0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADR366WAUJZ-REEL

ADR366WAUJZ-REEL

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    ADR366WAUJZ-REEL

  • 数据手册
  • 价格&库存
ADR366WAUJZ-REEL 数据手册
Low Power, Low Noise Voltage References with Sink/Source Capability ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 FEATURES PIN CONFIGURATION Compact TSOT package Low temperature coefficient A grade: 25 ppm/°C B grade: 9 ppm/°C H grade: 25 ppm/°C Initial accuracy A grade: ±6 mV maximum (ADR360, ADR361, and ADR363) B grade: ±3 mV maximum (ADR360, ADR361, and ADR363) Ultralow output voltage noise: 6.8 µV p-p (0.1 Hz to 10 Hz) Low dropout: 300 mV Low quiescent current: 190 µA maximum No external capacitor required Output current: +5 mA (sourcing), −1 mA (sinking) Wide temperature range −40°C to +125°C (A grade, B grade) −40°C to +150°C (H grade) Qualified for automotive applications −40°C to +150°C ADR365WHUJZ-R7 −40°C to +125°C ADR365WAUJZ-R7, ADR366WAUJZ-REEL7 APPLICATIONS Battery-powered instruments Portable medical instruments Data acquisition systems Industrial process controls Automotive ADR360/ADR361/ ADR363/ADR364/ ADR365/ADR366 NIC 1 GND 2 VIN 3 5 TRIM TOP VIEW (Not to Scale) 4 VOUT 05467-001 Data Sheet Figure 1. 5-Lead TSOT (UJ-5) Table 1. ADR360/ADR361/ADR363/ADR364/ADR365/ ADR366 Family of Devices Model ADR360B ADR360A ADR361B ADR361A ADR363B ADR363A ADR364B ADR364A ADR365B ADR365A ADR365H ADR366B ADR366A 1 VOUT (V) 1 2.048 2.048 2.500 2.500 3.000 3.000 4.096 4.096 5.000 5.000 5.000 3.300 3.300 Temperature Coefficient (ppm/°C) 9 25 9 25 9 25 9 25 9 25 25 9 25 Accuracy (mV) ±3 ±6 ±3 ±6 ±3 ±6 ±4 ±8 ±4 ±8 ±8 ±4 ±8 Contact Analog Devices, Inc., for other voltage options. GENERAL DESCRIPTION The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 are precision 2.048 V, 2.500 V, 3.000 V, 4.096 V, 5.000 V, and 3.300 V band gap voltage references that offer low power and high precision in a compact TSOT package. Using proprietary temperature drift curvature correction techniques from Analog Devices, Inc., the ADR360/ADR361/ADR363/ADR364/ ADR365/ADR366 references achieve a low temperature drift of 9 ppm/°C in a TSOT package. stable output voltage from a minimum supply of 300 mV greater than the output. The advanced design of the devices eliminates the need for external capacitors, which further reduces board space and system cost. The combination of low power operation, small size, and ease of use makes the ADR360/ADR361/ADR363/ ADR364/ADR365/ADR366 precision voltage references ideally suited for battery-operated applications. See the Ordering Guide for automotive grades. The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 family of micropower, low dropout voltage references provide a Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2005–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 ESD Caution...................................................................................9 Applications ....................................................................................... 1 Pin Configuration and Function Descriptions........................... 10 Pin Configuration ............................................................................. 1 Typical Performance Characteristics ........................................... 11 General Description ......................................................................... 1 Terminology .................................................................................... 17 Revision History ............................................................................... 2 Theory of Operation ...................................................................... 18 Specifications..................................................................................... 3 Device Power Dissipation Considerations .............................. 18 ADR360 Electrical Characteristics............................................. 3 Input Capacitor ........................................................................... 18 ADR361 Electrical Characteristics............................................. 