1200 MHz to 2500 MHz Balanced Mixer, LO Buffer and RF Balun ADL5365
FEATURES
RF frequency range of 1200 MHz to 2500 MHz IF frequency range of dc to 450 MHz Power conversion loss: 7.3 dB SSB noise figure of 8.3 dB SSB noise figure with 5 dBm blocker of 18.5 dB Input IP3 of 36 dBm Typical LO drive of 0 dBm Single-ended, 50 Ω RF and LO input ports High isolation SPDT LO input switch Single-supply operation: 3.3 V to 5 V Exposed paddle 5 mm × 5 mm, 20-lead LFCSP 1500 V HBM/500 V FICDM ESD performance
FUNCTIONAL BLOCK DIAGRAM
VCMI
20
IFOP
19
IFON
18
PWDN
17
COMM
16
ADL5365
VPMX 1
15
LOI2
RFIN 2
14
VPSW
RFCT 3 BIAS GENERATOR COMM 4
13
VGS1
12
VGS0
APPLICATIONS
Cellular base station receivers Transmit observation receivers Radio link downconverters
COMM 5
6 7 8 9 10
08082-001
11
LOI1
VLO3 NC = NO CONNECT
LGM3
VLO2
LOSW
NC
GENERAL DESCRIPTION
The ADL5365 uses a highly linear, doubly balanced passive mixer core along with integrated RF and LO balancing circuitry to allow for single-ended operation. The ADL5365 incorporates an RF balun, allowing for optimal performance over a 1200 MHz to 2500 MHz RF input frequency range using high-side LO injection for RF frequencies from 1700 MHz to 2500 MHz and low-side injection for frequencies from 1200 MHz to 1700 MHz. The balanced passive mixer arrangement provides good LO-toRF leakage, typically better than −30 dBm, and excellent intermodulation performance. The balanced mixer core also provides extremely high input linearity, allowing the device to be used in demanding cellular applications where in-band blocking signals may otherwise result in the degradation of dynamic performance.
Figure 1.
The ADL5365 provides two switched LO paths that can be used in TDD applications where it is desirable to rapidly switch between two local oscillators. LO current can be externally set using a resistor to minimize dc current commensurate with the desired level of performance. For low voltage applications, the ADL5365 is capable of operation at voltages down to 3.3 V with substantially reduced current. Under low voltage operation, an additional logic pin is provided to power down (20 dB over a limited bandwidth 1500 Differential impedance, f = 200 MHz Externally generated dc 3.3 −6 36||2 5.0 0 17 50 450 5.5 +10 Min Typ 16 50 2700 Max Unit dB Ω MHz Ω||pF MHz V dBm dB Ω MHz V V V ns ns μA μA
1230 1.0
2470
0.4 1.4 Device enabled, IF output to 90% of its final level Device disabled, supply current < 5 mA Device enabled Device disabled 160 220 0.0 70
1 2
Apply the supply voltage from the external circuit through the choke inductors. PWDN function is intended for use with VS ≤ 3.6 V only.
Rev. 0 | Page 3 of 24
ADL5365
5 V PERFORMANCE
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. Table 3.
Parameter DYNAMIC PERFORMANCE Power Conversion Loss Voltage Conversion Loss SSB Noise Figure SSB Noise Figure Under Blocking Input Third-Order Intercept (IIP3) Input Second-Order Intercept (IIP2) Input 1 dB Compression Point (IP1dB) 1 LO-to-IF Leakage LO-to-RF Leakage RF-to-IF Isolation IF/2 Spurious IF/3 Spurious POWER SUPPLY Positive Supply Voltage Quiescent Current
1
Test Conditions\Comments Including 1:1 IF port transformer and PCB loss ZSOURCE = 50 Ω, differential ZLOAD = 50 Ω differential 5 dBm blocker present ±10 MHz from wanted RF input, LO source filtered fRF1 = 1899.5 MHz, fRF2 = 1900.5 MHz, fLO = 1697MHz, each RF tone at 0 dBm fRF1 = 1950 MHz, fRF2 = 1900 MHz, fLO = 1697 MHz, each RF tone at 0 dBm Exceeding 20 dBm RF power results in damage to the device Unfiltered IF output
Min 6.5
Typ 7.3 8.3 18.5
Max 8.4
Unit dB dB dB dB dBm dBm dBm dBm dBm dBc dBc dBc
27
36 67 25 −18 −33 −50 −65 −71
0 dBm input power 0 dBm input power 4.5 Resistor programmable
5 95
5.5
V mA
Exceeding 20 dBm RF power results in damage to the device.
