500 MHz to 1700 MHz, Dual-Balanced
Mixer, LO Buffer, IF Amplifier, and RF Balun
ADL5358
The ADL5358 uses a highly linear, doubly balanced, passive
mixer core along with integrated RF and local oscillator (LO)
balancing circuitry to allow single-ended operation. The
ADL5358 incorporates the RF baluns, allowing for optimal
performance over a 500 MHz to 1700 MHz RF input frequency
range. Performance is optimized for RF frequencies from 500 MHz
to 1200 MHz using a high-side LO and RF frequencies from
1200 MHz to 1700 MHz using a low-side LO. The balanced
passive mixer arrangement provides good LO-to-RF leakage,
typically better than −20 dBm, and excellent intermodulation
performance. The balanced mixer core also provides extremely
high input linearity, allowing the device to be used in demanding
cellular applications where in-band blocking signals may otherwise
result in the degradation of dynamic performance. A high linearity
IF buffer amplifier follows the passive mixer core to yield a
typical power conversion gain of 8.3 dB and can be used with
a wide range of output impedances.
NC
MNLG
VPOS
MNLE
MNOP
MNON
COMM
MNGM
MNCT
VGS2
COMM
VGS1
VPOS
VGS0
COMM
LOSW
VPOS
PWDN
COMM
VPOS
ADL5358
DVCT
COMM
NC
DVLG
VPOS
DVLE
DVON
07885-001
LOI1
DVIN
DVOP
GENERAL DESCRIPTION
LOI2
COMM
Cellular base station receivers
Transmit observation receivers
Radio link downconverters
MNIN
DVGM
APPLICATIONS
FUNCTIONAL BLOCK DIAGRAM
VPOS
RF frequency range of 500 MHz to 1700 MHz
IF frequency range of 30 MHz to 450 MHz
Power conversion gain: 8.3 dB
SSB noise figure of 9.9 dB
SSB noise figure with 5 dBm blocker of 23 dB
Input IP3 of 25.2 dBm
Input P1dB of 10.6 dBm
Typical LO drive of 0 dBm
Single-ended, 50 Ω RF and LO input ports
High isolation SPDT LO input switch
Single-supply operation: 3.3 V to 5 V
Exposed paddle, 6 mm × 6 mm, 36-lead LFCSP
VPOS
FEATURES
Figure 1.
The ADL5358 is fabricated using a BiCMOS high performance
IC process. The device is available in a 6 mm × 6 mm, 36-lead
LFCSP and operates over a −40°C to +85°C temperature range.
An evaluation board is also available.
Table 1. Passive Mixers
RF Frequency
(MHz)
500 to 1700
1200 to 2500
Single
Mixer
ADL5367
ADL5365
Single Mixer
and IF Amp
ADL5357
ADL5355
Dual Mixer
and IF Amp
ADL5358
ADL5356
The ADL5358 provides two switched LO paths that can be used
in TDD applications where it is desirable to ping-pong between
two local oscillators. LO current can be externally set using a
resistor to minimize dc current commensurate with the desired
level of performance. For low voltage applications, the ADL5358 is
capable of operation at voltages down to 3.3 V with substantially
reduced current. Under low voltage operation, an additional logic
pin is provided to power down (20 dB over a limited bandwidth
Typ
Unit
1700
dB
Ω
MHz
450
5.5
Ω||pF
MHz
V
20
50
500
Differential impedance, f = 200 MHz
Externally generated
Max
230||0.75
30
3.3
−6
5.0
0
13
50
530
+10
1670
1.0
0.4
1.4
Device enabled, IF output to 90% of its final level
Device disabled, supply current < 5 mA
Device enabled
Device disabled
Apply supply voltage from external circuit through choke inductors.
PWDN function is intended for use with VS ≤ 3.6 V only.
Rev. 0 | Page 3 of 24
160
230
0
70
dBm
dB
Ω
MHz
V
V
V
ns
ns
μA
μA
ADL5358
5 V PERFORMANCE
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 Ω, unless otherwise noted.
Table 3.
