0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADR01AR

ADR01AR

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOICN-8_4.9X3.9MM

  • 描述:

    IC VREF 10V 8SOIC

  • 数据手册
  • 价格&库存
ADR01AR 数据手册
Ultracompact, Precision 10.0 V/5.0 V/2.5 V/3.0 V Voltage References ADR01/ADR02/ADR03/ADR06 PIN CONFIGURATIONS TEMP 1 GND 2 VIN 3 ADR01/ ADR02/ ADR03/ ADR06 5 TRIM TOP VIEW 4 VOUT (Not to Scale) Figure 1. 5-Lead, SC70/TSOT Surface-Mount Packages TP 1 VIN 2 TEMP 3 GND 4 ADR01/ ADR02/ ADR03/ ADR06 8 TP 7 NIC 6 VOUT TOP VIEW 5 TRIM (Not to Scale) NIC = NO INTERNAL CONNECT TP = TEST PIN (DO NOT CONNECT) 02747-002 Ultracompact SC70 and TSOT packages Low temperature coefficient 8-lead SOIC: 3 ppm/°C 5-lead SC70: 9 ppm/°C 5-lead TSOT: 9 ppm/°C Initial accuracy ±0.1% No external capacitor required Low noise 10 µV p-p (0.1 Hz to 10.0 Hz) Wide operating range ADR01: 12.0 V to 36.0 V ADR02: 7.0 V to 36.0 V ADR03: 4.5 V to 36.0 V ADR06: 5.0 V to 36.0 V High output current 10 mA Wide temperature range: –40°C to +125°C ADR01/ADR02/ADR03 pin compatible to industrystandard REF01/REF02/REF03 ADR02 SOIC qualified for automotive applications 02747-001 FEATURES Figure 2. 8-Lead, SOIC Surface-Mount Package APPLICATIONS Precision data acquisition systems High resolution converters Industrial process control systems Precision instruments PCMCIA cards GENERAL DESCRIPTION The ADR01, ADR02, ADR03, and ADR06 are precision 10.0 V, 5.0 V, 2.5 V, and 3.0 V band gap voltage references featuring high accuracy, high stability, and low power consumption. The parts are housed in tiny, 5-lead SC70 and TSOT packages, as well as in 8-lead SOIC versions. The SOIC versions of the ADR01, ADR02, and ADR03 are drop-in replacements1 to the industrystandard REF01, REF02, and REF03. The small footprint and wide operating range make the ADR0x references ideally suited for general-purpose and space-constrained applications. With an external buffer and a simple resistor network, the TEMP terminal can be used for temperature sensing and approximation. A TRIM terminal is provided on the devices for fine adjustment of the output voltage. 1 The ADR01, ADR02, ADR03, and ADR06 are compact, low drift voltage references that provide an extremely stable output voltage from a wide supply voltage range. They are available in 5-lead SC70 and TSOT packages, and 8-lead SOIC packages with A, B, and C grade selections. All parts are specified over the extended industrial (–40°C to +125°C) temperature range. The ADR02 A grade 8-lead SOIC is qualified for automotive applications. Table 1. Selection Guide Part Number ADR01 ADR02 ADR03 ADR06 Output Voltage 10.0 V 5.0 V 2.5 V 3.0 V ADRO1, ADR02, and ADR03 are component-level compatible with REF01, REF02, and REF03, respectively. No guarantees for system-level compatibility are implied. SOIC versions of ADR01/ADR02/ADR03 are pin-to-pin compatible with 8-lead SOIC versions of REF01/REF02/REF03, respectively, with the additional temperature monitoring function. Rev. M Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. www.analog.com Tel: 781.329.4700 Fax: 781.461.3113 ©2002–2010 Analog Devices, Inc. All rights reserved. ADR01/ADR02/ADR03/ADR06 TABLE OF CONTENTS Features .............................................................................................. 1 Terminology .......................................................................................9 Applications ....................................................................................... 1 Typical Performance Characteristics ........................................... 10 Pin Configurations ........................................................................... 1 Applications Information .............................................................. 15 General Description ......................................................................... 1 Overview ..................................................................................... 15 Revision History ............................................................................... 2 Applying the ADR01/ADR02/ADR03/ADR06 ...................... 15 Specifications..................................................................................... 4 Negative Reference ..................................................................... 16 ADR01 Electrical Characteristics ............................................... 4 Low Cost Current Source .......................................................... 16 ADR02 Electrical Characteristics ............................................... 5 Precision Current Source with Adjustable Output ................ 16 ADR03 Electrical Characteristics ............................................... 6 Programmable 4 mA to 20 mA Current Transmitter............ 17 ADR06 Electrical Characteristics ............................................... 7 Precision Boosted Output Regulator ....................................... 17 Absolute Maximum Ratings ............................................................ 