4 Output Capacitor........................................................................ 18 ADR363 Electrical Characteristics............................................. 5 Applications Information .............................................................. 19 ADR364 Electrical Characteristics............................................. 6 Basic Voltage Reference Connection ....................................... 19 ADR365 Electrical Characteristics............................................. 7 Outline Dimensions ....................................................................... 20 ADR366 Electrical Characteristics............................................. 8 Ordering Guide .......................................................................... 20 Absolute Maximum Ratings ............................................................ 9 Automotive Products ................................................................. 20 Thermal Resistance ...................................................................... 9 REVISION HISTORY 3/2019—Rev. D to Rev. E Changes to Features Section, Figure 1, Table 1, and General Description Section .......................................................................... 1 Changes to Table 2 ............................................................................ 3 Changes to Table 3 ............................................................................ 4 Changes to Table 4 ............................................................................ 5 Changes to Table 5 ............................................................................ 6 Changes to Table 6 ............................................................................ 7 Changes to Table 7 ............................................................................ 8 Changes to Thermal Resistance Section and Table 9................... 9 Added Pin Configuration and Function Descriptions Section, Figure 2, and Table 10; Renumbered Sequentially ..................... 10 Added Figure 7................................................................................ 11 Changes to Figure 9 ........................................................................ 12 Added Figure 12.............................................................................. 12 Added Figure 16.............................................................................. 13 Changes to Figure 18 ...................................................................... 13 Deleted Negative Precision Reference Without Precision Resistors Section and Figure 35 .................................................... 17 Changes to Theory of Operation Section, Device Power Dissipation Considerations Section, Input Capacitor Section, Output Capacitor Section, and Figure 36 .................................... 18 Changes to Applications Information Section, Figure 37 to Figure 40, Stacking Reference ICs for Arbitrary Outputs Section, General-Purpose Current Source Section, and Trim Terminal Section .............................................................................................. 19 Updated Outline Dimensions ....................................................... 20 Changes to Ordering Guide .......................................................... 20 10/10—Rev. C to Rev. D Changes to Features Section and General Description Section . 1 Changed Supply Voltage Headroom to Dropout Voltage Throughout ........................................................................................3 Changed 0.1 Hz to 10 Hz to f = 0.1 Hz to 10 Hz Throughout ....3 Change to Table 8 ..............................................................................9 Changes to Figure 13...................................................................... 11 Changes to Figure 14...................................................................... 12 Changes to Ordering Guide .......................................................... 20 Added Automotive Products Section .......................................... 