Low Power, Low Noise Voltage References
with Sink/Source Capability
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
FEATURES
PIN CONFIGURATION
Compact TSOT package
Low temperature coefficient
A grade: 25 ppm/°C
B grade: 9 ppm/°C
H grade: 25 ppm/°C
Initial accuracy
A grade: ±6 mV maximum (ADR360, ADR361, and ADR363)
B grade: ±3 mV maximum (ADR360, ADR361, and ADR363)
Ultralow output voltage noise: 6.8 µV p-p (0.1 Hz to 10 Hz)
Low dropout: 300 mV
Low quiescent current: 190 µA maximum
No external capacitor required
Output current: +5 mA (sourcing), −1 mA (sinking)
Wide temperature range
−40°C to +125°C (A grade, B grade)
−40°C to +150°C (H grade)
Qualified for automotive applications
−40°C to +150°C
ADR365WHUJZ-R7
−40°C to +125°C
ADR365WAUJZ-R7, ADR366WAUJZ-REEL7
APPLICATIONS
Battery-powered instruments
Portable medical instruments
Data acquisition systems
Industrial process controls
Automotive
ADR360/ADR361/
ADR363/ADR364/
ADR365/ADR366
NIC 1
GND 2
VIN 3
5 TRIM
TOP VIEW
(Not to Scale)
4 VOUT
05467-001
Data Sheet
Figure 1. 5-Lead TSOT (UJ-5)
Table 1. ADR360/ADR361/ADR363/ADR364/ADR365/
ADR366 Family of Devices
Model
ADR360B
ADR360A
ADR361B
ADR361A
ADR363B
ADR363A
ADR364B
ADR364A
ADR365B
ADR365A
ADR365H
ADR366B
ADR366A
1
VOUT
(V) 1
2.048
2.048
2.500
2.500
3.000
3.000
4.096
4.096
5.000
5.000
5.000
3.300
3.300
Temperature Coefficient
(ppm/°C)
9
25
9
25
9
25
9
25
9
25
25
9
25
Accuracy
(mV)
±3
±6
±3
±6
±3
±6
±4
±8
±4
±8
±8
±4
±8
Contact Analog Devices, Inc., for other voltage options.
GENERAL DESCRIPTION
The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
are precision 2.048 V, 2.500 V, 3.000 V, 4.096 V, 5.000 V, and
3.300 V band gap voltage references that offer low power and
high precision in a compact TSOT package. Using proprietary
temperature drift curvature correction techniques from Analog
Devices, Inc., the ADR360/ADR361/ADR363/ADR364/
ADR365/ADR366 references achieve a low temperature drift of
9 ppm/°C in a TSOT package.
stable output voltage from a minimum supply of 300 mV greater
than the output. The advanced design of the devices eliminates
the need for external capacitors, which further reduces board
space and system cost. The combination of low power operation,
small size, and ease of use makes the ADR360/ADR361/ADR363/
ADR364/ADR365/ADR366 precision voltage references ideally
suited for battery-operated applications.
See the Ordering Guide for automotive grades.
The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
family of micropower, low dropout voltage references provide a
Rev. E
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2005–2019 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
ESD Caution...................................................................................9
Applications ....................................................................................... 1
Pin Configuration and Function Descriptions........................... 10
Pin Configuration ............................................................................. 1
Typical Performance Characteristics ........................................... 11
General Description ......................................................................... 1
Terminology .................................................................................... 17
Revision History ............................................................................... 2
Theory of Operation ...................................................................... 18
Specifications..................................................................................... 3
Device Power Dissipation Considerations .............................. 18
ADR360 Electrical Characteristics............................................. 3
Input Capacitor ........................................................................... 18
ADR361 Electrical Characteristics............................................. 4
Output Capacitor........................................................................ 18
ADR363 Electrical Characteristics............................................. 5
Applications Information .............................................................. 19
ADR364 Electrical Characteristics............................................. 6
Basic Voltage Reference Connection ....................................... 19
ADR365 Electrical Characteristics............................................. 7
Outline Dimensions ....................................................................... 20
ADR366 Electrical Characteristics............................................. 8
Ordering Guide .......................................................................... 20
Absolute Maximum Ratings ............................................................ 9
Automotive Products ................................................................. 20
Thermal Resistance ...................................................................... 9
REVISION HISTORY
3/2019—Rev. D to Rev. E
Changes to Features Section, Figure 1, Table 1, and General
Description Section .......................................................................... 1
Changes to Table 2 ............................................................................ 3
Changes to Table 3 ............................................................................ 4
