0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADL5367-EVALZ

ADL5367-EVALZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    EVAL BOARD FOR ADL5367

  • 数据手册
  • 价格&库存
ADL5367-EVALZ 数据手册
500 MHz to 1700 MHz Balanced Mixer, LO Buffer and RF Balun ADL5367 Data Sheet FEATURES FUNCTIONAL BLOCK DIAGRAM RF frequency range of 500 MHz to 1700 MHz IF frequency range of 30 MHz to 450 MHz Power conversion loss: 7.7 dB SSB noise figure of 8.3 dB SSB noise figure with 5 dBm blocker of 21 dB Input IP3 of 34 dBm Typical LO drive of 0 dBm Single-ended, 50 Ω RF and LO input ports High isolation SPDT LO input switch Single-supply operation: 3.3 V to 5 V Exposed paddle 5 mm × 5 mm, 20-lead LFCSP 1500 V HBM/500 V FICDM ESD performance VCMI IFOP IFON PWDN COMM 20 19 18 17 16 ADL5367 VPMX 1 15 LOI2 RFIN 2 14 VPSW RFCT 3 13 VGS1 COMM 4 12 VGS0 COMM 5 11 LOI1 BIAS GENERATOR Cellular base station receivers Transmit observation receivers Radio link downconverters GENERAL DESCRIPTION 6 7 8 9 10 VLO3 LGM3 VLO2 LOSW NC NC = NO CONNECT The ADL5367 uses a highly linear, doubly balanced passive mixer core along with integrated RF and LO balancing circuitry to allow for single-ended operation. The ADL5367 incorporates an RF balun, allowing optimal performance over a 500 MHz to 1700 MHz RF input frequency range. Performance is optimized for RF frequencies from 500 MHz to 1200 MHz using a high-side LO and for RF frequencies from 900 MHz to 1700 MHz using a low-side LO. The balanced passive mixer arrangement provides good LO to RF leakage, typically better than −35 dBm, and excellent intermodulation performance. The balanced mixer core also provides extremely high input linearity, allowing the device to be used in demanding cellular applications where inband blocking signals may otherwise result in the degradation of dynamic performance. A high linearity IF buffer amplifier follows the passive mixer core to yield a typical power conversion loss of 7.7 dB and can be used with a wide range of output impedances. Figure 1. The ADL5367 provides two switched LO paths that can be used in TDD applications where it is desirable to rapidly switch between two local oscillators. LO current can be externally set using a resistor to minimize dc current commensurate with the desired level of performance. For low voltage applications, the ADL5367 is capable of operation at voltages down to 3.3 V with substantially reduced current. Under low voltage operation, an additional logic pin is provided to power down (20 dB over a limited bandwidth Typ Unit 1700 dB Ω MHz 450 5.5 Ω||pF MHz V 14 50 500 Differential impedance, f = 200 MHz Externally generated Max 34||1.9 30 3.3 −6 5.0 0 12.6 50 730 +10 1670 1.0 0.4 1.4 Device enabled, IF output to 90% of the final level Device disabled, supply current < 5 mA Device enabled Device disabled Apply the supply voltage from the external circuit through the choke inductors. PWDN function is intended for use with VS ≤ 3.6 V only. Rev. B | Page 3 of 24 160 220 0.0 70 dBm dB Ω MHz V V V