3.3 V PERFORMANCE
VS = 3.3 V, IS = 56 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. Table 4.
Parameter DYNAMIC PERFORMANCE Power Conversion Loss Voltage Conversion Loss SSB Noise Figure Input Third-Order Intercept (IIP3) Input Second-Order Intercept (IIP2) POWER INTERFACE Supply Voltage Quiescent Current Power-Down Current Test Conditions/Comments Including 1:1 IF port transformer and PCB loss ZSOURCE = 50 Ω, differential ZLOAD = 50 Ω differential fRF1 = 1899.5 MHz, fRF2 = 1900.5 MHz, fLO = 1697 MHz, each RF tone at 0 dBm fRF1 = 1950 MHz, fRF2 = 1900 MHz, fLO = 1697 MHz, each RF tone at 0 dBm 3.0 Resistor programmable Device disabled Min Typ 7.4 7.1 8.4 32 58 Max Unit dB dB dB dBm dBm
3.3 56 150
3.6
V mA μA
Rev. 0 | Page 4 of 24
ADL5365 ABSOLUTE MAXIMUM RATINGS
Table 5.
Parameter Supply Voltage, VS RF Input Level LO Input Level IFOP, IFON Bias Voltage VGS0, VGS1, LOSW, PWDN Internal Power Dissipation θJA Maximum Junction Temperature Operating Temperature Range Storage Temperature Range Lead Temperature Range (Soldering, 60 sec) Rating 5.5 V 20 dBm 13 dBm 6.0 V 5.5 V 1.2 W 25°C/W 150°C −40°C to +85°C −65°C to +150°C 260°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
Rev. 0 | Page 5 of 24
ADL5365 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
VCMI IFOP IFON PWDN COMM
VPMX RFIN RFCT COMM COMM
1 2 3 4 5
20 19 18 17 16
PIN 1 INDICATOR
ADL5365
TOP VIEW (Not to Scale)
15 LOI2 14 VPSW 13 VGS1 12 VGS0 11 LOI1
NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD. MUST BE SOLDERED TO GROUND.
VLO3 6 LGM3 7 VLO2 8 LOSW 9 NC 10
Figure 2. Pin Configuration
Table 6. Pin Function Descriptions
Pin No. 1 2 3 4, 5, 16 6, 8 7 9 10 11, 15 12, 13 14 17 18, 19 20 Mnemonic VPMX RFIN RFCT COMM VLO3, VLO2 LGM3 LOSW NC LOI1, LOI2 VGS0, VGS1 VPSW PWDN IFON, IFOP VCMI EPAD (EP) Description Positive Supply Voltage. RF Input. Must be ac-coupled. RF Balun Center Tap (AC Ground). Device Common (DC Ground). Positive Supply Voltages for LO Amplifier. LO Amplifier Bias Control. LO Switch. LOI1 selected for 0 V, or LOI2 selected for 3 V. No Connect. LO Inputs. These pins must be ac-coupled. Mixer Gate Bias Controls. 3 V logic. Ground these pins for nominal setting. Positive Supply Voltage for LO Switch. Power-Down. Connect this pin to ground for normal operation or connect this pin to 3.0 V for disable mode. Differential IF Outputs. No Connect. This pin can be grounded. Exposed pad must be soldered to ground.
