0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADR130

ADR130

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    ADR130 - Precision Series Sub-Band Gap Voltage Reference - Analog Devices

  • 数据手册
  • 价格&库存
ADR130 数据手册
Precision Series Sub-Band Gap Voltage Reference ADR130 FEATURES Initial accuracy A grade: +0.70% (maximum) B grade: +0.35% (maximum) Maximum temperature coefficient A grade: 50 ppm/°C B grade: 25 ppm/°C CLOAD = 50 nF to 10 μF Output current: +4 mA/−2 mA Low operating current: 80 μA (typical) Output noise: 6 μV p-p @ 1.0 V output Input range: 2.0 V to 18 V Temperature range: −40°C to +125°C Tiny, Pb-free TSOT package PIN CONFIGURATION NC 1 GND 2 ADR130 6 NC NC = NO CONNECT Figure 1. 6-Lead TSOT (UJ-6) APPLICATIONS Battery-powered instrumentation Portable medical equipment Communication infrastructure equipment GENERAL DESCRIPTION The ADR130 is the industry’s first family of tiny, micropower, low voltage, high precision voltage references. Featuring 0.35% initial accuracy and 25 ppm/°C of temperature drift in the tiny TSOT-23 package, the ADR130 voltage reference only requires 80 μA for typical operation. The ADR130 design includes a patented temperature drift curvature correction technique that minimizes the nonlinearities in the output voltage vs. temperature characteristics. Available in the industrial temperature range of −40°C to +125°C, the ADR130 is housed in a tiny TSOT package. For 0.5 V output, tie SET (Pin 5) to VOUT (Pin 4). For 1.0 V output, tie SET (Pin 5) to GND (Pin 2). Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved. 06322-001 TOP VIEW 5 SET (Not to Scale) 4 VOUT VIN 3 ADR130 TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 Pin Configuration............................................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Electrical Characteristics............................................................. 3 Absolute Maximum Ratings............................................................ 5 Thermal Resistance ...................................................................... 5 ESD Caution.................................................................................. 5 Typical Performance Characteristics ............................................. 6 Terminology .................................................................................... 11 Theory of Operation ...................................................................... 12 Power Dissipation Considerations........................................... 12 Input Capacitor........................................................................... 12 Output Capacitor........................................................................ 12 Application Notes ........................................................................... 13 Basic Voltage Reference Connection ....................................... 13 Stacking Reference ICs for Arbitrary Outputs ....................... 13 Negative Precision Reference Without Precision Resistors.. 14 Precision Current Source .......................................................... 14 Outline Dimensions ....................................................................... 15 Ordering Guide .......................................................................... 