0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADR364A

ADR364A

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    ADR364A - Low Power, Low Noise Voltage References with Sink/Source Capability - Analog Devices

  • 数据手册
  • 价格&库存
ADR364A 数据手册
Low Power, Low Noise Voltage References with Sink/Source Capability ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 FEATURES Compact TSOT-23-5 packages Low temperature coefficient B grade: 9 ppm/°C A grade: 25 ppm/°C Initial accuracy B grade: ±3 mV maximum A grade: ±6 mV maximum Ultralow output noise: 6.8 μV p-p (0.1 Hz to 10 Hz) Low dropout: 300 mV Low supply current: 190 μA maximum No external capacitor required Output current: +5 mA/−1 mA Wide temperature range: −40°C to +125°C PIN CONFIGURATION NC 1 ADR36x 5 TRIM TOP VIEW GND 2 (Not to Scale) 05467-001 VIN 3 4 VOUT NC = NO CONNECT Figure 1. 5-Lead TSOT (UJ Suffix) Table 1. Model ADR360B ADR360A ADR361B ADR361A ADR363B ADR363A ADR364B ADR364A ADR365B ADR365A ADR366B ADR366A 1 APPLICATIONS Battery-powered instrumentations Portable medical instrumentations Data acquisition systems Industrial process controls Automotive VOUT (V) 1 2.048 2.048 2.5 2.5 3.0 3.0 4.096 4.096 5.0 5.0 3.3 3.3 Temperature Coefficient (ppm/°C) 9 25 9 25 9 25 9 25 9 25 9 25 Accuracy (mV) ±3 ±6 ±3 ±6 ±3 ±6 ±4 ±8 ±4 ±8 ±4 ±8 Contact Analog Devices, Inc. for other voltage options. GENERAL DESCRIPTION The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 are precision 2.048 V, 2.5 V, 3.0 V, 4.096 V, 5.0 V, and 3.3 V band gap voltage references that feature low power, high precision in tiny footprints. Using Analog Devices’ patented temperature drift curvature correction techniques, the ADR36x references achieve a low temperature drift of 9 ppm/°C in the TSOT package. The ADR36x family of micropower, low dropout voltage references provides a stable output voltage from a minimum supply of 300 mV above the output. Their advanced design eliminates the need for external capacitors, which further reduces board space and system cost. The combination of low power operation, small size, and ease of use makes the ADR36x precision voltage references ideally suited for battery-operated applications. Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved. ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 Pin Configuration............................................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 ADR360—Specifications ................................................................. 3 ADR361—Specifications ................................................................. 4 ADR363—Specifications ................................................................. 5 ADR364—Specifications ................................................................. 6 ADR365—Specifications ................................................................. 7 ADR366—Specifications ................................................................. 8 Absolute Maximum Ratings............................................................ 9 Thermal Resistance .......................................................................9 ESD Caution...................................................................................9 Terminology .................................................................................... 10 Typical Performance Characteristics ........................................... 11 Theory of Operation ...................................................................... 16 Device Power Dissipation Considerations.............................. 16 Input Capacitor........................................................................... 16 Output Capacitor........................................................................ 16 Applications..................................................................................... 17 Basic Voltage Reference Connection ....................................... 