Ultracompact, Precision
10.0 V/5.0 V/2.5 V/3.0 V Voltage References
ADR01/ADR02/ADR03/ADR06
PIN CONFIGURATIONS
TEMP 1
GND
2
VIN 3
ADR01/
ADR02/
ADR03/
ADR06
5 TRIM
TOP VIEW
4 VOUT
(Not to Scale)
Figure 1. 5-Lead, SC70/TSOT Surface-Mount Packages
TP 1
VIN 2
TEMP 3
GND 4
ADR01/
ADR02/
ADR03/
ADR06
8 TP
7 NIC
6 VOUT
TOP VIEW
5 TRIM
(Not to Scale)
NIC = NO INTERNAL CONNECT
TP = TEST PIN (DO NOT CONNECT)
02747-002
Ultracompact SC70 and TSOT packages
Low temperature coefficient
8-lead SOIC: 3 ppm/°C
5-lead SC70: 9 ppm/°C
5-lead TSOT: 9 ppm/°C
Initial accuracy ±0.1%
No external capacitor required
Low noise 10 µV p-p (0.1 Hz to 10.0 Hz)
Wide operating range
ADR01: 12.0 V to 36.0 V
ADR02: 7.0 V to 36.0 V
ADR03: 4.5 V to 36.0 V
ADR06: 5.0 V to 36.0 V
High output current 10 mA
Wide temperature range: –40°C to +125°C
ADR01/ADR02/ADR03 pin compatible to industrystandard REF01/REF02/REF03
ADR02 SOIC qualified for automotive applications
02747-001
FEATURES
Figure 2. 8-Lead, SOIC Surface-Mount Package
APPLICATIONS
Precision data acquisition systems
High resolution converters
Industrial process control systems
Precision instruments
PCMCIA cards
GENERAL DESCRIPTION
The ADR01, ADR02, ADR03, and ADR06 are precision 10.0 V,
5.0 V, 2.5 V, and 3.0 V band gap voltage references featuring high
accuracy, high stability, and low power consumption. The parts
are housed in tiny, 5-lead SC70 and TSOT packages, as well as
in 8-lead SOIC versions. The SOIC versions of the ADR01,
ADR02, and ADR03 are drop-in replacements1 to the industrystandard REF01, REF02, and REF03. The small footprint and
wide operating range make the ADR0x references ideally suited
for general-purpose and space-constrained applications.
With an external buffer and a simple resistor network, the
TEMP terminal can be used for temperature sensing and
approximation. A TRIM terminal is provided on the devices for
fine adjustment of the output voltage.
1
The ADR01, ADR02, ADR03, and ADR06 are compact, low
drift voltage references that provide an extremely stable output
voltage from a wide supply voltage range. They are available in
5-lead SC70 and TSOT packages, and 8-lead SOIC packages
with A, B, and C grade selections. All parts are specified over
the extended industrial (–40°C to +125°C) temperature range.
The ADR02 A grade 8-lead SOIC is qualified for automotive
applications.
Table 1. Selection Guide
Part Number
ADR01
ADR02
ADR03
ADR06
Output Voltage
10.0 V
5.0 V
2.5 V
3.0 V
ADRO1, ADR02, and ADR03 are component-level compatible with REF01, REF02, and REF03, respectively. No guarantees for system-level compatibility are implied.
SOIC versions of ADR01/ADR02/ADR03 are pin-to-pin compatible with 8-lead SOIC versions of REF01/REF02/REF03, respectively, with the additional temperature
monitoring function.
Rev. M
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
www.analog.com
Tel: 781.329.4700
Fax: 781.461.3113 ©2002–2010 Analog Devices, Inc. All rights reserved.
ADR01/ADR02/ADR03/ADR06
TABLE OF CONTENTS
Features .............................................................................................. 1
Terminology .......................................................................................9
Applications ....................................................................................... 1
Typical Performance Characteristics ........................................... 10
Pin Configurations ........................................................................... 1
Applications Information .............................................................. 15
General Description ......................................................................... 1
Overview ..................................................................................... 15
Revision History ............................................................................... 2
Applying the ADR01/ADR02/ADR03/ADR06 ...................... 15
Specifications..................................................................................... 4
Negative Reference ..................................................................... 16
ADR01 Electrical Characteristics ............................................... 4
Low Cost Current Source .......................................................... 16
ADR02 Electrical Characteristics ............................................... 5
Precision Current Source with Adjustable Output ................ 16
ADR03 Electrical Characteristics ............................................... 6
Programmable 4 mA to 20 mA Current Transmitter............ 17
ADR06 Electrical Characteristics ............................................... 7
Precision Boosted Output Regulator ....................................... 17
Absolute Maximum Ratings ............................................................ 8
Outline Dimensions ....................................................................... 18
Thermal Resistance ...................................................................... 8
Ordering Guides ......................................................................... 19
ESD Caution .................................................................................. 8
REVISION HISTORY
4/10—Rev. L to Rev. M
Changes to Features Section and General Description Section . 1
Changes to Figure 41 ...................................................................... 17
Changes to Ordering Guides Section........................................... 19
12/08—Rev. K to Rev. L
Changes to Maximum Input Voltage ............................... Universal
Removed Die Version ........................................................ Universal
Changes to Table 2 ............................................................................ 3
Changes to Table 3 ............................................................................ 4
Changes to Table 4 ............................................................................ 5
Changes to Table 5 ............................................................................ 6
Deleted Table 6 and Figure 3 ........................................................... 7
Changes to Terminology Section.................................................... 8
Added Input and Output Capacitors Section ............................. 15
9/04—Rev. F to Rev. G
Changes to Table 2.............................................................................4
Changes to Table 3.............................................................................5
Changes to Table 4.............................................................................6
