0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADL5358-EVALZ

ADL5358-EVALZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    EVAL BOARD FOR ADL5358

  • 数据手册
  • 价格&库存
ADL5358-EVALZ 数据手册
500 MHz to 1700 MHz, Dual-Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun ADL5358 The ADL5358 uses a highly linear, doubly balanced, passive mixer core along with integrated RF and local oscillator (LO) balancing circuitry to allow single-ended operation. The ADL5358 incorporates the RF baluns, allowing for optimal performance over a 500 MHz to 1700 MHz RF input frequency range. Performance is optimized for RF frequencies from 500 MHz to 1200 MHz using a high-side LO and RF frequencies from 1200 MHz to 1700 MHz using a low-side LO. The balanced passive mixer arrangement provides good LO-to-RF leakage, typically better than −20 dBm, and excellent intermodulation performance. The balanced mixer core also provides extremely high input linearity, allowing the device to be used in demanding cellular applications where in-band blocking signals may otherwise result in the degradation of dynamic performance. A high linearity IF buffer amplifier follows the passive mixer core to yield a typical power conversion gain of 8.3 dB and can be used with a wide range of output impedances. NC MNLG VPOS MNLE MNOP MNON COMM MNGM MNCT VGS2 COMM VGS1 VPOS VGS0 COMM LOSW VPOS PWDN COMM VPOS ADL5358 DVCT COMM NC DVLG VPOS DVLE DVON 07885-001 LOI1 DVIN DVOP GENERAL DESCRIPTION LOI2 COMM Cellular base station receivers Transmit observation receivers Radio link downconverters MNIN DVGM APPLICATIONS FUNCTIONAL BLOCK DIAGRAM VPOS RF frequency range of 500 MHz to 1700 MHz IF frequency range of 30 MHz to 450 MHz Power conversion gain: 8.3 dB SSB noise figure of 9.9 dB SSB noise figure with 5 dBm blocker of 23 dB Input IP3 of 25.2 dBm Input P1dB of 10.6 dBm Typical LO drive of 0 dBm Single-ended, 50 Ω RF and LO input ports High isolation SPDT LO input switch Single-supply operation: 3.3 V to 5 V Exposed paddle, 6 mm × 6 mm, 36-lead LFCSP VPOS FEATURES Figure 1. The ADL5358 is fabricated using a BiCMOS high performance IC process. The device is available in a 6 mm × 6 mm, 36-lead LFCSP and operates over a −40°C to +85°C temperature range. An evaluation board is also available. Table 1. Passive Mixers RF Frequency (MHz) 500 to 1700 1200 to 2500 Single Mixer ADL5367 ADL5365 Single Mixer and IF Amp ADL5357 ADL5355 Dual Mixer and IF Amp ADL5358 ADL5356 The ADL5358 provides two switched LO paths that can be used in TDD applications where it is desirable to ping-pong between two local oscillators. LO current can be externally set using a resistor to minimize dc current commensurate with the desired level of performance. For low voltage applications, the ADL5358 is capable of operation at voltages down to 3.3 V with substantially reduced current. Under low voltage operation, an additional logic pin is provided to power down (20 dB over a limited bandwidth Typ Unit 1700 dB Ω MHz 450 5.5 Ω||pF MHz V 20 50 500 Differential impedance, f = 200 MHz Externally generated Max 230||0.75 30 3.3 −6 5.0 0 13 50 530 +10 1670 1.0 0.4 1.4 Device enabled, IF output to 90% of its final level Device disabled, supply current < 5 mA