8 Outline Dimensions ....................................................................... 18 Thermal Resistance ...................................................................... 8 Ordering Guides ......................................................................... 19 ESD Caution .................................................................................. 8 REVISION HISTORY 4/10—Rev. L to Rev. M Changes to Features Section and General Description Section . 1 Changes to Figure 41 ...................................................................... 17 Changes to Ordering Guides Section........................................... 19 12/08—Rev. K to Rev. L Changes to Maximum Input Voltage ............................... Universal Removed Die Version ........................................................ Universal Changes to Table 2 ............................................................................ 3 Changes to Table 3 ............................................................................ 4 Changes to Table 4 ............................................................................ 5 Changes to Table 5 ............................................................................ 6 Deleted Table 6 and Figure 3 ........................................................... 7 Changes to Terminology Section.................................................... 8 Added Input and Output Capacitors Section ............................. 15 9/04—Rev. F to Rev. G Changes to Table 2.............................................................................4 Changes to Table 3.............................................................................5 Changes to Table 4.............................................................................6 Changes to Table 5.............................................................................7 Changes to Ordering Guide .......................................................... 19 7/04—Rev. E to Rev. F Changes to ADR02 Electrical Characteristics, Table 2 .................4 Changes to Ordering Guide .......................................................... 19 2/04—Rev. D to Rev. E Added C grade .................................................................... Universal Changes to Outline Dimensions .................................................. 19 Updated Ordering Guide .............................................................. 20 2/08—Rev. J to Rev. K Changes to Terminology Section.................................................... 9 Changes to Ordering Guide .......................................................... 19 8/03—Rev. C to Rev D Added ADR06 ..................................................................... Universal Change to Figure 27 ....................................................................... 13 3/07—Rev. I to Rev. J Renamed Parameters and Definitions Section ............................. 9 Changes to Temperature Monitoring Section ............................ 15 Changes to Ordering Guide .......................................................... 19 6/03—Rev. B to Rev C Changes to Features Section ............................................................1 Changes to General Description Section .......................................1 Changes to Figure 2 ...........................................................................1 Changes to Specifications Section ...................................................2 Addition of Dice Electrical Characteristics and Layout ...............6 Changes to Absolute Maximum Ratings Section ..........................7 Updated SOIC (R-8) Outline Dimensions .................................. 19 Changes to Ordering Guide .......................................................... 20 7/05—Rev. H to Rev. I Changes to Table 5 ............................................................................ 7 Updated Outline Dimensions ....................................................... 19 Changes to Ordering Guide .......................................................... 19 12/04—Rev. G to Rev. H Changes to ADR06 Ordering Guide ............................................ 20 Rev. M | Page 2 of 20 ADR01/ADR02/ADR03/ADR06 2/03—Rev. A to Rev. B Added ADR03..................................................................... Universal Added TSOT-5 (UJ) Package ............................................ Universal Updated Outline Dimensions ........................................................18 12/02—Rev. 0 to Rev. A Changes to Features Section ............................................................ 1 Changes to General Description ..................................................... 1 Table I Deleted ................................................................................... 1 Changes to ADR01 Specifications .................................................. 2 Changes to ADR02 Specifications .................................................. 