0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADP2302-EVALZ

ADP2302-EVALZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    EVAL BOARD FOR ADP2302

  • 数据手册
  • 价格&库存
ADP2302-EVALZ 数据手册
2 A/3 A, 20 V, 700 kHz, Nonsynchronous Step-Down Regulators ADP2302/ADP2303 FEATURES Wide input voltage range: 3.0 V to 20 V Maximum load current 2 A for ADP2302 3 A for ADP2303 ±1.5% output accuracy over temperature Output voltage down to 0.8 V 700 kHz switching frequency Current-mode control architecture Automatic PFM/PWM mode Precision enable pin with hysteresis Integrated high-side MOSFET Integrated bootstrap diode Internal compensation and soft start Power-good output Undervoltage lockout (UVLO) Overcurrent protection (OCP) Thermal shutdown (TSD) 8-lead SOIC package with exposed paddle VIN VIN BST TYPICAL APPLICATIONS CIRCUIT ADP2302/ ADP2303 PGOOD SW VOUT ON OFF EN GND FB 08833-001 Figure 1. Typical Application Circuit 100 90 EFFICIENCY (%) 80 70 APPLICATIONS Intermediate power rail conversion DC-to-DC point of load applications Communications and networking Industrial and instrumentation Healthcare and medical Consumer 60 50 VOUT = 3.3V INDUCTOR: VLF10040T -4R7N5R4 DIODE: SSB43L VOUT = 5.0V 40 OUTPUT CURRENT (A) Figure 2. ADP2303 Efficiency vs. Output Current at VIN = 12 V GENERAL DESCRIPTION The ADP2302/ADP2303 are fixed frequency, current-mode control, step-down, dc-to-dc regulators with an integrated power MOSFET. The ADP2302/ADP2303 can run from an input voltage of 3.0 V to 20 V, which makes them suitable for a wide range of applications. The output voltage of the ADP2302/ ADP2303 can be down to 0.8 V for the adjustable version, while the fixed output version is available in preset output voltage options of 5.0 V, 3.3 V, and 2.5 V. The 700 kHz operating frequency allows small inductor and ceramic capacitors to be used, providing a compact solution. Current mode control provides fast and stable line and load transient performance. The ADP2302/ADP2303 have integrated soft start circuitry to prevent a large inrush current at power-up. The power-good signal can be used to sequence devices that have an enable input. The precision enable threshold voltage allows the part to be easily sequenced from other input/output supplies. Other key features include undervoltage lockout (UVLO), overvoltage protection (OVP), thermal shutdown (TSD), and overcurrent protection (OCP). The ADP2302/ADP2303 devices are available in the 8-lead, SOIC package with exposed paddle and are rated for the −40oC to +125oC junction temperature range. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved. 08833-002 0 0.5 1.0 1.5 2.0 2.5 3.0 ADP2302/ADP2303 TABLE OF CONTENTS Features .............................................................................................. 1  Applications....................................................................................... 1  Typical Applications Circuit............................................................ 1  General Description ......................................................................... 1  Revision History ............................................................................... 2  Specifications..................................................................................... 3  Absolute Maximum Ratings............................................................ 4  Thermal Resistance ...................................................................... 4  ESD Caution.................................................................................. 4  Pin Configuration and Function Descriptions............................. 