Device enabled Device disabled Apply supply voltage from external circuit through choke inductors. PWDN function is intended for use with VS ≤ 3.6 V only. Rev. 0 | Page 3 of 24 160 230 0 70 dBm dB Ω MHz V V V ns ns μA μA ADL5358 5 V PERFORMANCE VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 Ω, unless otherwise noted. Table 3. Parameter DYNAMIC PERFORMANCE Power Conversion Gain Voltage Conversion Gain SSB Noise Figure SSB Noise Figure Under Blocking Input Third-Order Intercept (IIP3) Input Second-Order Intercept (IIP2) Input 1 dB Compression Point (IP1dB) LO-to-IF Leakage LO-to-RF Leakage RF-to-IF Isolation IF/2 Spurious IF/3 Spurious IF Channel-to-Channel Isolation POWER SUPPLY Positive Supply Voltage Quiescent Current Conditions Min Typ Max Unit Including 4:1 IF port transformer and PCB loss ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential 7.6 8.3 14.6 9.9 23 8.6 dB dB dB dB 22 25.2 dBm 57 dBm 10.6 −33 −31 −43 −72 −79 54 dBm dBm dBm dBc dBc dBc dB 5 dBm blocker present ±10 MHz from wanted RF input, LO source filtered fRF1 = 899.5 MHz, fRF2 = 900.5 MHz, fLO = 1103 MHz, each RF tone at −10 dBm fRF1 = 900 MHz, fRF2 = 950 MHz, fLO = 1103 MHz, each RF tone at −10 dBm Unfiltered IF output −10 dBm input power −10 dBm input power 4.75 LO supply IF supply Total Quiescent Current 5 170 180 350 5.25 V mA mA mA 3.3 V PERFORMANCE VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.2 kΩ, R2 = R5 = 400 Ω, VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 Ω, unless otherwise noted. Table 4. Parameter DYNAMIC PERFORMANCE Power Conversion Gain Voltage Conversion Gain SSB Noise Figure Input Third-Order Intercept (IIP3) Input Second-Order Intercept (IIP2) Input 1 dB Compression Point (IP1dB) POWER INTERFACE Supply Voltage Quiescent Current Total Quiescent Current Conditions Min Including 4:1 IF port transformer and PCB loss ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential fRF1 = 899.5 MHz, fRF2 = 900.5 MHz, fLO = 1103 MHz, each RF tone at −10 dBm fRF1 = 950 MHz, fRF2 = 900 MHz, fLO = 1103 MHz, each RF tone at −10 dBm 3.0 Resistor programmable Device disabled Rev. 0 | Page 4 of 24 Typ Max Unit 8.3 14.6 8.9 19.3 dB dB dB dBm 47.2 dBm 6.75 dBm 3.3 200 300 3.6 V mA μA ADL5358 ABSOLUTE MAXIMUM RATINGS Table 5. Parameter Supply Voltage, VS RF Input Level LO Input Level MNOP, MNON, DVOP, DVON Bias VGS2, VGS1, VGS0, LOSW, PWDN Internal Power Dissipation θJA Maximum Junction Temperature Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 60 sec) Rating 5.5 V 20 dBm 13 dBm 6.0 V 5.5 V 2.2 W 22°C/W 150°C −40°C to +85°C −65°C to +150°C 260°C ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. 0 | Page 5 of 24 ADL5358 36 35 34 33 32 31 30 29 28 VPOS MNGM COMM MNON MNOP MNLE VPOS MNLG NC PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 2 3 4 5 6 7 8 9 ADL5358 TOP VIEW (Not to Scale) 27 26 25 24 23 22 21 LOI2 VGS2 VGS1 VGS0 LOSW PWDN VPOS 20 COMM 19 LOI1 NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD MUST BE CONNECTED TO GROUND. 