Changes to Table 4 ............................................................................ 5
Changes to Table 5 ............................................................................ 6
Changes to Table 6 ............................................................................ 7
Changes to Table 7 ............................................................................ 8
Changes to Thermal Resistance Section and Table 9................... 9
Added Pin Configuration and Function Descriptions Section,
Figure 2, and Table 10; Renumbered Sequentially ..................... 10
Added Figure 7................................................................................ 11
Changes to Figure 9 ........................................................................ 12
Added Figure 12.............................................................................. 12
Added Figure 16.............................................................................. 13
Changes to Figure 18 ...................................................................... 13
Deleted Negative Precision Reference Without Precision
Resistors Section and Figure 35 .................................................... 17
Changes to Theory of Operation Section, Device Power
Dissipation Considerations Section, Input Capacitor Section,
Output Capacitor Section, and Figure 36 .................................... 18
Changes to Applications Information Section, Figure 37 to
Figure 40, Stacking Reference ICs for Arbitrary Outputs Section,
General-Purpose Current Source Section, and Trim Terminal
Section .............................................................................................. 19
Updated Outline Dimensions ....................................................... 20
Changes to Ordering Guide .......................................................... 20
10/10—Rev. C to Rev. D
Changes to Features Section and General Description Section . 1
Changed Supply Voltage Headroom to Dropout Voltage
Throughout ........................................................................................3
Changed 0.1 Hz to 10 Hz to f = 0.1 Hz to 10 Hz Throughout ....3
Change to Table 8 ..............................................................................9
Changes to Figure 13...................................................................... 11
Changes to Figure 14...................................................................... 12
Changes to Ordering Guide .......................................................... 20
Added Automotive Products Section .......................................... 20
7/07—Rev. B to Rev. C
Changes to Ripple Rejection Ratio in Table 2................................3
Changes to Ripple Rejection Ratio in Table 3................................4
Changes to Ripple Rejection Ratio in Table 4................................5
Changes to Ripple Rejection Ratio in Table 5................................6
Changes to Ripple Rejection Ratio in Table 6................................7
Changes to Ripple Rejection Ratio in Table 7................................8
2/07—Rev. A to Rev. B
Changes to Table 7.............................................................................8
Changes to Figure 6 ........................................................................ 11
Changes to Figure 13, Figure 14, Figure 17,
and Figure 27 Captions .................................................................. 12
Changes to Ordering Guide .......................................................... 19
3/06—Rev. 0 to Rev. A
Changes to Figure 15 Caption ...................................................... 13
Changes to Figure 21 Caption ...................................................... 14
Changes to Theory of Operation Section.................................... 16
Changes to Figure 36...................................................................... 18
4/05—Revision 0: Initial Version
Rev. E | Page 2 of 20
Data Sheet
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
SPECIFICATIONS
ADR360 ELECTRICAL CHARACTERISTICS
Input voltage (VIN) = 2.35 V to 15 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter
OUTPUT VOLTAGE
Symbol
VOUT
INITIAL ACCURACY
VOUTERR
TEMPERATURE COEFFICIENT
TCVOUT
DROPOUT VOLTAGE
LINE REGULATION
LOAD REGULATION
VIN − VOUT
∆VOUT/∆VIN
∆VOUT/∆ILOAD
QUIESCENT CURRENT
OUTPUT CURRENT
Sourcing
Sinking
VOLTAGE NOISE
TURN ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT-CIRCUIT TO GND
IIN
IOUT
1
Test Conditions/Comments
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
Min
2.042
2.045
Typ
2.048
2.048
Max
2.054
2.051
±6
±0.29
±3
±0.15
25
9
0.105
0.37
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
0.82
190
mV/mA
µA
300
VIN = 2.45 V to 15 V, −40°C < TA < +125°C
Load resistance (ILOAD)= 0 mA to 5 mA, −40°C < TA <
+125°C, VIN = 3 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3 V
−40°C < TA < +125°C
150
5
−1
eN p-p
tR
∆VOUT
∆VOUT_HYS
RRR
ISC
Frequency = 0.1 Hz to 10 Hz
1000 hours
Input frequency (fIN) = 60 Hz
VIN = 5 V
VIN = 15 V
6.8
25
50
100
−70
25
30
The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than the drift is in the first 1000 hours.
Rev. E | Page 3 of 20
mA
mA
µV p-p
µs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
Data Sheet
ADR361 ELECTRICAL CHARACTERISTICS
VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted.
Table 3.