3 Changes to Absolute Maximum Ratings Section ......................... 4 Changes to Ordering Guide ............................................................. 4 Updated Outline Dimensions........................................................ 12 Rev. M | Page 3 of 20 ADR01/ADR02/ADR03/ADR06 SPECIFICATIONS ADR01 ELECTRICAL CHARACTERISTICS VIN = 12.0 V to 36.0 V, TA = 25°C, unless otherwise noted. Table 2. Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A and C grades A and C grades Min 9.990 Typ 10.000 OUTPUT VOLTAGE INITIAL ACCURACY VO VOERR B grade B grade 9.995 10.000 TEMPERATURE COEFFICIENT TCVO A grade, 8-lead SOIC, −40°C < TA < +125°C A grade, 5-lead TSOT, –40°C < TA < +125°C A grade, 5-lead SC70, –40°C < TA < +125°C B grade, 8-lead SOIC, –40°C < TA < +125°C B grade, 5-lead TSOT, –40°C < TA < +125°C B grade, 5-lead SC70, –40°C < TA < +125°C C grade, 8-lead SOIC, –40°C < TA < +125°C DROPOUT VOLTAGE LINE REGULATION LOAD REGULATION VDO ∆VO/∆VIN ∆VO/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE VOLTAGE NOISE DENSITY TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND TEMPERATURE SENSOR Voltage Output at TEMP Pin Temperature Sensitivity IIN eN p-p eN tR ∆VO ∆VO_HYS RRR ISC 1 10 Max 10.010 10 0.1 10.005 5 0.05 10 25 25 3 9 9 40 7 40 30 70 0.65 20 510 4 50 70 −75 30 1 3 1 2 VIN = 12.0 V to 36.0 V, –40°C < TA < +125°C ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C, VIN = 15.0 V No load, –40°C < TA < +125°C 0.1 Hz to 10.0 Hz 1 kHz 1000 hours fIN = 10 kHz VTEMP TCVTEMP 550 1.96 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period. Rev. M | Page 4 of 20 Unit V mV % V mV % ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C V ppm/V ppm/mA mA µV p-p nV/√Hz µs ppm ppm dB mA mV mV/°C ADR01/ADR02/ADR03/ADR06 ADR02 ELECTRICAL CHARACTERISTICS VIN = 7.0 V to 36.0 V, TA = 25°C, unless otherwise noted. Table 3. Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A and C grades A and C grades Min 4.995 Typ 5.000 OUTPUT VOLTAGE INITIAL ACCURACY VO VOERR B grade B grade 4.997 5.000 TEMPERATURE COEFFICIENT TCVO A grade, 8-lead SOIC, –40°C < TA < +125°C A grade, 5-lead TSOT, –40°C < TA < +125°C A grade, 5-lead SC70, –40°C < TA < +125°C A grade, 5-lead SC70, –55°C < TA < +125°C B grade, 8-lead SOIC, –40°C < TA < +125°C B grade, 5-lead TSOT, –40°C < TA < +125°C B grade, 5-lead SC70, –40°C < TA < +125°C C grade, 8-lead SOIC, –40°C < TA < +125°C DROPOUT VOLTAGE LINE REGULATION VDO ∆VO/∆VIN LOAD REGULATION ∆VO/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE VOLTAGE NOISE DENSITY TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS IIN eN p-p eN tR ∆VO ∆VO_HYS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND TEMPERATURE SENSOR Voltage Output at TEMP Pin Temperature Sensitivity RRR ISC 1 10 Max 5.005 5 0.1 5.003 3 0.06 10 25 25 30 3 9 9 40 7 7 40 30 40 70 Unit V mV % V mV % ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C V ppm/V ppm/V ppm/mA 45 80 ppm/mA 0.65 10 230 4 50 70 80 –75 30 1 mA µV p-p nV/√Hz µs ppm ppm ppm dB mA 3 1 2 VIN = 7.0 V to 36.0 V, –40°C < TA < +125°C VIN = 7.0 V to 36.0 V, –55°C < TA < +125°C ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C, VIN = 10.0 V ILOAD = 0 mA to 10 mA, –55°C < TA < +125°C, VIN = 10.0 V No load, –40°C < TA < +125°C 0.1 Hz to 10.0 Hz 1 kHz 1000 hours –55°C < TA < +125°C fIN = 10 kHz VTEMP TCVTEMP 550 1.96 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period. Rev. M | Page 5 of 20 mV mV/°C ADR01/ADR02/ADR03/ADR06 ADR03 ELECTRICAL CHARACTERISTICS VIN = 4.5 V to 36.0 V, TA = 25°C, unless otherwise noted. Table 4. Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A and C grades A and C grades Min 2.495 Typ 2.500 OUTPUT VOLTAGE INITIAL ACCURACY VO VOERR B grades B grades 2.4975 2.5000 TEMPERATURE COEFFICIENT TCVO A grade, 8-lead SOIC, –40°C < TA < +125°C A grade, 5-lead TSOT, –40°C < TA < +125°C A grade, 5-lead SC70, –40°C < TA < +125°C A grade, 5-lead SC70, –55°C < TA < +125°C B grade, 8-lead SOIC, –40°C < TA < +125°C B grade, 5-lead TSOT, –40°C < TA < +125°C B grade, 5-lead SC70, –40°C < TA < +125°C C grade, 8-lead SOIC, –40°C < TA < +125°C DROPOUT VOLTAGE LINE REGULATION VDO ∆VO/∆VIN LOAD REGULATION ∆ VO/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE IIN eN p-p VOLTAGE NOISE DENSITY TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS eN tR ∆VO ∆VO_HYS RIPPLE REJECTION RATIO RRR SHORT CIRCUIT TO GND TEMPERATURE SENSOR Voltage Output at TEMP Pin Temperature Sensitivity 1 Max 2.505 5 Unit V mV 10 0.2 2.5025 2.5 0.1 10 25 25 30 3 9 9 40 % V mV % ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C 7 7 25 30 40 70 V ppm/V ppm/V ppm/mA 45 80 ppm/mA 0.65 6 1 mA µV p-p 3 1 2 VIN = 4.5 V to 36.0 V, –40°C < TA < +125°C VIN = 4.5 V to 36.0 V, –55°C < TA < +125°C ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C, VIN = 7.0 V ILOAD = 0 mA to 10 mA, –55°C < TA < +125°C, VIN = 7.0 V No load, –40°C < TA < +125°C 0.1 Hz to 10.0 Hz 1 kHz 230 4 50 70 80 –75 nV/√Hz µs ppm ppm ppm dB ISC 30 mA VTEMP TCVTEMP 550 1.96 mV mV/°C 1000 hours –55°C < TA < +125°C fIN = 10 kHz The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period. Rev. M | Page 6 of 20 ADR01/ADR02/ADR03/ADR06 ADR06 ELECTRICAL CHARACTERISTICS VIN = 5.0 V to 36.0 V, TA = 25°C, unless otherwise noted. Table 5. Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A and C grades A and C grades Min 2.994 Typ 3.000 OUTPUT VOLTAGE INITIAL ACCURACY VO VOERR B grade B grade 2.997 3.000 TEMPERATURE COEFFICIENT TCVO A grade, 8-lead SOIC, –40°C < TA < +125°C A grade, 5-lead TSOT, –40°C < TA < +125°C A grade, 5-lead SC70, –40°C < TA < +125°C B grade, 8-lead SOIC, –40°C < TA < +125°C B grade, 5-lead TSOT, –40°C < TA < +125°C B grade, 5-lead SC70, –40°C < TA < +125°C C grade, 8-lead SOIC, –40°C < TA < +125°C DROPOUT VOLTAGE LINE REGULATION LOAD REGULATION VDO ∆VO/∆VIN ∆VO/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE VOLTAGE NOISE DENSITY TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND TEMPERATURE SENSOR Voltage Output at TEMP Pin Temperature Sensitivity IIN eN p-p eN tR ∆VO ∆VO_HYS RRR ISC 1 10 Max 3.006 6 0.2 3.003 3 0.1 10 25 25 3 9 9 40 7 40 30 70 0.65 10 510 4 50 70 –75 30 1 3 1 2 VIN = 5.0 V to 36.0 V, –40°C < TA < +125°C ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C, VIN = 7.0 V No load, –40°C < TA < +125°C 0.1 Hz to 10.0 Hz 1 kHz 1000 hours fIN = 10 kHz VTEMP TCVTEMP 550 1.96 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period. Rev. M | Page 7 of 20 Unit V mV % V mV % ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C V ppm/V ppm/mA mA µV p-p nV/√Hz µs ppm ppm dB mA mV mV/°C ADR01/ADR02/ADR03/ADR06 ABSOLUTE MAXIMUM RATINGS Ratings are at 25°C, unless otherwise noted. THERMAL RESISTANCE Table 6. θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Parameter Supply Voltage Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature Range (Soldering, 60 sec) Rating 36.0 V Indefinite –65°C to +150°C –40°C to +125°C –65°C to +150°C 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 7. Thermal Resistance Package Type 5-Lead SC70 (KS-5) 5-Lead TSOT (UJ-5) 8-Lead SOIC (R-8) ESD CAUTION Rev. M | Page 8 of 20 θJA 376 230 130 θJC 189 146 43 Unit °C/W °C/W °C/W ADR01/ADR02/ADR03/ADR06 TERMINOLOGY Dropout Voltage (VDO) Dropout voltage, sometimes referred to as supply voltage headroom or supply output voltage differential, is defined as the minimum voltage differential between the input and output necessary for the device to operate, such as Long-Term Stability (ΔVOUT_LTD) Long-term stability refers to the shift in output voltage at 25°C after 1000 hours of operation in a 25°C environment. This may also be expressed as either a shift in voltage or a difference in parts per million from the nominal output as follows: VDO = (VIN – VOUT)min|IL = Constant ΔVOUT_LTD = |VOUT(t1) – VOUT(t0)| [V] Because the dropout voltage depends upon the current passing through the device, it is always specified for a given load current. Temperature Coefficient (TCVO) The temperature coefficient relates the change in output voltage to the change in ambient temperature of the device, as normalized by the output voltage at 25°C. This parameter is expressed in ppm/°C and can be determined by the following equation: TCVO = VOUT (T2 ) − VOUT (T1 ) × 106 ppm/ C VOUT (25C ) × (T2 − T1 ) [ ] where: VOUT(25°C) is the output voltage at 25°C. VOUT(T1) is the output voltage at Temperature 1. VOUT(T2) is the output voltage at Temperature 2. ΔVOUT _ LTD = where, VOUT(t0) is the VOUT at 25°C at Time 0. VOUT(t1) is the VOUT at 25°C after 1000 hours of operation at 25°C. Line Regulation Line regulation refers to the change in output voltage in response to a given change in input voltage, and is expressed in either percent per volt, parts per million per volt, or microvolt per volt change in input voltage. This parameter accounts for the effects of self-heating. Load Regulation Load regulation refers to the change in output voltage in response to a given change in load current, and is expressed in either microvolts per milliampere, parts per million per milliampere, or ohms of dc output resistance. This parameter accounts for the effects of self-heating. Output Voltage Hysteresis (ΔVOUT_HYS) Output voltage hysteresis represents the change in output voltage after the device is exposed to a specified temperature cycle. This may be expressed as either a shift in voltage or a difference in parts per million from the nominal output as follows: VOUT_HYS = VOUT(25°C) – VOUT_TC [V] VOUT _ HYS = VOUT (25C ) − VOUT _ TC VOUT (25C ) VOUT (t 1 ) − VOUT (t 0 ) × 10 6 [ppm] VOUT (t 0 ) × 106 [ppm] where: VOUT(25°C) is the output voltage at 25°C. VOUT_TC is the output voltage after temperature cycling. Thermal hysteresis occurs as a result of forces exhibited upon the internal die by its packaging. The effect is more pronounced in parts with smaller packages. Rev. M | Page 9 of 20 ADR01/ADR02/ADR03/ADR06 TYPICAL PERFORMANCE CHARACTERISTICS 3.002 10.010 10.005 10.000 VOUT (V) VOUT (V) 3.001 3.000 9.995 2.999 