07885-002 DVGM COMM DVOP DVON DVLE VPOS DVLG NC VPOS 10 11 12 13 14 15 16 17 18 MNIN MNCT COMM VPOS COMM VPOS COMM DVCT DVIN Figure 2. Pin Configuration Table 6. Pin Function Descriptions Pin No. 1 2 3, 5, 7, 12, 20, 34 4, 6, 10, 16, 21, 30, 36 8 9 11 13, 14 Mnemonic MNIN MNCT COMM VPOS Description RF Input for Main Channel. Internally matched to 50 Ω. This pin must be ac-coupled. Center Tap for Main Channel Input Balun. Bypass this pin to ground using low inductance capacitor. Device Common (DC Ground). Positive Supply Voltage. DVCT DVIN DVGM DVOP, DVON 15 17 18, 28 19 22 DVLE DVLG NC LOI1 PWDN 23 24, 25, 26 27 29 31 32, 33 LOSW VGS0, VGS1, VGS2 LOI2 MNLG MNLE MNOP, MNON 35 Paddle MNGM EPAD Center Tap for Diversity Channel Input Balun. Bypass to ground using low inductance capacitor. RF Input for Diversity Channel. Internally matched to 50 Ω. This pin must be ac-coupled. Diverstiy Amplifier Bias Setting. Connect a 1.3 kΩ resistor to ground for typical operation. Diversity Channel Differential Open-Collector Outputs. DVOP and DVON should be pulled-up to VCC using external inductors. Diversity Channel IF Return. This pin must be grounded. Diverstiy Channel LO Buffer Bias Setting. Connect a 1 kΩ resistor to ground for typical operation. No Connect. Local Oscillator Input 1. Internally matched to 50 Ω. This pin must be ac-coupled. Connect to Ground for Normal Operation. Connect this pin to 3 V for disable mode when using VPOS < 3.6 V. PWDN pin must be grounded when VPOS > 3.6 V. Local Oscillator Input Selection Switch. Set LOSW high to select LOI1 or set LOSW low to select LOI2. Gate to Source Control Voltages. For typical operation, set VGS0, VGS1, and VGS2 to low logic level. Local Oscillator Input 2. Internally matched to 50 Ω. This pin must be ac-coupled. Main Channel LO Buffer Bias Setting. Connect a 1 kΩ resistor to ground for typical operation. Main Channel IF Return. This pin must be grounded. Main Channel Differential Open-Collector Outputs. MNOP and MNON should be pulled-up to VCC using external inductors. Main Amplifier Bias Setting. Connect a 1.3 kΩ resistor to ground for typical operation. Exposed pad must be connected to ground. Rev. 0 | Page 6 of 24 ADL5358 TYPICAL PERFORMANCE CHARACTERISTICS 5 V PERFORMANCE VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted. 70 400 65 TA = –40°C TA = –40°C 360 INPUT IP2 (dBm) TA = +25°C TA = +85°C 340 320 55 TA = +25°C 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 40 700 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 6. Input IP2 vs. RF Frequency Figure 3. Supply Current vs. RF Frequency 12 14 11 13 10 INPUT P1dB (dBm) CONVERSION GAIN (dB) TA = +85°C 50 45 07885-003 300 700 60 07885-006 SUPPLY CURRENT (mA) 380 TA = –40°C 9 TA = +25°C 8 TA = +25°C 12 TA = +85°C 11 10 TA = –40°C 7 TA = +85°C 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 8 700 07885-004 5 700 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 07885-007 9 6 Figure 7. Input P1dB vs. RF Frequency Figure 4. Power Conversion Gain vs. RF Frequency 14 31 13 TA = –40°C SSB NOISE FIGURE (dB) TA = +25°C 25 23 TA = +85°C 21 19 700 TA = +85°C 12 TA = +25°C 11 10 9 TA = –40°C 8 7 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 6 700 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 8. SSB Noise Figure vs. RF Frequency Figure 5. Input IP3 vs. RF Frequency Rev. 0 | Page 7 of 24 07885-008 27 07885-005 INPUT IP3 (dBm) 29 ADL5358 VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted. 