Parameter
DYNAMIC PERFORMANCE
Power Conversion Gain
Voltage Conversion Gain
SSB Noise Figure
SSB Noise Figure Under Blocking
Input Third-Order Intercept (IIP3)
Input Second-Order Intercept (IIP2)
Input 1 dB Compression Point (IP1dB)
LO-to-IF Leakage
LO-to-RF Leakage
RF-to-IF Isolation
IF/2 Spurious
IF/3 Spurious
IF Channel-to-Channel Isolation
POWER SUPPLY
Positive Supply Voltage
Quiescent Current
Conditions
Min
Typ
Max
Unit
Including 4:1 IF port transformer and PCB loss
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential
7.6
8.3
14.6
9.9
23
8.6
dB
dB
dB
dB
22
25.2
dBm
57
dBm
10.6
−33
−31
−43
−72
−79
54
dBm
dBm
dBm
dBc
dBc
dBc
dB
5 dBm blocker present ±10 MHz from wanted RF input,
LO source filtered
fRF1 = 899.5 MHz, fRF2 = 900.5 MHz, fLO = 1103 MHz,
each RF tone at −10 dBm
fRF1 = 900 MHz, fRF2 = 950 MHz, fLO = 1103 MHz,
each RF tone at −10 dBm
Unfiltered IF output
−10 dBm input power
−10 dBm input power
4.75
LO supply
IF supply
Total Quiescent Current
5
170
180
350
5.25
V
mA
mA
mA
3.3 V PERFORMANCE
VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.2 kΩ,
R2 = R5 = 400 Ω, VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 Ω, unless otherwise noted.
Table 4.
Parameter
DYNAMIC PERFORMANCE
Power Conversion Gain
Voltage Conversion Gain
SSB Noise Figure
Input Third-Order Intercept (IIP3)
Input Second-Order Intercept (IIP2)
Input 1 dB Compression Point (IP1dB)
POWER INTERFACE
Supply Voltage
Quiescent Current
Total Quiescent Current
Conditions
Min
Including 4:1 IF port transformer and PCB loss
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential
fRF1 = 899.5 MHz, fRF2 = 900.5 MHz, fLO = 1103 MHz,
each RF tone at −10 dBm
fRF1 = 950 MHz, fRF2 = 900 MHz, fLO = 1103 MHz,
each RF tone at −10 dBm
3.0
Resistor programmable
Device disabled
Rev. 0 | Page 4 of 24
Typ
Max
Unit
8.3
14.6
8.9
19.3
dB
dB
dB
dBm
47.2
dBm
6.75
dBm
3.3
200
300
3.6
V
mA
μA
ADL5358
ABSOLUTE MAXIMUM RATINGS
Table 5.
Parameter
Supply Voltage, VS
RF Input Level
LO Input Level
MNOP, MNON, DVOP, DVON Bias
VGS2, VGS1, VGS0, LOSW, PWDN
Internal Power Dissipation
θJA
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)
Rating
5.5 V
20 dBm
13 dBm
6.0 V
5.5 V
2.2 W
22°C/W
150°C
−40°C to +85°C
−65°C to +150°C
260°C
ESD CAUTION
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rev. 0 | Page 5 of 24
ADL5358
36
35
34
33
32
31
30
29
28
VPOS
MNGM
COMM
MNON
MNOP
MNLE
VPOS
MNLG
NC
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
3
4
5
6
7
8
9
ADL5358
TOP VIEW
(Not to Scale)
27
26
25
24
23
22
21
LOI2
VGS2
VGS1
VGS0
LOSW
PWDN
VPOS
20 COMM
19 LOI1
NOTES
1. NC = NO CONNECT.
2. EXPOSED PAD MUST BE CONNECTED TO GROUND.
07885-002
DVGM
COMM
DVOP
DVON
DVLE
VPOS
DVLG
NC
VPOS 10
11
12
13
14
15
16
17
18
MNIN
MNCT
COMM
VPOS
COMM
VPOS
COMM
DVCT
DVIN
Figure 2. Pin Configuration
Table 6. Pin Function Descriptions
Pin No.
1
2
3, 5, 7, 12, 20, 34
4, 6, 10, 16,
21, 30, 36
8
9
11
13, 14
Mnemonic
MNIN
MNCT
COMM
VPOS
Description
RF Input for Main Channel. Internally matched to 50 Ω. This pin must be ac-coupled.
Center Tap for Main Channel Input Balun. Bypass this pin to ground using low inductance capacitor.
Device Common (DC Ground).
Positive Supply Voltage.