5  Typical Performance Characteristics ............................................. 6  Functional Block Diagram ............................................................ 13  Theory of Operation ...................................................................... 14  Basic Operation .......................................................................... 14  PWM Mode................................................................................. 14  Power Saving Mode.................................................................... 14  Bootstrap Circuitry .................................................................... 14  Precision Enable ......................................................................... 14  Integrated Soft Start ................................................................... 14  Current Limit .............................................................................. 14  Short-Circuit Protection............................................................ 14  Undervoltage Lockout (UVLO) ............................................... 15  Thermal Shutdown (TSD)......................................................... 15  Overvoltage Protection (OVP)................................................. 15  Power Good ................................................................................ 15  Control Loop............................................................................... 15  Applications Information .............................................................. 16  Programming Output Voltage .................................................. 16  Voltage Conversion Limitations............................................... 16  Low Input Voltage Considerations .......................................... 17  Programming the Precision Enable ......................................... 17  Inductor ....................................................................................... 17  Catch Diode ................................................................................ 18  Input Capacitor........................................................................... 19  Output Capacitor........................................................................ 19  Thermal Consideration ............................................................. 19  Design Example .............................................................................. 20  Catch Diode Selection ............................................................... 20  Inductor Selection ...................................................................... 20  Output Capacitor Selection....................................................... 20  Resistive Voltage Divider Selection.......................................... 20  Circuit Board Layout Recommendations ................................... 22  Typical Application Circuits ......................................................... 23  Outline Dimensions ....................................................................... 26  Ordering Guide .......................................................................... 