Page 3 of 24 160 230 0 70 dBm dB Ω MHz V V V ns ns μA μA ADL5354 5 V PERFORMANCE VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 Ω, unless otherwise noted. Table 3. Parameter DYNAMIC PERFORMANCE Power Conversion Gain Voltage Conversion Gain SSB Noise Figure Input Third-Order Intercept (IIP3) Input Second-Order Intercept (IIP2) Input 1 dB Compression Point (IP1dB) LO-to-IF Leakage LO-to-RF Leakage RF-to-IF Isolation IF/2 Spurious IF/3 Spurious IF Channel-to-Channel Isolation POWER SUPPLY Positive Supply Voltage Quiescent Current Total Quiescent Current Test Conditions/Comments Min Including 4:1 IF port transformer and PCB loss ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential fRF1 = 2534.5 MHz, fRF2 = 2535.5 MHz, fLO = 2332 MHz, each RF tone at −10 dBm fRF1 = 2535 MHz, fRF2 = 2585 MHz, fLO = 2332 MHz, each RF tone at −10 dBm Unfiltered IF output −10 dBm input power −10 dBm input power 4.75 LO supply IF supply VS = 5 V Typ Max Unit 8.6 14.6 10.6 26.1 dB dB dB dBm 50 dBm 10.6 −20.7 −37 −34 −73 −71 52 dBm dBm dBm dBc dBc dBc dB 5 170 180 350 5.25 V mA mA mA 3.3 V PERFORMANCE VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. Table 4. Parameter DYNAMIC PERFORMANCE Power Conversion Gain Voltage Conversion Gain SSB Noise Figure Input Third-Order Intercept (IIP3) Input Second-Order Intercept (IIP2) Input 1 dB Compression Point (IP1dB) POWER INTERFACE Supply Voltage Quiescent Current Power-Down Current Test Conditions/Comments Min Including 4:1 IF port transformer and PCB loss ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential fRF1 = 2534.5 MHz, fRF2 = 2535.5 MHz, fLO = 2332 MHz, each RF tone at −10 dBm fRF1 = 2535 MHz, fRF2 = 2585 MHz, fLO = 2332 MHz, each RF tone at −10 dBm 3.0 Resistor programmable Device disabled Rev. 0 | Page 4 of 24 Typ Max Unit 8 14 9.9 17.5 dB dB dB dBm 49 dBm 7 dBm 3.3 200 300 3.6 V mA μA ADL5354 ABSOLUTE MAXIMUM RATINGS Table 5. Parameter Supply Voltage, VS RF Input Level LO Input Level MNOP, MNON, DVOP, DVON Bias VGS2,VGS1,VGS0, LOSW, PWDN Internal Power Dissipation Thermal Characteristic θJA Maximum Junction Temperature Temperature Range Operating Storage Lead Temperature (Soldering, 60 sec) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rating 5.5 V 20 dBm 13 dBm 6.0 V 5.5 V 2.2 W 22°C/W 150°C ESD CAUTION −40°C to +85°C −65°C to +150°C 260°C Rev. 0 | Page 5 of 24 ADL5354 36 35 34 33 32 31 30 29 28 VPOS MNGM COMM MNON MNOP MNLE VPOS MNLG NC PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 2 3 4 5 6 7 8 9 ADL5354 TOP VIEW (Not to Scale) 27 26 25 24 23 22 21 LOI2 VGS2 VGS1 VGS0 LOSW PWDN VPOS 20 COMM 19 LOI1 NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD MUST BE CONNECTED TO GROUND. 09118-002 DVGM COMM DVOP DVON DVLE VPOS DVLG NC VPOS 10 11 12 13 14 15 16 17 18 MNIN MNCT COMM VPOS COMM VPOS COMM DVCT DVIN Figure 2. Pin Configuration Table 6. Pin Function Descriptions Pin No. 1 2 3, 5, 7, 12, 20, 34 4, 6, 10, 16, 21, 30, 36 8 9 11 13, 14 Mnemonic MNIN MNCT COMM VPOS DVCT DVIN DVGM DVOP, DVON 15 17 18, 28 19 22 DVLE DVLG NC LOI1 PWDN 23 24, 25, 26 LOSW VGS0, VGS1, VGS2 LOI2 MNLG MNLE MNOP, MNON 27 29 31 32, 33 35 MNGM EPAD Description RF Input for Main Channel. Internally matched to 50 Ω. Must be ac-coupled. Center Tap for Main Channel Input