Changes to Table 5.............................................................................7
Changes to Ordering Guide .......................................................... 19
7/04—Rev. E to Rev. F
Changes to ADR02 Electrical Characteristics, Table 2 .................4
Changes to Ordering Guide .......................................................... 19
2/04—Rev. D to Rev. E
Added C grade .................................................................... Universal
Changes to Outline Dimensions .................................................. 19
Updated Ordering Guide .............................................................. 20
2/08—Rev. J to Rev. K
Changes to Terminology Section.................................................... 9
Changes to Ordering Guide .......................................................... 19
8/03—Rev. C to Rev D
Added ADR06 ..................................................................... Universal
Change to Figure 27 ....................................................................... 13
3/07—Rev. I to Rev. J
Renamed Parameters and Definitions Section ............................. 9
Changes to Temperature Monitoring Section ............................ 15
Changes to Ordering Guide .......................................................... 19
6/03—Rev. B to Rev C
Changes to Features Section ............................................................1
Changes to General Description Section .......................................1
Changes to Figure 2 ...........................................................................1
Changes to Specifications Section ...................................................2
Addition of Dice Electrical Characteristics and Layout ...............6
Changes to Absolute Maximum Ratings Section ..........................7
Updated SOIC (R-8) Outline Dimensions .................................. 19
Changes to Ordering Guide .......................................................... 20
7/05—Rev. H to Rev. I
Changes to Table 5 ............................................................................ 7
Updated Outline Dimensions ....................................................... 19
Changes to Ordering Guide .......................................................... 19
12/04—Rev. G to Rev. H
Changes to ADR06 Ordering Guide ............................................ 20
Rev. M | Page 2 of 20
ADR01/ADR02/ADR03/ADR06
2/03—Rev. A to Rev. B
Added ADR03..................................................................... Universal
Added TSOT-5 (UJ) Package ............................................ Universal
Updated Outline Dimensions ........................................................18
12/02—Rev. 0 to Rev. A
Changes to Features Section ............................................................ 1
Changes to General Description ..................................................... 1
Table I Deleted ................................................................................... 1
Changes to ADR01 Specifications .................................................. 2
Changes to ADR02 Specifications .................................................. 3
Changes to Absolute Maximum Ratings Section ......................... 4
Changes to Ordering Guide ............................................................. 4
Updated Outline Dimensions........................................................ 12
Rev. M | Page 3 of 20
ADR01/ADR02/ADR03/ADR06
SPECIFICATIONS
ADR01 ELECTRICAL CHARACTERISTICS
VIN = 12.0 V to 36.0 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter
OUTPUT VOLTAGE
INITIAL ACCURACY
Symbol
VO
VOERR
Conditions
A and C grades
A and C grades
Min
9.990
Typ
10.000
OUTPUT VOLTAGE
INITIAL ACCURACY
VO
VOERR
B grade
B grade
9.995
10.000
TEMPERATURE COEFFICIENT
TCVO
A grade, 8-lead SOIC, −40°C < TA < +125°C
A grade, 5-lead TSOT, –40°C < TA < +125°C
A grade, 5-lead SC70, –40°C < TA < +125°C
B grade, 8-lead SOIC, –40°C < TA < +125°C
B grade, 5-lead TSOT, –40°C < TA < +125°C
B grade, 5-lead SC70, –40°C < TA < +125°C
C grade, 8-lead SOIC, –40°C < TA < +125°C
DROPOUT VOLTAGE
LINE REGULATION
LOAD REGULATION
VDO
∆VO/∆VIN
∆VO/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
VOLTAGE NOISE DENSITY
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
TEMPERATURE SENSOR
Voltage Output at TEMP Pin
Temperature Sensitivity
IIN
eN p-p
eN
tR
∆VO
∆VO_HYS
RRR
ISC
1
10
Max
10.010
10
0.1
10.005
5
0.05
10
25
25
3
9
9
40
7
40
30
70
0.65
20
510
4
50
70
−75
30
1
3
1
2
VIN = 12.0 V to 36.0 V, –40°C < TA < +125°C
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,
VIN = 15.0 V
No load, –40°C < TA < +125°C
0.1 Hz to 10.0 Hz
1 kHz
1000 hours
fIN = 10 kHz
VTEMP
TCVTEMP
550
1.96
The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.
Rev. M | Page 4 of 20
Unit
V
mV
%
V
mV
%
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
V
ppm/V
ppm/mA
mA
µV p-p
nV/√Hz
µs
ppm
ppm
dB
mA
mV
mV/°C
ADR01/ADR02/ADR03/ADR06
ADR02 ELECTRICAL CHARACTERISTICS
VIN = 7.0 V to 36.0 V, TA = 25°C, unless otherwise noted.
Table 3.
Parameter
OUTPUT VOLTAGE
INITIAL ACCURACY
Symbol
VO
VOERR
Conditions
A and C grades
A and C grades
Min
4.995
Typ
5.000
OUTPUT VOLTAGE
INITIAL ACCURACY
VO
VOERR
B grade
B grade
4.997
5.000
TEMPERATURE COEFFICIENT
TCVO
A grade, 8-lead SOIC, –40°C < TA < +125°C
A grade, 5-lead TSOT, –40°C < TA < +125°C
A grade, 5-lead SC70, –40°C < TA < +125°C
A grade, 5-lead SC70, –55°C < TA < +125°C
B grade, 8-lead SOIC, –40°C < TA < +125°C
B grade, 5-lead TSOT, –40°C < TA < +125°C
B grade, 5-lead SC70, –40°C < TA < +125°C
C grade, 8-lead SOIC, –40°C < TA < +125°C
DROPOUT VOLTAGE
LINE REGULATION
VDO
∆VO/∆VIN
LOAD REGULATION
∆VO/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
VOLTAGE NOISE DENSITY
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
IIN
eN p-p
eN
tR
∆VO
∆VO_HYS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
TEMPERATURE SENSOR
Voltage Output at TEMP Pin
Temperature Sensitivity
RRR
ISC
1
10
Max
5.005
5
0.1
5.003
3
0.06
10
25
25
30
3
9
9
40
7
7
40
30
40
70
Unit
V
mV
%
V
mV
%
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
V
ppm/V
ppm/V
ppm/mA
45
80
ppm/mA
0.65
10
230
4
50
70
80
–75
30
1
mA
µV p-p
nV/√Hz
µs
ppm
ppm
ppm
dB
mA
3
1
2
VIN = 7.0 V to 36.0 V, –40°C < TA < +125°C
VIN = 7.0 V to 36.0 V, –55°C < TA < +125°C
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,
VIN = 10.0 V
ILOAD = 0 mA to 10 mA, –55°C < TA < +125°C,
VIN = 10.0 V
No load, –40°C < TA < +125°C
0.1 Hz to 10.0 Hz
1 kHz
1000 hours
–55°C < TA < +125°C
fIN = 10 kHz
VTEMP
TCVTEMP
550
1.96
The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.