20 7/07—Rev. B to Rev. C Changes to Ripple Rejection Ratio in Table 2................................3 Changes to Ripple Rejection Ratio in Table 3................................4 Changes to Ripple Rejection Ratio in Table 4................................5 Changes to Ripple Rejection Ratio in Table 5................................6 Changes to Ripple Rejection Ratio in Table 6................................7 Changes to Ripple Rejection Ratio in Table 7................................8 2/07—Rev. A to Rev. B Changes to Table 7.............................................................................8 Changes to Figure 6 ........................................................................ 11 Changes to Figure 13, Figure 14, Figure 17, and Figure 27 Captions .................................................................. 12 Changes to Ordering Guide .......................................................... 19 3/06—Rev. 0 to Rev. A Changes to Figure 15 Caption ...................................................... 13 Changes to Figure 21 Caption ...................................................... 14 Changes to Theory of Operation Section.................................... 16 Changes to Figure 36...................................................................... 18 4/05—Revision 0: Initial Version Rev. E | Page 2 of 20 Data Sheet ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 SPECIFICATIONS ADR360 ELECTRICAL CHARACTERISTICS Input voltage (VIN) = 2.35 V to 15 V, TA = 25°C, unless otherwise noted. Table 2. Parameter OUTPUT VOLTAGE Symbol VOUT INITIAL ACCURACY VOUTERR TEMPERATURE COEFFICIENT TCVOUT DROPOUT VOLTAGE LINE REGULATION LOAD REGULATION VIN − VOUT ∆VOUT/∆VIN ∆VOUT/∆ILOAD QUIESCENT CURRENT OUTPUT CURRENT Sourcing Sinking VOLTAGE NOISE TURN ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT-CIRCUIT TO GND IIN IOUT 1 Test Conditions/Comments A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 2.042 2.045 Typ 2.048 2.048 Max 2.054 2.051 ±6 ±0.29 ±3 ±0.15 25 9 0.105 0.37 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA 0.82 190 mV/mA µA 300 VIN = 2.45 V to 15 V, −40°C < TA < +125°C Load resistance (ILOAD)= 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3 V −40°C < TA < +125°C 150 5 −1 eN p-p tR ∆VOUT ∆VOUT_HYS RRR ISC Frequency = 0.1 Hz to 10 Hz 1000 hours Input frequency (fIN) = 60 Hz VIN = 5 V VIN = 15 V 6.8 25 50 100 −70 25 30 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than the drift is in the first 1000 hours. Rev. E | Page 3 of 20 mA mA µV p-p µs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Data Sheet ADR361 ELECTRICAL CHARACTERISTICS VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted. Table 3. Parameter OUTPUT VOLTAGE Symbol VOUT INITIAL ACCURACY VOUTERR TEMPERATURE COEFFICIENT TCVOUT DROPOUT VOLTAGE LINE REGULATION LOAD REGULATION VIN − VOUT ∆VOUT/∆VIN ∆VOUT/∆ILOAD QUIESCENT CURRENT OUTPUT CURRENT Sourcing Sinking VOLTAGE NOISE TURN ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT-CIRCUIT TO GND IIN IOUT 1 Test Conditions/Comments A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 2.494 2.497 Typ 2.500 2.500 Max 2.506 2.503 ±6 ±0.24 ±3 ±0.12 25 9 300 VIN = 2.8 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3.5 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3.5 V −40°C < TA < +125°C 150 0.125 0.45 1 190 5 −1 eN p-p tR ∆VOUT ∆VOUT_HYS RRR ISC Frequency = 0.1 Hz to 10 Hz 1000 hours fIN = 60 Hz VIN = 5 V VIN = 15 V 8.25 25 50 100 −70 25 30 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than the drift is in the first 1000 hours. Rev. E | Page 4 of 20 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA µA mA mA µV p-p µs ppm ppm dB mA mA Data Sheet ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR363 ELECTRICAL CHARACTERISTICS VIN = 3.3 V to 15 V, TA = 25°C, unless otherwise noted. Table 4. Parameter OUTPUT VOLTAGE Symbol VOUT INITIAL ACCURACY VOUTERR TEMPERATURE COEFFICIENT TCVOUT DROPOUT VOLTAGE LINE REGULATION LOAD REGULATION VIN − VOUT ∆VOUT/∆VIN ∆VOUT/∆ILOAD QUIESCENT CURRENT OUTPUT CURRENT Sourcing Sinking VOLTAGE NOISE TURN ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT-CIRCUIT TO GND IIN IOUT 1 Test Conditions/Comments A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 