ns ns μA μA ADL5367 Data Sheet 5 V PERFORMANCE VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. Table 3. Parameter DYNAMIC PERFORMANCE Power Conversion Loss Voltage Conversion Loss SSB Noise Figure SSB Noise Figure Under Blocking Input Third-Order Intercept (IIP3) Input Second-Order Intercept (IIP2) Input 1 dB Compression Point (IP1dB)1 LO to IF Leakage LO to RF Leakage RF to IF Isolation IF/2 Spurious IF/3 Spurious POWER SUPPLY Positive Supply Voltage Total Quiescent Current 1 Test Conditions/Comments Min Typ Max Unit Including 1:1 IF port transformer and printed circuit board (PCB) loss ZSOURCE = 50 Ω, differential ZLOAD = 50 Ω differential 6.5 7.7 1.4 8.3 21 8.5 dB dB dB dB 28 34 dBm 80 dBm 25 −15 −40 −47 −75 −72 dBm dBm dBm dBc dBc dBc 5 dBm blocker present ±10 MHz from wanted RF input, LO source filtered fRF1 = 899.5 MHz, fRF2 = 900.5 MHz, fLO = 1103 MHz, each RF tone at 0 dBm fRF1 = 950 MHz, fRF2 = 900 MHz, fLO = 1103 MHz, each RF tone at 0 dBm Exceeding 20 dBm RF power results in damage to the device Unfiltered IF output 0 dBm input power 0 dBm input power 4.5 5 97 VS = 5 V 5.5 V mA Exceeding 20 dBm RF power results in damage to the device. 3.3 V PERFORMANCE VS = 3.3 V, IS = 56 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. Table 4. Parameter DYNAMIC PERFORMANCE Power Conversion Loss Voltage Conversion Loss SSB Noise Figure Input Third-Order Intercept (IIP3) Input Second-Order Intercept (IIP2) POWER INTERFACE Supply Voltage Quiescent Current Power-Down Current Test Conditions/Comments Min Including 4:1 IF port transformer and PCB loss ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential fRF1 = 1949.5 MHz, fRF2 = 1950.5 MHz, fLO = 1750 MHz, each RF tone at −10 dBm fRF1 = 1950 MHz, fRF2 = 1900 MHz, fLO = 1750 MHz, each RF tone at −10 dBm 3.0 Resistor programmable Device disabled Rev. B | Page 4 of 24 Typ Max Unit 7.3 1 8.1 28.5 dB dB dB dBm 75 dBm 3.3 56 150 3.6 V mA μA Data Sheet ADL5367 ABSOLUTE MAXIMUM RATINGS Junction to Board Thermal Impedance Table 5. Parameter Supply Voltage, VS RF Input Level LO Input Level IFOP, IFON Bias Voltage VGS0, VGS1, LOSW, PWDN Internal Power Dissipation Maximum Junction Temperature Operating Temperature Range Storage Temperature Range Lead Temperature Range (Soldering, 60 sec) Rating 5.5 V 20 dBm 13 dBm 6.0 V 5.5 V 1.2 W 150°C −40°C to +85°C −65°C to +150°C 260°C Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. THERMAL RESISTANCE θJA is thermal resistance, junction to ambient (°C/W), and θJB is thermal impedance, junction to board (°C/W). The junction to board thermal impedance (θJB) is the thermal impedance from the die to or near the component lead of the ADL5367. For the ADL5367, θJB is determined experimentally to 14.74°C/W with the device mounted on a 4-layer circuit board with two layers as ground planes in a configuration similar to the ADL5367-EVALZ evaluation board. Board size and complexity (number of layers) affect θJB; more layers tend to reduce the thermal impedance slightly. If the board temperature