26  REVISION HISTORY 7/10—Revision 0: Initial Version Rev. 0 | Page 2 of 28 ADP2302/ADP2303 SPECIFICATIONS VIN = 3.3 V, TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted. Table 1. Parameters VIN Voltage Range Supply Current Shutdown Current Undervoltage Lockout Threshold FB Regulation Voltage Symbol VIN IVIN ISHDN UVLO Test Conditions Min 3.0 No switching, VIN = 12 V VEN = 0 V, VIN = 12 V VIN rising VIN falling ADP230xARDZ (adjustable) ADP230xARDZ-2.5 ADP230xARDZ-3.3 ADP230xARDZ-5.0 ADP230xARDZ (adjustable) VBST − VSW = 5 V, ISW = 200 mA ADP2302, VBST − VSW = 5 V ADP2303, VBST − VSW = 5 V VEN = VSW = 0 V, VIN = 12 V 720 24 2.7 2.4 0.8 2.5 3.3 5.0 0.01 120 3.5 5.5 0.1 126 210 700 2048 1.2 100 1.2 5.0 87.5 2.5 32 150 0.1 150 15 Typ Max 20 950 45 2.9 Unit V μA μA V V V V V V μA mΩ A A μA ns ns kHz Clock cycles V mV μA V % % Clock cycles mV μA °C °C 2.2 0.788 2.463 3.25 4.925 VFB Bias Current SW On Resistance 1 Peak Current Limit Leakage Current Minimum On Time Minimum Off Time OSCILLATOR FREQUENCY SOFT START TIME EN Input Threshold Input Hysteresis Pull-Down Current BOOTSTRAP VOLTAGE PGOOD PGOOD Rising Threshold PGOOD Hysteresis PGOOD Deglitch Time 2 PGOOD Output Low Voltage PGOOD Leakage Current THERMAL SHUTDOWN Threshold Hysteresis 1 2 IFB 0.812 2.538 3.35 5.075 0.1 160 4.4 6.4 5 170 280 805 80 2.7 4.6 fSW 595 VEN 1.12 1.28 VBOOT VIN = 12 V 4.7 82.5 5.3 92.5 VPGOOD = 5 V Rising temperature 300 1 Pin-to-Pin measurements. Guaranteed by design. Rev. 0 | Page 3 of 28 ADP2302/ADP2303 ABSOLUTE MAXIMUM RATINGS Table 2. Parameter VIN, EN, PGOOD SW BST to SW FB, NC Operating Junction Temperature Range Storage Temperature Range Soldering Conditions MAX Rating −0.3 V to +24 V −1.0 V to +24 V −0.6 V to +6 V −0.3 V to +6 V −40°C to +125°C −65°C to +150°C JEDEC J-STD-020 THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 3. Thermal Resistance1 Package Type 8-Lead SOIC_N_EP 1 θJA 58.5 Unit °C/W θJA is measured using natural convection on JEDEC 4-layer board. ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute maximum ratings apply individually only, not in combination. Unless otherwise specified, all voltages are referenced to GND. Rev. 0 | Page 4 of 28 ADP2302/ADP2303 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS BST 1 VIN 2 EN 3 ADP2302 ADP2303 8 7 6 5 SW GND NC FB TOP VIEW PGOOD 4 (Not to Scale) Figure 3. Pin Configuration (Top View) Table 4. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 (EPAD) Mnemonic BST VIN EN PGOOD FB NC GND SW Exposed Pad Description Bootstrap Supply for the High-Side MOSFET Driver. A 0.1 μF capacitor is connected between SW and BST to provide a floating driver voltage for the power switch. Power Input. Connect to the input power source with a ceramic bypass capacitor to GND directly from this pin. Output Enable. Pull this pin high to enable the output. Pull this pin low to disable the output. This pin can also be used as a programmable UVLO input. This pin has an internal 1.2 μA pull-down current to GND. Power-Good Open-Drain Output. Feedback Voltage Sense Input. For the adjustable version, connect this pin to a resistive divider from VOUT. For the fixed output version, connect this pin to VOUT directly. Used for internal testing. Connect to GND or leave this pin floating to ensure proper operation. Ground. Connect this pin to the ground plane. Switch Node Output. Connect an inductor to VOUT and a catch diode to GND from this pin. The exposed pad should be soldered to an external ground plane underneath the IC for thermal dissipation. Rev. 0 | Page 5 of 28 08833-003 NOTES 1. NC = NO CONNECT. 2. THE EXPOSED PAD SHOULD BE SOLDERED TO AN EXTERNAL GROUND PLANE UNDERNEATH THE IC FOR THERMAL DISSIPATION. ADP2302/ADP2303 TYPICAL PERFORMANCE CHARACTERISTICS VIN = 3.3 V, TA = 25°C, unless otherwise noted. 