15 REVISION HISTORY 10/06—Revision 0: Initial Version Rev. 0 | Page 2 of 16 ADR130 SPECIFICATIONS ELECTRICAL CHARACTERISTICS TA = 25°C, VIN = 2.0 V to 18 V, unless otherwise noted. SET (Pin 5) tied to VOUT (Pin 4). Table 1. Parameter OUTPUT VOLTAGE A Grade B Grade INITIAL ACCURACY ERROR A Grade B Grade TEMPERATURE COEFFICIENT A Grade B Grade LOAD REGULATION Symbol VO Conditions Min 0.49650 0.49825 VOERR −3.50 −1.75 TCVO −40°C < TA < +125°C 15 5 −40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V; 0 mA < IOUT < 4 mA −40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V; −2 mA < IOUT < 0 mA 2.0 V to 18 V, IOUT = 0 mA −40°C < TA < +125°C, no load VIN = 2.0 V VIN = 18.0 V 0.1 Hz to 10 Hz To 0.1%, CL = 0.1 μF 1000 hours @ 25°C −0.13 −1.0 −40 +10 75 15 50 3 80 100 150 50 25 +0.13 +1.0 +40 150 ppm/°C ppm/°C mV/mA mV/mA ppm/V μA mA mA μV p-p μs ppm/1000 hours ppm +3.50 +1.75 mV mV Typ 0.5 0.5 Max 0.50350 0.50175 Unit V V LINE REGULATION QUIESCENT CURRENT SHORT-CIRCUIT CURRENT TO GROUND VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY OUTPUT VOLTAGE HYSTERESIS IQ Rev. 0 | Page 3 of 16 ADR130 TA = 25°C, VIN = 2.0 V to 18 V, unless otherwise noted. SET (Pin 5) tied to GND (Pin 2). Table 2. Parameter OUTPUT VOLTAGE A Grade B Grade INITIAL ACCURACY ERROR A Grade B Grade TEMPERATURE COEFFICIENT A Grade B Grade LOAD REGULATION Symbol VO Conditions Min 0.9930 0.9965 VOERR −7.0 −3.5 TCVO −40°C < TA < +125°C 15 5 −40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V; 0 mA < IOUT < 4 mA −40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V; −2 mA < IOUT < 0 mA 2.0 V to 18 V, IOUT = 0 mA −40°C < TA < +125°C, no load VIN = 2.0 V VIN = 18.0 V 0.1 Hz to 10 Hz To 0.1%, CL = 0.1 μF 1000 hours @ 25°C −0.25 −2.0 −40 +10 85 15 50 6 80 100 150 50 25 +0.25 +2.0 +40 150 ppm/°C ppm/°C mV/mA mV/mA ppm/V μA mA mA μV p-p μs ppm/1000 hours ppm +7.0 +3.5 mV mV Typ 1.0 1.0 Max 1.0070 1.0035 Unit V V LINE REGULATION QUIESCENT CURRENT SHORT-CIRCUIT CURRENT TO GROUND VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY OUTPUT VOLTAGE HYSTERESIS IQ Rev. 0 | Page 4 of 16 ADR130 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter VIN to GND Internal Power Dissipation Storage Temperature Range Specified Temperature Range Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) Ratings 20 V 40 mW −65°C to +150°C −40°C to +120°C 215°C 220°C THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 4. Thermal Resistance Package Type TSOT (UJ-6) θJA 186 θJC 67 Unit °C/W Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION Rev. 0 | Page 5 of 16 ADR130 TYPICAL PERFORMANCE CHARACTERISTICS 0.5020 0.5015 0.5010 0.5005 1.004 1.003 1.002 1.001 VOUT (V) VOUT (V) 0.5000 0.4995 0.4990 06322-002 1.000 0.999 0.998 06322-005 0.4985 0.4980 –40 0.997 0.996 –40 –25 –10 5 20 35 50 65 80 95 110 125 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) TEMPERATURE (°C) Figure 2. VOUT vs. Temperature, VOUT = 0.5 V 10 9 8 NUMBER OF PARTS NUMBER OF PARTS Figure 5. VOUT vs. Temperature, VOUT = 1 V 10 9 8 7 6 5 4 3 2 06322-003 7 6 5 4 3 2 1 0 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 25 30 35 40 45 50 1 0 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 25 30 35 40 45 50 TEMPERATURE COEFFICIENT (ppm/°C) TEMPERATURE COEFFICIENT (ppm/°C) Figure 3. Temperature Coefficient, VOUT = 0.5 V 2.0 –40°C 1.8 1.8 Figure 6. Temperature Coefficient, VOUT = 1 V 2.0 –40°C +25°C VIN_MIN (V) VIN_MIN (V) 1.6 +125°C +25°C 1.6 +125°C 1.4 1.4 1.2 06322-004 1.2 06322-007 1.0 –2 –1 0 1 2 3 4 5 1.0 –2 –1 0 1 2 3 4 5 LOAD CURRENT (mA) LOAD CURRENT (mA) Figure 4. Minimum Input Voltage vs. Load Current, VOUT = 0.5 V Figure 7. Minimum Input Voltage vs. Load Current, VOUT = 1 V Rev. 0 | Page 6 of 16 06322-006 ADR130 160 140 120 +25°C 100 –40°C 80 60 40 06322-008 160 +125°C 140 120 100 80 60 40 06322-011 +125°C SUPPLY CURRENT (µA) SUPPLY