Parameter
OUTPUT VOLTAGE
Symbol
VOUT
INITIAL ACCURACY
VOUTERR
TEMPERATURE COEFFICIENT
TCVOUT
DROPOUT VOLTAGE
LINE REGULATION
LOAD REGULATION
VIN − VOUT
∆VOUT/∆VIN
∆VOUT/∆ILOAD
QUIESCENT CURRENT
OUTPUT CURRENT
Sourcing
Sinking
VOLTAGE NOISE
TURN ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT-CIRCUIT TO GND
IIN
IOUT
1
Test Conditions/Comments
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
Min
2.494
2.497
Typ
2.500
2.500
Max
2.506
2.503
±6
±0.24
±3
±0.12
25
9
300
VIN = 2.8 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3.5 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3.5 V
−40°C < TA < +125°C
150
0.125
0.45
1
190
5
−1
eN p-p
tR
∆VOUT
∆VOUT_HYS
RRR
ISC
Frequency = 0.1 Hz to 10 Hz
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
8.25
25
50
100
−70
25
30
The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than the drift is in the first 1000 hours.
Rev. E | Page 4 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
µA
mA
mA
µV p-p
µs
ppm
ppm
dB
mA
mA
Data Sheet
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ADR363 ELECTRICAL CHARACTERISTICS
VIN = 3.3 V to 15 V, TA = 25°C, unless otherwise noted.
Table 4.
Parameter
OUTPUT VOLTAGE
Symbol
VOUT
INITIAL ACCURACY
VOUTERR
TEMPERATURE COEFFICIENT
TCVOUT
DROPOUT VOLTAGE
LINE REGULATION
LOAD REGULATION
VIN − VOUT
∆VOUT/∆VIN
∆VOUT/∆ILOAD
QUIESCENT CURRENT
OUTPUT CURRENT
Sourcing
Sinking
VOLTAGE NOISE
TURN ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT-CIRCUIT TO GND
IIN
IOUT
1
Test Conditions/Comments
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
Min
2.994
2.997
Typ
3.000
3.000
Max
3.006
3.003
±6
±0.2
±3
±0.1
25
9
300
VIN = 3.3 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4 V
−40°C < TA < +125°C
150
0.15
0.54
1.2
190
5
−1
eN p-p
tR
∆VOUT
∆VOUT_HYS
RRR
ISC
Frequency = 0.1 Hz to 10 Hz
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
8.7
25
50
100
−70
25
30
The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than the drift is in the first 1000 hours.
Rev. E | Page 5 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
µA
mA
mA
µV p-p
µs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
Data Sheet
ADR364 ELECTRICAL CHARACTERISTICS
VIN = 4.4 V to 15 V, TA = 25°C, unless otherwise noted.
Table 5.
Parameter
OUTPUT VOLTAGE
Symbol
VOUT
INITIAL ACCURACY
VOUTERR
TEMPERATURE COEFFICIENT
TCVOUT
DROPOUT VOLTAGE
LINE REGULATION
LOAD REGULATION
VIN − VOUT
∆VOUT/∆VIN
∆VOUT/∆ILOAD
QUIESCENT CURRENT
OUTPUT CURRENT
Sourcing
Sinking
VOLTAGE NOISE
TURN ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT-CIRCUIT TO GND
IIN
IOUT
1
Test Conditions/Comments
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
Min
4.088
4.092
Typ
4.096
4.096
Max
4.104
4.100
±8
±0.2
±4
±0.1
25
9
300
VIN = 4.4 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 5 V
−40°C < TA < +125°C
150
0.205
0.735
1.75
190
5
−1
eN p-p
tR
∆VOUT
∆VOUT_HYS
RRR
ISC
Frequency = 0.1 Hz to 10 Hz
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
11
25
50
100
−70
25
30
The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than the drift is in the first 1000 hours.
Rev. E | Page 6 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
µA
mA
mA
µV p-p
µs
ppm
ppm
dB
mA
mA
Data Sheet
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ADR365 ELECTRICAL CHARACTERISTICS
VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted.
Table 6.