Rev. 0 | Page 6 of 24
08082-002
ADL5365 TYPICAL PERFORMANCE CHARACTERISTICS
5 V PERFORMANCE
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
110 100 TA = –40°C 105
SUPPLY CURRENT (mA)
90
TA = +25°C
TA = +85°C 95
TA = +25°C
INPUT IP2 (dBm)
100
80
70
TA = –40°C 90
60 TA = +85°C
85
50
08082-005
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
Figure 3. Supply Current vs. RF Frequency
10 10.0 9.5
Figure 6. Input IP2 vs. RF Frequency
TA = +85°C
9
CONVERSION LOSS (dB)
9.0
SSB NOISE FIGURE (dB)
8.5 8.0 7.5 7.0 6.5 6.0 5.5
TA = +25°C
8
TA = +85°C
TA = –40°C
7
TA = –40°C
TA = +25°C
6
RF FREQUENCY (MHz)
08082-014
RF FREQUENCY (MHz)
Figure 4. Power Conversion Loss vs. RF Frequency
40 38 TA = –40°C 36
INPUT IP3 (dBm)
Figure 7. SSB Noise Figure vs. RF Frequency
34 TA = +85°C 32 30 28
TA = +25°C
RF FREQUENCY (MHz)
Figure 5. Input IP3 vs. RF Frequency
08082-011
26 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
Rev. 0 | Page 7 of 24
08082-021
5 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
5.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
08082-008
80 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
40 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
ADL5365
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
110 74 72 70
INPUT IP2 (dBm)
TA = +85°C
TA = +25°C
105
SUPPLY CURRENT (mA)
100 TA = +85°C 95 TA = –40°C TA = +25°C
TA = –40°C 68 66 64
90
85
62 60 –40
08082-016
08082-015
80 –40
–20
0
20
40
60
80
–20
0
20
40
60
80
TEMPERATURE (°C)
TEMPERATURE (°C)
Figure 8. Supply Current vs. Temperature
10.0 9.5 9.0 TA = –40°C TA = +25°C TA = +85°C
Figure 11. Input IP2 vs. Temperature
10.0 9.5 9.0
CONVERSION LOSS (dB)
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 –40 –20 0 20 40 60 80
SSB NOISE FIGURE (dB)
VPOS = 5.25V
8.5
VPOS = 5.0V
8.0 7.5
VPOS = 4.75V
7.0 6.5 6.5 5.5
08082-022
TEMPERATURE (°C)
08082-018
5.0 –40
–20
0
20
40
60
80
TEMPERATURE (°C)
Figure 9. Power Conversion Loss vs. Temperature
40 38 36
Figure 12. SSB Noise Figure vs. Temperature
TA = +85°C TA = –40°C
TA = +25°C
INPUT IP3 (dBm)
34 32 30 28 26 –40
–20
0
20
40
60
80
TEMPERATURE (°C)
Figure 10. Input IP3 vs. Temperature
08082-017
Rev. 0 | Page 8 of 24
ADL5365
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
110 75
105
70
TA = +25°C
SUPPLY CURRENT (mA)
TA = –40°C 95 TA = +85°C 90
TA = +25°C
INPUT IP2 (dBm)
100
65
60
TA = –40°C
TA = +85°C
55 85
08082-003
80
130
180
230
280
330
380
430
80
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
Figure 13. Supply Current vs. IF Frequency
10.0 9.5 9.0
Figure 16. Input IP2 vs. IF Frequency
10.0 9.5 9.0 SSB NOISE FIGURE (dB) 8.5 8.0 7.5 7.0 6.5 6.0 5.5
08082-012
CONVERSION LOSS (dB)
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 30 TA = +85°C TA = +25°C TA = –40°C
80
130
180
230
280
330
380
430
80
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
Figure 14. Power Conversion Loss vs. IF Frequency
40 38 36 TA = +25°C
Figure 17. SSB Noise Figure vs. IF Frequency
INPUT IP3 (dBm)
34 32 30 28 26 30
TA = +85°C
TA = –40°C
80
130
180
230
280
330
380
430
IF FREQUENCY (MHz)
Figure 15. Input IP3 vs. IF Frequency
08082-009
Rev. 0 | Page 9 of 24
08082-020
5.0 30
08082-006
80 30
50 30
ADL5365
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
10.0 9.5 –40 –45 –50
CONVERSION LOSS (dB)
9.0 8.5 8.0 7.5 7.0 –80 6.5 6.0 –6 –85
08082-013 08082-027 08082-033
IF/2 SPURIOUS (dBc)
–55 –60 –65 –70 –75 TA = –40°C TA = +25°C TA = +85°C
TA = +85°C TA = +25°C TA = –40°C
–4
–2
0
2
4
6
8
10