2.994 2.997 Typ 3.000 3.000 Max 3.006 3.003 ±6 ±0.2 ±3 ±0.1 25 9 300 VIN = 3.3 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4 V −40°C < TA < +125°C 150 0.15 0.54 1.2 190 5 −1 eN p-p tR ∆VOUT ∆VOUT_HYS RRR ISC Frequency = 0.1 Hz to 10 Hz 1000 hours fIN = 60 Hz VIN = 5 V VIN = 15 V 8.7 25 50 100 −70 25 30 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than the drift is in the first 1000 hours. Rev. E | Page 5 of 20 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA µA mA mA µV p-p µs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Data Sheet ADR364 ELECTRICAL CHARACTERISTICS VIN = 4.4 V to 15 V, TA = 25°C, unless otherwise noted. Table 5. Parameter OUTPUT VOLTAGE Symbol VOUT INITIAL ACCURACY VOUTERR TEMPERATURE COEFFICIENT TCVOUT DROPOUT VOLTAGE LINE REGULATION LOAD REGULATION VIN − VOUT ∆VOUT/∆VIN ∆VOUT/∆ILOAD QUIESCENT CURRENT OUTPUT CURRENT Sourcing Sinking VOLTAGE NOISE TURN ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT-CIRCUIT TO GND IIN IOUT 1 Test Conditions/Comments A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 4.088 4.092 Typ 4.096 4.096 Max 4.104 4.100 ±8 ±0.2 ±4 ±0.1 25 9 300 VIN = 4.4 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 5 V −40°C < TA < +125°C 150 0.205 0.735 1.75 190 5 −1 eN p-p tR ∆VOUT ∆VOUT_HYS RRR ISC Frequency = 0.1 Hz to 10 Hz 1000 hours fIN = 60 Hz VIN = 5 V VIN = 15 V 11 25 50 100 −70 25 30 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than the drift is in the first 1000 hours. Rev. E | Page 6 of 20 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA µA mA mA µV p-p µs ppm ppm dB mA mA Data Sheet ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR365 ELECTRICAL CHARACTERISTICS VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted. Table 6. Parameter OUTPUT VOLTAGE Symbol VOUT INITIAL ACCURACY VOUTERR TEMPERATURE COEFFICIENT TCVOUT DROPOUT VOLTAGE LINE REGULATION VIN − VOUT ∆VOUT/∆VIN LOAD REGULATION ∆VOUT/∆ILOAD QUIESCENT CURRENT IIN OUTPUT CURRENT Sourcing Sinking VOLTAGE NOISE TURN ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT-CIRCUIT TO GND IOUT 1 Test Conditions/Comments A grade B grade H grade A grade A grade B grade B grade H grade H grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C H grade, −40°C < TA < +150°C Min 4.992 4.996 4.992 Typ 5.000 5.000 5.000 Max 5.008 5.004 5.008 ±8 ±0.16 ±4 ±0.08 ±8 ±0.16 25 9 25 0.25 1.8 0.9 2 3.6 Unit V V V mV % mV % mV % ppm/°C ppm/°C ppm/°C mV mV/V mV/V mV/mA mV/mA mV/mA 30 mV/mA 190 190 µA µA 300 VIN = 5.3 V to 15 V, −40°C < TA < +125°C VIN = 5.3 V to 15 V, −40°C < TA < +150°C (H grade only) ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 6 V ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6 V (H grade only) ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 6 V (H grade only) −40°C < TA < +125°C −40°C < TA < +150°C (H grade only) 150 150 5 −1 eN p-p tR ∆VOUT ∆VOUT_HYS Frequency = 0.1 Hz to 10 Hz RRR ISC fIN = 60 Hz VIN = 5 V VIN = 15 V 1000 hours 12.8 20 50 100 mA mA µV p-p µs ppm ppm −70 25 30 dB mA mA The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than the drift is in the first 1000 hours. Rev. E | Page 7 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Data Sheet ADR366 ELECTRICAL CHARACTERISTICS VIN = 3.6 V to 15 V, TA = 25°C, unless otherwise noted. Table 7. Parameter OUTPUT VOLTAGE Symbol VOUT INITIAL ACCURACY VOUTERR TEMPERATURE COEFFICIENT TCVOUT DROPOUT VOLTAGE LINE REGULATION LOAD REGULATION VIN − VOUT ∆VOUT/∆VIN ∆VOUT/∆ILOAD QUIESCENT CURRENT OUTPUT CURRENT Sourcing Sinking VOLTAGE NOISE TURN ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT-CIRCUIT TO GND IIN IOUT 1 Test Conditions/Comments A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 3.292 3.296 Typ 3.300 3.300 Max 3.308 3.304 ±8 ±0.25 ±4 ±0.125 25 9 300 VIN = 3.6 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4.2 V ILOAD = 0 mA to 8 mA, −40°C < TA < +125°C, VIN ≥ 4.75 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4.2 V −40°C < TA < +125°C 150 0.165 0.6 0.6 1.35 190 5 −1 eN p-p tR ∆VOUT ∆VOUT_HYS RRR ISC Frequency = 0.1 Hz to 10 Hz 1000 hours fIN = 60 Hz VIN = 5 V VIN = 15 V 9.3 25 50 100 −70 25 30 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than the drift is in the first 1000 hours. Rev. E | Page 8 of 20 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA mV/mA µA mA mA µV p-p µs ppm ppm dB mA mA Data Sheet ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. THERMAL RESISTANCE Table 8. Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. Parameter Supply Voltage Output Short-Circuit Duration to GND VIN < 15 V VIN > 15 V Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) Rating 18 V Indefinite 10 sec −65°C to +125°C −40°C to +125°C −65°C to +150°C 300°C Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. θJA is the natural convection, junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θJC is the junction to case thermal resistance. Table 9. Thermal Resistance Package Type UJ-5 ESD CAUTION Rev. E | Page 9 of 20 θJA 230 θJC 146 Unit °C/W ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Data Sheet PIN CONFIGURATION AND FUNCTION DESCRIPTIONS ADR360/ADR361/ ADR363/ADR364/ ADR365/ADR366 NIC 1 VIN 3 TOP VIEW (Not to Scale) 4 VOUT NOTES 1. NIC = NOT INTERNALLY CONNECTED. THIS PIN IS NOT CONNECTED INTERNALLY. 05467-040 GND 2 5 TRIM Figure 2. Pin Configuration Table 10. Pin Function Descriptions Pin No. 1 2 3 4 5 Mnemonic NIC GND VIN VOUT TRIM Description Not Internally Connected. This pin is not connected internally. Ground. Input Voltage Connection. Output Voltage. Output Voltage Trim. Rev. E | Page 10 of 20 Data Sheet ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TYPICAL PERFORMANCE CHARACTERISTICS 4.998 2.052 4.997 4.996 2.050 VOUT (V) VOUT (V) 4.995 2.048 4.994 4.993 4.992 2.046 –20 0 20 40 60 80 100 4.990 –40 120 05467-005 05467-002 2.044 –40 4.991 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) TEMPERATURE (°C) Figure 3. ADR360 VOUT vs. Temperature Figure 6. ADR365 VOUT vs. Temperature 2.504 5.002 H GRADE 5.000 2.502 4.996 2.500 VOUT (V) 2.498 4.992 4.990 2.496 4.988 05467-003 2.494 –40 4.994 –25 –10 5 20 35 50 65 80 95 110 4.986 –40 125 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) TEMPERATURE (°C) 05467-041 VOUT (V) 4.998 Figure 7. ADR365 H Grade VOUT vs. Temperature Figure 4. ADR361 VOUT vs. Temperature 3.003 0.165 3.002 +125°C 0.155 IDD (mA) 3.000 2.999 0.145 +25°C 0.135 –40°C 2.998 2.996 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 0.115 2.8 05467-006 0.125 2.997 05467-004 VOUT (V) 3.001 4.1 5.4 6.7 8.0 9.3 10.6 11.9 13.2 VIN (V) Figure 5. ADR363 VOUT vs. Temperature Figure 8. ADR361 Supply Current (IDD) vs. VIN Rev. E | Page 11 of 20 14.5 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Data Sheet 1.2 0.17 H GRADE +25°C –40°C 0.15 0.8 0.6 0.4 0.14 5.3 05467-007 0.2 6.3 7.3 8.3 9.3 10.3 11.3 12.3 13.3 VIN = 6V VIN = 9V 0 –40 14.3 –20 0 20 40 60 80 100 120 05467-042 +150°C (H GRADE) 0.16 IDD (mA) LOAD REGULATION (mV/mA) 1.0 +125°C 140 TEMPERATURE (°C) VIN (V) Figure 12. ADR365 H Grade Load Regulation vs. Temperature Figure 9. ADR365 IDD vs. VIN 0.18 25 0.12 VIN = 9V 0.10 0.08 VIN = 3.5V 0.06 0.04 0 –40 05467-036 0.02 –25 –10 5 20 35 50 65 80 95 110 20 15 10 5 0 –40 125 05467-008 0.14 LINE REGULATION (ppm/V) LOAD REGULATION (mV/mA) 0.16 –20 20 0 Figure 10. ADR361 Load Regulation vs. Temperature 60 80 100 120 Figure 13. ADR360 Line Regulation vs. Temperature, VIN = 2.45 V to 15 V 0.14 9 8 VIN = 9V 0.08 0.06 VIN = 6V 0.04 0 –40 –25 –10 5 20 35 50 65 80 95 110 5 4 3 2 0 –40 125 TEMPERATURE (°C) Figure 11. ADR365 Load Regulation vs. Temperature 6 1 05467-037 0.02 7 05467-009 0.10 LINE REGULATION (ppm/V) 0.12 LOAD REGULATION (mV/mA) 40 TEMPERATURE (°C) TEMPERATURE (°C) –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) Figure 14. ADR361 Line Regulation vs. Temperature, VIN = 2.8 V to 15 V Rev. E | Page 12 of 20 Data Sheet ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 12 2.5 +150°C (H GRADE) 2.0 DROPOUT VOLTAGE (V) 8 6 4 1.0 +25°C 0.5 05467-010 2 0 –40 +125°C 1.5 –20 0 20 40 60 80 100 120 05467-012 LINE REGULATION (ppm/V) 10 –40°C 0 –2 0 TEMPERATURE (°C) 2 4 6 8 10 LOAD CURRENT (mA) Figure 15. ADR365 Line Regulation vs. Temperature, VIN = 5.3 V to 15 V Figure 18. ADR365 Dropout Voltage vs. Load Current 