Parameter
OUTPUT VOLTAGE
Symbol
VOUT
INITIAL ACCURACY
VOUTERR
TEMPERATURE
COEFFICIENT
TCVOUT
DROPOUT VOLTAGE
LINE REGULATION
VIN − VOUT
∆VOUT/∆VIN
LOAD REGULATION
∆VOUT/∆ILOAD
QUIESCENT CURRENT
IIN
OUTPUT CURRENT
Sourcing
Sinking
VOLTAGE NOISE
TURN ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE
HYSTERESIS
RIPPLE REJECTION RATIO
SHORT-CIRCUIT TO GND
IOUT
1
Test Conditions/Comments
A grade
B grade
H grade
A grade
A grade
B grade
B grade
H grade
H grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
H grade, −40°C < TA < +150°C
Min
4.992
4.996
4.992
Typ
5.000
5.000
5.000
Max
5.008
5.004
5.008
±8
±0.16
±4
±0.08
±8
±0.16
25
9
25
0.25
1.8
0.9
2
3.6
Unit
V
V
V
mV
%
mV
%
mV
%
ppm/°C
ppm/°C
ppm/°C
mV
mV/V
mV/V
mV/mA
mV/mA
mV/mA
30
mV/mA
190
190
µA
µA
300
VIN = 5.3 V to 15 V, −40°C < TA < +125°C
VIN = 5.3 V to 15 V, −40°C < TA < +150°C (H grade only)
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 6 V
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6 V
(H grade only)
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 6 V (H
grade only)
−40°C < TA < +125°C
−40°C < TA < +150°C (H grade only)
150
150
5
−1
eN p-p
tR
∆VOUT
∆VOUT_HYS
Frequency = 0.1 Hz to 10 Hz
RRR
ISC
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
1000 hours
12.8
20
50
100
mA
mA
µV p-p
µs
ppm
ppm
−70
25
30
dB
mA
mA
The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than the drift is in the first 1000 hours.
Rev. E | Page 7 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
Data Sheet
ADR366 ELECTRICAL CHARACTERISTICS
VIN = 3.6 V to 15 V, TA = 25°C, unless otherwise noted.
Table 7.
Parameter
OUTPUT VOLTAGE
Symbol
VOUT
INITIAL ACCURACY
VOUTERR
TEMPERATURE COEFFICIENT
TCVOUT
DROPOUT VOLTAGE
LINE REGULATION
LOAD REGULATION
VIN − VOUT
∆VOUT/∆VIN
∆VOUT/∆ILOAD
QUIESCENT CURRENT
OUTPUT CURRENT
Sourcing
Sinking
VOLTAGE NOISE
TURN ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT-CIRCUIT TO GND
IIN
IOUT
1
Test Conditions/Comments
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
Min
3.292
3.296
Typ
3.300
3.300
Max
3.308
3.304
±8
±0.25
±4
±0.125
25
9
300
VIN = 3.6 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4.2 V
ILOAD = 0 mA to 8 mA, −40°C < TA < +125°C, VIN ≥ 4.75 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4.2 V
−40°C < TA < +125°C
150
0.165
0.6
0.6
1.35
190
5
−1
eN p-p
tR
∆VOUT
∆VOUT_HYS
RRR
ISC
Frequency = 0.1 Hz to 10 Hz
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
9.3
25
50
100
−70
25
30
The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than the drift is in the first 1000 hours.
Rev. E | Page 8 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
mV/mA
µA
mA
mA
µV p-p
µs
ppm
ppm
dB
mA
mA
Data Sheet
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
THERMAL RESISTANCE
Table 8.
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Careful attention to
PCB thermal design is required.
Parameter
Supply Voltage
Output Short-Circuit Duration to GND
VIN < 15 V
VIN > 15 V
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering, 60 sec)
Rating
18 V
Indefinite
10 sec
−65°C to +125°C
−40°C to +125°C
−65°C to +150°C
300°C
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
θJA is the natural convection, junction to ambient thermal
resistance measured in a one cubic foot sealed enclosure.
θJC is the junction to case thermal resistance.
Table 9. Thermal Resistance
Package Type
UJ-5
ESD CAUTION
Rev. E | Page 9 of 20
θJA
230
θJC
146
Unit
°C/W
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
Data Sheet
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
ADR360/ADR361/
ADR363/ADR364/
ADR365/ADR366
NIC 1
VIN 3
TOP VIEW
(Not to Scale)
4 VOUT
NOTES
1. NIC = NOT INTERNALLY CONNECTED.
THIS PIN IS NOT CONNECTED INTERNALLY.
05467-040
GND 2
5 TRIM
Figure 2. Pin Configuration
Table 10. Pin Function Descriptions
Pin No.
1
2
3
4
5
Mnemonic
NIC
GND
VIN
VOUT
TRIM
Description
Not Internally Connected. This pin is not connected internally.
Ground.
Input Voltage Connection.
Output Voltage.
Output Voltage Trim.