is known, use the junction to board thermal impedance to calculate die temperature (also known as junction temperature) to ensure it does not exceed the specified limit of 150°C. For example if the board temperature is 85°C, the die temperature is given by the equation Tj = TB + (PDISS × θJB) where Tj is the junction temperature. TB is the board temperature measured at or near the component lead. PDISS is the power dissipated from the device. The typical worst case power dissipation for the ADL5367 is 605 mW (5.5 V × 110 mA). Therefore Tj is Tj = 85°C + (0.605 W × 14.74°C/W) = 93.91°C ESD CAUTION Table 6. Thermal Resistance Package Type 20-Lead LFCSP 1 θJA1 25 θJB1 14.74 Unit °C/W See the JEDEC standard, JESD51-2, for information on optimizing thermal impedance (PCB with 3 × 3 vias). Rev. B | Page 5 of 24 ADL5367 Data Sheet 20 19 18 17 16 VCMI IFOP IFON PWDN COMM PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 2 3 4 5 ADL5367 TOP VIEW (Not to Scale) 15 14 13 12 11 LOI2 VPSW VGS1 VGS0 LOI1 NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD. MUST BE SOLDERED TO GROUND. 08083-002 VLO3 6 LGM3 7 VLO2 8 LOSW 9 NC 10 VPMX RFIN RFCT COMM COMM Figure 2. Pin Configuration Table 7. Pin Function Descriptions Pin No. 1 2 3 4, 5, 16 6, 8 7 9 10 11, 15 12, 13 14 17 18, 19 20 Mnemonic VPMX RFIN RFCT COMM VLO3, VLO2 LGM3 LOSW NC LOI1, LOI2 VGS0, VGS1 VPSW PWDN IFON, IFOP VCMI EPAD (EP) Description Positive Supply Voltage for IF Amplifier. RF Input. This pin must be ac-coupled. RF Balun Center Tap (AC Ground). Device Common (DC Ground). Positive Supply Voltages for LO Amplifier. LO Amplifier Bias Control. LO Switch. LOI1 selected for 0 V, or LOI2 selected for 3 V. No Connect. LO Inputs. This pin must be ac-coupled. Mixer Gate Bias Controls. 3 V logic. Ground these pins for nominal setting. Positive Supply Voltage for LO Switch. Power Down. Connect this pin to ground for normal operation or connect this pin to 3.0 V for disable mode. Differential IF Outputs. No Connect. This pin can be grounded. Exposed pad must be soldered to ground. Rev. B | Page 6 of 24 Data Sheet ADL5367 TYPICAL PERFORMANCE CHARACTERISTICS 5 V PERFORMANCE VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 110 100 105 90 TA = +25°C 95 TA = +85°C 90 70 TA = +85°C 60 TA = +25°C 50 85 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 40 700 08083-017 80 700 80 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 08083-023 100 INPUT IP2 (dBm) SUPPLY CURRENT (mA) TA = –40°C TA = –40°C Figure 6. Input IP2 vs. RF Frequency Figure 3. Supply Current vs. RF Frequency 12 10.0 9.5 11 8.5 TA = +25°C SSB NOISE FIGURE (dB) CONVERSION LOSS (dB) 9.0 TA = +85°C 8.0 7.5 7.0 TA = –40°C 6.5 10 TA = +85ºC 9 TA = +25ºC 8 TA = –40ºC 7 6.0 6 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 4. Power Conversion Loss vs. RF Frequency 38 TA = +25°C 34 32 TA = –40°C TA = +85°C 28 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 08083-028 INPUT IP3 (dBm) 36 26 700 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 7. SSB