–90 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 RF FREQUENCY (MHz)
2200
LO POWER (dBm)
Figure 18. Power Conversion Loss vs. LO Power
40 38 36 TA = –40°C –40 –45 –50
Figure 21. IF/2 Spurious vs. RF Frequency
TA = +25°C
IF/3 SPURIOUS (dBc)
TA = +85°C
–55 –60 TA = +25°C –65 –70 TA = –40°C –75 –80 TA = +85°C
INPUT IP3 (dBm)
34 32 30 28
–85
08082-010
26 –6
–4
–2
0
2
4
6
8
10
–90 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
LO POWER (dBm)
Figure 19. Input IP3 vs. LO Power
75 TA = –40°C 70 TA = +25°C TA = +85°C 65
Figure 22. IF/3 Spurious vs. RF Frequency
INPUT IP2 (dBm)
60
55
–4
–2
0
2
4
6
8
10
LO POWER (dBm)
Figure 20. Input IP2 vs. LO Power
08082-007
50 –6
Rev. 0 | Page 10 of 24
ADL5365
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
100
36.5 36.0
3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 80 130 180 230 280 330 380 430 IF FREQUENCY (MHz)
08082-044 08082-030 08082-058
80
35.5 35.0
PERCENTAGE (%)
60
RESISTANCE (Ω)
34.5 34.0 33.5 33.0 32.5 32.0
40
20
31.5
MEAN: 7.33 STANDARD DEVIATION:0.232
08082-059
31.0
7.8
0 6.8
7.0
7.2
7.4
7.6
30.5 30
CONVERSION LOSS (dB)
Figure 23. Conversion Loss Distribution
100
Figure 26. IF Output Impedance (R Parallel, C Equivalent)
0
80
5
RF RETURN LOSS (dB)
PERCENTAGE (%)
60
10
40
15
20 MEAN: 36.11 STANDARD DEVIATION: 0.146 34 36 INPUT IP3 (dBm) 38 40
08082-060
20
0 32
25 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
RF FREQUENCY (MHz)
Figure 24. Input IP3 Distribution
100 90 80
Figure 27. RF Port Return Loss, Fixed IF
0 5
LO RETURN LOSS (dB)
PERCENTAGE (%)
70 60 50 40 30 20
10 15 SELECTED
20 UNSELECTED 25 30
10 0 7.9
8.0 8.1 8.2
MEAN = 8.29 STANDARD DEVIATION = 0.30 8.3 8.4 8.5 8.6 8.7
08082-061
35 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 LO FREQUENCY (MHz)
NOISE FIGURE (dB)
Figure 25. SSB Noise Figure Distribution
Figure 28. LO Return Loss, Selected and Unselected
Rev. 0 | Page 11 of 24
CAPACITANCE (pF)
ADL5365
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
70 –20 –22 65
LO SWITCH ISOLATION (dB) LO-TO-RF LEAKAGE (dBm)
–24 –26 –28 –30 –32 –34 –36 –38
08082-034
60 TA = –40°C 55
TA = –40°C
50
TA = +25°C TA = +85°C
TA = +25°C
45
TA = +85°C
RF FREQUENCY (MHz)
LO FREQUENCY (MHz)
Figure 29. LO Switch Isolation vs. RF Frequency
–40 –42 –44
RF-TO-IF ISOLATION (dBc)
0 –5
Figure 32. LO-to-RF Leakage vs. LO Frequency
TA = +85°C
2LO LEAKAGE (dBm)
–46 –48 –50 –52 –54 –56 –58
TA = +25°C
–10 –15 –20 –25 –30 –35 –40 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
LO FREQUENCY (MHz) 2LO TO RF
TA = –40°C
2LO TO IF
08082-032
RF FREQUENCY (MHz)
Figure 30. RF-to-IF Isolation vs. RF Frequency
0 –5
LO-TO-IF LEAKAGE (dBm)
–20 –25 –30
Figure 33. 2LO Leakage vs. LO Frequency
–10
3LO LEAKAGE (dBm)
–35 –40 –45 –50 –55 –60 –65
–15 –20 –25 –30 –35
TA = –40°C TA = +25°C TA = +85°C
3LO TO RF
3LO TO IF
08082-028
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
Figure 31. LO-to-IF Leakage vs. LO Frequency
Figure 34. 3LO Leakage vs. LO Frequency
Rev. 0 | Page 12 of 24
08082-026
–40 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
–70 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
08082-025
–60 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
08082-029
40 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
–40 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
ADL5365
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
10 9 8
CONVERSION LOSS (dB)
VGS = 0, VGS = 0, VGS = 1, VGS = 1,
0 1 0 1
15 14 GAIN 13
SSB NOISE FIGURE (dB)
25
20
SSB NOISE FIGURE (dB)