DVCT
DVIN
DVGM
DVOP, DVON
15
17
18, 28
19
22
DVLE
DVLG
NC
LOI1
PWDN
23
24, 25, 26
27
29
31
32, 33
LOSW
VGS0, VGS1, VGS2
LOI2
MNLG
MNLE
MNOP, MNON
35
Paddle
MNGM
EPAD
Center Tap for Diversity Channel Input Balun. Bypass to ground using low inductance capacitor.
RF Input for Diversity Channel. Internally matched to 50 Ω. This pin must be ac-coupled.
Diverstiy Amplifier Bias Setting. Connect a 1.3 kΩ resistor to ground for typical operation.
Diversity Channel Differential Open-Collector Outputs. DVOP and DVON should be pulled-up to
VCC using external inductors.
Diversity Channel IF Return. This pin must be grounded.
Diverstiy Channel LO Buffer Bias Setting. Connect a 1 kΩ resistor to ground for typical operation.
No Connect.
Local Oscillator Input 1. Internally matched to 50 Ω. This pin must be ac-coupled.
Connect to Ground for Normal Operation. Connect this pin to 3 V for disable mode when using
VPOS < 3.6 V. PWDN pin must be grounded when VPOS > 3.6 V.
Local Oscillator Input Selection Switch. Set LOSW high to select LOI1 or set LOSW low to select LOI2.
Gate to Source Control Voltages. For typical operation, set VGS0, VGS1, and VGS2 to low logic level.
Local Oscillator Input 2. Internally matched to 50 Ω. This pin must be ac-coupled.
Main Channel LO Buffer Bias Setting. Connect a 1 kΩ resistor to ground for typical operation.
Main Channel IF Return. This pin must be grounded.
Main Channel Differential Open-Collector Outputs. MNOP and MNON should be pulled-up to
VCC using external inductors.
Main Amplifier Bias Setting. Connect a 1.3 kΩ resistor to ground for typical operation.
Exposed pad must be connected to ground.
Rev. 0 | Page 6 of 24
ADL5358
TYPICAL PERFORMANCE CHARACTERISTICS
5 V PERFORMANCE
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
70
400
65
TA = –40°C
TA = –40°C
360
INPUT IP2 (dBm)
TA = +25°C
TA = +85°C
340
320
55
TA = +25°C
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
40
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 6. Input IP2 vs. RF Frequency
Figure 3. Supply Current vs. RF Frequency
12
14
11
13
10
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
TA = +85°C
50
45
07885-003
300
700
60
07885-006
SUPPLY CURRENT (mA)
380
TA = –40°C
9
TA = +25°C
8
TA = +25°C
12
TA = +85°C
11
10
TA = –40°C
7
TA = +85°C
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
8
700
07885-004
5
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
07885-007
9
6
Figure 7. Input P1dB vs. RF Frequency
Figure 4. Power Conversion Gain vs. RF Frequency
14
31
13
TA = –40°C
SSB NOISE FIGURE (dB)
TA = +25°C
25
23
TA = +85°C
21
19
700
TA = +85°C
12
TA = +25°C
11
10
9
TA = –40°C
8
7
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
6
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 8. SSB Noise Figure vs. RF Frequency
Figure 5. Input IP3 vs. RF Frequency
Rev. 0 | Page 7 of 24
07885-008
27
07885-005
INPUT IP3 (dBm)
29
ADL5358
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
62
400
61
VPOS = 5.25V
60
59
INPUT IP2 (dBm)
SUPPLY CURRENT (mA)
380
VPOS = 5.0V
360
VPOS = 4.75V
340
58
VPOS = 5.25V
VPOS = 5.0V
57
56
55
320
VPOS = 4.75V
54
10
20
30
40
50
60
70
80
TEMPERATURE (°C)
52
–40 –30 –20 –10
07885-009
0
30
40
50
60
70
80
70
80
70
80
13
4.75V
5.0V
5.25V
12
INPUT P1dB (dBm)
9.0