Rev. E | Page 10 of 20
Data Sheet
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
TYPICAL PERFORMANCE CHARACTERISTICS
4.998
2.052
4.997
4.996
2.050
VOUT (V)
VOUT (V)
4.995
2.048
4.994
4.993
4.992
2.046
–20
0
20
40
60
80
100
4.990
–40
120
05467-005
05467-002
2.044
–40
4.991
–25
–10
5
20
35
50
65
80
95
110
125
TEMPERATURE (°C)
TEMPERATURE (°C)
Figure 3. ADR360 VOUT vs. Temperature
Figure 6. ADR365 VOUT vs. Temperature
2.504
5.002
H GRADE
5.000
2.502
4.996
2.500
VOUT (V)
2.498
4.992
4.990
2.496
4.988
05467-003
2.494
–40
4.994
–25
–10
5
20
35
50
65
80
95
110
4.986
–40
125
–20
0
20
40
60
80
100
120
140
TEMPERATURE (°C)
TEMPERATURE (°C)
05467-041
VOUT (V)
4.998
Figure 7. ADR365 H Grade VOUT vs. Temperature
Figure 4. ADR361 VOUT vs. Temperature
3.003
0.165
3.002
+125°C
0.155
IDD (mA)
3.000
2.999
0.145
+25°C
0.135
–40°C
2.998
2.996
–40
–20
0
20
40
60
80
100
120
TEMPERATURE (°C)
0.115
2.8
05467-006
0.125
2.997
05467-004
VOUT (V)
3.001
4.1
5.4
6.7
8.0
9.3
10.6
11.9
13.2
VIN (V)
Figure 5. ADR363 VOUT vs. Temperature
Figure 8. ADR361 Supply Current (IDD) vs. VIN
Rev. E | Page 11 of 20
14.5
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
Data Sheet
1.2
0.17
H GRADE
+25°C
–40°C
0.15
0.8
0.6
0.4
0.14
5.3
05467-007
0.2
6.3
7.3
8.3
9.3
10.3
11.3
12.3
13.3
VIN = 6V
VIN = 9V
0
–40
14.3
–20
0
20
40
60
80
100
120
05467-042
+150°C (H GRADE)
0.16
IDD (mA)
LOAD REGULATION (mV/mA)
1.0
+125°C
140
TEMPERATURE (°C)
VIN (V)
Figure 12. ADR365 H Grade Load Regulation vs. Temperature
Figure 9. ADR365 IDD vs. VIN
0.18
25
0.12
VIN = 9V
0.10
0.08
VIN = 3.5V
0.06
0.04
0
–40
05467-036
0.02
–25
–10
5
20
35
50
65
80
95
110
20
15
10
5
0
–40
125
05467-008
0.14
LINE REGULATION (ppm/V)
LOAD REGULATION (mV/mA)
0.16
–20
20
0
Figure 10. ADR361 Load Regulation vs. Temperature
60
80
100
120
Figure 13. ADR360 Line Regulation vs. Temperature, VIN = 2.45 V to 15 V
0.14
9
8
VIN = 9V
0.08
0.06
VIN = 6V
0.04
0
–40
–25
–10
5
20
35
50
65
80
95
110
5
4
3
2
0
–40
125
TEMPERATURE (°C)
Figure 11. ADR365 Load Regulation vs. Temperature
6
1
05467-037
0.02
7
05467-009
0.10
LINE REGULATION (ppm/V)
0.12
LOAD REGULATION (mV/mA)
40
TEMPERATURE (°C)
TEMPERATURE (°C)
–25
–10
5
20
35
50
65
80
95
110
125
TEMPERATURE (°C)
Figure 14. ADR361 Line Regulation vs. Temperature, VIN = 2.8 V to 15 V
Rev. E | Page 12 of 20
Data Sheet
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
12
2.5
+150°C (H GRADE)
2.0
DROPOUT VOLTAGE (V)
8
6
4
1.0
+25°C
0.5
05467-010
2
0
–40
+125°C
1.5
–20
0
20
40
60
80
100
120
05467-012
LINE REGULATION (ppm/V)
10
–40°C
0
–2
0
TEMPERATURE (°C)
2
4
6
8
10
LOAD CURRENT (mA)
Figure 15. ADR365 Line Regulation vs. Temperature, VIN = 5.3 V to 15 V
Figure 18. ADR365 Dropout Voltage vs. Load Current
0.40
H GRADE
0.30
0.25
0.20
0.15
2µV/DIV
0.10
0.05
0
–40
–20
0
20
40
60
80
100
120
05467-043
TIME = 1s/DIV
140
TEMPERATURE (°C)
05467-013
LINE REGULATION (mV/V)
0.35
Figure 19. ADR361 0.1 Hz to 10 Hz Noise
Figure 16. ADR365 H Grade Line Regulation vs. Temperature,
VIN = 5.3 V to 15 V
1.6
1.4
1.0
0.8
0.6
–40°C
+25°C
0.2
0
–2
0
2
4
6
8
50µV/DIV
TIME = 1s/DIV
10
LOAD CURRENT (mA)
Figure 20. ADR361 10 Hz to 10 kHz Noise
Figure 17. ADR361 Dropout Voltage vs. Load Current
Rev. E | Page 13 of 20
05467-014
0.4
05467-011
DROPOUT VOLTAGE (V)
+125°C
1.2
Data Sheet
2µV/DIV
100µV/DIV
TIME = 1s/DIV
05467-015
TIME = 1s/DIV
05467-018
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