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 2.998 –40 5.004 0.7 SUPPLY CURRENT (mA) 20 35 50 65 80 95 110 125 5.000 +125°C +25°C 0.6 –40°C 0.5 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 02747-005 0.4 –25 12 Figure 4. ADR02 Typical Output Voltage vs. Temperature 16 20 24 28 INPUT VOLTAGE (V) 32 36 Figure 7. ADR01 Supply Current vs. Input Voltage 0.8 2.501 0.7 SUPPLY CURRENT (mA) 2.502 2.500 2.499 +125°C +25°C 0.6 –40°C 0.5 –10 5 20 35 50 65 80 95 110 TEMPERATURE (°C) 125 02747-006 0.4 –25 Figure 5. ADR03 Typical Output Voltage vs. Temperature 8 12 16 20 24 28 32 INPUT VOLTAGE (V) Figure 8. ADR02 Supply Current vs. Input Voltage Rev. M | Page 10 of 20 36 02747-009 VOUT (V) 0.8 4.996 VOUT (V) 5 Figure 6. ADR06 Typical Output Voltage vs. Temperature 5.008 2.498 –40 –10 TEMPERATURE (°C) Figure 3. ADR01 Typical Output Voltage vs. Temperature 4.992 –40 –25 02747-008 –25 02747-004 9.985 –40 02747-007 9.990 ADR01/ADR02/ADR03/ADR06 50 0.85 IL = 0mA TO 5mA 0.80 LOAD REGULATION (ppm/mA) 40 0.70 +125°C 0.65 +25°C 0.60 –40°C 0.55 0.50 30 VIN = 36V 20 10 0 VIN = 8V –10 0.45 –20 5 10 20 15 30 25 35 36 INPUT VOLTAGE (V) 02747-010 0.40 –40 0 85 25 125 TEMPERATURE (°C) 02747-013 SUPPLY CURRENT (mA) 0.75 Figure 12. ADR02 Load Regulation vs. Temperature Figure 9. ADR03 Supply Current vs. Input Voltage 0.80 60 IL = 0mA TO 10mA 50 LOAD REGULATION (ppm/mA) SUPPLY CURRENT (mA) 0.75 0.70 +125°C 0.65 +25°C 0.60 –40°C 0.55 0.50 VIN = 7V 40 VIN = 36V 30 20 10 10 20 15 25 30 35 36 INPUT VOLTAGE (V) 02747-011 5 –25 –10 5 20 35 80 95 110 125 125 TEMPERATURE (°C) Figure 13. ADR03 Load Regulation vs. Temperature Figure 10. ADR06 Supply Current vs. Input Voltage 40 40 IL = 0mA TO 10mA IL = 0mA TO 10mA 30 30 LOAD REGULATION (ppm/mA) VIN = 36V 20 10 0 VIN = 14V –10 –20 VIN = 36V 20 10 0 VIN = 7V –10 –20 –30 –40 –40 0 25 50 85 TEMPERATURE (°C) 125 02747-012 LOAD REGULATION (ppm/mA) 65 50 02747-014 0 –40 0.40 02747-015 0.45 –30 –40 –25 –10 5 20 35 50 65 80 95 110 TEMPERATURE (°C) Figure 14. ADR06 Load Regulation vs. Temperature Figure 11. ADR01 Load Regulation vs. Temperature Rev. M | Page 11 of 20 ADR01/ADR02/ADR03/ADR06 10 2 VIN = 14V TO 36V VIN = 6V TO 36V 8 LINE REGULATION (ppm/V) –2 –4 –6 –8 6 4 2 0 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) –4 –40 –25 –10 5 35 20 50 65 80 95 110 125 02747-019 –25 02747-016 –10 –40 10 02747-020 –2 10 02747-021 LINE REGULATION (ppm/V) 0 TEMPERATURE (°C) Figure 18. ADR06 Line Regulation vs. Temperature Figure 15. ADR01 Line Regulation vs. Temperature 5 8 DIFFERENTIAL VOLTAGE (V) 4 0 –4 –8 –40 4 3 +125°C 2 –40°C 1 +25°C 0 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 0 02747-017 LINE REGULATION (ppm/V) VIN = 8V TO 36V 2 4 8 6 LOAD CURRENT (mA) Figure 19. ADR01 Minimum Input-Output Voltage Differential vs. Load Current Figure 16. ADR02 Line Regulation vs. Temperature 8 4 DIFFERENTIAL VOLTAGE (V) 2 0 –2 4 +125°C –40°C 2 +25°C –4 –40 0 –25 –10 5 20 35 50 65 80 95 110 TEMPERATURE (°C) 125 02747-018 LINE REGULATION (ppm/mV) VIN = 5V TO 36V Figure 17. ADR03 Line Regulation vs. Temperature 0 2 4 6 8 LOAD CURRENT (mA) Figure 20. ADR02 Dropout Voltage vs. Load Current Rev. M | Page 12 of 20 ADR01/ADR02/ADR03/ADR06 6 4 1µV/DIV DIFFERENTIAL VOLTAGE (V) 5 +125°C 3 +25°C 2 –40°C 0 2 4 8 6 10 LOAD CURRENT (mA) TIME (1s/DIV) 02747-022 0 02747-025 1 Figure 24. ADR02 Typical Noise Voltage 0.1 Hz to 10.0 Hz Figure 21. ADR03 Dropout Voltage vs. Load Current 4.5 3.5 +125°C 3.0 +25°C 50µV/DIV DIFFERENTIAL VOLTAGE (V) 4.0 2.5 –40°C 2.0 1.5 1.0 0 2 4 6 8 10 LOAD CURRENT (mA) TIME (1ms/DIV) 02747-023 0 02747-026 0.5 Figure 25. ADR02 Typical Noise Voltage 10 Hz to 10 kHz Figure 22. ADR06 Dropout Voltage vs. Load Current 0.70 10V TA = 25°C 0.65 VOUT 5V/DIV 0.60 0.55 0.50 0 2 4 6 8 LOAD CURRENT (mA) 10 TIME (2ms/DIV) Figure 26. ADR02 Line Transient Response Figure 23. ADR01 Quiescent Current vs. Load Current Rev. M | Page 13 of 20 02747-027 NO LOAD CAPACITOR NO INPUT CAPACITOR 02747-024 QUIESCENT CURRENT (mA) 8V ADR01/ADR02/ADR03/ADR06 CIN = 0.01µF NO LOAD CAPACITOR NO LOAD CAPACITOR VIN 10V/DIV VIN 5V/DIV LOAD OFF LOAD ON VOUT 100mV/DIV 02747-031 TIME (1ms/DIV) 02747-028 LOAD = 5mA VOUT 5V/DIV TIME (4µs/DIV) Figure 27. ADR02 Load Transient Response Figure 30. ADR02 Turn-On Response CLOAD = 100nF VIN 10V/DIV VIN 5V/DIV CL = 0.01µF NO INPUT CAPACITOR LOAD OFF LOAD ON VOUT 100mV/DIV 02747-032 TIME (1ms/DIV) 02747-029 LOAD = 5mA VOUT 5V/DIV TIME (4µs/DIV) Figure 28. ADR02 Load Transient Response Figure 31. ADR02 Turn-Off with No Input Capacitor CL = 0.01µF NO INPUT CAPACITOR VIN 10V/DIV VIN 10V/DIV VOUT 5V/DIV VOUT 5V/DIV TIME (4µs/DIV) Figure 32. ADR02 Turn-Off with No Input Capacitor Figure 29. ADR02 Turn-Off Response Rev. M | Page 14 of 20 02747-033 TIME (4µs/DIV) 02747-030 CIN = 0.01µF NO LOAD CAPACITOR ADR01/ADR02/ADR03/ADR06 APPLICATIONS INFORMATION The ADR01/ADR02/ADR03/ADR06 are high precision, low drift 10.0 V, 5.0 V, 2.5 V, and 3.0 V voltage references available in an ultracompact footprint. The 8-lead SOIC versions of the devices