08082-043
7 6 5 4 3 2 1 NOISE FIGURE
12 11 10 9 8 7 6
15
10
5
–25
–20
–15
–10
–5
0
5
10
RF FREQUENCY (MHz)
BLOCKER POWER (dBm)
Figure 35. Power Conversion Loss and SSB Noise Figure vs. RF Frequency
40 38 36
INPUT IP3 (dBm)
Figure 38. SSB Noise Figure vs.10 MHz Offset Blocker Power
130
VGS = 0, VGS = 0, VGS = 1, VGS = 1,
0 1 0 1
120
SUPPLY CURRENT (mA)
110 100
34 32 30 28 26 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
90 80 70
08082-042
800
1000
1200
1400
1600
1800
BIAS RESISTOR VALUE (Ω)
Figure 36. Input IP3 vs. RF Frequency
CONVERSION LOSS (dB) AND SSB NOISE FIGURE (dB)
Figure 39. Supply Current vs. Bias Resistor Value
10.5 10.0 9.5 9.0 8.5
NOISE FIGURE INPUT IP3
40 38 36 34 32 30 28 26
800 1000 1200 1400 1600 1800 BIAS RESISTOR VALUE (Ω)
INPUT IP3 (dBm)
8.0 7.5 7.0 600
CONVERSION LOSS
Figure 37. Power Conversion Loss, SSB Noise Figure, and Input IP3 vs. IF Bias Resistor Value
Rev. 0 | Page 13 of 24
08082-041
08082-040
60 600
08082-019
5 0 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
0 –30
ADL5365
3.3 V PERFORMANCE
VS = 3.3 V, IS = 56 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
60 59 70 58 75
SUPPLY CURRENT (mA)
57 56 55 54 53 52 TA = –40°C
TA = +25°C
65
INPUT IP2 (dBm)
TA = +85°C 60 55 50 45 TA = –40°C TA = +25°C
TA = +85°C
51
08082-039 08082-036 08082-038
50 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
40 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
Figure 40. Supply Current vs. RF Frequency at 3.3 V
10.0 9.5 9.0 10.0 9.5 9.0
Figure 43. Input IP2 vs. RF Frequency at 3.3 V
TA = +85°C TA = +25°C
CONVERSION LOSS (dB)
8.0 TA = +85°C 7.5 7.0 6.5 6.0 5.5
08082-035
NOISE FIGURE (dB)
8.5
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz) TA = –40°C
TA = +25°C
TA = –40°C
5.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
Figure 41. Power Conversion Loss vs. RF Frequency at 3.3 V
35 33 31 TA = –40°C
Figure 44. SSB Noise Figure vs. RF Frequency at 3.3 V
INPUT IP3 (dBm)
TA = +85°C 29 27
25 23 TA = +25°C
RF FREQUENCY (MHz)
Figure 42. Input IP3 vs. RF Frequency at 3.3 V
08082-037
21 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
Rev. 0 | Page 14 of 24
ADL5365
UPCONVERSION
TA = 25°C, fIF = 153 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
9.0 9.0
8.5
8.5
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
8.0
TA = +85°C
TA = +25°C
8.0
7.5 TA = –40°C 7.0
7.5 TA = +85°C 7.0 TA = –40°C TA = +25°C
6.5
08082-048
6.5
6.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
6.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz)
Figure 45. Power Conversion Loss vs. RF Frequency, VS = 5 V, Upconversion
35 33 31 TA = –40°C
Figure 47. Power Conversion Loss vs. RF Frequency at 3.3 V, Upconversion
35 33
31
INPUT IP3 (dBm)
29 27
TA = +85°C
INPUT IP3 (dBm)
TA = +25°C
29
TA = –40°C
27 TA = +85°C 25 TA = +25°C
25
23
08082-046
23
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
Figure 46. Input IP3 vs. RF Frequency, VS = 5 V, Upconversion
Figure 48. Input IP3 vs. RF Frequency at 3.3 V, Upconversion
Rev. 0 | Page 15 of 24
08082-045
21 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
21 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200
08082-047
ADL5365
SPURIOUS PERFORMANCE
(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board. Mixer spurious products are measured in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement system = −100 dBm.
5 V Performance
VS = 5 V, IS = 95 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
0 0 1 −42.2 2 −75.8 3