Noise Figure vs. RF Frequency 40 30 5 700 Figure 5. Input IP3 vs. RF Frequency Rev. B | Page 7 of 24 08083-011 5.0 700 08083-035 5.5 ADL5367 Data Sheet VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 110 86 84 VPOS = 5.25V 82 VPOS = 5.25V 100 INPUT IP2 (dBm) SUPPLY CURRENT (mA) 105 VPOS = 5V 95 90 VPOS = 4.75V 80 78 VPOS = 5V VPOS = 4.75V 76 74 85 –20 0 20 40 60 80 TEMPERATURE (°C) 70 –40 08083-019 80 –40 0 –20 20 80 60 40 TEMPERATURE (°C) Figure 8. Supply Current vs. Temperature 08083-025 72 Figure 11. Input IP2 vs. Temperature 12 10.0 VPOS = 4.75V VPOS = 5V VPOS = 5.25V 9.5 11 SSB NOISE FIGURE (dB) CONVERSION LOSS (dB) 9.0 8.5 8.0 7.5 7.0 6.5 10 VPOS = 5.25V 9 VPOS = 5V 8 VPOS = 4.75V 7 6.0 –20 0 20 60 40 80 TEMPERATURE (°C) 5 –40 08083-038 5.0 –40 38 VPOS = 5.25V VPOS = 5V VPOS = 4.75V 30 28 –20 0 20 40 TEMPERATURE (°C) 60 80 08083-030 INPUT IP3 (dBm) 34 26 –40 20 40 60 Figure 12. SSB Noise Figure vs. Temperature 40 32 0 TEMPERATURE (ºC) Figure 9. Power Conversion Loss vs. Temperature 36 –20 Figure 10. Input IP3 vs. Temperature Rev. B | Page 8 of 24 80 08083-012 6 5.5 Data Sheet ADL5367 VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 110 85 TA = +25°C 80 TA = –40°C 75 100 INPUT IP2 (dBm) TA = +25°C 95 TA = +85°C 90 70 65 TA = +85°C 60 85 55 80 130 180 230 280 330 380 430 IF FREQUENCY (MHz) 50 30 08083-016 80 30 TA = –40°C 80 130 180 230 280 330 380 430 380 430 IF FREQUENCY (MHz) Figure 13. Supply Current vs. IF Frequency 08083-021 SUPPLY CURRENT (mA) 105 Figure 16. Input IP2 vs. IF Frequency 10.0 12 9.5 11 SSB NOISE FIGURE (dB) CONVERSION LOSS (dB) 9.0 TA = +85°C 8.5 TA = +25°C 8.0 7.5 TA = –40°C 7.0 6.5 10 9 8 7 6.0 6 80 130 180 230 280 330 380 430 IF FREQUENCY (MHz) 5 30 08083-033 5.0 30 38 TA = –40°C 34 TA = +25°C 32 30 TA = +85°C 130 180 230 280 330 IF FREQUENCY (MHz) 380 430 08083-026 INPUT IP3 (dBm) 36 80 180 230 280 330 Figure 17. SSB Noise Figure vs. IF Frequency 40 26 30 130 IF FREQUENCY (MHz) Figure 14. Power Conversion Loss vs. IF Frequency 28 80 Figure 15. Input IP3 vs. IF Frequency Rev. B | Page 9 of 24 08083-010 5.5 ADL5367 Data Sheet VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 10.0 –40 9.5 TA = +85°C TA = +25°C 8.0 7.5 –70 TA = –40°C –80 TA = –40°C 7.0 TA = +85°C –2 0 2 4 6 8 10 –100 700 08083-034 –4 LO POWER (dBm) 750 850 900 950 1000 1050 1100 1150 1200 Figure 21. IF/2 Spurious vs. RF Frequency 40 –40 –45 38 TA = –40°C –50 TA = +25°C IF/3 SPURIOUS (dBc) INPUT IP3 (dBm) 800 RF FREQUENCY (MHz) Figure 18. Power Conversion Loss vs. LO Power 36 TA = +25°C –90 6.5 6.0 –6 –60 08083-020 8.5 IF/2 SPURIOUS (dBc) CONVERSION LOSS (dB) –50 9.0 34 32 TA = +85°C 30 –55 –60 TA = +85°C –65 TA = –40°C –70 –75 TA = +25°C 28 –2 0 2 4 6 8 10 LO POWER (dBm) Figure 19. Input IP3 vs. LO Power TA = +25°C TA = –40°C 75 TA = +85°C 70 65 60 55 –4 –2 0 2 4 6 LO POWER (dBm) 8 10 08083-022 INPUT IP2 (dBm) 80 50 –6 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 22. IF/3 Spurious vs. RF Frequency 90 85 –85 700 Figure 20. Input IP2 vs. LO Power Rev. B | Page 10 