are drop-in replacements of the REF01/REF02/REF03 sockets with improved cost and performance. ADR03 can be adjusted from 2.3 V to 2.8 V. Adjustment of the output does not significantly affect the temperature performance of the device, provided the temperature coefficients of the resistors are relatively low. U1 ADR01/ ADR02/ ADR03/ ADR06 These devices are standard band gap references (see Figure 34). The band gap cell contains two NPN transistors (Q18 and Q19) that differ in emitter area by 2×. The difference in their VBE produces a proportional-to-absolute temperature current (PTAT) in R14, and, when combined with the VBE of Q19, produces a band gap voltage, VBG, that is almost constant in temperature. With an internal op amp and the feedback network of R5 and R6, VO is set precisely at 10.0 V, 5.0 V, 2.5 V, and 3.0 V for the ADR01, ADR02, ADR06, and ADR03, respectively. Precision laser trimming of the resistors and other proprietary circuit techniques are used to further enhance the initial accuracy, temperature curvature, and drift performance of the ADR01/ ADR02/ADR03/ADR06. VOUT VIN VIN C1 0.1µF VO C2 0.1µF TEMP TRIM GND 02747-035 OVERVIEW Figure 33. Basic Configuration VIN R1 R2 R4 R3 Q23 Q8 Q7 Q2 Q1 Q9 Q3 D1 Q10 D2 VO Q4 The PTAT voltage is made available at the TEMP pin of the ADR01/ADR02/ADR03/ADR06. It has a stable 1.96 mV/°C temperature coefficient, such that users can estimate the temperature change of the device by knowing the voltage change at the TEMP pin. D3 R12 C1 Q13 Q12 R13 R5 I1 R20 TRIM Q14 Q15 R27 Although the ADR01/ADR02/ADR03/ADR06 are designed to function stably without any external components, connecting a 0.1 μF ceramic capacitor to the output is highly recommended to improve stability and filter out low level voltage noise. An additional 1 μF to 10 μF electrolytic, tantalum, or ceramic capacitor can be added in parallel to improve transient performance in response to sudden changes in load current; however, the designer should keep in mind that doing so increases the turn-on time of the device. TEMP The ADR01/ADR02/ADR03/ADR06 trim terminal can be used to adjust the output voltage over a nominal voltage. This feature allows a system designer to trim system errors by setting the reference to a voltage other than 10.0 V/5.0 V/2.5 V/3.0 V. For finer adjustment, add a series resistor of 470 kΩ. With the configuration shown in Figure 35, the ADR01 can be adjusted from 9.70 V to 10.05 V, the ADR02 can be adjusted from 4.95 V to 5.02 V, the ADR06 can be adjusted from 2.8 V to 3.3 V, and the Q16 Q17 Q20 R6 R32 R24 R17 R41 R11 R42 GND Figure 34. Simplified Schematic Diagram U1 VIN A 1 μF to 10 μF electrolytic, tantalum or ceramic capacitor can also be connected to the input to improve transient response in applications where the supply voltage may fluctuate. An additional 0.1 μF ceramic capacitor should be connected in parallel to reduce supply noise. Mount both input and output capacitors as close to the device pins as possible. Output Adjustment R14 VBG 1× Q19 02747-034 2× Q18 Input and Output Capacitors ADR01/ ADR02/ ADR03/ ADR06 VIN VO VOUT TEMP TRIM GND R1 470kΩ POT 10kΩ R2 1kΩ 02747-036 APPLYING THE ADR01/ADR02/ADR03/ADR06 Figure 35. Optional Trim Adjustment Temperature Monitoring As described at the end of the Overview section, the ADR01/ ADR02/ADR03/ADR06 provide a TEMP output (Pin 1 in Figure 1 and Pin 3 in Figure 2) that varies linearly with temperature. This output can be used to monitor the temperature change in the system. The voltage at VTEMP is approximately 550 mV at 25°C, and the temperature coefficient is approximately 1.96 mV/°C (see Figure 36). A voltage change of 39.2 mV at the TEMP pin corresponds to a 20°C change in temperature. Rev. M | Page 15 of 20 ADR01/ADR02/ADR03/ADR06 U1 0.80 0.75 VIN = 15V SAMPLE SIZE = 5 ADR01/ ADR02/ ADR03/ ADR06 0.70 TEMP TRIM GND +15V 0.60 U2 ΔVTEMP /ΔT ≈ 1.96mV/°C V+ 0.55 –VREF OP1177 V– 0.50 0.45 –15V Figure 38. Negative Reference 0 25 50 75 100 125 TEMPERATURE (°C) VIN IIN Figure 36. Voltage at TEMP Pin vs. Temperature ADR01/ ADR02/ ADR03/ ADR06 The TEMP function is provided as a convenience rather than a precise feature. Because the voltage at the TEMP node is acquired from the band gap core, current pulling from this pin has a significant effect on VOUT. Care must be taken to buffer the TEMP output with a suitable low bias current op amp, such as the AD8601, AD820, or OP1177, all of which result in less than a 100 µV change in ∆VOUT (see Figure 37). Without buffering, even tens of microamps drawn from the TEMP pin can cause VOUT to fall out of specification. 