Figure 24. ADR365 10 Hz to 10 kHz Noise
Figure 21. ADR363 0.1 Hz to 10 Hz Noise
50
45
OUTPUT IMPEDANCE (Ω)
40
35
30
25
20
15
05467-016
TIME = 1s/DIV
05467-031
10
50µV/DIV
5
0
100
1k
10k
100k
FREQUENCY (Hz)
Figure 25. Output Impedance vs. Frequency
Figure 22. ADR363 10 Hz to 10 kHz Noise
10
TIME = 1s/DIV
05467-017
2µV/DIV
–20
–30
–40
–50
–60
–70
05467-030
RIPPLE REJECTION RATIO (dB)
0
–10
–80
–90
100
1k
10k
100k
FREQUENCY (Hz)
Figure 23. ADR365 0.1 Hz to 10 Hz Noise
Figure 26. Ripple Rejection Ratio vs. Frequency
Rev. E | Page 14 of 20
1M
Data Sheet
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
500mV/DIV
LOAD ON
LOAD OFF
VIN
500mV/DIV
100mV/DIV
05467-032
4µs/DIV
VOUT
05467-019
VOUT
2ms/DIV
Figure 27. ADR361 Line Transient Response (Increasing), No Capacitors
Figure 30. ADR361 Load Transient Response
VIN
LOAD ON
500mV/DIV
VOUT
10µs/DIV
100mV/DIV
05467-033
500mV/DIV
05467-020
VOUT
100µs/DIV
Figure 28. ADR361 Line Transient Response (Decreasing), No Capacitors
Figure 31. ADR361 Load Transient Response
with 0.1 μF Output Capacitor
500mV/DIV
5V/DIV
VIN
20mV/DIV
100µs/DIV
05467-021
2.5V/DIV
VOUT
10µs/DIV
Figure 29. ADR361 Line Transient Response, 0.1 μF Input Capacitor
Figure 32. ADR361 Turn On Response Time at 5 V
Rev. E | Page 15 of 20
05467-022
VOUT
VIN
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
Data Sheet
VIN
5V/DIV
VIN
5V/DIV
VOUT
2V/DIV
400ns/DIV
2ms/DIV
Figure 33. ADR361 Turn Off Response Time at 5 V
Figure 35. ADR361 Turn Off Response Time, 0.1 μF Output Capacitor
VIN
5V/DIV
VOUT
05467-034
2V/DIV
100µs/DIV
05467-035
VOUT
05467-023
2.5V/DIV
Figure 34. ADR361 Turn On Response Time, 0.1 μF Output Capacitor
Rev. E | Page 16 of 20
Data Sheet
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
TERMINOLOGY
Temperature Coefficient
The temperature coefficient is the change of output voltage with
respect to operating temperature changes normalized by the
output voltage at 25°C. This parameter is expressed in ppm/°C
and can be determined by
=
TCVOUT (ppm/°C)
VOUT (T2 ) − VOUT (T1)
VOUT ( 25°C ) × (T2 − T1)
Long-Term Stability
Long-term stability is the typical shift of output voltage at 25°C
on a sample of devices subjected to a test of 1000 hours at 25°C.
∆VOUT
= VOUT ( t 0 ) − VOUT ( t1 )
V ( t ) – VOUT ( t1 )
∆VOUT=
× 106
( ppm ) OUT 0
VOUT ( t 0 )
× 106
where:
VOUT (t0) = VOUT at 25°C at Time 0.
VOUT (t1) = VOUT at 25°C after 1000 hours operation at 25°C.
where:
VOUT (T2) = VOUT at Temperature 2.
VOUT (T1) = VOUT at Temperature 1.
VOUT (25°C) = VOUT at 25°C.
Line Regulation
Line regulation is the change in output voltage due to a specified
change in input voltage. This parameter accounts for the effects
of self heating. Line regulation is expressed in either percent per
volt, parts per million per volt, or microvolts per volt change in
input voltage.
Load Regulation
Load regulation is the change in output voltage due to a specified
change in load current. This parameter accounts for the effects
of self heating. Load regulation is expressed in either microvolts
per milliampere, parts per million per milliampere, or ohms of
dc output resistance.
Thermal Hysteresis
Thermal hysteresis (VOUT_HYS) is the change of output voltage
after the device is cycled from +25°C to −40°C to +125°C and
back to +25°C. This is a typical value from a sample of devices
put through this cycle.
