Evaluation Board User Guide
UG-456
One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com
Evaluation Board for the ADP2442 36 V, 1 A, Synchronous, Step-Down DC-to-DC
Regulator with External Clock Synchronization
FEATURES
GENERAL DESCRIPTION
Full featured evaluation board for the ADP2442
Configurable synchronous step-down dc-to-dc switching
regulator
Operating voltage range: VIN = 6 V to 36 V
Output voltage: 5 V or adjustable
1 A maximum load
Switching frequency: 500 kHz or adjustable switching
frequency of 300 kHz to 1 MHz
Power saving mode at light load
Precision enabled input pin
Current limit protection
Power good output
SYNC/MODE pin for external synchronization or mode
selection
53 mm × 53 mm board size
The ADP2442-EVALZ evaluation board is a complete, dc-to-dc
switching regulator design based on the ADP2442, a configurable,
1 A, synchronous, step-down dc-to-dc regulator.
The ADP2442 is a synchronous, step-down dc-to-dc switching
regulator that uses a current mode pulse-width modulation
(PWM) control scheme. The ADP2442 can be configured for
pulse skip mode at light load or forced PWM mode. The power
switch and synchronous rectifier are integrated for minimal
external part count and high efficiency. The ADP2442 is
optimized for operation with small ferrite core inductors and
ceramic capacitors to deliver the maximum output power per
square millimeter of the printed circuit board (PCB) area.
The ADP2442-EVALZ is available with 5 V at a 1 A output, with
a switching frequency set to 500 kHz. If needed, the ADP2442EVALZ configuration can be modified by changing the values
of the appropriate passive components.
DOCUMENTS NEEDED
ADP2442 data sheet
UG-407 user guide
Complete specifications for the ADP2442 device can be found
in the ADP2442 data sheet, which is available from Analog
Devices, Inc., and should be consulted in conjunction with this
user guide when using the evaluation board.
10949-001
ADP2442-EVALZ
Figure 1.
PLEASE SEE THE LAST PAGE FOR AN IMPORTANT
WARNING AND LEGAL TERMS AND CONDITIONS.
Rev. 0 | Page 1 of 12
UG-456
Evaluation Board User Guide
TABLE OF CONTENTS
Features .............................................................................................. 1
Modifying the Evaluation Board .....................................................5
Documents Needed .......................................................................... 1
Changing the Output Voltage ......................................................5
General Description ......................................................................... 1
Changing the Switching Frequency ............................................5
ADP2442-EVALZ ............................................................................. 1
Typical Performance Characteristics ..............................................6
Revision History ............................................................................... 2
Evaluation Board Schematic and Artwork.....................................8
Using the Evaluation Board............................................................. 3
Ordering Information .................................................................... 10
Powering Up the Evaluation Board ............................................ 3
Bill of Materials ........................................................................... 10
Measuring Evaluation Board Performance .................................. 4
REVISION HISTORY
11/12—Revision 0: Initial Version
Rev. 0 | Page 2 of 12
Evaluation Board User Guide
UG-456
USING THE EVALUATION BOARD
PGOOD Signals
Input Power Source
The power source voltage must not exceed 36 V, the maximum
operation input voltage of the ADP2442.
Ensure that the power source is switched off before connecting
it to the ADP2442-EVALZ evaluation board. Connect the positive
terminal of the power source to the evaluation board VIN terminal
(T1), and the negative terminal of the power source to the
evaluation board GND terminal (T2). If the power source includes
an ammeter, connect the ammeter in series with the input source
voltage. Connect the positive lead (+) of the power source to the
ammeter positive (+) connection, the negative lead (−) of the
ammeter to the evaluation board VIN terminal (T1), and the
negative lead (−) of the power source to the evaluation board
GND terminal (T2).
Output Load
Ensure that the evaluation board is switched off before connecting
the load. Connect the load directly to the evaluation board, with
the positive (+) load connection to the VOUT terminal (T3) and
the negative (−) load connection to the PGND terminal (T4). If
an ammeter is used, connect it in series with the load: connect
the positive (+) ammeter terminal to the evaluation board VOUT
terminal (T3), the negative (−) ammeter terminal to the positive
(+) load terminal, and the negative (−) load terminal to the
evaluation board PGND terminal (T4).
When the load is connected, ensure that it is set to the proper
current before powering the ADP2442-EVALZ evaluation board.
Before connecting a load to the output of the evaluation board,
ensure that the output voltage does not exceed the maximum
operating voltage range of the load.
When the output is enabled and the output voltage, VOUT, is in
regulation, the logic signal at the PGOOD test point is high. In
a typical application, a pull-up resistor from the PGOOD pin to
the external supply is used to generate this logic signal.
On the evaluation board, the pull-up resistor (R7) is available to
connect to the external supply through the jumper (JP1). The TP2
test point is available to connect the external supply of 5 V.
PGOOD
R7
50kΩ
JP1
TP2: EXTERNAL
SUPPLY: 5V
10949-002
The ADP2442-EVALZ evaluation board is provided fully
assembled and tested. Before applying power to the evaluation
board, follow the procedures in the following sections.
Figure 2. PGOOD Signal
SYNC/MODE Pin
The SYNC/MODE pin is a multifunctional pin. When the
SYNC/MODE pin is connected to VCC or a high logic, the
PWM mode is enabled. When the SYNC pin is connected to
AGND, the pulse skip mode is enabled. The external clock can
be applied for the synchronization.
On the evaluation board, the SYNC/MODE pin can be connected
to VCC or AGND through JP2 (as shown in Figure 3). Users can
apply a clock input to the SMB connector, which is connected to
the SYNC pin.
Table 1. Mode Selection
SYNC Pin
Low
High
Clock signal
Enabling and Disabling the DC-to-DC Switching
Regulator
Mode of Operation
Pulse skip mode
Forced PWM mode
Forced PWM mode
SYNC/MODE
J1
CLOCK
JP2
VCC
In the evaluation board, a voltage divider is used to generate an
enable signal for the IC. As soon as voltage is applied to VIN
(24 V), IC is enabled.
Alternatively, the TP1 (EN) header is available to enable and
disable the evaluation board. To enable the output, connect the
TP1 header to the VIN supply or to an external voltage source. To
disable the output, connect the TP1 header to the GND.
Rev. 0 | Page 3 of 12
10949-003
POWERING UP THE EVALUATION BOARD
Figure 3. SYNC/MODE Signal
UG-456
Evaluation Board User Guide
MEASURING EVALUATION BOARD PERFORMANCE
η=
Output Voltage Ripple
To observe the output voltage ripple, place an oscilloscope probe
tip at the T3 terminal and connect the probe ground lead at the
negative (−) the T4 terminal. Set the oscilloscope to an ac-coupled,
100 mV/division and 2 µs/division time base.
Switching Waveform
To observe the switching waveform with an oscilloscope, place
the oscilloscope probe tip at the end of the inductor that is
connected to the SW pin with the probe ground at Terminal T4,
PGND. Set the scope to dc, 5 V/division, and 2 µs/division time
base. Alternate the switching waveform between 0 V and
approximately the input voltage.
Measuring Load Regulation
Measure the load regulation by increasing the load at the output
and looking at the change in the output voltage. To minimize voltage
drop, use short low resistance wires, especially for heavy loads.
Measuring Line Regulation
Vary the input voltage and examine the change in the output
voltage. In PWM mode, ensure that the output voltage ripple is
small (