100 100 90 90 EFFICIENCY (%) EFFICIENCY (%) 80 80 70 70 VOUT = 1.5V VOUT = 1.8V VOUT = 2.5V VOUT = 3.3V VOUT = 5.0V INDUCTOR: VLF10040T-4R7N5R4 DIODE: SSB43L 0 0.5 1.0 1.5 2.0 2.5 3.0 08833-007 60 VOUT = 2.5V VOUT = 3.3V VOUT = 5.0V 60 50 INDUCTOR: VLF10040T-6R8N4R5 DIODE: SSB43L 0 0.5 1.0 1.5 2.0 2.5 3.0 08833-004 50 40 40 OUTPUT CURRENT (A) OUTPUT CURRENT (A) Figure 4. ADP2303 Efficiency, VIN = 18 V 100 100 Figure 7. ADP2303 Efficiency, VIN = 12 V 90 90 EFFICIENCY (%) EFFICIENCY (%) 80 80 70 VOUT = 1.2V VOUT = 1.5V VOUT = 1.8V VOUT = 2.5V INDUCTOR: VLF10040T-2R2N7R1 DIODE: SSB43L 0 0.5 1.0 1.5 2.0 2.5 3.0 08833-005 70 VOUT = 2.5V VOUT = 3.3V VOUT = 5.0V 60 60 50 50 INDUCTOR: VLF10040T-6R8N4R5 DIODE: SSB43L 0 0.5 1.0 OUTPUT CURRENT (A) 1.5 2.0 08833-008 40 OUTPUT CURRENT (A) 40 Figure 5. ADP2303 Efficiency, VIN = 5 V 100 Figure 8. ADP2302 Efficiency, VIN = 18 V 100 90 90 EFFICIENCY (%) 70 EFFICIENCY (%) 80 80 70 VOUT = 1.2V VOUT = 1.5V VOUT = 1.8V VOUT = 2.5V 60 VOUT = 1.5V VOUT = 1.8V VOUT = 2.5V VOUT = 3.3V VOUT = 5.0V INDUCTOR: VLF10040T-6R8N4R5 DIODE: SSB43L 0 0.5 1.0 OUTPUT CURRENT (A) 1.5 2.0 08833-006 60 50 50 INDUCTOR: VLF10040T-3R3N6R2 DIODE: SSB43L 0 0.5 1.0 OUTPUT CURRENT (A) 1.5 2.0 08833-009 40 40 Figure 6. ADP2302 Efficiency, VIN = 12 V Figure 9. ADP2302 Efficiency, VIN = 5 V Rev. 0 | Page 6 of 28 ADP2302/ADP2303 0.20 0.15 0.10 0.05 0 –0.05 –0.10 –0.15 08833-010 0.20 0.15 0.10 0.05 0 –0.05 –0.10 –0.15 08833-013 –0.20 5 8 11 VIN (V) 14 17 20 LOAD REGULATION (%) LINE REGULATION (%) –0.20 0 0.5 1.0 OUTPUT CURRENT (A) 1.5 2.0 Figure 10. ADP2302 Line Regulation, VOUT = 3.3 V, IOUT = 2 A 0.20 0.15 0.10 0.05 0 –0.05 –0.10 –0.15 08833-011 Figure 13. ADP2302 Load Regulation, VOUT = 3.3V, VIN = 12 V 0.20 0.15 0.10 0.05 0 –0.05 –0.10 –0.15 08833-014 –0.20 5 8 11 VIN (V) 14 17 20 LOAD REGULATION (%) LINE REGULATION (%) –0.20 0 0.5 1.0 1.5 2.0 2.5 3.0 OUTPUT CURRENT (A) Figure 11. ADP2303 Line Regulation, VOUT = 3.3 V , IOUT = 3 A Figure 14. ADP2303 Load Regulation, VOUT = 3.3 V, VIN = 12 V 50 45 SHUTDOWN CURRENT (μA) QUIESCENT CURRENT (μA) 900 850 800 750 700 650 600 550 500 TJ = –40°C TJ = +25°C TJ = +125°C 40 35 30 25 20 15 10 5 0 TJ = –40°C TJ = +25°C TJ = +125°C 08833-012 2 4 6 8 10 12 14 16 18 20 2 4 6 8 VIN (V) 10 12 VIN (V) 14 16 18 20 Figure 12. Shutdown Current vs. VIN Figure 15. Quiescent Current vs. VIN Rev. 0 | Page 7 of 28 08833-015 ADP2302/ADP2303 810 790 770 812 810 808 FEEDBACK VOLTAGE (mV) 08833-016 750 FREQUENCY (kHz) 730 710 690 670 650 630 610 590 –40 –20 0 20 40 60 80 100 120 806 804 802 800 798 796 794 792 790 –20 0 20 40 60 80 100 120 08833-019 08833-021 788 –40 TEMPERATURE (°C) TEMPERATURE (°C) Figure 16. Frequency vs. Temperature 4.4 4.2 Figure 19. 0.8 V Feedback Voltage vs. Temperature 6.4 6.2 PEAK CURRENT LIMIT (A) PEAK CURRENT LIMIT (A) 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 –40 6.0 5.8 5.6 5.4 5.2 5.0 4.8 –20 0 20 40 60 80 100 120 08833-017 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) TEMPERATURE (°C) Figure 17. ADP2302 Current-Limit Threshold vs. Temperature, VBST − VSW = 5 V 2.9 2.8 Figure 20. ADP2303 Current-Limit Threshold vs. Temperature, VBST − VSW = 5 V 1.30 1.25 ENABLE THRESHOLD (V) UVLO THRESHOLD (V) 2.7 RISING 2.6 2.5 2.4 FALLING 2.3 2.2 –40 RISING 1.20 1.15 FALLING 1.10 1.05 –20 0 20 40 60 80 100 120 08833-018 1.00 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) TEMPERATURE (°C) Figure 18. UVLO Threshold vs. Temperature Figure 21. Enable Threshold vs. Temperature Rev. 0 | Page 8 of 28 08833-020 4.6 –40 ADP2302/ADP2303 270 265 260 255 150 145 140 MINIMUM OFF TIME (ns) MINIMUM ON TIME (ns) 08833-022 250 245 240 235 230 225 220 215 210 205 –40 –20 0 20 40 60 80 100 120 135 130 125 120 115 110 105 08833-025 100 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) TEMPERATURE (°C) Figure 22. Minimum Off Time vs. Temperature Figure 25. Minimum On Time vs. Temperature 180 170 160 VOUT (AC) 1 MOSFET RESISTOR (mΩ) 150 