15V VIN V+ VTEMP 1.9mV/°C OP1177 VOUT ISET = (VOUT – VL)/RSET VL IQ ≈ 0.6mA IL = ISET + IQ 02747-040 RL Figure 39. Low Cost Current Source PRECISION CURRENT SOURCE WITH ADJUSTABLE OUTPUT VO Alternatively, a precision current source can be implemented with the circuit shown in Figure 40. By adding a mechanical or digital potentiometer, this circuit becomes an adjustable current source. If a digital potentiometer is used, the load current is simply the voltage across Terminal B to Terminal W of the digital potentiometer divided by RSET. TEMP TRIM GND V– 02747-038 U2 VIN RSET GND U1 ADR01/ ADR02/ ADR03/ ADR06 VOUT Figure 37. Temperature Monitoring IL = NEGATIVE REFERENCE Without using any matching resistors, a negative reference can be configured, as shown in Figure 38. For the ADR01, the voltage difference between VOUT and GND is 10.0 V. Because VOUT is at virtual ground, U2 closes the loop by forcing the GND pin to be the negative reference node. U2 should be a precision op amp with a low offset voltage characteristic. VREF × D RSET (1) where D is the decimal equivalent of the digital potentiometer input code. U1 ADR01/ ADR02/ ADR03/ ADR06 +12V LOW COST CURRENT SOURCE Unlike most references, the ADR01/ADR02/ADR03/ADR06 employ an NPN Darlington in which the quiescent current remains constant with respect to the load current, as shown in Figure 23. As a result, a current source can be configured as shown in Figure 39 where ISET = (VOUT − VL)/RSET. IL is simply the sum of ISET and IQ. Although simple, IQ varies typically from 0.55 mA to 0.65 mA, limiting this circuit to general-purpose applications. Rev. M | Page 16 of 20 VIN VOUT 0V TO (5V + VL) B AD5201 TEMP TRIM GND W 100kΩ A +12V RSET 1kΩ U2 V+ OP1177 –5V TO VL V– –12V VL RL 1kΩ IL Figure 40. Programmable 0 mA to 5 mA Current Source 02747-041 –25 02747-037 0.40 –50 02747-039 VTEMP (V) VOUT VIN +5V TO +15V 0.65 ADR01/ADR02/ADR03/ADR06 To optimize the resolution of this circuit, dual-supply op amps should be used because the ground potential of ADR02 can swing from −5.0 V at zero scale to VL at full scale of the potentiometer setting. PROGRAMMABLE 4 mA TO 20 mA CURRENT TRANSMITTER Because of their precision, adequate current handling, and small footprint, the devices are suitable as the reference sources for many high performance converter circuits. One of these applications is the multichannel 16-bit, 4 mA to 20 mA current transmitter in the industrial control market (see Figure 41). This circuit employs a Howland current pump at the output to yield better efficiency, a lower component count, and a higher voltage compliance than the conventional design with op amps and MOSFETs. In this circuit, if the resistors are matched such that R1 = R1′, R2 = R2′, R3 = R3′, the load current is 5 RL = 500Ω IL = 0mA TO 20mA 4 3 (2) In this circuit, the AD8512 is capable of delivering 20 mA of current, and the voltage compliance approaches 15.0 V. VIN VOUT TEMP TRIM RF VDD IO 10V V AD5544 REF IO GND U3 0 8192 16384 24576 32768 40960 49152 57344 65536 PRECISION BOOSTED OUTPUT REGULATOR VX A precision voltage output with boosted current capability can be realized with the circuit shown in Figure 43. In this circuit, U2 forces VO to be equal to VREF by regulating the turn-on of N1, thereby making the load current furnished by VIN. In this configuration, a 50 mA load is achievable at VIN of 15.0 V. Moderate heat is generated on the MOSFET, and higher current can be achieved with a replacement of a larger device. In addition, for a heavy capacitive load with a fast edging input signal, a buffer should be added at the output to enhance the transient response. R2 15kΩ R1 150kΩ VP C1 –15V 10pF U4 R1' 150kΩ R3 50Ω VO R3' 50Ω VL VN LOAD 500Ω N1 4mA TO 20mA 02747-042 AD8512 R2' 15kΩ U1 = ADR01/ADR02/ADR03/ADR06, REF01 U2 = AD5543/AD5544/AD5554 U3, U4 = AD8512 –1 Figure 42. Result of Programmable 4 mA to 20 mA Current Transmitter GND DIGITAL INPUT CODE 20%–100% FULL SCALE 0 VIN Figure 41. Programmable 4 mA to 20 mA Transmitter The Howland current pump yields a potentially infinite output impedance, that is highly desirable, but resistance matching is critical in this application. The output impedance can be determined using Equation 3. As shown by this equation, if the resistors are perfectly matched, ZO is infinite. Alternatively, if they are not matched, ZO is either positive or negative. If the latter is true, oscillation can occur. For this reason, connect Rev. M | Page 17 of 20 U1 ADR01/ ADR02/ ADR03/ ADR06 VIN VOUT TEMP TRIM GND 2N7002 RL 200Ω CL 1µF VO 15V R1 100Ω R2 100Ω V+ OP1177 V– U2 C1 1000pF Figure 43. Precision Boosted Output Regulator 02747-044 U1 15V 25°C 70°C CODE (Decimal) 0V TO –10V +15V 2 1 According to Equation 2, R3′ can be used to set the sensitivity. R3′ can be made as small as necessary to achieve the current needed within U4 output current driving capability. Alternatively, other resistors can be kept high to conserve power. U2 (3) In this circuit, an ADR01 provides the stable 10.000 V reference for the AD5544 quad 16-bit DAC. The resolution of the adjustable current is 0.3 µA/step; the total worst-case INL error is merely 4 LSBs. Such error is equivalent to 1.2 µA or a 0.006% system error, which is well below most systems’ requirements. The result is shown in Figure 42 with measurement taken at 25°C and 70°C; total system error of 4 LSBs at both 25°C and 70°C. where D is similarly the decimal equivalent of the DAC input code and N is the number of bits of the DAC. 5V Vt R1′ = I t  R1′ R2  − 1   R1R2′  02747-043 (R2 + R3) R1 VREF × D × 2N R3′ ZO = INL (LSB) IL = Capacitor C1 in the range of 1 pF to 10 pF between VP and the output terminal of U4 to filter any oscillation. ADR01/ADR02/ADR03/ADR06 OUTLINE DIMENSIONS 2.20 2.00 1.80 1.35 1.25 1.15 5 2.40 2.10 1.80 4 1 3 2 0.65 BSC 0.40 0.10 1.10 0.80 0.10 MAX COPLANARITY 0.10 0.46 0.36 0.26 0.22 0.08 SEATING PLANE 0.30 0.15 072809-A 1.00 0.90 0.70 COMPLIANT TO JEDEC STANDARDS MO-203-AA Figure 44. 