Balun. Bypass to ground using low inductance capacitor. Device Common (DC Ground). Positive Supply Voltage. Center Tap for Diversity Channel Input Balun. Bypass to ground using low inductance capacitor. RF Input for Diversity Channel. Internally matched to 50 Ω. Must be ac-coupled. Diversity Amplifier Bias Setting. Connect a 1.3 kΩ resistor to ground for typical operation. Diversity Channel Differential Open-Collector Outputs. DVOP and DVON should be pulled up to VCC using external inductors, see Figure 53 for details. Diversity Channel IF Return. This pin must be grounded. Diversity Channel LO Buffer Bias Setting. Connect a 1 kΩ resistor to ground for typical operation. No Connect. Do not connect to this pin. Local Oscillator Input 1. Internally matched to 50 Ω. Must be ac-coupled. Power Down. Connect this pin to ground for normal operation. Connect pin to 3 V for disable mode when using VPOS ≤ 3.6 V. PWDN pin must be grounded when VPOS > 3.6 V. Local Oscillator Input Selection Switch. Set LOSW high to select LOI1 or set LOSW low to select LOI2. Gate to Source Control Voltages. For typical operation, set VGS0, VGS1, and VGS2 to a low logic level. Local Oscillator Input 2. Internally matched to 50 Ω. Must be ac-coupled. Main Channel LO Buffer Bias Setting. Connect a 1 kΩ resistor to ground for typical operation. Main Channel IF Return. This pin must be grounded. Main Channel Differential Open-Collector Outputs. Pull up MNOP and MNON to VCC by using external inductors, see Figure 53 for details. Main Amplifier Bias Setting. Connect a 1.3 kΩ resistor to ground for typical operation. Exposed Paddle. Exposed pad must be connected to ground. Rev. 0 | Page 6 of 24 ADL5354 TYPICAL PERFORMANCE CHARACTERISTICS 5 V PERFORMANCE VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted. 400 60 390 58 56 TA = –40°C 54 360 TA = +25°C 350 340 TA = +85°C 52 48 330 46 320 44 310 42 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 RF FREQUENCY (GHz) 40 2.20 TA = +25°C 2.25 11 16 2.45 2.50 2.55 2.60 2.65 2.70 2.65 2.70 2.65 2.70 14 TA = –40°C 9 TA = +25°C 8 TA = +85°C 12 10 TA = –40°C 7 8 6 6 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 TA = +85°C 4 2.20 2.25 2.30 2.35 TA = +25°C 2.40 2.45 2.50 2.55 2.60 RF FREQUENCY (GHz) Figure 4. Power Conversion Gain vs. RF Frequency 09118-007 INPUT P1dB (dBm) 10 09118-004 CONVERSION GAIN (dB) 18 RF FREQUENCY (GHz) Figure 7. Input P1dB vs. RF Frequency 14 35 13 30 SSB NOISE FIGURE (dB) TA = –40°C 25 TA = +25°C 20 TA = +85°C 15 10 12 TA = +85°C 11 TA = +25°C 10 TA = –40°C 9 8 7 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 RF FREQUENCY (GHz) 2.65 2.70 09118-005 INPUT IP3 (dBm) 2.40 Figure 6. Input IP2 vs. RF Frequency 12 5 2.20 2.35 RF FREQUENCY (GHz) Figure 3. Supply Current vs. RF Frequency 5 2.20 2.30 TA = +85°C 6 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 RF FREQUENCY (GHz) Figure 8. SSB Noise Figure vs. RF Frequency Figure 5. Input IP3 vs. RF Frequency Rev. 0 | Page 7 of 24 09118-008 300 2.20 TA = –40°C 50 09118-006 INPUT IP2 (dBm) 370 09118-003 SUPPLY CURRENT (mA) 380 ADL5354 VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted. 400 53 390 52 VS = 5.25V 370 51 INPUT IP2 (dBm) SUPPLY CURRENT (mA) 380 360 VS = 5.00V 350 340 330 VS = 4.75V VS = 5.25V 50 VS = 