Rev. M | Page 5 of 20
mV
mV/°C
ADR01/ADR02/ADR03/ADR06
ADR03 ELECTRICAL CHARACTERISTICS
VIN = 4.5 V to 36.0 V, TA = 25°C, unless otherwise noted.
Table 4.
Parameter
OUTPUT VOLTAGE
INITIAL ACCURACY
Symbol
VO
VOERR
Conditions
A and C grades
A and C grades
Min
2.495
Typ
2.500
OUTPUT VOLTAGE
INITIAL ACCURACY
VO
VOERR
B grades
B grades
2.4975
2.5000
TEMPERATURE COEFFICIENT
TCVO
A grade, 8-lead SOIC, –40°C < TA < +125°C
A grade, 5-lead TSOT, –40°C < TA < +125°C
A grade, 5-lead SC70, –40°C < TA < +125°C
A grade, 5-lead SC70, –55°C < TA < +125°C
B grade, 8-lead SOIC, –40°C < TA < +125°C
B grade, 5-lead TSOT, –40°C < TA < +125°C
B grade, 5-lead SC70, –40°C < TA < +125°C
C grade, 8-lead SOIC, –40°C < TA < +125°C
DROPOUT VOLTAGE
LINE REGULATION
VDO
∆VO/∆VIN
LOAD REGULATION
∆ VO/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
IIN
eN p-p
VOLTAGE NOISE DENSITY
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
eN
tR
∆VO
∆VO_HYS
RIPPLE REJECTION RATIO
RRR
SHORT CIRCUIT TO GND
TEMPERATURE SENSOR
Voltage Output at TEMP Pin
Temperature Sensitivity
1
Max
2.505
5
Unit
V
mV
10
0.2
2.5025
2.5
0.1
10
25
25
30
3
9
9
40
%
V
mV
%
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
7
7
25
30
40
70
V
ppm/V
ppm/V
ppm/mA
45
80
ppm/mA
0.65
6
1
mA
µV p-p
3
1
2
VIN = 4.5 V to 36.0 V, –40°C < TA < +125°C
VIN = 4.5 V to 36.0 V, –55°C < TA < +125°C
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,
VIN = 7.0 V
ILOAD = 0 mA to 10 mA, –55°C < TA < +125°C,
VIN = 7.0 V
No load, –40°C < TA < +125°C
0.1 Hz to 10.0 Hz
1 kHz
230
4
50
70
80
–75
nV/√Hz
µs
ppm
ppm
ppm
dB
ISC
30
mA
VTEMP
TCVTEMP
550
1.96
mV
mV/°C
1000 hours
–55°C < TA < +125°C
fIN = 10 kHz
The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.
Rev. M | Page 6 of 20
ADR01/ADR02/ADR03/ADR06
ADR06 ELECTRICAL CHARACTERISTICS
VIN = 5.0 V to 36.0 V, TA = 25°C, unless otherwise noted.
Table 5.
Parameter
OUTPUT VOLTAGE
INITIAL ACCURACY
Symbol
VO
VOERR
Conditions
A and C grades
A and C grades
Min
2.994
Typ
3.000
OUTPUT VOLTAGE
INITIAL ACCURACY
VO
VOERR
B grade
B grade
2.997
3.000
TEMPERATURE COEFFICIENT
TCVO
A grade, 8-lead SOIC, –40°C < TA < +125°C
A grade, 5-lead TSOT, –40°C < TA < +125°C
A grade, 5-lead SC70, –40°C < TA < +125°C
B grade, 8-lead SOIC, –40°C < TA < +125°C
B grade, 5-lead TSOT, –40°C < TA < +125°C
B grade, 5-lead SC70, –40°C < TA < +125°C
C grade, 8-lead SOIC, –40°C < TA < +125°C
DROPOUT VOLTAGE
LINE REGULATION
LOAD REGULATION
VDO
∆VO/∆VIN
∆VO/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
VOLTAGE NOISE DENSITY
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
TEMPERATURE SENSOR
Voltage Output at TEMP Pin
Temperature Sensitivity
IIN
eN p-p
eN
tR
∆VO
∆VO_HYS
RRR
ISC
1
10
Max
3.006
6
0.2
3.003
3
0.1
10
25
25
3
9
9
40
7
40
30
70
0.65
10
510
4
50
70
–75
30
1
3
1
2
VIN = 5.0 V to 36.0 V, –40°C < TA < +125°C
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,
VIN = 7.0 V
No load, –40°C < TA < +125°C
0.1 Hz to 10.0 Hz
1 kHz
1000 hours
fIN = 10 kHz
VTEMP
TCVTEMP
550
1.96
The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.
Rev. M | Page 7 of 20
Unit
V
mV
%
V
mV
%
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
V
ppm/V
ppm/mA
mA
µV p-p
nV/√Hz
µs
ppm
ppm
dB
mA
mV
mV/°C
ADR01/ADR02/ADR03/ADR06
ABSOLUTE MAXIMUM RATINGS
Ratings are at 25°C, unless otherwise noted.
THERMAL RESISTANCE
Table 6.
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Parameter
Supply Voltage
Output Short-Circuit Duration to GND
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature Range (Soldering, 60 sec)
Rating
36.0 V
Indefinite
–65°C to +150°C
–40°C to +125°C
–65°C to +150°C
300°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Table 7. Thermal Resistance
Package Type
5-Lead SC70 (KS-5)
5-Lead TSOT (UJ-5)
8-Lead SOIC (R-8)
ESD CAUTION
Rev. M | Page 8 of 20
θJA
376
230
130
θJC
189
146
43
Unit
°C/W
°C/W
°C/W
ADR01/ADR02/ADR03/ADR06
TERMINOLOGY
Dropout Voltage (VDO)
Dropout voltage, sometimes referred to as supply voltage headroom or supply output voltage differential, is defined as the
minimum voltage differential between the input and output
necessary for the device to operate, such as
Long-Term Stability (ΔVOUT_LTD)
Long-term stability refers to the shift in output voltage at 25°C
after 1000 hours of operation in a 25°C environment. This may
also be expressed as either a shift in voltage or a difference in
parts per million from the nominal output as follows:
VDO = (VIN – VOUT)min|IL = Constant
ΔVOUT_LTD = |VOUT(t1) – VOUT(t0)| [V]
Because the dropout voltage depends upon the current passing
through the device, it is always specified for a given load
current.