5-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-5) Dimensions shown in millimeters 2.90 BSC 5 4 2.80 BSC 1.60 BSC 1 2 3 0.95 BSC 1.90 BSC *1.00 MAX 0.10 MAX 0.50 0.30 0.20 0.08 8° 4° 0° SEATING PLANE 0.60 0.45 0.30 100708-A *0.90 MAX 0.70 MIN *COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS. Figure 45. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 1 5 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 6.20 (0.2441) 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 46. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) Rev. M | Page 18 of 20 012407-A 8 4.00 (0.1574) 3.80 (0.1497) ADR01/ADR02/ADR03/ADR06 ORDERING GUIDES ADR01 Ordering Guide Model1 ADR01AR ADR01ARZ ADR01ARZ-REEL7 ADR01BR ADR01BR-REEL7 ADR01BRZ ADR01BRZ-REEL7 ADR01AUJZ-REEL7 ADR01BUJZ-REEL7 ADR01AKSZ-REEL7 ADR01BKSZ-REEL7 ADR01CRZ ADR01CRZ-REEL 1 Output Voltage VO (V) 10 10 10 10 10 10 10 10 10 10 10 10 10 Initial Accuracy (mV) 10 10 10 5 5 5 5 10 5 10 5 10 10 (%) 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.1 0.05 0.1 0.05 0.1 0.1 Temperature Coefficient (ppm/°C) 10 10 10 3 3 3 3 25 9 25 9 40 40 Temperature Range –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C Package Description 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 5-Lead TSOT 5-Lead TSOT 5-Lead SC70 5-Lead SC70 8-Lead SOIC_N 8-Lead SOIC_N Package Option R-8 R-8 R-8 R-8 R-8 R-8 R-8 UJ-5 UJ-5 KS-5 KS-5 R-8 R-8 Ordering Quantity 98 98 1,000 98 1,000 98 1,000 3,000 3,000 3,000 3,000 98 2,500 Branding R1E R1F R1E R1F Z = RoHS Compliant Part. ADR02 Ordering Guide Model1, 2 ADR02AR ADR02AR-REEL ADR02AR-REEL7 ADR02ARZ ADR02ARZ-REEL ADR02ARZ-REEL7 ADR02WARZ-REEL ADR02WARZ-REEL7 ADR02BR ADR02BRZ ADR02BRZ-REEL7 ADR02AUJZ-REEL7 ADR02BUJZ-R2 ADR02BUJZ-REEL7 ADR02AKSZ-REEL7 ADR02BKSZ-REEL7 ADR02CRZ ADR02CRZ-REEL 1 2 Output Voltage VO (V) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 Initial Accuracy (mV) 5 5 5 5 5 5 5 5 3 3 3 5 3 3 5 3 5 5 (%) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.06 0.06 0.06 0.1 0.06 0.06 0.1 0.06 0.1 0.1 Temperature Coefficient (ppm/°C) 10 10 10 10 10 10 10 10 3 3 3 25 9 9 25 9 40 40 Temperature Range –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C Z = RoHS Compliant Part. W = Qualified for Automotive Applications. Rev. M | Page 19 of 20 Package Description 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead SC70 5-Lead SC70 8-Lead SOIC_N 8-Lead SOIC_N Package Option R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 UJ-5 UJ-5 UJ-5 KS-5 KS-5 R-8 R-8 Ordering Quantity 98 2,500 1,000 98 2,500 1,000 2,500 1,000 98 98 1,000 3,000 250 3,000 3,000 3,000 98 2,500 Branding R1G R1H R1H R1G R1H ADR01/ADR02/ADR03/ADR06 ADR03 Ordering Guide Model1 ADR03AR-REEL7 ADR03ARZ ADR03ARZ-REEL7 ADR03BR ADR03BRZ ADR03BRZ-REEL7 ADR03AUJZ-REEL7 ADR03BUJZ-REEL7 ADR03AKSZ-REEL7 ADR03BKSZ-REEL7 ADR03CRZ ADR03CRZ-REEL 1 Output Voltage VO (V) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Initial Accuracy (mV) 5 5 5 2.5 2.5 2.5 5 2.5 5 2.5 5 5 (%) 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 Temperature Coefficient (ppm/°C) 10 10 10 3 3 3 25 9 25 9 40 40 Temperature Range –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C Package Description 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 5-Lead TSOT 5-Lead TSOT 5-Lead SC70 5-Lead SC70 8-Lead SOIC_N 8-Lead SOIC_N Package Option R-8 R-8 R-8 R-8 R-8 R-8 UJ-5 UJ-5 KS-5 KS-5 R-8 R-8 Ordering Quantity 1,000 98 1,000 98 98 1,000 3,000 3,000 3,000 3,000 98 2,500 Temperature Coefficient (ppm/°C) 10 10 3 3 25 9 25 9 40 Temperature Range –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C Package Description 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 5-Lead TSOT 5-Lead TSOT 5-Lead SC70 5-Lead SC70 8-Lead SOIC_N Package Option R-8 R-8 R-8 R-8 UJ-5 UJ-5 KS-5 KS-5 R-8 Ordering Quantity 98 1,000 98 1,000 3,000 3,000 3,000 3,000 2,500 Branding R1J R1K R1J R1K Z = RoHS Compliant Part. ADR06 Ordering Guide Model1 ADR06ARZ ADR06ARZ-REEL7 ADR06BRZ ADR06BRZ-REEL7 ADR06AUJZ-REEL7 ADR06BUJZ-REEL7 ADR06AKSZ-REEL7 ADR06BKSZ-REEL7 ADR06CRZ-REEL 1 Output Voltage VO (V) 3 3 3 3 3 3 3 3 3 Initial Accuracy (mV) 6 6 3 3 6 3 6 3 6 (%) 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 Z = RoHS Compliant Part. ©2002–2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D02747-0-4/10(M) Rev. M | Page 20 of 20 Branding R1L R1M R1L R1M
ADR01AR 价格&库存

很抱歉,暂时无法提供与“ADR01AR”相匹配的价格&库存,您可以联系我们找货

免费人工找货