5.00V 49 VS = 4.75V 48 320 0 10 20 30 40 50 60 70 80 TEMPERATURE (°C) 46 –40 –30 –20 –10 09118-009 300 –40 –30 –20 –10 0 10 20 30 40 50 60 70 80 70 80 70 80 TEMPERATURE (°C) Figure 9. Supply Current vs. Temperature 09118-012 47 310 Figure 12. Input IP2 vs. Temperature 9.4 15 14 9.2 INPUT P1dB (dBm) 8.8 8.6 VS = 5.25V 8.4 12 10 VS = 5.00V VS = 4.75V 9 8 8.2 7 VS = 4.75V 8.0 0 10 20 30 40 50 60 70 80 TEMPERATURE (°C) 5 –40 –30 –20 –10 09118-010 7.8 –40 –30 –20 –10 0 10 20 30 40 50 60 TEMPERATURE (°C) Figure 10. Power Conversion Gain vs. Temperature 09118-013 6 VS = 5.00V Figure 13. Input P1dB vs. Temperature 12.0 29 11.5 28 11.0 26 SSB NOISE FIGURE (dB) VS = 5.25V 27 VS = 5.00V 25 VS = 4.75V 24 23 10.5 VS = 5.25V 10.0 VS = 5.00V 9.5 VS = 4.75V 9.0 8.5 8.0 22 7.5 21 –40 –30 –20 –10 0 10 20 30 40 50 TEMPERATURE (°C) 60 70 80 7.0 –40 –30 –20 –10 09118-011 INPUT IP3 (dBm) VS = 5.25V 11 0 10 20 30 40 50 60 TEMPERATURE (°C) Figure 14. SSB Noise Figure vs. Temperature Figure 11. Input IP3 vs. Temperature Rev. 0 | Page 8 of 24 09118-014 CONVERSION GAIN (dB) 13 9.0 ADL5354 VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted. 400 60 390 58 56 INPUT IP2 (dBm) 54 360 350 TA = +25°C 340 TA = +85°C 50 46 320 44 310 42 80 130 180 230 280 330 380 430 IF FREQUENCY (MHz) TA = +85°C 40 30 80 180 230 280 330 380 430 Figure 18. Input IP2 vs. IF Frequency 12 12 11 11 TA = +85°C 10 TA = –40°C INPUT P1dB (dBm) 9 8 TA = +25°C 7 TA = +85°C 10 TA = –40°C TA = +25°C 9 8 6 80 130 180 230 280 330 380 430 IF FREQUENCY (MHz) 6 30 09118-016 4 30 230 280 330 380 430 380 430 14 13 SSB NOISE FIGURE (dB) 35 TA = –40°C 25 TA = +25°C TA = +85°C 15 12 11 10 9 8 80 130 180 230 280 330 IF FREQUENCY (MHz) 380 430 7 30 09118-017 10 30 180 Figure 19. Input P1dB vs. IF Frequency 40 20 130 IF FREQUENCY (MHz) Figure 16. Power Conversion Gain vs. IF Frequency 30 80 09118-019 7 5 80 130 180 230 280 330 IF FREQUENCY (MHz) Figure 17. Input IP3 vs. IF Frequency Figure 20. SSB Noise Figure vs. IF Frequency Rev. 0 | Page 9 of 24 09118-020 CONVERSION GAIN (dB) 130 IF FREQUENCY (MHz) Figure 15. Supply Current vs. IF Frequency INPUT IP3 (dBm) TA = –40°C 48 330 300 30 TA = +25°C 52 09118-018 TA = –40°C 370 09118-015 SUPPLY CURRENT (mA) 380 ADL5354 VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted. 12 12.0 11.6 11 TA = +85°C 10.8 INPUT P1dB (dB) CONVERSION GAIN (dB) 11.2 10 TA = –40°C 9 TA = +25°C 8 TA = +85°C 10.4 10.0 TA = +25°C TA = –40°C 9.6 9.2 7 8.8 6 –4 –2 0 2 4 6 8 10 LO POWER (dBm) 8.0 –6 –4 30 –68 TA = +25°C 24 IF/2 SPURIOUS (dBc) TA = +85°C 22 20 6 8 10 TA = –40°C –70 –72 TA = +85°C –74 –76 TA = +25°C –78 18 –4 –2 0 2 4 6 8 10 LO POWER (dBm) –80 2.20 09118-022 16 –6 4 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 RF FREQUENCY (GHz) Figure 22. Input IP3 vs. LO Power 09118-025 INPUT IP3 (dBm) –66 26 2 Figure 24. Input P1dB vs. LO Power 32 TA = –40°C 0 LO POWER (dBm) Figure 21. Power Conversion Gain vs. LO Power 28 –2 09118-024 8.4 09118-021 5 –6 Figure 25. IF/2 Spurious vs. RF Frequency, RF Power = −10 dBm 58 –60 56 –62 IF/3 SPURIOUS (dBc) 52 TA = –40°C TA = +25°C 50 TA = +85°C 48 46 –64 –66 TA = +85°C –68 –70 44 –4 –2 0 2 4 6 LO POWER (dBm) 8 10 Figure 23. Input IP2 vs. LO Power –74 2.20 2.25 2.30 2.35 TA = –40°C 2.40 2.45 2.50 2.55 2.60 2.65 