VOUT _=
VOUT ( 25°C ) − VOUT _ TC
HYS
=
VOUT _ HYS ( ppm )
VOUT ( 25°C ) − VOUT _ TC
VOUT ( 25°C )
× 106
where:
VOUT (25°C) = VOUT at 25°C.
VOUT_TC = VOUT at 25°C after a temperature cycle at +25°C to
−40°C to +125°C and back to +25°C.
Rev. E | Page 17 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
THEORY OF OPERATION
Band gap references are the high performance solution for low
supply voltage and low power voltage reference applications, and
the ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
family is no exception. The uniqueness of these devices lies in
their architecture. The ideal zero temperature coefficient band
gap voltage is referenced to the output, not to ground (see
Figure 36). Therefore, if noise exists on the ground line, the noise
is greatly attenuated on VOUT. The band gap cell consists of the
PNP transistor pair, Q53 and Q52, running at unequal current
densities. The difference in the base emitter voltage (VBE) of
Q53 and Q52 results in a voltage with a positive temperature
coefficient, which is amplified by a ratio of
DEVICE POWER DISSIPATION CONSIDERATIONS
The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
family can deliver load currents up to 5 mA with an input
voltage ranging from 2.35 V (ADR360 only) to 15 V. When the
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
devices are used in applications with large input voltages, take
care to avoid exceeding the specified maximum power dissipation
or junction temperature because this may result in premature
device failure. Use the following formula to calculate the
maximum junction temperature or dissipation of a device:
PD =
2 × (R59/R54)
This proportional to absolute temperature (PTAT) voltage,
combined with the VBE of Q53 and Q52, produces the stable
band gap voltage.
Reduction in the band gap curvature is performed by the ratio
of Resistor R44 and Resistor R59, one of which is linearly
temperature dependent. Precision laser trimming and other
proprietary circuit techniques are used to further enhance the
drift performance.
VIN
Q1
Q2
VOUT
R54
Q53
R53
R44
R58
Q61
Q60
R101
R60
R49
62kΩ
R50
3kΩ
Q52
R61
Figure 36. Simplified Schematic
TJ − TA
θ JA
where:
PD is the device power dissipation.
TJ and TA are the junction and ambient temperatures, respectively.
θJA is the device package thermal resistance.
INPUT CAPACITOR
Input capacitors are not required on the ADR360/ADR361/
ADR363/ADR364/ADR365/ADR366. There is no limit for the
value of the capacitor used on the input, but a 1 µF to 10 µF
capacitor on the input improves transient response in applications
where the supply suddenly changes. An additional 0.1 µF
capacitor in parallel also helps reduce noise from the supply.
OUTPUT CAPACITOR
R100
R48
TRIM
05467-024
R59
Data Sheet
The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 do
not require output capacitors for stability under any load
condition. An output capacitor, typically 0.1 µF, filters out low
level noise voltage and does not affect the operation of the device.
However, the load transient response can improve with an
additional 1 µF to 10 µF output capacitor placed in parallel with
the 0.1 µF capacitor. The additional capacitor acts as a source of
stored energy for a sudden increase in load current, and the
only parameter that degrades is the turn on time. The amount
of degradation depends on the size of the capacitor chosen.
Rev. E | Page 18 of 20
Data Sheet
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
APPLICATIONS INFORMATION
BASIC VOLTAGE REFERENCE CONNECTION
Table 11. Output
The circuit in Figure 37 illustrates the basic configuration for
the ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
family. Decoupling capacitors are not required for circuit
stability. The ADR360/ADR361/ADR363/ADR364/ADR365/
ADR366 family can drive capacitive loads from 0 μF to 10 μF.
However, a 0.1 μF ceramic output capacitor is recommended to
absorb and deliver the charge, as is required by a dynamic load.
U1/U2
ADR361/ADR365
ADR361/ADR361
ADR365/ADR361
1
TRIM 5
NIC
ADR360/ADR361/
ADR363/ADR364/
ADR365/ADR366
GND
3
VIN
VOUT 4
VOUT
05467-025
VIN
2
0.1µF
0.1µF
Figure 37. Basic Configuration for the
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Family
VOUT2 (V)
7.5
5.0
7.5
General-Purpose Current Source
Often in low power applications, the need arises for a precision
current source that can operate on low supply voltages. The
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 can be
configured as a precision current source (see Figure 39). The
circuit configuration illustrated in Figure 39 is a floating current
source with a grounded load. The output voltage of the reference
is bootstrapped across RSET, which sets the output current of the
load. With this configuration, circuit precision is maintained for
load currents ranging from the supply current of the reference,
typically 150 μA, up to approximately 5 mA. In Figure 39, ISY is
the supply current of the reference and ISET is the required
current output from the reference.