Temperature Coefficient (TCVO)
The temperature coefficient relates the change in output voltage
to the change in ambient temperature of the device, as normalized
by the output voltage at 25°C. This parameter is expressed in
ppm/°C and can be determined by the following equation:
TCVO =
VOUT (T2 ) − VOUT (T1 )
× 106 ppm/ C
VOUT (25C ) × (T2 − T1 )
[
]
where:
VOUT(25°C) is the output voltage at 25°C.
VOUT(T1) is the output voltage at Temperature 1.
VOUT(T2) is the output voltage at Temperature 2.
ΔVOUT _ LTD =
where,
VOUT(t0) is the VOUT at 25°C at Time 0.
VOUT(t1) is the VOUT at 25°C after 1000 hours of operation at 25°C.
Line Regulation
Line regulation refers to the change in output voltage in
response to a given change in input voltage, and is expressed in
either percent per volt, parts per million per volt, or microvolt
per volt change in input voltage. This parameter accounts for
the effects of self-heating.
Load Regulation
Load regulation refers to the change in output voltage in
response to a given change in load current, and is expressed in
either microvolts per milliampere, parts per million per
milliampere, or ohms of dc output resistance. This parameter
accounts for the effects of self-heating.
Output Voltage Hysteresis (ΔVOUT_HYS)
Output voltage hysteresis represents the change in output
voltage after the device is exposed to a specified temperature
cycle. This may be expressed as either a shift in voltage or a
difference in parts per million from the nominal output as
follows:
VOUT_HYS = VOUT(25°C) – VOUT_TC [V]
VOUT _ HYS =
VOUT (25C ) − VOUT _ TC
VOUT (25C )
VOUT (t 1 ) − VOUT (t 0 )
× 10 6 [ppm]
VOUT (t 0 )
× 106 [ppm]
where:
VOUT(25°C) is the output voltage at 25°C.
VOUT_TC is the output voltage after temperature cycling.
Thermal hysteresis occurs as a result of forces exhibited upon
the internal die by its packaging. The effect is more pronounced
in parts with smaller packages.
Rev. M | Page 9 of 20
ADR01/ADR02/ADR03/ADR06
TYPICAL PERFORMANCE CHARACTERISTICS
3.002
10.010
10.005
10.000
VOUT (V)
VOUT (V)
3.001
3.000
9.995
2.999
–10
5
20
35
50
65
80
95
110
125
TEMPERATURE (°C)
2.998
–40
5.004
0.7
SUPPLY CURRENT (mA)
20
35
50
65
80
95
110
125
5.000
+125°C
+25°C
0.6
–40°C
0.5
–10
5
20
35
50
65
80
95
110
125
TEMPERATURE (°C)
02747-005
0.4
–25
12
Figure 4. ADR02 Typical Output Voltage vs. Temperature
16
20
24
28
INPUT VOLTAGE (V)
32
36
Figure 7. ADR01 Supply Current vs. Input Voltage
0.8
2.501
0.7
SUPPLY CURRENT (mA)
2.502
2.500
2.499
+125°C
+25°C
0.6
–40°C
0.5
–10
5
20
35
50
65
80
95
110
TEMPERATURE (°C)
125
02747-006
0.4
–25
Figure 5. ADR03 Typical Output Voltage vs. Temperature
8
12
16
20
24
28
32
INPUT VOLTAGE (V)
Figure 8. ADR02 Supply Current vs. Input Voltage
Rev. M | Page 10 of 20
36
02747-009
VOUT (V)
0.8
4.996
VOUT (V)
5
Figure 6. ADR06 Typical Output Voltage vs. Temperature
5.008
2.498
–40
–10
TEMPERATURE (°C)
Figure 3. ADR01 Typical Output Voltage vs. Temperature
4.992
–40
–25
02747-008
–25
02747-004
9.985
–40
02747-007
9.990
ADR01/ADR02/ADR03/ADR06
50
0.85
IL = 0mA TO 5mA
0.80
LOAD REGULATION (ppm/mA)
40
0.70
+125°C
0.65
+25°C
0.60
–40°C
0.55
0.50
30
VIN = 36V
20
10
0
VIN = 8V
–10
0.45
–20
5
10
20
15
30
25
35 36
INPUT VOLTAGE (V)
02747-010
0.40
–40
0
85
25
125
TEMPERATURE (°C)
02747-013
SUPPLY CURRENT (mA)
0.75
Figure 12. ADR02 Load Regulation vs. Temperature
Figure 9. ADR03 Supply Current vs. Input Voltage
0.80
60
IL = 0mA TO 10mA
50
LOAD REGULATION (ppm/mA)
SUPPLY CURRENT (mA)
0.75
0.70
+125°C
0.65
+25°C
0.60
–40°C
0.55
0.50
VIN = 7V
40
VIN = 36V
30
20
10
10
20
15
25
30
35 36
INPUT VOLTAGE (V)
02747-011
5
–25
–10
5
20
35
80
95
110
125
125
TEMPERATURE (°C)
Figure 13. ADR03 Load Regulation vs. Temperature
Figure 10. ADR06 Supply Current vs. Input Voltage
40
40
IL = 0mA TO 10mA
IL = 0mA TO 10mA
30
30
LOAD REGULATION (ppm/mA)
VIN = 36V
20
10
0
VIN = 14V
–10
–20
VIN = 36V
20
10
0
VIN = 7V
–10
–20
–30
–40
–40
0
25
50