140 130 120 110 100 90 80 70 08833-023 IL SW 4 VGS = 3V VGS = 4V VGS = 5V 2 –20 0 20 40 60 80 100 120 CH1 5.00mV B W TEMPERATURE (°C) CH2 5.00V M1.00µs CH4 2.00A Ω T 30.00% A CH2 7.50V Figure 23. MOSFET RDSON vs. Temperature (Pin-to-Pin Measurement) Figure 26. Continuous Conduction Mode (CCM), VOUT = 3.3 V, VIN = 12 V VOUT (AC) 1 VOUT (AC) IL 4 1 4 IL SW SW 2 2 08833-024 CH1 5.00mV B W CH2 5.00V M1.00µs CH4 2.00A Ω T 30.00% A CH2 7.50V CH1 50.00mV B W CH2 5.00V CH4 2.00A Ω M200µs A CH2 T 30.00% 7.50V Figure 24. Discontinuous Conduction Mode (DCM), VOUT = 3.3 V, VIN = 12 V Figure 27. Power Saving Mode, VOUT = 3.3 V, VIN = 12 V Rev. 0 | Page 9 of 28 08833-027 08833-026 60 –40 ADP2302/ADP2303 VOUT VOUT 1 IL 1 IL 4 4 EN SW 3 EN SW 3 2 2 08833-028 CH1 2.00V BW CH3 10.0V BW CH2 10.0V M1.00ms CH4 2.00A Ω T 20.20% A CH3 6.20V CH1 2.00V BW CH3 10.0V BW CH2 10.0V M1.00ms CH4 2.00A Ω T 20.20% A CH3 3.60V Figure 28. Soft Start Without Load, VOUT = 3.3 V, VIN = 12 V Figure 31. Soft Start with Full Load, VOUT = 3.3 V, VIN = 12 V VOUT (AC) 1 1 VOUT (AC) IO IO 4 4 08833-029 CH1 500mV B W CH4 2.00A Ω M200µs T 20.00% A CH4 1.20A CH1 200mV B W CH4 2.00A Ω M200µs T 20.00% A CH4 1.88A Figure 29. ADP2303 Load Transient, 0.5 A to 3.0 A, VOUT = 5.0 V, VIN = 12 V, L = 4.7 μH, COUT = 47 μF Figure 32. ADP2303 Load Transient, 0.5 A to 3.0 A, VOUT = 3.3 V, VIN = 12 V, L = 4.7 μH, COUT = 2 × 47 μF VOUT (AC) 1 1 VOUT (AC) IO IO 4 4 08833-030 08833-032 08833-031 CH1 200mV B W CH4 1.00A Ω M200µs T 20.00% A CH4 1.20A CH1 200mV B W CH4 1.00A Ω M200µs T 20.00% A CH4 1.20A Figure 30. ADP2302 Load Transient, 0.5 A to 2.0 A, VOUT = 5.0 V, VIN = 12 V, L = 6.8 μH, COUT = 2 × 22 μF Figure 33. ADP2302 Load Transient, 0.5 A to 2.0 A, VOUT = 3.3 V, VIN = 12 V, L = 6.8 μH, COUT = 2 × 22 μF Rev. 0 | Page 10 of 28 08833-033 ADP2302/ADP2303 VOUT VOUT 1 1 IL IL 4 SW 4 SW 2 08833-034 2 CH1 1.00mV B W CH2 10.0V M40.0µs CH4 5.00A Ω T 30.00% A CH1 1.26V CH1 1.00V B W CH2 10.0V M400µs CH4 5.00A Ω T 30.00% A CH1 1.26V Figure 34. Output Short, VOUT = 3.3 V, VIN = 12 V, L = 4.7 μH, COUT = 2 × 47 μF Figure 37. Output Short Recovery, VOUT = 3.3 V, VIN = 12 V, L = 4.7 μH, COUT = 2 × 47 μF VOUT 1 VOUT VIN VIN 1 SW SW 3 3 2 2 08833-035 08833-037 CH1 20.0mV BW CH2 10.0V BW CH3 5.00V BW M1.00ms A CH3 T 23.40% 11.0V CH1 20.0mV BW CH2 10.0V BW M1.00ms CH3 5.00V BW T 23.40% A CH3 11.0V Figure 35. ADP2303 Line Transient, 7 V to 15 V, VOUT = 3.3 V, IOUT = 3 A, L = 4.7 μH, COUT = 2 × 47 μF 80 64 48 32 MAGNITUDE (dB) Figure 38. ADP2302 Line Transient, 7 V to 15 V, VOUT = 3.3 V, IOUT = 2 A, L = 6.8 μH, COUT = 2 × 22 μF 80 64 48 32 180 144 108 72 36 0 –36 –72 –108 CROSS FREQUENCY = 42kHz PHASE MARGIN = 56° 1k 10k 100k FREQUENCY (Hz) 1M –144 08833-039 180 144 108 72 MAGNITUDE (dB) 16 0 –16 –32 –48 –64 –80 1k CROSS FREQUENCY = 36kHz PHASE MARGIN = 60° 36 0 –36 –72 –108 –144 PHASE (Degrees) 16 0 –16 –32 –48 –64 08833-036 –180 10k 100k FREQUENCY (Hz) 1M –80 –180 Figure 36. ADP2302 Bode Plot, VOUT = 2.5 V, VIN = 12 V, L = 4.7 μH, COUT =3 × 22 μF Figure 39. ADP2302 Bode Plot, VOUT = 3.3 V, VIN = 12 V, L = 6.8 μH, COUT = 2 × 22 μF Rev. 0 | Page 11 of 28 PHASE (Degrees) 08833-038 ADP2302/ADP2303 80 64 48 32 180 144 108 80 64 48 MAGNITUDE (B/A) (dB) 180 144 108 PHASE (B–A) (Degeres) PHASE (B–A) (Degeres) 08833-143 08833-142 72 36 0 –36 –72 –108 CROSS FREQUENCY = 32kHz PHASE MARGIN = 59° 1k 10k 100k FREQUENCY (Hz) 1M –144 08833-040 32 16 0 –16 –32 –48 –64 –80 1k CROSS FREQUENCY = 26kHz PHASE MARGIN = 65° 72 36 0 –36 –72 –108 –144 –180 10k 100k FREQUENCY (Hz) 1M MAGNITUDE (dB) 16 0 –16 –32 –48 –64 –80 –180 Figure 40. ADP2302 Bode Plot, VOUT = 5 V, VIN = 12 