2.70 RF FREQUENCY (GHz) Figure 26. IF/3 Spurious vs. RF Frequency, RF Power = −10 dBm Rev. 0 | Page 10 of 24 09118-026 40 –6 TA = +25°C –72 42 09118-023 INPUT IP2 (dBm) 54 ADL5354 MEAN = 8.6 SD = 0.28% 80 RESISTANCE (Ω) DISTRIBUTION PERCENTAGE (%) 100 60 40 20 500 10 400 8 6 300 RESISTANCE 200 4 100 2 CAPACITANCE (pF) VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted. 8.5 8.6 8.7 CONVERSION GAIN (dB) 09118-027 8.4 0 30 180 230 280 330 380 430 0 Figure 30. IF Output Impedance (R Parallel, C Equivalent) 0 MEAN = 26.1 SD = 0.5% –3 80 –6 RF RETURN LOSS (dB) DISTRIBUTION PERCENTAGE (%) 130 IF FREQUENCY (MHz) Figure 27. Conversion Gain Distribution 100 80 09118-030 CAPACITANCE 0 8.3 60 40 –9 –12 –15 –18 –21 20 24 25 26 27 28 INPUT IP3 (dBm) –27 2.20 09118-028 0 23 2.25 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.40 2.45 2.50 Figure 31. RF Return Loss, Fixed IF 0 MEAN = 10.6 SD = 0.36% –5 LO RETURN LOSS (dB) 80 60 40 –10 SELECTED –15 UNSELECTED –20 –25 20 0 10.0 10.3 10.6 10.9 INPUT P1dB (dBm) 11.2 –35 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 LO FREQUENCY (GHz) Figure 32. LO Return Loss, Selected and Unselected Figure 29. Input P1dB Distribution Rev. 0 | Page 11 of 24 09118-132 –30 09118-029 DISTRIBUTION PERCENTAGE (%) 2.35 RF FREQUENCY (GHz) Figure 28. Input IP3 Distribution 100 2.30 09118-031 –24 ADL5354 VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted. 60 –30 –32 LO-TO-RF LEAKAGE (dBm) LO SWITCH ISOLATION (dB) 55 TA = –40°C 50 TA = +85°C 45 TA = +25°C 40 TA = –40°C –34 –36 TA = +25°C –38 TA = +85°C –40 –42 –44 35 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 RF FREQUENCY (GHz) –48 2.00 09118-133 0 –31 –5 TA = +85°C 2.20 2.25 2.30 2.35 2.40 2.45 2.50 TA = +25°C –34 –35 TA = –40°C –36 –37 –15 –25 –30 –40 –39 –45 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 RF FREQUENCY (GHz) –50 2.00 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.45 2.50 Figure 37. 2 × LO Leakage vs. LO Frequency –30 –5 –35 –10 –40 3 × LO LEAKAGE (dBm) 0 –15 TA = +25°C –20 TA = +85°C –25 2.05 LO FREQUENCY (GHz) Figure 34 RF-to-IF Isolation vs. RF Frequency TA = –40°C 2 × LO-TO-IF –35 –38 2.25 2 × LO-TO-RF –20 09118-037 2 × LO LEAKAGE (dBm) –10 –33 09118-034 RF-TO-IF ISOLATION (dB) –32 –30 –45 3 × LO-TO-RF –50 –55 3 × LO-TO-IF –60 –65 –35 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 LO FREQUENCY (GHz) 2.45 2.50 09118-035 LO-TO-IF LEAKAGE (dBm) 2.15 Figure 36. LO-to-RF Leakages vs. LO Frequency –30 –40 2.00 2.10 LO FREQUENCY (GHz) Figure 33. LO Switch Isolation vs. RF Frequency –40 2.20 2.05 –70 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 LO FREQUENCY (GHz) Figure 38. 3 × LO Leakage vs. LO Frequency Figure 35. LO-to-IF Leakage vs. LO Frequency Rev. 0 | Page 12 of 24 09118-038 30 2.20 09118-036 –46 ADL5354 18 0.30 9 16 0.25 8 14 7 12 6 10 2.35 2.40 2.45 2.50 2.55 SUPPLY CURRENT (mA) 0 0.6 26 14 23 20 12 17 10 8 6 2.20 INPUT IP3 (dBm) 16 2.25 2.30 2.35 2.40 2.45 2.50 2.55 VGS = 000 VGS = 011 14 VGS = 100 VGS = 110 11 2.60 2.65 2.70 RF FREQUENCY (GHz) 13 29 INPUT IP3 26 SSB NOISE FIGURE 23 12 11 20 10 9 17 CONVERSION GAIN 8 14 7 11 6 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 LO BIAS RESISTOR VALUE (kΩ) 1.6 1.7 8 1.8 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 30 INPUT IP3 15 27 14 24 13 21 18 12 SSB NOISE FIGURE 11 15 12 10 9 9 CONVERSION GAIN 8 6 7 3 6 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 0 1.8 IF BIAS RESISTOR VALUE (kΩ) 62 IF CHANNEL-TO-CHANNEL ISOLATION (dB) 32 INPUT IP3 (dBm) 14 1.0 Figure 43. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs. IF Bias Resistor Value 09118-041 CONVERSION GAIN AND SSB NOISE FIGURE (dB) Figure 40. Input P1dB and Input IP3 vs. RF Frequency for Various VGS Settings 0.9 16 09118-040 INPUT P1dB (dBm) 29 0.8 Figure 42. LO and IF Supply Current vs. IF and LO Bias Resistor Value CONVERSION GAIN AND SSB NOISE FIGURE (dB) 32 0.7 BIAS RESISTOR VALUE (kΩ) Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency for Various VGS Settings 18 0.10 0.05 RF FREQUENCY (GHz) 20 LO BIAS SUPPLY CURRENT 09118-142 2.30 0.15 INPUT IP3 (dBm) 2.25 0.20 09118-042 4 2.20 VGS = 000 8 VGS = 011 VGS = 100 VGS = 110 6 2.60 2.65 2.70 IF BIAS SUPPLY CURRENT Figure 41. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs. LO Bias Resistor Value Rev. 0 | Page 13 of 24 TA = –40°C 60 TA = +25°C 58 56 54 TA = +85°C 52 50 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 RF FREQUENCY (GHz) Figure 44. IF Channel-to-Channel Isolation vs. RF Frequency 09118-043 5 SSB NOISE FIGURE (dB) 10 09118-039 CONVERSION GAIN (dB) VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted. ADL5354 3.3 V PERFORMANCE VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 208 60 TA = +25°C 206 50 TA = –40°C 202 INPUT IP2 (dBm) SUPPLY CURRENT (mA) 204 200 198 TA = +25°C 196 194 TA = +85°C 192 40 TA = +85°C 30 TA = –40°C 20 10 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 RF FREQUENCY (GHz) 0 2.20 09118-044 8 13 6 7 TA = +85°C 3 1 2.45 2.50 2.55 2.60 2.65 2.70 TA = +25°C TA = +85°C 2 0 –2 –4 –6 –1 TA = –40°C –8 –3 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 RF FREQUENCY (GHz) –10 2.20 09118-045 –5 2.20 2.40 4 TA = –40°C INPUT P1dB (dBm) CONVERSION GAIN (dB) 11 TA = +25°C 2.35 Figure 48. Input IP2 vs. RF Frequency at 3.3 V 15 5 2.30 RF FREQUENCY (GHz) Figure 45. Supply Current vs. RF Frequency at 3.3 V 9 2.25 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 RF FREQUENCY (GHz) 09118-048 188 2.20 09118-047 190 Figure 49. Input P1dB vs. RF Frequency at 3.3 V Figure 46. Power Conversion Gain vs. RF Frequency at 3.3 V 25 22 20 20 SSB NOISE FIGURE (dB) 15 TA = +25°C TA = +85°C 10 18 16 14 12 TA = +85°C 10 5 TA = +25°C 0 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 RF FREQUENCY (GHz) 2.65 2.70 Figure 47. Input IP3 vs. RF Frequency at 3.3 V 6 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 RF FREQUENCY (GHz) Figure 50. SSB Noise Figure vs. RF Frequency at 3.3 V Rev. 0 | Page 14 of 24 2.70 09118-049 TA = –40°C 8 09118-046 INPUT IP3 (dBm) TA = –40°C ADL5354 SPUR TABLES All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement system = −100 dBm. 5 V PERFORMANCE VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2500 MHz, fLO = 2297 MHz, LO power = 0 dBm, RF power = −10 dBm, VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 Ω, unless otherwise noted. M 0 0 1 2 3 4 5 6 7 N 8 9 10 11 12 13 14 15 −41.5 −92.6 1 −19.7 0.00 −95.3
ADL5354-EVALZ 价格&库存

很抱歉,暂时无法提供与“ADL5354-EVALZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货