of 24 08083-040 –4 08083-027 26 –6 –80 Data Sheet ADL5367 RESISTANCE (Ω) PERCENT (%) 80 60 40 20 MEAN: 7.7 STANDARD DEVIATION: 0.18 7.6 7.8 CONVERSION LOSS (dB) 7.4 8.0 8.2 3.6 3.4 35.5 3.2 35.0 3.0 34.5 2.8 34.0 2.6 33.5 2.4 33.0 2.2 32.5 2.0 32.0 1.8 31.5 1.6 31.0 1.4 30.5 30 08083-068 0 7.2 36.5 36.0 1.2 80 180 230 280 330 380 430 IF FREQUENCY (MHz) Figure 26. IF Port Return Loss Figure 23. Conversion Loss Distribution 100 0 80 5 RF RETURN LOSS (dB) PERCENT (%) 130 08083-069 100 CAPACITANCE (pF) VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 60 40 20 10 15 20 33 35 INPUT IP3 (dBm) 37 39 25 700 750 2 80 4 LO RETURN LOSS (dB) 90 70 60 50 40 30 8.4 8.6 1000 1050 1100 1150 1200 8 10 12 SELECTED 14 UNSELECTED 18 MEAN: 8.3 STANDARD DEVIATION: 0.05 8.2 950 6 16 20 8.8 NOISE FIGURE (dB) 9.0 08083-063 PERCENTAGE (%) 0 8.0 900 Figure 27. RF Port Return Loss, Fixed IF 100 0 7.8 850 RF FREQUENCY (MHz) Figure 24. Input IP3 Distribution 10 800 Figure 25. SSB Noise Figure Distribution 20 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 LO FREQUENCY (MHz) Figure 28. LO Return Loss, Selected and Unselected Rev. B | Page 11 of 24 08083-007 31 08083-067 0 08083-013 MEAN: 34.67 STANDARD DEVIATION: 0.19 ADL5367 Data Sheet 70 –20 65 –25 LO-TO-RF LEAKAGE (dBm) LO SWITCH ISOLATION (dB) VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. TA = +25°C 60 TA = –40°C 55 TA = +85°C 50 –30 –35 TA = +85°C TA = –40°C –40 –45 45 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) –50 900 08083-059 750 Figure 32. LO to RF Leakage vs. LO Frequency –40 0 TA = +85°C –5 –10 TA = +25°C 2LO LEAKAGE (dBm) –46 –48 –50 –52 TA = –40°C –54 –15 –25 –30 –35 –40 –58 –45 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 RF FREQUENCY (MHz) –50 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 LO FREQUENCY (MHz) 0 0 –10 3LO LEAKAGE (dBm) –5 TA = –40°C TA = +25°C –15 TA = +85°C –20 –25 –20 3LO TO IF –30 –40 –50 3LO TO RF 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 LO FREQUENCY (MHz) –70 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 LO FREUQENCY (MHz) Figure 34. 3LO Leakage vs. LO Frequency Figure 31. LO to IF Leakage vs. LO Frequency Rev. B | Page 12 of 24 08083-015 –60 08083-031 LO-TO-IF LEAKAGE (dBm) 2LO TO IF Figure 33. 2LO Leakage vs. LO Frequency Figure 30. RF to IF Isolation vs. RF Frequency –30 900 2LO TO RF –20 –56 08083-039 RF-TO-IF ISOLATION (dBc) –44 08083-014 –42 –10 1000 1050 1100 1150 1200 1250 1300 1350 1400 LO FREQUENCY (MHz) Figure 29. LO Switch Isolation vs. RF Frequency –60 900 950 08083-032 TA = +25°C 40 700 Data Sheet ADL5367 VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 15 10 30 14 9 12 6 11 10 5 NOISE FIGURE 4 9 8 3 VGS = 0, VGS = 0, VGS = 1, VGS = 1, 1 0 700 750 5 850 900 950 5 1000 1050 1100 1150 1200 Figure 35. Power Conversion Loss and SSB Noise Figure vs. RF Frequency 40 VGS = 0, VGS = 0, VGS = 1, VGS = 1, 38 36 0 1 0 1 32 30 28 26 24 22 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 08083-062 INPUT IP3 (dBm) 34 750 10 6 RF FREQUENCY (MHz) 