85
TEMPERATURE (°C)
125
02747-012
LOAD REGULATION (ppm/mA)
65
50
02747-014
0
–40
0.40
02747-015
0.45
–30
–40
–25
–10
5
20
35
50
65
80
95
110
TEMPERATURE (°C)
Figure 14. ADR06 Load Regulation vs. Temperature
Figure 11. ADR01 Load Regulation vs. Temperature
Rev. M | Page 11 of 20
ADR01/ADR02/ADR03/ADR06
10
2
VIN = 14V TO 36V
VIN = 6V TO 36V
8
LINE REGULATION (ppm/V)
–2
–4
–6
–8
6
4
2
0
–10
5
20
35
50
65
80
95
110
125
TEMPERATURE (°C)
–4
–40
–25
–10
5
35
20
50
65
80
95
110
125
02747-019
–25
02747-016
–10
–40
10
02747-020
–2
10
02747-021
LINE REGULATION (ppm/V)
0
TEMPERATURE (°C)
Figure 18. ADR06 Line Regulation vs. Temperature
Figure 15. ADR01 Line Regulation vs. Temperature
5
8
DIFFERENTIAL VOLTAGE (V)
4
0
–4
–8
–40
4
3
+125°C
2
–40°C
1
+25°C
0
–25
–10
5
20
35
50
65
80
95
110
125
TEMPERATURE (°C)
0
02747-017
LINE REGULATION (ppm/V)
VIN = 8V TO 36V
2
4
8
6
LOAD CURRENT (mA)
Figure 19. ADR01 Minimum Input-Output
Voltage Differential vs. Load Current
Figure 16. ADR02 Line Regulation vs. Temperature
8
4
DIFFERENTIAL VOLTAGE (V)
2
0
–2
4
+125°C
–40°C
2
+25°C
–4
–40
0
–25
–10
5
20
35
50
65
80
95
110
TEMPERATURE (°C)
125
02747-018
LINE REGULATION (ppm/mV)
VIN = 5V TO 36V
Figure 17. ADR03 Line Regulation vs. Temperature
0
2
4
6
8
LOAD CURRENT (mA)
Figure 20. ADR02 Dropout Voltage vs. Load Current
Rev. M | Page 12 of 20
ADR01/ADR02/ADR03/ADR06
6
4
1µV/DIV
DIFFERENTIAL VOLTAGE (V)
5
+125°C
3
+25°C
2
–40°C
0
2
4
8
6
10
LOAD CURRENT (mA)
TIME (1s/DIV)
02747-022
0
02747-025
1
Figure 24. ADR02 Typical Noise Voltage 0.1 Hz to 10.0 Hz
Figure 21. ADR03 Dropout Voltage vs. Load Current
4.5
3.5
+125°C
3.0
+25°C
50µV/DIV
DIFFERENTIAL VOLTAGE (V)
4.0
2.5
–40°C
2.0
1.5
1.0
0
2
4
6
8
10
LOAD CURRENT (mA)
TIME (1ms/DIV)
02747-023
0
02747-026
0.5
Figure 25. ADR02 Typical Noise Voltage 10 Hz to 10 kHz
Figure 22. ADR06 Dropout Voltage vs. Load Current
0.70
10V
TA = 25°C
0.65
VOUT 5V/DIV
0.60
0.55
0.50
0
2
4
6
8
LOAD CURRENT (mA)
10
TIME (2ms/DIV)
Figure 26. ADR02 Line Transient Response
Figure 23. ADR01 Quiescent Current vs. Load Current
Rev. M | Page 13 of 20
02747-027
NO LOAD CAPACITOR
NO INPUT CAPACITOR
02747-024
QUIESCENT CURRENT (mA)
8V
ADR01/ADR02/ADR03/ADR06
CIN = 0.01µF
NO LOAD CAPACITOR
NO LOAD CAPACITOR
VIN 10V/DIV
VIN 5V/DIV
LOAD OFF
LOAD ON
VOUT 100mV/DIV
02747-031
TIME (1ms/DIV)
02747-028
LOAD = 5mA
VOUT 5V/DIV
TIME (4µs/DIV)
Figure 27. ADR02 Load Transient Response
Figure 30. ADR02 Turn-On Response
CLOAD = 100nF
VIN 10V/DIV
VIN 5V/DIV
CL = 0.01µF
NO INPUT CAPACITOR
LOAD OFF
LOAD ON
VOUT 100mV/DIV
02747-032
TIME (1ms/DIV)
02747-029
LOAD = 5mA
VOUT 5V/DIV
TIME (4µs/DIV)
Figure 28. ADR02 Load Transient Response
Figure 31. ADR02 Turn-Off with No Input Capacitor
CL = 0.01µF
NO INPUT CAPACITOR
VIN 10V/DIV
VIN 10V/DIV
VOUT 5V/DIV
VOUT 5V/DIV
TIME (4µs/DIV)
Figure 32. ADR02 Turn-Off with No Input Capacitor
Figure 29. ADR02 Turn-Off Response
Rev. M | Page 14 of 20
02747-033
TIME (4µs/DIV)
02747-030
CIN = 0.01µF
NO LOAD CAPACITOR
ADR01/ADR02/ADR03/ADR06
APPLICATIONS INFORMATION
The ADR01/ADR02/ADR03/ADR06 are high precision, low
drift 10.0 V, 5.0 V, 2.5 V, and 3.0 V voltage references available
in an ultracompact footprint. The 8-lead SOIC versions of the
devices are drop-in replacements of the REF01/REF02/REF03
sockets with improved cost and performance.
ADR03 can be adjusted from 2.3 V to 2.8 V. Adjustment of the
output does not significantly affect the temperature performance
of the device, provided the temperature coefficients of the resistors are relatively low.
U1
ADR01/
ADR02/
ADR03/
ADR06
These devices are standard band gap references (see Figure 34).
The band gap cell contains two NPN transistors (Q18 and Q19)
that differ in emitter area by 2×. The difference in their VBE
produces a proportional-to-absolute temperature current (PTAT)
in R14, and, when combined with the VBE of Q19, produces a
band gap voltage, VBG, that is almost constant in temperature.