V, L = 6.8 μH, COUT = 2 × 22 μF 80 64 48 32 180 144 108 PHASE (Degrees) Figure 42. ADP2303 Bode Plot, VOUT = 2.5 V, VIN = 12 V, L = 3.3 μH, COUT = 2 × 47 μF 80 64 48 MAGNITUDE (B/A) (dB) 32 16 0 –16 –32 –48 –64 08833-041 180 144 108 72 36 0 –36 –72 –108 CROSS FREQUENCY = 28kHz PHASE MARGIN = 65° 1k 10k 100k FREQUENCY (Hz) 1M –144 –180 72 36 0 –36 –72 –108 CROSS FREQUENCY = 19kHz PHASE MARGIN = 59° 1k 10k 100k FREQUENCY (Hz) 1M –144 –180 MAGNITUDE (dB) 16 0 –16 –32 –48 –64 –80 PHASE (Degrees) –80 Figure 41. ADP2303 Bode Plot, VOUT = 3.3 V, VIN = 12 V, L = 4.7 μH, COUT = 2 × 47 μF Figure 43. ADP2303 Bode Plot, VOUT = 5 V, VIN = 12 V, L = 4.7 μH, COUT = 47 μF Rev. 0 | Page 12 of 28 ADP2302/ADP2303 FUNCTIONAL BLOCK DIAGRAM VIN VIN 2 THERMAL SHUTDOWN SHUTDOWN LOGIC UVLO SHUTDOWN IC 1.20V ON OFF EN 3 1.2µA OVP 0.880V CURRENT LIMIT THRESHOLD OCP CURRENT SENSE AMPLIFIER BOOT REGULATOR R S PGOOD 4 VBIAS = 1.1V RAMP GENERATOR CLK GENERATOR 8 1 BST Q VOUT SW 0.680V FREQUENCY FOLDBACK (⅛ fSW, ¼ fSW, ½ fSW, fSW) NC 6 gm 5 0.8V VOLTAGE REFERENCE FB ADP2302/ADP2303 7 GND Figure 44. Functional Block Diagram Rev. 0 | Page 13 of 28 08833-042 ADP2302/ADP2303 THEORY OF OPERATION The ADP2302/ADP2303 are nonsynchronous, step-down, dc-to-dc regulators, each with an integrated high-side power MOSFET. The high switching frequency and 8-lead SOIC package provide a small, step-down, dc-to-dc regulator solution. The ADP2302/ADP2303 can operate with an input voltage from 3.0 V to 20 V while regulating an output voltage down to 0.8 V. The ADP2302 can provide 2 A maximum continuous output current, and the ADP2303 can provide 3 A maximum continuous output current. Because the output voltage occasionally dips below regulation and then recovers, the output voltage ripple in the power saving mode is larger than the ripple in the PWM mode of operation. BOOTSTRAP CIRCUITRY The ADP2302/ADP2303 each have an integrated boot regulator, which requires that a 0.1 μF ceramic capacitor (X5R or X7R) be placed between the BST and SW pins to provide the gate drive voltage for the high-side MOSFET. There is at least a 1.2 V difference between the BST and SW pins to turn on the high-side MOSFET. This voltage should not exceed 5.5 V in case the BST pin is supplied with the external voltage source through a diode. The ADP2302/ADP2303 generate a typical 5.0 V bootstrap voltage for the gate drive circuit by differentially sensing and regulating the voltage between the BST and SW pins. There is a diode integrated on the chip that blocks the reverse voltage between the VIN and BST pins when the MOSFET switch is turned on. BASIC OPERATION The ADP2302/ADP2303 use the fixed-frequency, peak currentmode PWM control architecture from medium to high loads, but shift to a pulse-skip mode control scheme at light loads to reduce the switching power losses and improve efficiency. When these devices operate in fixed-frequency PWM mode, output regulation is achieved by controlling the duty cycle of the integrated MOSFET. While the devices are operating in pulse-skip mode at light loads, the output voltage is controlled in a hysteretic manner with higher output ripple. In this mode of operation, the regulator periodically stops switching for a few cycles, thus keeping the conversion losses minimal to improve efficiency. PRECISION ENABLE The ADP2302/ADP2303 provide a precision enable circuit that has 1.2 V reference threshold with 100 mV hysteresis. When the voltage at the EN pin is greater than 1.2 V (typical), the part is enabled. If the EN voltage falls below 1.1 V (typical), the chip is disabled. The precision enable threshold voltage allows