17 Outline Dimensions ....................................................................... 19 Ordering Guide .......................................................................... 19 REVISION HISTORY 3/06—Rev. 0 to Rev. A Changes to Figure 15 Caption....................................................... 13 Changes to Figure 21 Caption....................................................... 14 Changes to Theory of Operation Section.....................................16 Changes to Figure 36.......................................................................18 4/05—Revision 0: Initial Version Rev. A | Page 2 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR360—SPECIFICATIONS Electrical Characteristics (VIN = 2.35 V to 15 V, TA = 25°C, unless otherwise noted.) Table 2. Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, −40°C < TA < +125°C B Grade, −40°C < TA < +125°C VIN = 2.45 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3 V −40°C < TA < +125°C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V Min 2.042 2.045 Typ 2.048 2.048 Max 2.054 2.051 6 0.29 3 0.15 25 9 0.105 0.37 0.82 190 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA TEMPERATURE COEFFICIENT SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND TCVO VIN − VO ∆VO/∆VIN ∆VO/∆ILOAD IIN eN p-p tR ∆VO ∆VO_HYS RRR ISC 300 150 6.8 25 50 100 70 25 30 1 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period. Rev. A | Page 3 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR361—SPECIFICATIONS Electrical Characteristics (VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted.) Table 3. Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, −40°C < TA < +125°C B Grade, −40°C < TA < +125°C VIN = 2.8 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3.5 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3.5 V −40°C < TA < +125°C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V Min 2.494 2.497 Typ 2.500 2.500 Max 2.506 2.503 6 0.24 3 0.12 25 9 0.125 0.45 1 190 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA TEMPERATURE COEFFICIENT SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND TCVO VIN − VO ∆VO/∆VIN ∆VO/∆ILOAD IIN eN p-p tR ∆VO ∆VO_HYS RRR ISC 300 150 8.25 25 50 100 70 25 30 1 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period. Rev. A | Page 4 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR363—SPECIFICATIONS Electrical Characteristics (VIN = 3.3 V to 15 V, TA = 25°C, unless otherwise noted.) Table 4. Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, −40°C < TA < +125°C B Grade, −40°C < TA < +125°C VIN = 3.3 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4 V −40°C < TA < +125°C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V Min 2.994 2.997 Typ 3.000 3.000 Max 3.006 3.003 6 0.2 3 0.1 25 9 0.15 0.54 1.2 190 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA TEMPERATURE COEFFICIENT SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND TCVO VIN − VO ∆VO/∆VIN ∆VO/∆ILOAD IIN eN p-p tR ∆VO ∆VO_HYS RRR ISC 300 150 8.7 25 50 100 70 25 30 1 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period. Rev. A | Page 5 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR364—SPECIFICATIONS Electrical Characteristics (VIN = 4.4 V to 15 V, TA = 25°C, unless otherwise noted.) Table 5. Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, −40°C < TA < +125°C B Grade, −40°C < TA < +125°C VIN = 4.4 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 5 V −40°C < TA < +125°C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V Min 4.088 4.092 Typ 4.096 4.096 Max 4.104 4.100 8 0.2 4 0.1 25 9 0.205 0.735 1.75 190 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA TEMPERATURE COEFFICIENT SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND TCVO VIN − VO ∆VO/∆VIN ∆VO/∆ILOAD IIN eN p-p tR ∆VO ∆VO_HYS RRR ISC 300 150 11 25 50 100 70 25 30 1 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period. Rev. A | Page 6 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR365—SPECIFICATIONS Electrical Characteristics (VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted.) Table 6. Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, −40°C < TA < +125°C B Grade, −40°C < TA < +125°C VIN = 5.3 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 6 V −40°C < TA < +125°C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V Min 4.992 4.996 Typ 5.000 5.000 Max 5.008 5.004 8 0.16 4 0.08 25 9 0.25 0.9 2 190 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA TEMPERATURE COEFFICIENT SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND TCVO VIN − VO ∆VO/∆VIN ∆VO/∆ILOAD IIN eN p-p tR ∆VO ∆VO_HYS RRR ISC 300 150 12.8 20 50 100 70 25 30 1 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period. Rev. A | Page 7 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR366—SPECIFICATIONS Electrical Characteristics (VIN = 3.6 V to 15 V, TA = 25°C, unless otherwise noted.) Table 7. Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, −40°C < TA < +125°C B Grade, −40°C < TA < +125°C VIN = 3.6 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4.2 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4.2 V −40°C < TA < +125°C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V Min 3.292 3.296 Typ 3.300 3.300 Max 3.308 3.304 8 0.25 4 0.125 25 9 0.165 0.6 1.35 190 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA TEMPERATURE COEFFICIENT SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND TCVO VIN − VO ∆VO/∆VIN ∆VO/∆ILOAD IIN eN p-p tR ∆VO ∆VO_HYS RRR ISC 300 150 9.3 25 50 100 70 25 30 1 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period. Rev. A | Page 8 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Table 8. Parameter Supply Voltage Output Short-Circuit Duration to GND VIN < 15 V VIN > 15 V Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) Rating 18 V Indefinite 10 sec −65°C to +125°C −40°C to +125°C −65°C to +125°C 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 9. Thermal Resistance Package Type TSOT-23-5 (UJ-5) θJA 230 θJC 146 Unit °C/W ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. A | Page 9 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TERMINOLOGY Temperature Coefficient The change of output voltage with respect to operating temperature changes normalized by the output voltage at 25°C. This parameter is expressed in ppm/°C and can be determined by TCVO [ppm/°C] = VO (T2 ) − VO (T1 ) × 106 VO (25°C ) × (T2 − T1 ) Long-Term Stability Typical shift of output voltage at 25°C on a sample of parts subjected to a test of 1,000 hours at 25°C. ΔVO = VO (t 0 ) − VO (t1 ) ⎛ V (t )–VO (t1 ) ⎞ ΔVO [ppm ] = ⎜ O 0 × 106 ⎟ ⎜ ⎟ VO (t 0 ) ⎝ ⎠ where: VO (25°C) = VO at 25°C. VO (T1) = VO at Temperature 1. VO (T2) = VO at Temperature 2. Line Regulation The change in output voltage due to a specified change in input voltage. This parameter accounts for the effects of self-heating. Line regulation is expressed in either percent per volt, partsper-million per volt, or microvolts per volt change in input voltage. Load Regulation The change in output voltage due to a specified change in load current. This parameter accounts for the effects of self-heating. Load regulation is expressed in either microvolts per milliampere, parts-per-million per milliampere, or ohms of dc output resistance. where: VO (t0) = VO at 25°C at Time 0. VO (t1) = VO at 25°C after 1,000 hours operation at 25°C. Thermal Hysteresis The change of output voltage after the device is cycled through temperature from +25°C to –40°C to +125°C and back to +25°C. This is a typical value from a sample of parts put through such a cycle. VO _ HYS = VO (25°C ) − VO _ TC VO _ HYS [ppm ] = where: VO (25°C) = VO at 25°C. VO_TC = VO at 25°C after temperature cycle at +25°C to –40°C to +125°C and back to +25°C. VO (25°C ) − VO _ TC VO (25°C ) × 106 Rev. A | Page 10 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TYPICAL PERFORMANCE CHARACTERISTICS 2.052 4.998 4.997 2.050 4.996 4.995 VOUT (V) VOUT (V) 05467-002 2.048 4.994 4.993 2.046 4.992 05467-005 4.991 4.990 –40 2.044 –40 –20 0 20 40 60 80 100 120 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) TEMPERATURE (°C) Figure 2. ADR360 Output Voltage vs. Temperature 2.504 0.165 Figure 5. ADR365 Output Voltage vs. Temperature 2.502 0.155 +125°C IDD (mA) VOUT (V) 2.500 0.145 +25°C 0.135 –40°C 2.498 2.496 05467-003 0.125 05467-006 2.494 –40 –25 –10 5 20 35 50 65 80 95 110 125 0.115 2.8 4.1 5.3 6.6 7.8 9.1 VIN (V) 10.3 11.6 12.8 14.1 TEMPERATURE (°C) Figure 3. ADR361 Output Voltage vs. Temperature 3.003 3.002 3.001 Figure 6. ADR361 Supply Current vs. Input Voltage 0.17 +125°C 0.16 IDD (mA) VOUT (V) 3.000 2.999 2.998 2.997 2.996 –40 +25°C –40°C 0.15 05467-004 –20 0 20 40 60 80 100 120 0.14 5.3 6.3 7.3 8.3 9.3 10.3 VIN (V) 11.3 12.3 13.3 14.3 TEMPERATURE (°C) Figure 4. ADR363 Output Voltage vs. Temperature Figure 7. ADR365 Supply Current vs. Input Voltage Rev. A | Page 11 of 20 05467-007 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 0.18 0.16 9 8 LOAD REGULATION (mV/mA) 0.12 0.10 0.08 0.06 0.04 05467-036 LINE REGULATION (ppm/V) 0.14 7 6 5 4 3 2 05467-009 VIN = 9V VIN = 3.5V 0.02 0 –40 1 0 –40 –25 –10 5 20 35 50 65 80 95 110 125 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) TEMPERATURE (°C) Figure 8. ADR361 Load Regulation vs. Temperature 0.14 0.12 Figure 11. ADR361 Line Regulation vs. Temperature, VIN = 2.8 V to 15 V 12 10 VIN = 9V LOAD REGULATION (mV/mA) 0.10 0.08 0.06 0.04 0.02 0 –40 LINE REGULATION (ppm/V) 8 6 VIN = 6V 4 2 05467-037 05467-010 –25 –10 5 20 35 50 65 80 95 110 125 0 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) TEMPERATURE (°C) Figure 9. ADR365 Load Regulation vs. Temperature 25 Figure 12. ADR365 Line Regulation vs. Temperature, VIN = 5.3 V to 15 V 1.6 1.4 DIFFERENTIAL VOLTAGE (V) 20 +125°C 1.2 1.0 0.8 0.6 0.4 05467-011 LINE REGULATION (ppm/V) 15 10 –40°C +25°C 5 05467-008 0.2 0 –2 0 –40 –20 0 20 40 60 80 100 120 0 2 4 6 8 10 TEMPERATURE (°C) LOAD CURRENT (mA) Figure 10. ADR360 Line Regulation vs. Temperature, VIN = 2.45 V to 15 V Figure 13. ADR361 Minimum Input Voltage vs. Load Current Rev. A | Page 12 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 1.8 1.6 XX DIFFERENTIAL VOLTAGE (V) 1.4 1.2 1.0 0.8 0.6 0.4 +25°C +125°C XX 2μV/DIV 05467-012 –40°C 0 2 4 6 8 10 0 –2 XX LOAD CURRENT (mA) Figure 14. ADR365 Minimum Input Voltage vs. Load Current XX Figure 17. ADR363 0.1 Hz to 10 kHz Noise XX XX 2μV/DIV XX 50μV/DIV 05467-013 TIME = 1s/DIV XX XX Figure 15. ADR361 0.1 Hz to 10 Hz Noise XX XX Figure 18. ADR363 10 Hz to 10 kHz Noise XX XX 2μV/DIV 05467-014 TIME = 1s/DIV XX XX Figure 16. ADR361 10 Hz to 10 kHz Noise Figure 19. ADR365 0.1 Hz to 10 Hz Noise Rev. A | Page 13 of 20 05467-017 50μV/DIV TIME = 1s/DIV 05467-016 TIME = 1s/DIV 05467-015 0.2 TIME = 1s/DIV ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 XX XX 500mV/DIV VIN XX XX VOUT 100μV/DIV 05467-018 500mV/DIV 4μs/DIV XX XX Figure 20. ADR365 10 Hz to 10 kHz Noise 50 45 40 Figure 23. ADR361 Line Transient Response (Increasing), No Capacitors XX VIN 500mV/DIV OUTPUT IMPEDANCE (Ω) 35 30 25 20 15 10 05467-031 XX VOUT 500mV/DIV 5 0 100 1k 10k FREQUENCY (Hz) 10μs/DIV XX 100k Figure 21. Output Impedance vs. Frequency 10 0 –10 Figure 24. ADR361 Line Transient Response (Decreasing), No Capacitors XX 500mV/DIV VIN RIPPLE REJECTION (dB) –20 –30 –40 –50 –60 –70 –80 –90 100 1k 10k FREQUENCY (Hz) 100k 1M 05467-030 XX VOUT 20mV/DIV 100μs/DIV XX Figure 22. Ripple Rejection Ratio Figure 25. ADR361 Line Transient Response, 0.1 μF Input Capacitor Rev. A | Page 14 of 20 05467-021 05467-020 05467-019 TIME = 1s/DIV ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 XX LOAD OFF LOAD ON XX 5V/DIV INPUT XX VOUT 100mV/DIV XX 2.5V/DIV 05467-032 OUTPUT 400ns/DIV 05467-023 05467-035 05467-034 2ms/DIV XX XX Figure 26. ADR361 Load Transient Response XX LOAD ON XX Figure 29. ADR361 Turn-Off Response at 5 V VIN 5V/DIV VOUT XX VOUT 100mV/DIV XX 2V/DIV 100μs/DIV XX 05467-033 