0.40 H GRADE 0.30 0.25 0.20 0.15 2µV/DIV 0.10 0.05 0 –40 –20 0 20 40 60 80 100 120 05467-043 TIME = 1s/DIV 140 TEMPERATURE (°C) 05467-013 LINE REGULATION (mV/V) 0.35 Figure 19. ADR361 0.1 Hz to 10 Hz Noise Figure 16. ADR365 H Grade Line Regulation vs. Temperature, VIN = 5.3 V to 15 V 1.6 1.4 1.0 0.8 0.6 –40°C +25°C 0.2 0 –2 0 2 4 6 8 50µV/DIV TIME = 1s/DIV 10 LOAD CURRENT (mA) Figure 20. ADR361 10 Hz to 10 kHz Noise Figure 17. ADR361 Dropout Voltage vs. Load Current Rev. E | Page 13 of 20 05467-014 0.4 05467-011 DROPOUT VOLTAGE (V) +125°C 1.2 Data Sheet 2µV/DIV 100µV/DIV TIME = 1s/DIV 05467-015 TIME = 1s/DIV 05467-018 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Figure 24. ADR365 10 Hz to 10 kHz Noise Figure 21. ADR363 0.1 Hz to 10 Hz Noise 50 45 OUTPUT IMPEDANCE (Ω) 40 35 30 25 20 15 05467-016 TIME = 1s/DIV 05467-031 10 50µV/DIV 5 0 100 1k 10k 100k FREQUENCY (Hz) Figure 25. Output Impedance vs. Frequency Figure 22. ADR363 10 Hz to 10 kHz Noise 10 TIME = 1s/DIV 05467-017 2µV/DIV –20 –30 –40 –50 –60 –70 05467-030 RIPPLE REJECTION RATIO (dB) 0 –10 –80 –90 100 1k 10k 100k FREQUENCY (Hz) Figure 23. ADR365 0.1 Hz to 10 Hz Noise Figure 26. Ripple Rejection Ratio vs. Frequency Rev. E | Page 14 of 20 1M Data Sheet ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 500mV/DIV LOAD ON LOAD OFF VIN 500mV/DIV 100mV/DIV 05467-032 4µs/DIV VOUT 05467-019 VOUT 2ms/DIV Figure 27. ADR361 Line Transient Response (Increasing), No Capacitors Figure 30. ADR361 Load Transient Response VIN LOAD ON 500mV/DIV VOUT 10µs/DIV 100mV/DIV 05467-033 500mV/DIV 05467-020 VOUT 100µs/DIV Figure 28. ADR361 Line Transient Response (Decreasing), No Capacitors Figure 31. ADR361 Load Transient Response with 0.1 μF Output Capacitor 500mV/DIV 5V/DIV VIN 20mV/DIV 100µs/DIV 05467-021 2.5V/DIV VOUT 10µs/DIV Figure 29. ADR361 Line Transient Response, 0.1 μF Input Capacitor Figure 32. ADR361 Turn On Response Time at 5 V Rev. E | Page 15 of 20 05467-022 VOUT VIN ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Data Sheet VIN 5V/DIV VIN 5V/DIV VOUT 2V/DIV 400ns/DIV 2ms/DIV Figure 33. ADR361 Turn Off Response Time at 5 V Figure 35. ADR361 Turn Off Response Time, 0.1 μF Output Capacitor VIN 5V/DIV VOUT 05467-034 2V/DIV 100µs/DIV 05467-035 VOUT 05467-023 2.5V/DIV Figure 34. ADR361 Turn On Response Time, 0.1 μF Output Capacitor Rev. E | Page 16 of 20 Data Sheet ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TERMINOLOGY Temperature Coefficient The temperature coefficient is the change of output voltage with respect to operating temperature changes normalized by the output voltage at 25°C. This parameter is expressed in ppm/°C and can be determined by = TCVOUT (ppm/°C) VOUT (T2 ) − VOUT (T1) VOUT ( 25°C ) × (T2 − T1) Long-Term Stability Long-term stability is the typical shift of output voltage at 25°C on a sample of devices subjected to a test of 1000 hours at 25°C. ∆VOUT = VOUT ( t 0 ) − VOUT ( t1 )  V ( t ) – VOUT ( t1 )  ∆VOUT= × 106  ( ppm )  OUT 0 VOUT ( t 0 )   × 106 where: VOUT (t0) = VOUT at 25°C at Time 0. VOUT (t1) = VOUT at 25°C after 1000 hours operation at 25°C. where: VOUT (T2) = VOUT at Temperature 2. VOUT (T1) = VOUT at Temperature 1. VOUT (25°C) = VOUT at 25°C. Line Regulation Line regulation is the change in output voltage due to a specified change in input voltage. This parameter accounts for the effects of self heating. Line regulation is expressed in either percent per volt, parts per million per volt, or microvolts per volt change in input voltage. Load Regulation Load regulation is the change in output voltage due to a specified change in load current. This parameter accounts for the effects of self heating. Load regulation is expressed in either microvolts per milliampere, parts per million per milliampere, or ohms of dc output resistance. Thermal Hysteresis Thermal hysteresis (VOUT_HYS) is the change of output voltage after the device is cycled from +25°C to −40°C to +125°C and back to +25°C. This is a typical value from a sample of devices put through this cycle. VOUT _= VOUT ( 25°C ) − VOUT _ TC HYS = VOUT _ HYS ( ppm ) VOUT ( 25°C ) − VOUT _ TC VOUT ( 25°C ) × 106 where: VOUT (25°C) = VOUT at 25°C. VOUT_TC = VOUT at 25°C after a temperature cycle at +25°C to −40°C to +125°C and back to +25°C. Rev. E | Page 17 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 THEORY OF OPERATION Band gap references are the high performance solution for low supply voltage and low power voltage reference applications, and the ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 family is no exception. The uniqueness of these devices lies in their architecture. The ideal zero temperature coefficient band gap voltage is referenced to the output, not to ground (see Figure 36). Therefore, if noise exists on the ground line, the noise is greatly attenuated on VOUT. The band gap cell consists of the PNP transistor pair, Q53 and Q52, running at unequal current densities. The difference in the base emitter voltage (VBE) of Q53 and Q52 results in a voltage with a positive temperature coefficient, which is amplified by a ratio of DEVICE POWER DISSIPATION CONSIDERATIONS The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 family can deliver load currents up to 5 mA with an input voltage ranging from 2.35 V (ADR360 only) to 15 V. When the ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 devices are used in applications with large input voltages, take care to avoid exceeding the specified maximum power dissipation or junction temperature because this may result in premature device failure. Use the following formula to calculate the maximum junction temperature or dissipation of a device: PD = 2 × (R59/R54) This proportional to absolute temperature (PTAT) voltage, combined with the VBE of Q53 and Q52, produces the stable band gap voltage. Reduction in the band gap curvature is performed by the ratio of Resistor R44 and Resistor R59, one of which is linearly temperature dependent. Precision laser trimming and other proprietary circuit techniques are used to further enhance the drift performance. VIN Q1 Q2 VOUT R54 Q53 R53 R44 R58 Q61 Q60 R101 R60 R49 62kΩ R50 3kΩ Q52 R61 Figure 36. Simplified Schematic TJ − TA θ JA where: PD is the device power dissipation. TJ and TA are the junction and ambient temperatures, respectively. θJA is the device package thermal resistance. INPUT CAPACITOR Input capacitors are not required on the ADR360/ADR361/ ADR363/ADR364/ADR365/ADR366. There is no limit for the value of the capacitor used on the input, but a 1 µF to 10 µF capacitor on the input improves transient response in applications where the supply suddenly changes. An additional 0.1 µF capacitor in parallel also helps reduce noise from the supply. OUTPUT CAPACITOR R100 R48 TRIM 05467-024 R59 Data Sheet The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 do not require output capacitors for stability under any load condition. An output capacitor, typically 0.1 µF, filters out low level noise voltage and does not affect the operation of the device. However, the load transient response can improve with an additional 1 µF to 10 µF output capacitor placed in parallel with the 0.1 µF capacitor. The additional capacitor acts as a source of stored energy for a sudden increase in load current, and the only parameter that degrades is the turn on time. The amount of degradation depends on the size of the capacitor chosen. Rev. E | Page 18 of 20 Data Sheet ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 APPLICATIONS INFORMATION BASIC VOLTAGE REFERENCE CONNECTION Table 11. Output The circuit in Figure 37 illustrates the basic configuration for the ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 family. Decoupling capacitors are not required for circuit stability. The ADR360/ADR361/ADR363/ADR364/ADR365/ ADR366 family can drive capacitive loads from 0 μF to 10 μF. However, a 0.1 μF ceramic output capacitor is recommended to absorb and deliver the charge, as is required by a dynamic load. U1/U2 ADR361/ADR365 ADR361/ADR361 ADR365/ADR361 1 TRIM 5 NIC ADR360/ADR361/ ADR363/ADR364/ ADR365/ADR366 GND 3 VIN VOUT 4 VOUT 05467-025 VIN 2 0.1µF 0.1µF Figure 37. Basic Configuration for the ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Family VOUT2 (V) 7.5 5.0 7.5 General-Purpose Current