8.5
8.0
VPOS = 5.25V
VPOS = 5.0V
11
10
VPOS = 4.75V
7.5
0
10
20
30
40
50
60
70
80
TEMPERATURE (°C)
8
–40 –30 –20 –10
07885-010
7.0
–40 –30 –20 –10
10
20
30
40
50
60
TEMPERATURE (°C)
Figure 13. Input P1dB vs. Temperature
Figure 10. Power Conversion Gain vs. Temperature
29
12.0
28
11.5
27
0
07885-013
9
SSB NOISE FIGURE (dB)
VPOS = 5.25V
26
25
VPOS = 5.0V
24
VPOS = 4.75V
23
22
11.0
VPOS = 5.25V
10.5
10.0
9.5
VPOS = 4.75V
VPOS = 5.0V
9.0
8.5
0
10
20
30
40
50
TEMPERATURE (°C)
60
70
80
8.0
–40 –30 –20 –10
07885-011
21
–40 –30 –20 –10
0
10
20
30
40
50
60
TEMPERATURE (°C)
Figure 11. Input IP3 vs. Temperature
Figure 14. SSB Noise Figure vs. Temperature
Rev. 0 | Page 8 of 24
07885-014
CONVERSION GAIN (dB)
20
Figure 12. Input IP2 vs. Temperature
10.0
INPUT IP3 (dBm)
10
TEMPERATURE (°C)
Figure 9. Supply Current vs. Temperature
9.5
0
07885-012
53
300
–40 –30 –20 –10
ADL5358
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
70
400
65
TA = –40°C
360
INPUT IP2 (dBm)
TA = +25°C
340
60
TA = +25°C
TA = –40°C
55
TA = +85°C
50
TA = +85°C
320
30
80
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
40
07885-015
300
30
80
180
230
280
330
380
430
380
430
380
430
IF FREQUENCY (MHz)
Figure 15. Supply Current vs. IF Frequency
Figure 18. Input IP2 vs. IF Frequency
11
13
TA = –40°C
10
12
TA = +85°C
9
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
130
07885-018
45
8
TA = +25°C
7
TA = +85°C
6
11
10
TA = +25°C
TA = –40°C
9
8
5
30
80
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
7
07885-016
4
30
80
130
180
230
280
330
IF FREQUENCY (MHz)
Figure 16. Power Conversion Gain vs. IF Frequency
07885-019
SUPPLY CURRENT (mA)
380
Figure 19. Input P1dB vs. IF Frequency
30
14
29
13
TA = –40°C
27
TA = +25°C
26
25
24
TA = +85°C
23
22
12
11
10
9
8
20
30
80
130
180
230
280
330
IF FREQUENCY (MHz)
380
430
6
30
80
130
180
230
280
330
IF FREQUENCY (MHz)
Figure 17. Input IP3 vs. IF Frequency
Figure 20. SSB Noise Figure vs. IF Frequency
Rev. 0 | Page 9 of 24
07885-020
7
21
07885-017
INPUT IP3 (dBm)
SSB NOISE FIGURE (dB)
28
ADL5358
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
11.0
12.0
10.5
11.5
TA = +85°C
TA = –40°C
9.5
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
10.0
9.0
8.5
8.0
TA = +25°C
7.5
10.5
TA = +25°C
10.0
TA = –40°C
TA = +85°C
7.0
11.0
9.5
–6
–4
–2
0
2
4
6
8
10
LO POWER (dBm)
9.0
07885-021
6.0
–6
–4
–2
0
2
4
6
8
10
LO POWER (dBm)
07885-024
6.5
Figure 24. Input P1dB vs. LO Power
Figure 21. Power Conversion Gain vs. LO Power
–60
30
29
–65
28
IF/2 SPURIOUS (dBc)
TA = –40°C
26
25
24
TA = +25°C
TA = +85°C
23
–70
–75
TA = +25°C
–80
TA = +85°C
22
–85
21
TA = –40°C
–6
–4
–2
0
2
4
6
8
10
LO POWER (dBm)
–90
700
07885-022
20
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
07885-025
INPUT IP3 (dBm)
27
Figure 25. IF/2 Spurious vs. RF Frequency
Figure 22. Input IP3 vs. LO Power
–65
64
–67
62
–69
TA = –40°C
IF/3 SPURIOUS (dBc)
TA = +25°C
58
56
TA = +85°C
54
–71
TA = +25°C
TA = –40°C
–73
–75
–77
–79
TA = +85°C
–81
52
50
–6
–4
–2
0
2
4
6
LO POWER (dBm)
8
10
–85
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 26. IF/3 Spurious vs. RF Frequency
Figure 23. Input IP2 vs. LO Power
Rev. 0 | Page 10 of 24
07885-026
–83
07885-023
INPUT IP2 (dBm)
60
ADL5358
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.