With an internal op amp and the feedback network of R5 and
R6, VO is set precisely at 10.0 V, 5.0 V, 2.5 V, and 3.0 V for the
ADR01, ADR02, ADR06, and ADR03, respectively. Precision
laser trimming of the resistors and other proprietary circuit
techniques are used to further enhance the initial accuracy,
temperature curvature, and drift performance of the ADR01/
ADR02/ADR03/ADR06.
VOUT
VIN
VIN
C1
0.1µF
VO
C2
0.1µF
TEMP TRIM
GND
02747-035
OVERVIEW
Figure 33. Basic Configuration
VIN
R1
R2
R4
R3
Q23
Q8
Q7
Q2
Q1
Q9
Q3
D1
Q10
D2
VO
Q4
The PTAT voltage is made available at the TEMP pin of the
ADR01/ADR02/ADR03/ADR06. It has a stable 1.96 mV/°C
temperature coefficient, such that users can estimate the
temperature change of the device by knowing the voltage
change at the TEMP pin.
D3
R12
C1
Q13
Q12
R13
R5
I1
R20
TRIM
Q14 Q15
R27
Although the ADR01/ADR02/ADR03/ADR06 are designed to
function stably without any external components, connecting a
0.1 μF ceramic capacitor to the output is highly recommended
to improve stability and filter out low level voltage noise. An
additional 1 μF to 10 μF electrolytic, tantalum, or ceramic
capacitor can be added in parallel to improve transient performance in response to sudden changes in load current;
however, the designer should keep in mind that doing so
increases the turn-on time of the device.
TEMP
The ADR01/ADR02/ADR03/ADR06 trim terminal can be used
to adjust the output voltage over a nominal voltage. This feature
allows a system designer to trim system errors by setting the
reference to a voltage other than 10.0 V/5.0 V/2.5 V/3.0 V. For
finer adjustment, add a series resistor of 470 kΩ. With the configuration shown in Figure 35, the ADR01 can be adjusted from
9.70 V to 10.05 V, the ADR02 can be adjusted from 4.95 V to
5.02 V, the ADR06 can be adjusted from 2.8 V to 3.3 V, and the
Q16
Q17
Q20
R6
R32
R24
R17
R41
R11
R42
GND
Figure 34. Simplified Schematic Diagram
U1
VIN
A 1 μF to 10 μF electrolytic, tantalum or ceramic capacitor can
also be connected to the input to improve transient response in
applications where the supply voltage may fluctuate. An additional 0.1 μF ceramic capacitor should be connected in parallel
to reduce supply noise. Mount both input and output capacitors
as close to the device pins as possible.
Output Adjustment
R14
VBG
1×
Q19
02747-034
2×
Q18
Input and Output Capacitors
ADR01/
ADR02/
ADR03/
ADR06
VIN
VO
VOUT
TEMP TRIM
GND
R1
470kΩ
POT
10kΩ
R2
1kΩ
02747-036
APPLYING THE ADR01/ADR02/ADR03/ADR06
Figure 35. Optional Trim Adjustment
Temperature Monitoring
As described at the end of the Overview section, the ADR01/
ADR02/ADR03/ADR06 provide a TEMP output (Pin 1 in Figure 1
and Pin 3 in Figure 2) that varies linearly with temperature. This
output can be used to monitor the temperature change in the
system. The voltage at VTEMP is approximately 550 mV at 25°C,
and the temperature coefficient is approximately 1.96 mV/°C
(see Figure 36). A voltage change of 39.2 mV at the TEMP pin
corresponds to a 20°C change in temperature.
Rev. M | Page 15 of 20
ADR01/ADR02/ADR03/ADR06
U1
0.80
0.75
VIN = 15V
SAMPLE SIZE = 5
ADR01/
ADR02/
ADR03/
ADR06
0.70
TEMP TRIM
GND
+15V
0.60
U2
ΔVTEMP /ΔT ≈ 1.96mV/°C
V+
0.55
–VREF
OP1177
V–
0.50
0.45
–15V
Figure 38. Negative Reference
0
25
50
75
100
125
TEMPERATURE (°C)
VIN
IIN
Figure 36. Voltage at TEMP Pin vs. Temperature
ADR01/
ADR02/
ADR03/
ADR06
The TEMP function is provided as a convenience rather than a
precise feature. Because the voltage at the TEMP node is
acquired from the band gap core, current pulling from this pin
has a significant effect on VOUT. Care must be taken to buffer the
TEMP output with a suitable low bias current op amp, such as
the AD8601, AD820, or OP1177, all of which result in less than
a 100 µV change in ∆VOUT (see Figure 37). Without buffering,
even tens of microamps drawn from the TEMP pin can cause
VOUT to fall out of specification.
15V
VIN
V+
VTEMP
1.9mV/°C
OP1177
VOUT
ISET = (VOUT – VL)/RSET
VL
IQ ≈ 0.6mA
IL = ISET + IQ
02747-040
RL
Figure 39. Low Cost Current Source
PRECISION CURRENT SOURCE WITH
ADJUSTABLE OUTPUT
VO
Alternatively, a precision current source can be implemented
with the circuit shown in Figure 40. By adding a mechanical or
digital potentiometer, this circuit becomes an adjustable current
source. If a digital potentiometer is used, the load current is
simply the voltage across Terminal B to Terminal W of the
digital potentiometer divided by RSET.
TEMP TRIM
GND
V–
02747-038
U2
VIN
RSET
GND
U1
ADR01/
ADR02/
ADR03/
ADR06
VOUT
Figure 37. Temperature Monitoring
IL =
NEGATIVE REFERENCE
Without using any matching resistors, a negative reference can
be configured, as shown in Figure 38. For the ADR01, the
voltage difference between VOUT and GND is 10.0 V. Because
VOUT is at virtual ground, U2 closes the loop by forcing the
GND pin to be the negative reference node. U2 should be a
precision op amp with a low offset voltage characteristic.
VREF × D
RSET
(1)
where D is the decimal equivalent of the digital potentiometer
input code.
U1
ADR01/
ADR02/
ADR03/
ADR06
+12V
LOW COST CURRENT SOURCE
Unlike most references, the ADR01/ADR02/ADR03/ADR06
employ an NPN Darlington in which the quiescent current
remains constant with respect to the load current, as shown in
Figure 23. As a result, a current source can be configured as
shown in Figure 39 where ISET = (VOUT − VL)/RSET. IL is simply
the sum of ISET and IQ. Although simple, IQ varies typically from
0.55 mA to 0.65 mA, limiting this circuit to general-purpose
applications.