CURRENT (µA) +25°C –40°C 20 0 20 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 INPUT VOLTAGE (V) INPUT VOLTAGE (V) Figure 8. Supply Current vs. Input Voltage, VOUT = 0.5 V Figure 11. Supply Current vs. Input Voltage, VOUT = 1 V 6 TA = –40°C, +25°C, +125°C 5 SUPPLY CURRENT (mA) 6 TA = –40°C, +25°C, +125°C 5 4 SUPPLY CURRENT (mA) 4 3 3 2 2 1 06322-009 1 06322-012 0 –2 –1 0 1 2 3 4 5 0 –2 –1 0 1 2 3 4 5 LOAD CURRENT (mA) LOAD CURRENT (mA) Figure 9. Supply Current vs. Load Current, VOUT = 0.5 V Figure 12. Supply Current vs. Load Current, VOUT = 1 V 10 10 VIN = 2V TO 18V 8 8 VIN = 2V TO 18V LINE REGULATION (ppm/V) 6 LINE REGULATION (ppm/V) 6 4 4 2 06322-010 2 06322-013 0 –40 –25 –10 5 20 35 50 65 80 95 110 125 0 –40 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) TEMPERATURE (°C) Figure 10. Line Regulation vs. Temperature, VOUT = 0.5 V Figure 13. Line Regulation vs. Temperature, VOUT = 1 V Rev. 0 | Page 7 of 16 ADR130 0.05 0.08 LOAD REGULATION–SOURCE (mV/mA) 0.04 LOAD REGULATION–SOURCE (mV/mA) 0.07 0.06 0.05 0.04 0.03 0.02 06322-017 0.03 0.02 0.01 06322-014 0.01 0 –40 0 –40 –25 –10 5 20 35 50 65 80 95 110 125 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) TEMPERATURE (°C) Figure 14. Load Regulation (Source) vs. Temperature, VOUT = 0.5 V Figure 17. Load Regulation (Source) vs. Temperature, VOUT = 1 V 1.0 0.9 2.0 1.8 LOAD REGULATION–SINK (mV/mA) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 06322-015 LOAD REGULATION–SINK (mV/mA) 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 –40 –25 –10 5 20 35 50 65 80 95 110 06322-018 0.1 0 –40 –25 –10 5 20 35 50 65 80 95 110 125 125 TEMPERATURE (°C) TEMPERATURE (°C) Figure 15. Load Regulation (Sink) vs. Temperature, VOUT = 0.5 V Figure 18. Load Regulation (Sink) vs. Temperature, VOUT = 1 V CIN = COUT = 0.1µF CIN = COUT = 0.1µF CH1 PEAK-TO-PEAK 5.72µV CH1 PEAK-TO-PEAK 3.16µV 2µV/DIV 06322-016 2µV/DIV TIME (1s/DIV) TIME (1s/DIV) Figure 16. 0.1 Hz to 10 Hz Noise, VOUT = 0.5 V Figure 19. 0.1 Hz to 10 Hz Noise, VOUT = 1 V Rev. 0 | Page 8 of 16 06322-019 ADR130 CIN = COUT = 0.1µF CH1 PEAK-TO-PEAK 172µV CIN = COUT = 0.1µF PEAK-TO-PEAK 291µV 50µV/DIV 50µV/DIV 06322-020 TIME (1s/DIV) TIME (1s/DIV) Figure 20. 10 Hz to 10 kHz Noise, VOUT = 0.5 V Figure 23. 10 Hz to 10 kHz Noise, VOUT = 1 V CIN = COUT = 0.1µF VIN = 1V/DIV CIN = COUT = 0.1µF VIN = 1V/DIV VOUT 200mV/DIV 06322-021 TIME (40µs/DIV) TIME (40µs/DIV) Figure 21. Turn-On Response, VOUT = 0.5 V Figure 24. Turn-On Response, VOUT = 1 V VIN = 1V/DIV CIN = COUT = 0.1µF CIN = COUT = 0.1µF VIN = 1V/DIV 06322-022 TIME (10ms/DIV) TIME (400µs/DIV) Figure 22. Turn-Off Response, VOUT = 0.5 V Figure 25. Turn-Off Response, VOUT = 1 V Rev. 0 | Page 9 of 16 06322-025 VOUT = 200mV/DIV VOUT = 500mV/DIV 06322-024 VOUT = 500mV/DIV 06322-023 ADR130 CIN = COUT = 0.1µF VIN = 1V/DIV CIN = COUT = 0.1µF VIN = 1V/DIV 06322-026 TIME (100µs/DIV) TIME (100µs/DIV) Figure 26. Line Transient Response, VOUT = 0.5 V Figure 29. Line Transient Response, VOUT = 1 V VLOAD = 0.5V/DIV CIN = COUT = 0.1µF RLOAD = 125Ω ILOAD = 0mA VLOAD = 1V/DIV CIN = COUT = 0.1µF RLOAD = 250Ω ILOAD = 0mA ILOAD = 4mA ILOAD = 4mA 06322-027 TIME (40µs/DIV) TIME (40µs/DIV) Figure 27. Load Transient Response (Source), VOUT = 0.5 V Figure 30. Load Transient Response (Source), VOUT = 1 V VLOAD = 200mV/DIV CIN = COUT = 0.1µF RLOAD = 125Ω ILOAD = 2mA VLOAD = 500mV/DIV CIN = COUT = 0.1µF RLOAD = 250Ω ILOAD = 2mA ILOAD = 0mA ILOAD = 0mA 06322-028 TIME (40µs/DIV) TIME (40µs/DIV) Figure 28. Load Transient Response (Sink), VOUT = 0.5 V Figure 31. Load Transient Response (Sink), VOUT = 1 V Rev. 0 | Page 10 of 16 06322-031 VOUT = 100mV/DIV VOUT = 100mV/DIV 06322-030 VOUT = 20mV/DIV VOUT = 20mV/DIV 06322-029 VOUT = 20mV/DIV VOUT = 20mV/DIV ADR130 TERMINOLOGY Temperature Coefficient Temperature coefficient is the change of output voltage with respect to the operating temperature change normalized by the output voltage at 25°C. This parameter is expressed in ppm/°C and is determined by Long-Term Stability Long-term stability is the typical shift of output voltage at 25°C on a sample of parts subjected to a test of 1000 hours at 25°C. ΔVO = VO (t 0 ) − VO (t1 ) ΔVO [ppm ] = VO (t 0 ) − VO (t1 ) VO (t 0 ) × 106 TCVO [ppm/°C ] = where: VO (25°C ) × (T2 − T1 ) VO (T2 ) − VO (T1 ) × 10 6 where: VO(25°C) = VO at 25°C. VO(T1) = VO at Temperature 1. VO(T2) = VO at Temperature 2. Line Regulation Line regulation is the change in the output due to a specified change in input voltage. This parameter accounts for the effects of self-heating. Line regulation is expressed in either %/V, ppm/V, or μV/ΔVIN. Load Regulation Load regulation is the change in output voltage due to a specified change in load current. This parameter accounts for the effects of self-heating. Load regulation is expressed in either mV/mA, ppm/mA, or dc output resistance (Ω). VO(t0) = VO at 25°C at Time 0. VO(t1) = VO at 25°C after 1000 hours operating at 25°C. Thermal Hysteresis Thermal hysteresis is the change of output voltage after the device is cycled through temperatures from +25°C to −40°C to +125°C, then back to +25°C. This is a typical value from a sample of parts put through such a cycle. where: VO(25°C) = VO at 25°C. VOTC = VO at 25°C after temperature cycle from +25°C to −40°C to +125°C, then back to +25°C. Rev. 0 | Page 11 of 16 ADR130 THEORY OF OPERATION The ADR130 sub-band gap reference is the high performance solution for low supply voltage and low power applications. The uniqueness of this product lies in its architecture. INPUT CAPACITOR Input capacitors are not required on the ADR130. There is no limit for the value of the capacitor used on the input, but a 1 μF to 10 μF capacitor on the input improves transient response in applications where there is a sudden supply change. An additional 0.1 μF capacitor in parallel also helps reduce noise from the supply. POWER DISSIPATION CONSIDERATIONS The ADR130 is capable of delivering load currents to 4 mA with an input range from 3.0 V to 18 V. When this device is used in applications with large input voltages, care must be taken to avoid exceeding the specified maximum power dissipation or junction temperature, because this results in premature device failure. Use the following formula to calculate the maximum junction temperature or dissipation: PD = TJ − TA θ JA OUTPUT CAPACITOR The ADR130 requires a small 0.1 μF output capacitor for stability. Additional 0.1 μF to 10 μF capacitance in parallel can improve load transient response. This acts as a source of stored energy for a sudden increase in load current. The only parameter affected by the additional capacitance is turn-on time. where: TJ is the junction temperature. TA is the ambient temperature. PD is the device power dissipation. θJA is the device package thermal resistance. Rev. 0 | Page 12 of 16 ADR130 APPLICATION NOTES BASIC VOLTAGE REFERENCE CONNECTION The circuits in Figure 32 and Figure 33 illustrate the basic configuration for the ADR130 voltage reference. 