100μs/DIV XX Figure 27. ADR361 Load Transient Response, 0.1 μF Input, Output Capacitor XX Figure 30. ADR361 Turn-On Response, 0.1 μF Output Capacitor XX VIN 5V/DIV INPUT 5V/DIV VOUT XX XX 2V/DIV 2.5V/DIV OUTPUT 05467-022 10μs/DIV XX 2ms/DIV XX Figure 28. ADR361 Turn-On Response Time at 5 V Figure 31. ADR361 Turn-Off Response, 0.1 μF Output Capacitor Rev. A | Page 15 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 THEORY OF OPERATION Band gap references are the high performance solution for low supply voltage and low power voltage reference applications, and the ADR36x family is no exception. The uniqueness of these products lies in their architecture. The ideal zero TC band gap voltage is referenced to the output not to ground (see Figure 32). Therefore, if noise exists on the ground line, it is greatly attenuated on VOUT. The band gap cell consists of the PNP pair Q53 and Q52 running at unequal current densities. The difference in VBE results in a voltage with a positive TC, which is amplified by a ratio of DEVICE POWER DISSIPATION CONSIDERATIONS The ADR36x family is capable of delivering load currents to 5 mA with an input voltage ranging from 2.348 V (ADR360 only) to 18 V. When this device is used in applications with large input voltages, care should be taken to avoid exceeding the specified maximum power dissipation or junction temperature because it could result in premature device failure. Use the following formula to calculate a device’s maximum junction temperature or dissipation: PD = TJ − TA θ JA 2× R59 R54 This PTAT voltage, combined with the VBEs of Q53 and Q52, produces the stable band gap voltage. Reduction in the band gap curvature is performed by the ratio of Resistor R44 and Resistor R59, one of which is linearly temperature dependent. Precision laser trimming and other patented circuit techniques are used to further enhance the drift performance. Q2 Q1 VOUT (FORCE) In this equation, TJ and TA are, respectively, the junction and ambient temperatures, PD is the device power dissipation, and θJA is the device package thermal resistance. INPUT CAPACITOR Input capacitors are not required on the ADR36x. There is no limit for the value of the capacitor used on the input, but a 1 μF to 10 μF capacitor on the input improves transient response in applications where the supply suddenly changes. An additional 0.1 μF capacitor in parallel also helps reduce noise from the supply. OUTPUT CAPACITOR R59 R44 R100 VOUT (SENSE) R54 R58 Q61 Q60 R49 62kΩ Q53 R53 Q52 R50 30kΩ TRIM R101 R48 05467-024 R60 R61 Figure 32. Simplified Schematic The ADR36x does not require output capacitors for stability under any load condition. An output capacitor, typically 0.1 μF, filters out any low level noise voltage and does not affect the operation of the part. On the other hand, the load transient response can improve with an additional 1 μF to 10 μF output capacitor in parallel. A capacitor here acts as a source of stored energy for a sudden increase in load current. The only parameter that degrades by adding an output capacitor is the turn-on time. The degradation depends on the size of the capacitor chosen. Rev. A | Page 16 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 APPLICATIONS BASIC VOLTAGE REFERENCE CONNECTION The circuit in Figure 33 illustrates the basic configuration for the ADR36x family. Decoupling capacitors are not required for circuit stability. The ADR36x family is capable of driving capacitive loads from 0 μF to 10 μF. However, a 0.1 μF ceramic output capacitor is recommended to absorb and deliver the charge as is required by a dynamic load. Two reference ICs are used and fed from an unregulated input, VIN. The outputs of the individual ICs are connected in series, which provides two output voltages, VOUT1 and VOUT2. VOUT1 is the terminal voltage of U1, while VOUT2 is the sum of this voltage and the terminal voltage of U2. U1 and U2 are chosen for the two voltages that supply the required