100
500
12
400
9
300
6
200
3
100
0
60
40
20
7.5
8.0
8.5
9.0
9.5
10.0
CONVERSION GAIN (dB)
0
30
07885-027
0
7.0
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
Figure 27. Conversion Gain Distribution
Figure 30. IF Output Impedance (R Parallel, C Equivalent)
100
10
MEAN = 25.2
STANDARD DEVIATION = 0.71
12
80
14
RF RETURN LOSS (dB)
PERCENTAGE (%)
–3
80
07885-030
RESISTANCE (Ω)
PERCENTAGE (%)
80
CAPACITANCE (pF)
MEAN = 8.47
STANDARD DEVIATION = 0.66%
60
40
16
18
20
22
24
26
20
18
21
24
27
30
33
INPUT IP3 LO (dBm)
30
700
07885-028
15
750
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 28. Input IP3 Distribution
Figure 31. RF Return Loss, Fixed IF
100
8
MEAN = 10.66
STANDARD DEVIATION = 0.96
9
80
LO RETURN LOSS (dB)
10
60
40
SELECTED
11
12
13
UNSELECTED
14
15
20
0
7
8
9
10
11
INPUT P1dB (dBm)
12
13
Figure 29. Input P1dB Distribution
17
900
950
1000 1050 1100 1150 1200 1250 1300 1350 1400
LO FREQUENCY (GHz)
Figure 32. LO Return Loss, Selected and Unselected
Rev. 0 | Page 11 of 24
07885-032
16
07885-029
PERCENTAGE (%)
800
07885-031
28
0
ADL5358
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.
–24
60
55
–26
TA = +25°C
TA = +85°C
LO-TO-RF LEAKAGE (dBm)
LO SWITCH ISOLATION (dB)
65
TA = –40°C
50
–28
TA = –40°C
–30
–32
TA = +25°C
–34
TA = +85°C
45
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
–38
900
07885-033
40
700
950
1000 1050 1100 1150 1200 1250 1300 1350 1400
LO FREQUENCY (MHz)
Figure 33. LO Switch Isolation vs. RF Frequency
07885-036
–36
Figure 36. LO-to-RF Leakage vs. LO Frequency
–20
0
–25
2XLO LEAKAGE (dBm)
RF-TO-IF ISOLATION (dB)
–5
–30
TA = +85°C
–35
TA = +25°C
–40
–45
TA = –40°C
–50
–10
–15
2XLO-TO-RF
–20
–25
–55
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
07885-034
750
–30
900
Figure 34. RF-to-IF Isolation vs. RF Frequency
1000 1050 1100 1150 1200 1250 1300 1350 1400
LO FREQUENCY (MHz)
Figure 37. 2XLO Leakage vs. LO Frequency
–20
0
–10
–25
3XLO LEAKAGE (dBm)
TA = –40°C
–30
–35
TA = +25°C
–40
TA = +85°C
–45
–20
–30
3XLO-TO-RF
–40
–50
–60
950
1000 1050 1100 1150 1200 1250 1300 1350 1400
LO FREQUENCY (MHz)
Figure 35. LO-to-IF Leakage vs. LO Frequency
–70
900
950
1000 1050 1100 1150 1200 1250 1300 1350 1400
LO FREQUENCY (MHz)
Figure 38. 3XLO Leakage vs. LO Frequency
Rev. 0 | Page 12 of 24
07885-038
3XLO-TO-IF
–50
900
07885-035
LO-TO-IF LEAKAGE (dBm)
950
07885-037
2XLO-TO-IF
–60
700
ADL5358
14
30
8
13
25
7
12
6
11
5
10
3
700
VGS = 000
VGS = 011
VGS = 100
VGS = 110
750
800
SSB NOISE FIGURE (dB)
20
15
10
5
9
850
900
950
8
1000 1050 1100 1150 1200
0
–30
RF FREQUENCY (MHz)
45
12
40
11
35
10
30
9
25
8
20
–20
–15
–10
–5
0
5
10
BLOCKER POWER (dBm)
Figure 42. SSB Noise Figure vs. 10 MHz Offset Blocker Level
Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency
for Various VGS Settings
13
–25
07885-042
4
SSB NOISE FIGURE (dB)
9
07885-039
CONVERSION GAIN (dB)
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
300
280
SUPPLY CURRENT (mA)
15
850
900
950
10
1000 1050 1100 1150 1200
14
28
INPUT IP3
12
24
NOISE FIGURE
10
20
8
16
CONVERSION GAIN
6
12
4
8
4
1000 1100 1200 1300 1400 1500 1600
07885-041
900
LO BIAS RESISTOR VALUE (Ω)
Figure 41. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs.