1 NC 1 2 3 NC U2 ADR130 NC 6 SET 5 GND VIN VOUT 4 VOUT2 0.1µF ADR130 NC 6 OUTPUT 0.1µF 2 GND SET 5 VOUT 4 INPUT 3 VIN 0.1µF 0.1µF 06322-032 INPUT 1 2 3 NC U1 ADR130 NC 6 SET 5 GND VIN VOUT 4 VOUT1 Figure 32. Basic Configuration, VOUT = 0.5 V 0.1µF 0.1µF 06322-035 ADR130 1 2 NC GND VIN NC 6 SET 5 VOUT 4 OUTPUT Figure 35. Stacking References with ADR130, VOUT1 = 0.5 V. VOUT2 = 1.5 V INPUT 3 0.1µF 0.1µF 06322-033 Figure 33. Basic Configuration, VOUT = 1 V STACKING REFERENCE ICs FOR ARBITRARY OUTPUTS Some applications may require two reference voltage sources that are a combined sum of the standard outputs. Figure 34 and Figure 35 show how these stacked output references can be implemented. 1 2 3 Two reference ICs are used and fed from an unregulated input, VIN. The outputs of the individual ICs that are connected in series provide two output voltages, VOUT1 and VOUT2. VOUT1 is the terminal voltage of U1, and VOUT2 is the sum of this voltage and the terminal voltage of U2. U1 and U2 are chosen for the two voltages that supply the required outputs (see Table 5). For example, if U1 is set to have an output of 1 V or 0.5 V, the user can stack on top of U2 to get an output of 2 V or 1.5 V. Table 5. Required Outputs U1/U2 ADR130/ADR130 ADR130/ADR130 Comments See Figure 34 See Figure 35 VOUT1 1V 0.5 V VOUT2 2V 1.5 V NC U2 ADR130 NC 6 SET 5 GND VIN VOUT 4 VOUT2 0.1µF 0.1µF INPUT 1 2 3 NC U1 ADR130 NC 6 SET 5 GND VIN VOUT 4 VOUT1 0.1µF 0.1µF 06322-034 Figure 34. Stacking References with ADR130, VOUT1 = 1.0 V, VOUT2 = 2.0 V Rev. 0 | Page 13 of 16 ADR130 NEGATIVE PRECISION REFERENCE WITHOUT PRECISION RESISTORS A negative reference is easily generated by adding an op amp, A1, and is configured as shown in Figure 36. VOUT is at virtual ground and, therefore, the negative reference can be taken directly from the output of the op amp. The op amp must be dual-supply, low offset, and rail-to-rail if the negative supply voltage is close to the reference output. 1 2 PRECISION CURRENT SOURCE In low power applications, the need can arise for a precision current source that can operate on low supply voltages. The ADR130 can be configured as a precision current source (see Figure 37). The circuit configuration shown is a floating current source with a grounded load. The reference output voltage is bootstrapped across RSET, which sets the output current into the load. With this configuration, circuit precision is maintained for load currents ranging from the reference supply current, typically 85 μA, to approximately 4 mA. 1 2 NC U2 ADR130 NC 6 SET 5 GND VIN 0.1µF NC ADR130 NC 6 +VDD 3 VOUT 4 GND VIN SET 5 VOUT 4 RSET VIN 3 V+ –VREF 1kΩ A1 OP291 06322-036 P1 RL V– –VDD Figure 36. Negative Reference, −VREF = −0.5 V Figure 37. ADR130 as a Precision Current Source Rev. 0 | Page 14 of 16 06322-037 ADR130 OUTLINE DIMENSIONS 2.90 BSC 6 5 4 1.60 BSC 1 2 3 2.80 BSC PIN 1 INDICATOR 0.95 BSC *0.90 0.87 0.84 1.90 BSC *1.00 MAX 0.20 0.08 8° 4° 0° 0.60 0.45 0.30 0.10 MAX 0.50 0.30 SEATING PLANE *COMPLIANT TO JEDEC STANDARDS MO-193-AA WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS. Figure 38. 6-Lead Thin Small Outline Transistor Package [TSOT] (UJ-6) Dimensions shown in millimeters ORDERING GUIDE Model ADR130AUJZ-REEL7 1 ADR130AUJZ-R21 ADR130BUJZ-REEL71 ADR130BUJZ-R21 1 Temperature Coefficient (ppm/°C) 50 50 25 25 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 6-Lead TSOT 6-Lead TSOT 6-Lead TSOT 6-Lead TSOT Package Option UJ-6 UJ-6 UJ-6 UJ-6 Branding R0W R0W R0X R0X Ordering Quantity 3,000 250 3,000 250 Z = Pb-free part. Rev. 0 | Page 15 of 16 ADR130 NOTES ©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06322-0-10/06(0) Rev. 0 | Page 16 of 16
ADR130 价格&库存

很抱歉,暂时无法提供与“ADR130”相匹配的价格&库存,您可以联系我们找货

免费人工找货