Rev. M | Page 16 of 20
VIN
VOUT
0V TO (5V + VL)
B
AD5201
TEMP TRIM
GND
W
100kΩ
A
+12V
RSET
1kΩ
U2
V+
OP1177
–5V TO VL
V–
–12V
VL
RL
1kΩ
IL
Figure 40. Programmable 0 mA to 5 mA Current Source
02747-041
–25
02747-037
0.40
–50
02747-039
VTEMP (V)
VOUT
VIN
+5V TO +15V
0.65
ADR01/ADR02/ADR03/ADR06
To optimize the resolution of this circuit, dual-supply op amps
should be used because the ground potential of ADR02 can
swing from −5.0 V at zero scale to VL at full scale of the
potentiometer setting.
PROGRAMMABLE 4 mA TO 20 mA CURRENT
TRANSMITTER
Because of their precision, adequate current handling, and small
footprint, the devices are suitable as the reference sources for
many high performance converter circuits. One of these
applications is the multichannel 16-bit, 4 mA to 20 mA current
transmitter in the industrial control market (see Figure 41).
This circuit employs a Howland current pump at the output to
yield better efficiency, a lower component count, and a higher
voltage compliance than the conventional design with op amps
and MOSFETs. In this circuit, if the resistors are matched such
that R1 = R1′, R2 = R2′, R3 = R3′, the load current is
5
RL = 500Ω
IL = 0mA TO 20mA
4
3
(2)
In this circuit, the AD8512 is capable of delivering 20 mA of
current, and the voltage compliance approaches 15.0 V.
VIN
VOUT
TEMP TRIM
RF
VDD
IO
10V V
AD5544
REF
IO
GND
U3
0
8192
16384
24576
32768
40960
49152 57344 65536
PRECISION BOOSTED OUTPUT REGULATOR
VX
A precision voltage output with boosted current capability can
be realized with the circuit shown in Figure 43. In this circuit,
U2 forces VO to be equal to VREF by regulating the turn-on of
N1, thereby making the load current furnished by VIN. In this
configuration, a 50 mA load is achievable at VIN of 15.0 V.
Moderate heat is generated on the MOSFET, and higher current
can be achieved with a replacement of a larger device. In
addition, for a heavy capacitive load with a fast edging input
signal, a buffer should be added at the output to enhance the
transient response.
R2
15kΩ
R1
150kΩ
VP
C1
–15V
10pF
U4
R1'
150kΩ
R3
50Ω
VO
R3'
50Ω
VL
VN
LOAD
500Ω
N1
4mA TO 20mA
02747-042
AD8512
R2'
15kΩ
U1 = ADR01/ADR02/ADR03/ADR06, REF01
U2 = AD5543/AD5544/AD5554
U3, U4 = AD8512
–1
Figure 42. Result of Programmable 4 mA to 20 mA Current Transmitter
GND
DIGITAL INPUT
CODE 20%–100% FULL SCALE
0
VIN
Figure 41. Programmable 4 mA to 20 mA Transmitter
The Howland current pump yields a potentially infinite output
impedance, that is highly desirable, but resistance matching is
critical in this application. The output impedance can be determined using Equation 3. As shown by this equation, if the
resistors are perfectly matched, ZO is infinite. Alternatively, if
they are not matched, ZO is either positive or negative. If the
latter is true, oscillation can occur. For this reason, connect
Rev. M | Page 17 of 20
U1
ADR01/
ADR02/
ADR03/
ADR06
VIN
VOUT
TEMP TRIM
GND
2N7002
RL
200Ω
CL
1µF
VO
15V
R1
100Ω
R2
100Ω
V+
OP1177
V–
U2
C1
1000pF
Figure 43. Precision Boosted Output Regulator
02747-044
U1
15V
25°C
70°C
CODE (Decimal)
0V TO –10V
+15V
2
1
According to Equation 2, R3′ can be used to set the sensitivity.
R3′ can be made as small as necessary to achieve the current
needed within U4 output current driving capability. Alternatively, other resistors can be kept high to conserve power.
U2
(3)
In this circuit, an ADR01 provides the stable 10.000 V reference
for the AD5544 quad 16-bit DAC. The resolution of the adjustable current is 0.3 µA/step; the total worst-case INL error is
merely 4 LSBs. Such error is equivalent to 1.2 µA or a 0.006%
system error, which is well below most systems’ requirements.
The result is shown in Figure 42 with measurement taken at 25°C
and 70°C; total system error of 4 LSBs at both 25°C and 70°C.
where D is similarly the decimal equivalent of the DAC input
code and N is the number of bits of the DAC.
5V
Vt
R1′
=
I t R1′ R2
− 1
R1R2′
02747-043
(R2 + R3) R1 VREF × D
×
2N
R3′
ZO =
INL (LSB)
IL =
Capacitor C1 in the range of 1 pF to 10 pF between VP and the
output terminal of U4 to filter any oscillation.
ADR01/ADR02/ADR03/ADR06
OUTLINE DIMENSIONS
2.20
2.00
1.80
1.35
1.25
1.15
5
2.40
2.10
1.80
4
1
3
2
0.65 BSC
0.40
0.10
1.10
0.80
0.10 MAX
COPLANARITY
0.10
0.46
0.36
0.26
0.22
0.08
SEATING
PLANE
0.30
0.15
072809-A
1.00
0.90
0.70
COMPLIANT TO JEDEC STANDARDS MO-203-AA
Figure 44. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]
(KS-5)
Dimensions shown in millimeters
2.90 BSC
5
4
2.80 BSC
1.60 BSC
1
2
3
0.95 BSC
1.90
BSC
*1.00 MAX
0.10 MAX
0.50
0.30
0.20
0.08
8°
4°
0°
SEATING
PLANE
0.60
0.45
0.30
100708-A
*0.90 MAX
0.70 MIN
*COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.