outputs (see Table 10). For example, if both U1 and U2 are ADR361s, VOUT1 is 2.5 V and VOUT2 is 5.0 V. Table 10. Output 1 NC TRIM 5 ADR36x 2 GND U1/U2 ADR361/ADR365 ADR361/ADR361 ADR365/ADR361 OUTPUT 05467-025 VOUT1 2.5 2.5 5 VOUT2 7.5 5.0 7.5 INPUT 0.1μF 3 VIN VOUT 4 0.1μF A Negative Precision Reference Without Precision Resistors A negative reference is easily generated by adding an op amp, A1 and is configured in Figure 35. VOUTF and VOUTS are at virtual ground and, therefore, the negative reference can be taken directly from the output of the op amp. The op amp must be dual-supply, low offset, and rail-to-rail if the negative supply voltage is close to the reference output. 1 Figure 33. Basic Configuration for the ADR36x Family Stacking Reference ICs for Arbitrary Outputs Some applications can require two reference voltage sources, which are a combined sum of standard outputs. Figure 34 shows how this stacked output reference can be implemented. 1 NC GND VIN TRIM 5 2 ADR36x VOUT 4 VOUT2 NC TRIM 5 ADR36x 2 VIN 3 GND C2 0.1μF +VDD 3 VIN VOUT 4 1 C1 0.1μF 2 NC GND VIN TRIM 5 ADR36x VOUT 4 VOUT1 05467-026 –VREF – + 05467-027 3 Figure 34. Stacking Voltage References with the ADR36x –VDD Figure 35. Negative Reference Rev. A | Page 17 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 General-Purpose Current Source Many times in low power applications, the need arises for a precision current source that can operate on low supply voltages. The ADR36x can be configured as a precision current source (see Figure 36). The circuit configuration illustrated is a floating current source with a grounded load. The reference’s output voltage is bootstrapped across RSET, which sets the output current into the load. With this configuration, circuit precision is maintained for load currents ranging from the reference’s supply current, typically 150 μA, to approximately 5 mA. 1 Trim Terminal The ADR36x trim terminal can be used to adjust the output voltage over a nominal voltage. This feature allows a system designer to trim system errors by setting the reference to a voltage other than the standard voltage option. Resistor R1 is used for fine adjustment and can be omitted if desired. The resistor values should be carefully chosen to ensure that the maximum current drive of the part is not exceeded. R2 1kΩ R1 100kΩ NC GND VIN TRIM 5 1 NC TRIM 5 POT 10kΩ ADR36x 2 2 ADR36x GND VOUT 05467-029 +VDD 3 VOUT 4 R1 RSET ISET +VDD 3 VIN VOUT 4 ISY P1 Figure 37. ADR36x Trim Configuration Figure 36. Precision Current Source 05467-028 RL ISET + ISY Rev. A | Page 18 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 OUTLINE DIMENSIONS 2.90 BSC 5 4 1.60 BSC 1 2 3 2.80 BSC PIN 1 0.95 BSC *0.90 0.87 0.84 1.90 BSC *1.00 MAX 0.20 0.08 8° 4° 0° 0.60 0.45 0.30 0.10 MAX 0.50 0.30 SEATING PLANE *COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS. Figure 38. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters ORDERING GUIDE Models 1 ADR360AUJZ-REEL7 2 ADR360BUJZ-REEL72 ADR361AUJZ-REEL72 ADR361BUJZ-REEL72 ADR363AUJZ-REEL72 ADR363BUJZ-REEL72 ADR364AUJZ-REEL72 ADR364BUJZ-REEL72 ADR365AUJZ-REEL72 ADR365BUJZ-REEL72 ADR366AUJZ-REEL72 ADR366BUJZ-REEL72 1 2 Output Voltage (VO) 2.048 2.048 2.5 2.5 3.0 3.0 4.096 4.096 5.0 5.0 3.3 3.3 Initial Accuracy (mV) (%) 6 0.29 3 0.15 6 0.24 3 0.12 6 0.2 3 0.1 8 0.2 4 0.1 8 0.16 4 0.08 8 0.25 4 0.125 Temperature Coefficient (ppm/°C) 25 9 25 9 25 9 25 9 25 9 25 9 Package Description 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT Package Option UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 Temperature Range –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C Branding R0C R0D R0E R0F R0G R0H R0J R0K R0L R0M R08 R09 3,000 pieces per reel. Z = Pb-free part. Rev. 0 | Page 19 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 NOTES ©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05467-3/06(A) Rev. A | Page 20 of 20
ADR364A 价格&库存

很抱歉,暂时无法提供与“ADR364A”相匹配的价格&库存,您可以联系我们找货

免费人工找货