the ADP2302/ADP2303 to be easily sequenced from other input/ output supplies. It also can be used as a programmable UVLO input by using a resistive divider. An internal 1.2 μA pull-down current prevents errors if the EN pin is left floating. PWM MODE In PWM mode, the ADP2302/ADP2303 operate at a fixed frequency, set by an internal oscillator. At the start of each oscillator cycle, the MOSFET switch is turned on, providing a positive voltage across the inductor. The inductor current increases until the current-sense signal crosses the peak inductor current threshold that turns off the MOSFET switch; this threshold is set by the error amplifier output. During the MOSFET off time, the inductor current declines through the external diode until the next oscillator clock pulse comes and a new cycle starts. INTEGRATED SOFT START The ADP2302/ADP2303 have an internal digital soft start circuitry to limit the output voltage rise time and reduce the inrush current at power up. The soft start time is fixed at 2048 clock cycles. CURRENT LIMIT The ADP2302/ADP2303 include current-limit protection circuitry to limit the amount of positive current flowing through the highside MOSFET switch. The positive current limit on the power switch limits the amount of current that can flow from the input to the output. POWER SAVING MODE To achieve higher efficiency, the ADP2302/ADP2303 smoothly transition to the pulse-skip mode when the output load decreases below the pulse-skip current threshold. When the output voltage dips below the regulation, the ADP2302/ADP2303 enter PWM mode for a few oscillator cycles until the voltage increases to regulation range. During the idle time between bursts, the MOSFET switch is turned off, and the output capacitor supplies all the output current. Because the pulse-skip mode comparator monitors the internal compensation node, which represents the peak inductor current information, the average pulse-skip load current threshold depends on the input voltage (VIN), the output voltage (VOUT), the inductor, and the output capacitor. SHORT-CIRCUIT PROTECTION The ADP2302/ADP2303 include frequency foldback to prevent output current runaway when there is a hard short on the output. The switching frequency is reduced when the voltage at the FB pin drops below a certain value, which allows more time for the inductor current to decline, but increases the ripple current while regulating the peak current. This results in a reduction in average output current and prevents output current runaway. The correlation between the switching frequency and the FB pin voltage is shown in Table 5. Rev. 0 | Page 14 of 28 ADP2302/ADP2303 Table 5. Correlation Between fSW and VFB FB Pin Voltage VFB ≥ 0.6 V 0.4 V < VFB < 0.6 V 0.2 V < VFB ≤ 0.4 V VFB ≤ 0.2 V Switching Frequency fSW 1/2 fSW 1/4 fSW 1/8 fSW OVERVOLTAGE PROTECTION (OVP) The ADP2302/ADP2303 provide an overvoltage protection feature to protect the system against an output short to a higher voltage supply. If the feedback voltage is above 0.880 V, the internal high-side MOSFET is turned off, until the voltage at FB decreases to 0.850 V. At that time, the ADP2302/ADP2303 resume normal operation. When a hard short (VFB ≤ 0.2 V) is removed, a soft start cycle is initiated to regulate the output back to its level during normal operation, which helps to limit the inrush current and prevent possible overshoot on the output voltage. POWER GOOD The PGOOD pin is an active high, open-drain output and requires a resistor to pull it up to a voltage (
ADP2302-EVALZ 价格&库存

很抱歉,暂时无法提供与“ADP2302-EVALZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货