1 NIC
Stacking Reference ICs for Arbitrary Outputs
TRIM 5
ADR360/ADR361/
ADR363/ADR364/
ADR365/ADR366
Some applications require two reference voltage sources, which
are a combined sum of standard outputs. Figure 38 shows how
this stacked output reference can be implemented.
1 NIC
VOUT1 (V)
2.5
2.5
5
2 GND
VIN
3 VIN
VOUT 4
TRIM 5
R1
ADR365
ISET
RSET
2 GND
P1
ISY
VOUT2
3
VIN
VOUT 4
C2
0.1µF
RL
ISET + ISY
05467-028
VIN
Figure 39. Floating Current Source
C1
0.1µF
Trim Terminal
TRIM 5
ADR365
2 GND
VOUT 4
VOUT1
05467-026
3 VIN
Figure 38. Stacking Voltage References with the ADR365
Two ADR365 devices are used and fed from an unregulated
input, VIN. The outputs of the individual ICs are connected in
series, which provides two output voltages, VOUT1 and VOUT2. VOUT1
is the terminal voltage of U1, and VOUT2 is the sum of this voltage
and the terminal voltage of U2. U1 and U2 are chosen for the
two voltages that supply the required outputs (see Table 11). For
example, if both U1 and U2 are ADR361 devices, VOUT1 is 2.5 V
and VOUT2 is 5.0 V.
The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
trim terminal can be used to adjust the output voltage over a
nominal voltage. This feature allows a system designer to trim
system errors by setting the reference to a voltage other than the
standard voltage option. Resistor R1 is used for fine adjustments
and can be omitted if desired. Carefully choose the resistor
values to ensure that the maximum current drive of the device
is not exceeded.
R2
1kΩ
1
NIC
TRIM 5
R1
100kΩ
POTENTIOMETER
10kΩ
ADR360/ADR361/
ADR363/ADR364/
ADR365/ADR366
2
GND
3
VIN
VIN
VOUT 4
VOUT
05467-029
1 NIC
Figure 40. ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Trim
Configuration
Rev. E | Page 19 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
Data Sheet
OUTLINE DIMENSIONS
3.05
2.90
2.75
TOP VIEW
5
1.75
1.60
1.45
1
4
2
3
3.05
2.80
2.55
0.95 BSC
1.90 REF
SIDE VIEW
END VIEW
1.00 MAX
0.10 MAX
SEATING
PLANE
0.50
0.30
PKG-000882
0.20
0.08
8°
4°
0°
COMPLIANT TO JEDEC STANDARDS MO-193-AB
0.60
0.45
0.30
04-05-2017-B
0.90
0.70
Figure 41. 5-Lead Thin Small Outline Transistor Package [TSOT]
(UJ-5)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1, 2
ADR360AUJZ-REEL7
ADR360BUJZ-REEL7
ADR361AUJZ-REEL7
ADR361BUJZ-REEL7
ADR363AUJZ-REEL7
ADR363BUJZ-REEL7
ADR364AUJZ-REEL7
ADR364BUJZ-REEL7
ADR365AUJZ-REEL7
ADR365BUJZ-REEL7
ADR365WAUJZ-R7
ADR365WHUJZ-R7
ADR366AUJZ-REEL7
ADR366BUJZ-REEL7
ADR366WAUJZ-REEL7
1
2
Output
Voltage
(VOUT)
2.048
2.048
2.5
2.5
3.0
3.0
4.096
4.096
5.0
5.0
5.0
5.0
3.3
3.3
3.3
Initial
Accuracy, ±
(mV)
6
3
6
3
6
3
8
4
8
4
8
8
8
4
8
(%)
0.29
0.15
0.24
0.12
0.2
0.1
0.2
0.1
0.16
0.08
0.16
0.16
0.25
0.125
0.25
Temperature
Coefficient
(ppm/°C)
25
9
25
9
25
9
25
9
25
9
25
25
25
9
25
Package
Description
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
Package
Option
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
Temperature
Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +150°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Ordering
Quantity
3,000
3,000
3,000
3,000
3,000
3,000
3,000
3,000
3,000
3,000
3,000
3,000
3,000
3,000
3,000
Marking
Code
R0C
R0D
R0E
R0F
R0G
R0H
R0J
R0K
R0L
R0M
R0L
R3M
R08
R09
R08
Z = RoHS Compliant Part.
W = Qualified for Automotive Applications.
AUTOMOTIVE PRODUCTS
The ADR365W and ADR366W models are available with controlled manufacturing to support the quality and reliability requirements of
automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore,
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for
use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and
to obtain the specific Automotive Reliability reports for these models.
©2005–2019 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D05467-0-3/19(E)
Rev. E | Page 20 of 20