Source Often in low power applications, the need arises for a precision current source that can operate on low supply voltages. The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 can be configured as a precision current source (see Figure 39). The circuit configuration illustrated in Figure 39 is a floating current source with a grounded load. The output voltage of the reference is bootstrapped across RSET, which sets the output current of the load. With this configuration, circuit precision is maintained for load currents ranging from the supply current of the reference, typically 150 μA, up to approximately 5 mA. In Figure 39, ISY is the supply current of the reference and ISET is the required current output from the reference. 1 NIC Stacking Reference ICs for Arbitrary Outputs TRIM 5 ADR360/ADR361/ ADR363/ADR364/ ADR365/ADR366 Some applications require two reference voltage sources, which are a combined sum of standard outputs. Figure 38 shows how this stacked output reference can be implemented. 1 NIC VOUT1 (V) 2.5 2.5 5 2 GND VIN 3 VIN VOUT 4 TRIM 5 R1 ADR365 ISET RSET 2 GND P1 ISY VOUT2 3 VIN VOUT 4 C2 0.1µF RL ISET + ISY 05467-028 VIN Figure 39. Floating Current Source C1 0.1µF Trim Terminal TRIM 5 ADR365 2 GND VOUT 4 VOUT1 05467-026 3 VIN Figure 38. Stacking Voltage References with the ADR365 Two ADR365 devices are used and fed from an unregulated input, VIN. The outputs of the individual ICs are connected in series, which provides two output voltages, VOUT1 and VOUT2. VOUT1 is the terminal voltage of U1, and VOUT2 is the sum of this voltage and the terminal voltage of U2. U1 and U2 are chosen for the two voltages that supply the required outputs (see Table 11). For example, if both U1 and U2 are ADR361 devices, VOUT1 is 2.5 V and VOUT2 is 5.0 V. The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 trim terminal can be used to adjust the output voltage over a nominal voltage. This feature allows a system designer to trim system errors by setting the reference to a voltage other than the standard voltage option. Resistor R1 is used for fine adjustments and can be omitted if desired. Carefully choose the resistor values to ensure that the maximum current drive of the device is not exceeded. R2 1kΩ 1 NIC TRIM 5 R1 100kΩ POTENTIOMETER 10kΩ ADR360/ADR361/ ADR363/ADR364/ ADR365/ADR366 2 GND 3 VIN VIN VOUT 4 VOUT 05467-029 1 NIC Figure 40. ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Trim Configuration Rev. E | Page 19 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Data Sheet OUTLINE DIMENSIONS 3.05 2.90 2.75 TOP VIEW 5 1.75 1.60 1.45 1 4 2 3 3.05 2.80 2.55 0.95 BSC 1.90 REF SIDE VIEW END VIEW 1.00 MAX 0.10 MAX SEATING PLANE 0.50 0.30 PKG-000882 0.20 0.08 8° 4° 0° COMPLIANT TO JEDEC STANDARDS MO-193-AB 0.60 0.45 0.30 04-05-2017-B 0.90 0.70 Figure 41. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters ORDERING GUIDE Model 1, 2 ADR360AUJZ-REEL7 ADR360BUJZ-REEL7 ADR361AUJZ-REEL7 ADR361BUJZ-REEL7 ADR363AUJZ-REEL7 ADR363BUJZ-REEL7 ADR364AUJZ-REEL7 ADR364BUJZ-REEL7 ADR365AUJZ-REEL7 ADR365BUJZ-REEL7 ADR365WAUJZ-R7 ADR365WHUJZ-R7 ADR366AUJZ-REEL7 ADR366BUJZ-REEL7 ADR366WAUJZ-REEL7 1 2 Output Voltage (VOUT) 2.048 2.048 2.5 2.5 3.0 3.0 4.096 4.096 5.0 5.0 5.0 5.0 3.3 3.3 3.3 Initial Accuracy, ± (mV) 6 3 6 3 6 3 8 4 8 4 8 8 8 4 8 (%) 0.29 0.15 0.24 0.12 0.2 0.1 0.2 0.1 0.16 0.08 0.16 0.16 0.25 0.125 0.25 Temperature Coefficient (ppm/°C) 25 9 25 9 25 9 25 9 25 9 25 25 25 9 25 Package Description 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT Package Option UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +150°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Ordering Quantity 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 Marking Code R0C R0D R0E R0F R0G R0H R0J R0K R0L R0M R0L R3M R08 R09 R08 Z = RoHS Compliant Part. W = Qualified for Automotive Applications. AUTOMOTIVE PRODUCTS The ADR365W and ADR366W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models. ©2005–2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05467-0-3/19(E) Rev. E | Page 20 of 20
ADR366WAUJZ-REEL 价格&库存

很抱歉,暂时无法提供与“ADR366WAUJZ-REEL”相匹配的价格&库存,您可以联系我们找货

免费人工找货