62 400 61 VPOS = 5.25V 60 59 INPUT IP2 (dBm) SUPPLY CURRENT (mA) 380 VPOS = 5.0V 360 VPOS = 4.75V 340 58 VPOS = 5.25V VPOS = 5.0V 57 56 55 320 VPOS = 4.75V 54 10 20 30 40 50 60 70 80 TEMPERATURE (°C) 52 –40 –30 –20 –10 07885-009 0 30 40 50 60 70 80 70 80 70 80 13 4.75V 5.0V 5.25V 12 INPUT P1dB (dBm) 9.0 8.5 8.0 VPOS = 5.25V VPOS = 5.0V 11 10 VPOS = 4.75V 7.5 0 10 20 30 40 50 60 70 80 TEMPERATURE (°C) 8 –40 –30 –20 –10 07885-010 7.0 –40 –30 –20 –10 10 20 30 40 50 60 TEMPERATURE (°C) Figure 13. Input P1dB vs. Temperature Figure 10. Power Conversion Gain vs. Temperature 29 12.0 28 11.5 27 0 07885-013 9 SSB NOISE FIGURE (dB) VPOS = 5.25V 26 25 VPOS = 5.0V 24 VPOS = 4.75V 23 22 11.0 VPOS = 5.25V 10.5 10.0 9.5 VPOS = 4.75V VPOS = 5.0V 9.0 8.5 0 10 20 30 40 50 TEMPERATURE (°C) 60 70 80 8.0 –40 –30 –20 –10 07885-011 21 –40 –30 –20 –10 0 10 20 30 40 50 60 TEMPERATURE (°C) Figure 11. Input IP3 vs. Temperature Figure 14. SSB Noise Figure vs. Temperature Rev. 0 | Page 8 of 24 07885-014 CONVERSION GAIN (dB) 20 Figure 12. Input IP2 vs. Temperature 10.0 INPUT IP3 (dBm) 10 TEMPERATURE (°C) Figure 9. Supply Current vs. Temperature 9.5 0 07885-012 53 300 –40 –30 –20 –10 ADL5358 VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted. 70 400 65 TA = –40°C 360 INPUT IP2 (dBm) TA = +25°C 340 60 TA = +25°C TA = –40°C 55 TA = +85°C 50 TA = +85°C 320 30 80 130 180 230 280 330 380 430 IF FREQUENCY (MHz) 40 07885-015 300 30 80 180 230 280 330 380 430 380 430 380 430 IF FREQUENCY (MHz) Figure 15. Supply Current vs. IF Frequency Figure 18. Input IP2 vs. IF Frequency 11 13 TA = –40°C 10 12 TA = +85°C 9 INPUT P1dB (dBm) CONVERSION GAIN (dB) 130 07885-018 45 8 TA = +25°C 7 TA = +85°C 6 11 10 TA = +25°C TA = –40°C 9 8 5 30 80 130 180 230 280 330 380 430 IF FREQUENCY (MHz) 7 07885-016 4 30 80 130 180 230 280 330 IF FREQUENCY (MHz) Figure 16. Power Conversion Gain vs. IF Frequency 07885-019 SUPPLY CURRENT (mA) 380 Figure 19. Input P1dB vs. IF Frequency 30 14 29 13 TA = –40°C 27 TA = +25°C 26 25 24 TA = +85°C 23 22 12 11 10 9 8 20 30 80 130 180 230 280 330 IF FREQUENCY (MHz) 380 430 6 30 80 130 180 230 280 330 IF FREQUENCY (MHz) Figure 17. Input IP3 vs. IF Frequency Figure 20. SSB Noise Figure vs. IF Frequency Rev. 0 | Page 9 of 24 07885-020 7 21 07885-017 INPUT IP3 (dBm) SSB NOISE FIGURE (dB) 28 ADL5358 VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted. 11.0 12.0 10.5 11.5 TA = +85°C TA = –40°C 9.5 INPUT P1dB (dBm) CONVERSION GAIN (dB) 10.0 9.0 8.5 8.0 TA = +25°C 7.5 10.5 TA = +25°C 10.0 TA = –40°C TA = +85°C 7.0 11.0 9.5 –6 –4 –2 0 2 4 6 8 10 LO POWER (dBm) 9.0 07885-021 6.0 –6 –4 –2 0 2 4 6 8 10 LO POWER (dBm) 07885-024 6.5 Figure 24. Input P1dB vs. LO Power Figure 21. Power Conversion Gain vs. LO Power –60 30 29 –65 28 IF/2 SPURIOUS (dBc) TA = –40°C 26 25 24 TA = +25°C TA = +85°C 23 –70 –75 TA = +25°C –80 TA = +85°C 22 –85 21 TA = –40°C –6 –4 –2 0 2 4 6 8 10 LO POWER (dBm) –90 700 07885-022 20 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 07885-025 INPUT IP3 (dBm) 27 Figure 25. IF/2 Spurious vs. RF Frequency Figure 22. Input IP3 vs. LO Power –65 64 –67 62 –69 TA = –40°C IF/3 SPURIOUS (dBc) TA = +25°C 58 56 TA = +85°C 54 –71 TA = +25°C TA = –40°C –73 –75 –77 –79 TA = +85°C –81 52 50 –6 –4 –2 0 2 4 6 LO POWER (dBm) 8 10 –85 700 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 26. IF/3 Spurious vs. RF Frequency Figure 23. Input IP2 vs. LO Power Rev. 0 | Page 10 of 24 07885-026 –83 07885-023 INPUT IP2 (dBm) 60 ADL5358 VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted. 100 500 12 400 9 300 6 200 3 100 0 60 40 20 7.5 8.0 8.5 9.0 9.5 10.0 CONVERSION GAIN (dB) 0 30 07885-027 0 7.0 130 180 230 280 330 380 430 IF FREQUENCY (MHz) Figure 27. Conversion Gain Distribution Figure 30. IF Output Impedance (R Parallel, C Equivalent) 100 10 MEAN = 25.2 STANDARD DEVIATION = 0.71 12 80 14 RF RETURN LOSS (dB) PERCENTAGE (%) –3 80 07885-030 RESISTANCE (Ω) PERCENTAGE (%) 80 CAPACITANCE (pF) MEAN = 8.47 STANDARD DEVIATION = 0.66% 60 40 16 18 20 22 24 26 20 18 21 24 27 30 33 INPUT IP3 LO (dBm) 30 700 07885-028 15 750 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 28. Input IP3 Distribution Figure 31. RF Return Loss, Fixed IF 100 8 MEAN = 10.66 STANDARD DEVIATION = 0.96 9 80 LO RETURN LOSS (dB) 10 60 40 SELECTED 11 12 13 UNSELECTED 14 15 20 0 7 8 9 10 11 INPUT P1dB (dBm) 12 13 Figure 29. Input P1dB Distribution 17 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 LO FREQUENCY (GHz) Figure 32. LO Return Loss, Selected and Unselected Rev. 0 | Page 11 of 24 07885-032 16 07885-029 PERCENTAGE (%) 800 07885-031 28 0 ADL5358 VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, ZO = 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted. –24 60 55 –26 TA = +25°C TA = +85°C LO-TO-RF LEAKAGE (dBm) LO SWITCH ISOLATION (dB) 65 TA = –40°C 50 –28 TA = –40°C –30 –32 TA = +25°C –34 TA = +85°C 45 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) –38 900 07885-033 40 700 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 LO FREQUENCY (MHz) Figure 33. LO Switch Isolation vs. RF Frequency 07885-036 –36 Figure 36. LO-to-RF Leakage vs. LO Frequency –20 0 –25 2XLO LEAKAGE (dBm) RF-TO-IF ISOLATION (dB) –5 –30 TA = +85°C –35 TA = +25°C –40 –45 TA = –40°C –50 –10 –15 2XLO-TO-RF –20 –25 –55 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 07885-034 750 –30 900 Figure 34. RF-to-IF Isolation vs. RF Frequency 1000 1050 1100 1150 1200 1250 1300 1350 1400 LO FREQUENCY (MHz) Figure 37. 2XLO Leakage vs. LO Frequency –20 0 –10 –25 3XLO LEAKAGE (dBm) TA = –40°C –30 –35 TA = +25°C –40 TA = +85°C –45 –20 –30 3XLO-TO-RF –40 –50 –60 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 LO FREQUENCY (MHz) Figure 35. LO-to-IF Leakage vs. LO Frequency –70 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 LO FREQUENCY (MHz) Figure 38. 3XLO Leakage vs. LO Frequency Rev. 0 | Page 12 of 24 07885-038 3XLO-TO-IF –50 900 07885-035 LO-TO-IF LEAKAGE (dBm) 950 07885-037 2XLO-TO-IF –60 700 ADL5358 14 30 8 13 25 7 12 6 11 5 10 3 700 VGS = 000 VGS = 011 VGS = 100 VGS = 110 750 800 SSB NOISE FIGURE (dB) 20 15 10 5 9 850 900 950 8 1000 1050 1100 1150 1200 0 –30 RF FREQUENCY (MHz) 45 12 40 11 35 10 30 9 25 8 20 –20 –15 –10 –5 0 5 10 BLOCKER POWER (dBm) Figure 42. SSB Noise Figure vs. 10 MHz Offset Blocker Level Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency for Various VGS Settings 13 –25 07885-042 4 SSB NOISE FIGURE (dB) 9 07885-039 CONVERSION GAIN (dB) VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted. 300 280 SUPPLY CURRENT (mA) 15 850 900 950 10 1000 1050 1100 1150 1200 14 28 INPUT IP3 12 24 NOISE FIGURE 10 20 8 16 CONVERSION GAIN 6 12 4 8 4 1000 1100 1200 1300 1400 1500 1600 07885-041 900 LO BIAS RESISTOR VALUE (Ω) Figure 41. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs. LO Bias Resistor Value 700 800 900 1000 1100 1200 1300 1400 1500 1600 BIAS RESISTOR VALUE (Ω) Figure 43. LO and IF Supply Current vs. IF and LO Bias Resistor Value 28 18 CONVERSION GAIN AND SSB NOISE FIGURE (dB) 32 INPUT IP3 (dBm) CONVERSION GAIN AND SSB NOISE FIGURE (dB) 16 800 LO RESISTOR SUPPLY CURRENT 100 600 Figure 40. Input P1dB and Input IP3 vs. RF Frequency for Various VGS Settings 700 160 120 RF FREQUENCY (MHz) 2 600 180 07885-043 800 200 INPUT IP3 16 24 14 20 16 12 NOISE FIGURE 12 10 INPUT IP3 (dBm) 750 220 8 8 CONVERSION GAIN 4 6 4 600 700 800 900 0 1000 1100 1200 1300 1400 1500 1600 IF BIAS RESISTOR VALUE (Ω) Figure 44. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs. IF Bias Resistor Value Rev. 0 | Page 13 of 24 07885-044 6 700 IF RESISTOR SUPPLY CURRENT 240 140 VGS = 000 VGS = 011 VGS = 100 VGS = 110 07885-040 7 INPUT IP3 (dB) INPUT P1dB (dB) 260 ADL5358 VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted. TA = –40°C 59 TA = +25°C 58 57 TA = +85°C 56 55 54 53 700 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 07885-045 IF CHANNEL-TO-CHANNEL ISOLATION (dB) 60 Figure 45. IF Channel-to-Channel Isolation vs. RF Frequency Rev. 0 | Page 14 of 24 ADL5358 3.3 V PERFORMANCE VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.2 kΩ, R2 = R5 = 400 Ω, VGS0 = VGS1 = VGS2 = 0 V, ZO = 50 Ω, unless otherwise noted. 220 60 215 55 TA = –40°C INPUT IP2 (dBm) 210 205 TA = +25°C 200 750 800 850 900 950 45 TA = +85°C 40 35 TA = +85°C 190 700 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 30 700 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 46. Supply Current vs. RF Frequency at 3.3 V Figure 49. Input IP2 vs. RF Frequency at 3.3 V 11 10 10 9 TA = –40°C 9 TA = +25°C 7 TA = +85°C 6 TA = +25°C 7 6 TA = –40°C 5 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 4 700 07885-047 5 700 TA = +85°C 8 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 47. Power Conversion Gain vs. RF Frequency at 3.3 V 07885-050 8 INPUT P1dB (dBm) CONVERSION GAIN (dB) TA = +25°C 50 07885-049 195 07885-046 SUPPLY CURRENT (mA) TA = –40°C Figure 50. Input P1dB vs. RF Frequency at 3.3 V 26 14 13 24 12 20 18 TA = +25°C TA = +85°C 16 TA = +85°C 11 TA = +25°C 10 9 8 7 TA = –40°C 6 14 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 48. Input IP3 vs. RF Frequency at 3.3 V 4 700 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 51. SSB Noise Figure vs. RF Frequency at 3.3 V Rev. 0 | Page 15 of 24 07885-051 5 12 700 07885-048 INPUT IP3 (dBm) SSB NOISE FIGURE (dB) TA = –40°C 22 ADL5358 SPURIOUS PERFORMANCE All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement system = −100 dBm. 5 V Performance VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, VGS0 = VGS1 = VGS2 = 0 V, and ZO = 50 Ω, unless otherwise noted. M 0 0 1 2 3 4 5 6 N 7 8 9 10 11 12 13 14 −52.4 −74.8
ADL5358-EVALZ 价格&库存

很抱歉,暂时无法提供与“ADL5358-EVALZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货