20 700 15 7 0 1 0 1 800 20 Figure 36. Input IP3 vs. RF Frequency Rev. B | Page 13 of 24 0 –30 –25 –20 –15 –10 –5 0 5 BLOCKER POWER (dBm) Figure 37. SSB Noise Figure vs.10 MHz Offset Blocker Level 10 08083-003 2 NOISE FIGURE (dB) 7 25 SSB NOISE FIGURE (dB) 13 08083-058 CONVERSION LOSS (dB) CONVERSION LOSS 8 ADL5367 Data Sheet 3.3 V PERFORMANCE VS = 3.3 V, IS = 56 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, R9 = 226 Ω, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. 85 64 80 TA = –40°C 75 60 TA = –40°C TA = +25°C 58 INPUT IP2 (dBm) 56 TA = +85°C 54 TA = +25°C 65 TA = +85°C 60 55 50 52 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 40 700 9.5 9.5 9.0 9.0 NOISE FIGURE (dB) 8.5 TA = +85°C TA = +25°C 7.5 7.0 6.5 TA = –40°C 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 34 32 TA = –40°C 28 TA = +85°C 26 TA = +25°C 24 22 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 08083-029 INPUT IP3 (dBm) 30 750 TA = –40°C 7.0 6.5 5.0 700 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 42. SSB Noise Figure vs. RF Frequency at 3.3 V Figure 39. Power Conversion Loss vs. RF Frequency at 3.3 V 20 700 TA = +85°C 7.5 5.5 900 1000 1050 1100 1150 1200 TA = +25°C 5.5 850 950 8.0 6.0 800 900 8.5 6.0 08083-036 CONVERSION LOSS (dB) 10.0 750 850 Figure 41. Input IP2 vs. RF Frequency at 3.3 V 10.0 5.0 700 800 RF FREQUENCY (MHz) Figure 38. Supply Current vs. RF Frequency at 3.3 V 8.0 750 08083-024 45 08083-018 50 700 70 Figure 40. Input IP3 vs. RF Frequency at 3.3 V Rev. B | Page 14 of 24 08083-064 SUPPLY CURRENT (mA) 62 Data Sheet ADL5367 UPCONVERSION 10.0 9.5 9.5 9.0 9.0 8.5 8.0 TA = +85°C 7.5 7.0 TA = –40°C TA = +25°C 6.5 8.5 8.0 6.5 6.0 5.5 5.5 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 43. Power Conversion Loss vs. RF Frequency, VS = 5 V, Upconversion TA = +25°C 7.0 6.0 5.0 700 TA = +85°C 7.5 5.0 700 TA = –40°C 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) 08083-066 CONVERSION LOSS (dB) 10.0 08083-065 CONVERSION LOSS (dB) TA = 25°C, fIF = 153 MHz, fLO = 1697 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. Figure 45. Power Conversion Loss vs. RF Frequency at 3.3 V, Upconversion 34 34 TA = –40°C TA = +25°C 32 32 30 26 28 TA = +25°C 24 22 22 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 44. Input IP3 vs. RF Frequency, VS = 5 V, Upconversion TA = +85°C 26 24 20 700 TA = –40°C 20 700 750 800 850 900 950 1000 1050 1100 1150 1200 RF FREQUENCY (MHz) Figure 46. Input IP3 vs. RF Frequency at 3.3 V, Upconversion Rev. B | Page 15 of 24 08083-061 INPUT IP3 (dBm) 28 08083-060 INPUT IP3 (dBm) TA = +85°C 30 ADL5367 Data Sheet SPUR TABLES All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement system = −100 dBm. 5 V Performance VS = 5 V, IS = 97 mA, TA = 25°C, fRF = 900 MHz, fLO = 1103 MHz, LO power = 0 dBm, RF power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted. M 0 N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 −39.7 −84.6
ADL5367-EVALZ 价格&库存

很抱歉,暂时无法提供与“ADL5367-EVALZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货