LO Bias Resistor Value
700
800
900
1000 1100 1200 1300 1400 1500 1600
BIAS RESISTOR VALUE (Ω)
Figure 43. LO and IF Supply Current vs. IF and LO Bias Resistor Value
28
18
CONVERSION GAIN AND SSB NOISE FIGURE (dB)
32
INPUT IP3 (dBm)
CONVERSION GAIN AND SSB NOISE FIGURE (dB)
16
800
LO RESISTOR SUPPLY CURRENT
100
600
Figure 40. Input P1dB and Input IP3 vs. RF Frequency for Various VGS Settings
700
160
120
RF FREQUENCY (MHz)
2
600
180
07885-043
800
200
INPUT IP3
16
24
14
20
16
12
NOISE FIGURE
12
10
INPUT IP3 (dBm)
750
220
8
8
CONVERSION GAIN
4
6
4
600
700
800
900
0
1000 1100 1200 1300 1400 1500 1600
IF BIAS RESISTOR VALUE (Ω)
Figure 44. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs.
IF Bias Resistor Value
Rev. 0 | Page 13 of 24
07885-044
6
700
IF RESISTOR SUPPLY CURRENT
240
140
VGS = 000
VGS = 011
VGS = 100
VGS = 110
07885-040
7
INPUT IP3 (dB)
INPUT P1dB (dB)
260
ADL5358
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ,
VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
TA = –40°C
59
TA = +25°C
58
57
TA = +85°C
56
55
54
53
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
07885-045
IF CHANNEL-TO-CHANNEL ISOLATION (dB)
60
Figure 45. IF Channel-to-Channel Isolation vs. RF Frequency
Rev. 0 | Page 14 of 24
ADL5358
3.3 V PERFORMANCE
VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.2 kΩ,
R2 = R5 = 400 Ω, VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted.
220
60
215
55
TA = –40°C
INPUT IP2 (dBm)
210
205
TA = +25°C
200
750
800
850
900
950
45
TA = +85°C
40
35
TA = +85°C
190
700
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
30
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 46. Supply Current vs. RF Frequency at 3.3 V
Figure 49. Input IP2 vs. RF Frequency at 3.3 V
11
10
10
9
TA = –40°C
9
TA = +25°C
7
TA = +85°C
6
TA = +25°C
7
6
TA = –40°C
5
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
4
700
07885-047
5
700
TA = +85°C
8
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 47. Power Conversion Gain vs. RF Frequency at 3.3 V
07885-050
8
INPUT P1dB (dBm)
CONVERSION GAIN (dB)
TA = +25°C
50
07885-049
195
07885-046
SUPPLY CURRENT (mA)
TA = –40°C
Figure 50. Input P1dB vs. RF Frequency at 3.3 V
26
14
13
24
12
20
18
TA = +25°C
TA = +85°C
16
TA = +85°C
11
TA = +25°C
10
9
8
7
TA = –40°C
6
14
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 48. Input IP3 vs. RF Frequency at 3.3 V
4
700
750
800
850
900
950
1000 1050 1100 1150 1200
RF FREQUENCY (MHz)
Figure 51. SSB Noise Figure vs. RF Frequency at 3.3 V
Rev. 0 | Page 15 of 24
07885-051
5
12
700
07885-048
INPUT IP3 (dBm)
SSB NOISE FIGURE (dB)
TA = –40°C
22
ADL5358
SPURIOUS PERFORMANCE
All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured
in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement
system = −100 dBm.
5 V Performance
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ,
R2 = R5 = 1 kΩ, VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 Ω, unless otherwise noted.
M
0
0
1
2
3
4
5
6
N 7
8
9
10
11
12
13
14
−52.4
−74.8