Figure 45. 5-Lead Thin Small Outline Transistor Package [TSOT]
(UJ-5)
Dimensions shown in millimeters
5.00 (0.1968)
4.80 (0.1890)
1
5
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
SEATING
PLANE
6.20 (0.2441)
5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
0.50 (0.0196)
0.25 (0.0099)
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 46. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)
Rev. M | Page 18 of 20
012407-A
8
4.00 (0.1574)
3.80 (0.1497)
ADR01/ADR02/ADR03/ADR06
ORDERING GUIDES
ADR01 Ordering Guide
Model1
ADR01AR
ADR01ARZ
ADR01ARZ-REEL7
ADR01BR
ADR01BR-REEL7
ADR01BRZ
ADR01BRZ-REEL7
ADR01AUJZ-REEL7
ADR01BUJZ-REEL7
ADR01AKSZ-REEL7
ADR01BKSZ-REEL7
ADR01CRZ
ADR01CRZ-REEL
1
Output
Voltage
VO (V)
10
10
10
10
10
10
10
10
10
10
10
10
10
Initial Accuracy
(mV)
10
10
10
5
5
5
5
10
5
10
5
10
10
(%)
0.1
0.1
0.1
0.05
0.05
0.05
0.05
0.1
0.05
0.1
0.05
0.1
0.1
Temperature
Coefficient
(ppm/°C)
10
10
10
3
3
3
3
25
9
25
9
40
40
Temperature
Range
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
Package
Description
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
5-Lead TSOT
5-Lead TSOT
5-Lead SC70
5-Lead SC70
8-Lead SOIC_N
8-Lead SOIC_N
Package
Option
R-8
R-8
R-8
R-8
R-8
R-8
R-8
UJ-5
UJ-5
KS-5
KS-5
R-8
R-8
Ordering
Quantity
98
98
1,000
98
1,000
98
1,000
3,000
3,000
3,000
3,000
98
2,500
Branding
R1E
R1F
R1E
R1F
Z = RoHS Compliant Part.
ADR02 Ordering Guide
Model1, 2
ADR02AR
ADR02AR-REEL
ADR02AR-REEL7
ADR02ARZ
ADR02ARZ-REEL
ADR02ARZ-REEL7
ADR02WARZ-REEL
ADR02WARZ-REEL7
ADR02BR
ADR02BRZ
ADR02BRZ-REEL7
ADR02AUJZ-REEL7
ADR02BUJZ-R2
ADR02BUJZ-REEL7
ADR02AKSZ-REEL7
ADR02BKSZ-REEL7
ADR02CRZ
ADR02CRZ-REEL
1
2
Output
Voltage
VO (V)
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
Initial Accuracy
(mV)
5
5
5
5
5
5
5
5
3
3
3
5
3
3
5
3
5
5
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.06
0.06
0.06
0.1
0.06
0.06
0.1
0.06
0.1
0.1
Temperature
Coefficient
(ppm/°C)
10
10
10
10
10
10
10
10
3
3
3
25
9
9
25
9
40
40
Temperature
Range
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
Z = RoHS Compliant Part.
W = Qualified for Automotive Applications.
Rev. M | Page 19 of 20
Package
Description
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead SC70
5-Lead SC70
8-Lead SOIC_N
8-Lead SOIC_N
Package
Option
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
UJ-5
UJ-5
UJ-5
KS-5
KS-5
R-8
R-8
Ordering
Quantity
98
2,500
1,000
98
2,500
1,000
2,500
1,000
98
98
1,000
3,000
250
3,000
3,000
3,000
98
2,500
Branding
R1G
R1H
R1H
R1G
R1H
ADR01/ADR02/ADR03/ADR06
ADR03 Ordering Guide
Model1
ADR03AR-REEL7
ADR03ARZ
ADR03ARZ-REEL7
ADR03BR
ADR03BRZ
ADR03BRZ-REEL7
ADR03AUJZ-REEL7
ADR03BUJZ-REEL7
ADR03AKSZ-REEL7
ADR03BKSZ-REEL7
ADR03CRZ
ADR03CRZ-REEL
1
Output
Voltage
VO (V)
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
Initial Accuracy
(mV)
5
5
5
2.5
2.5
2.5
5
2.5
5
2.5
5
5
(%)
0.2
0.2
0.2
0.1
0.1
0.1
0.2
0.1
0.2
0.1
0.1
0.1
Temperature
Coefficient
(ppm/°C)
10
10
10
3
3
3
25
9
25
9
40
40
Temperature
Range
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
Package
Description
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
5-Lead TSOT
5-Lead TSOT
5-Lead SC70
5-Lead SC70
8-Lead SOIC_N
8-Lead SOIC_N
Package
Option
R-8
R-8
R-8
R-8
R-8
R-8
UJ-5
UJ-5
KS-5
KS-5
R-8
R-8
Ordering
Quantity
1,000
98
1,000
98
98
1,000
3,000
3,000
3,000
3,000
98
2,500
Temperature
Coefficient
(ppm/°C)
10
10
3
3
25
9
25
9
40
Temperature
Range
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
Package
Description
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
5-Lead TSOT
5-Lead TSOT
5-Lead SC70
5-Lead SC70
8-Lead SOIC_N
Package
Option
R-8
R-8
R-8
R-8
UJ-5
UJ-5
KS-5
KS-5
R-8
Ordering
Quantity
98
1,000
98
1,000
3,000
3,000
3,000
3,000
2,500
Branding
R1J
R1K
R1J
R1K
Z = RoHS Compliant Part.
ADR06 Ordering Guide
Model1
ADR06ARZ
ADR06ARZ-REEL7
ADR06BRZ
ADR06BRZ-REEL7
ADR06AUJZ-REEL7
ADR06BUJZ-REEL7
ADR06AKSZ-REEL7
ADR06BKSZ-REEL7
ADR06CRZ-REEL
1
Output
Voltage
VO (V)
3
3
3
3
3
3
3
3
3
Initial Accuracy
(mV)
6
6
3
3
6
3
6
3
6
(%)
0.2
0.2
0.1
0.1
0.2
0.1
0.2
0.1
0.2
Z = RoHS Compliant Part.
©2002–2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D02747-0-4/10(M)
Rev. M | Page 20 of 20
Branding
R1L
R1M
R1L
R1M