0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADR392ART-R2

ADR392ART-R2

  • 厂商:

    AD(亚德诺)

  • 封装:

    SC74A

  • 描述:

    IC VREF SOT23-5

  • 数据手册
  • 价格&库存
ADR392ART-R2 数据手册
a Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown ADR390/ADR391/ADR392/ADR395 FEATURES Initial Accuracy: ⴞ6 mV Max Low TCVO: 25 ppm/ⴗC Max Load Regulation: 60 ppm/mA Line Regulation: 25 ppm/V Low Supply Headroom: 0.3 V Wide Operating Range: (VOUT + 0.3 V) to 15 V Low Power: 120 ␮A Max Shutdown to Less Than 3 ␮A Max Output Current: 5 mA Wide Temperature Range: –40ⴗC to +85ⴗC for ADR390, ADR391 –40ⴗC to +125ⴗC for ADR392, ADR395 Tiny 5-Lead SOT-23 Package APPLICATIONS Battery-Powered Instrumentation Portable Medical Instruments Data Acquisition Systems Industrial Process Control Systems Fault Protection Critical Systems Automotive PIN CONFIGURATION 5-Lead SOT-23 (RT Suffix) SHDN 1 VIN 2 ADR390/ ADR391/ ADR392/ ADR395 5 GND VOUT (SENSE) 3 (Not to Scale) 4 VOUT (FORCE) Table I. ADR39x Products Part Number Nominal Output Voltage (V) ADR390 ADR391 ADR392 ADR395 2.048 2.500 4.096 5.000 GENERAL DESCRIPTION The ADR390, ADR391, ADR392, and ADR395 are precision 2.048 V, 2.5 V, 4.096 V, and 5 V band gap voltage references featuring high accuracy and stability and low power consumption in a tiny footprint. Patented temperature drift curvature correction techniques minimize nonlinearity of the voltage change with temperature. The wide operating range and low power consumption with additional shutdown capability make them ideal for battery-powered applications. The VOUT Sense Pin enables greater accuracy by supporting full Kelvin operation in PCBs employing thin or long traces. The ADR390, ADR391, ADR392, and ADR395 are micropower, low dropout voltage (LDV) devices that provide a stable output voltage from supplies as low as 300 mV above the output voltage. ADR390 and ADR391 are specified over the industrial range (–40∞C to +85∞C), while ADR392 and ADR395 are specified over the extended industrial range (–40∞C to +125∞C). Each is available in the tiny 5-lead SOT-23 package. The combination of VOUT sense and shutdown functions also enables a number of unique applications combining precision reference/regulation with fault decision and overcurrent protection. Details are provided in the Applications section. REV. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002 ADR390/ADR391/ADR392/ADR395 ADR390 SPECIFICATIONS ELECTRICAL CHARACTERISTICS (@ VS = 5.0 V to 15 V, TA = 25ⴗC, unless otherwise noted.) Parameter Symbol Conditions Initial Accuracy Initial Accuracy Error Temperature Coefficient Minimum Supply Voltage Headroom Line Regulation VO VOERR TCVO VIN – VO ⌬VO/⌬VIN Load Regulation ⌬VO/⌬ILOAD Quiescent Current ISY Voltage Noise Turn-On Settling Time Long-Term Stability* Output Voltage Hysteresis Ripple Rejection Ratio Short Circuit to GND eN tR ⌬VO VO_HYS RRR ISC Shutdown Supply Current Shutdown Logic Input Current Shutdown Logic Low Shutdown Logic High ISHDN ILOGIC VINL VINH Min Typ Max Unit 2.042 0.29 2.048 5 2.054 0.29 25 V % ppm/∞C mV 10 25 ppm/V 100 60 120 140 ppm/mA ␮A ␮A ␮V p-p ␮s ppm/1000 hrs ppm dB mA mA ␮A nA V V –40∞C < TA < +85∞C 300 VIN = 2.5 V to 15 V –40∞C < TA < +85∞C VIN = 3 V, ILOAD = 0 mA to 5 mA –40∞C < TA < +85∞C No Load –40∞C < TA < +85∞C 0.1 Hz to 10 Hz 5 20 50 40 85 25 30 fIN = 60 Hz VIN = 5.0 V VIN = 15.0 V 3 500 0.8 2.4 *The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period. Specifications subject to change without notice. ADR391 SPECIFICATIONS ELECTRICAL CHARACTERISTICS (@ VS = 5.0 V to 15 V, TA = 25ⴗC, unless otherwise noted.) Parameter Symbol Initial Accuracy Initial Accuracy Error Temperature Coefficient Minimum Supply Voltage Headroom Line Regulation VO VOERR TCVO VIN – VO ⌬VO/⌬VIN Load Regulation ⌬VO/⌬ILOAD Quiescent Current ISY Voltage Noise Turn-On Settling Time Long-Term Stability* Output Voltage Hysteresis Ripple Rejection Ratio Short Circuit to GND eN tR ⌬VO VO_HYS RRR ISC Shutdown Supply Current Shutdown Logic Input Current Shutdown Logic Low Shutdown Logic High ILOGIC VINL VINH Conditions Min Typ Max Unit 2.494 0.24 2.5 5 2.506 0.24 25 V % ppm/∞C mV 10 25 ppm/V 100 60 120 140 ppm/mA ␮A ␮A ␮V p-p ␮s ppm/1000 hrs ppm dB mA mA ␮A nA V V –40∞C < TA < +85∞C 300 VIN = 2.8 V to 15 V –40∞C < TA < +85∞C VSY = 3.5 V, ILOAD = 0 mA to 5 mA –40∞C < TA < +85∞C No Load –40∞C < TA < +85∞C 0.1 Hz to 10 Hz 5 20 50 75 85 25 30 fIN = 60 Hz VIN = 5.0 V VIN = 15.0 V 3 500 0.8 2.4 *The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period. Specifications subject to change without notice. –2– REV. C ADR390/ADR391/ADR392/ADR395 ADR392 SPECIFICATIONS ELECTRICAL CHARACTERISTICS (@ VS = 5.0 V to 15 V, TA = 25ⴗC, unless otherwise noted.) Parameter Symbol Conditions Initial Accuracy Initial Accuracy Error Temperature Coefficient Minimum Supply Voltage Headroom Line Regulation VO VOERR TCVO VS – VO ⌬VO/⌬VIN Load Regulation ⌬VO/⌬ILOAD Quiescent Current ISY Voltage Noise Turn-On Settling Time Long-Term Stability* Output Voltage Hysteresis Ripple Rejection Short Circuit to GND eN tR ⌬VO VO_HYS RRR ISC Shutdown Supply Current Shutdown Logic Input Current Shutdown Logic Low Shutdown Logic High ILOGIC VINL VINH Min Typ Max Unit 4.090 0.15 4.096 5 4.912 0.15 25 V % ppm/∞C mV 10 25 ppm/V 100 140 120 140 ppm/mA ␮A ␮A ␮V p-p ␮s ppm/1000 hrs ppm dB mA mA ␮A nA V V –40∞C < TA < +125∞C 300 VIN = 4.4 V to 15 V –40∞C < TA < +125∞C VSY = 5 V, ILOAD = 0 mA to 5 mA –40∞C < TA < +125∞C No Load –40∞C < TA < +125∞C 0.1 Hz to 10 Hz 5 20 50 75 85 25 30 fIN = 60 Hz VIN = 5.0 V VIN = 15.0 V 3 500 0.8 2.4 *The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period. Specifications subject to change without notice. ADR395 SPECIFICATIONS ELECTRICAL CHARACTERISTICS (@ VS = 6.0 V to 15 V, TA = 25ⴗC, unless otherwise noted.) Parameter Symbol Initial Accuracy Initial Accuracy Error Temperature Coefficient Minimum Supply Voltage Headroom Line Regulation VO VOERR TCVO VS – VO ⌬VO/⌬VIN Load Regulation ⌬VO/⌬ILOAD Quiescent Current ISY Voltage Noise Turn-On Settling Time Long-Term Stability* Output Voltage Hysteresis Ripple Rejection Short Circuit to GND eN tR ⌬VO VO_HYS RRR ISC Shutdown Supply Current Shutdown Logic Input Current Shutdown Logic Low Shutdown Logic High ILOGIC VINL VINH Conditions Min Typ Max Unit 4.994 0.12 5.000 5 5.006 0.12 25 V % ppm/∞C mV 10 30 ppm/V 100 140 120 140 ppm/mA ␮A ␮A ␮V p-p ␮s ppm/1000 hrs ppm dB mA mA ␮A nA V V –40∞C < TA < +125∞C 300 VIN = 5.3 V to 15 V –40∞C < TA < +125∞C VSY = 6 V, ILOAD = 0 mA to 5 mA –40∞C < TA < +125∞C No Load –40∞C < TA < +125∞C 0.1 Hz to 10 Hz 5 20 50 75 85 25 30 fIN = 60 Hz VIN = 5.0 V VIN = 15.0 V 3 500 0.8 2.4 *The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period. Specifications subject to change without notice. REV. C –3– ADR390/ADR391/ADR392/ADR395 ABSOLUTE MAXIMUM RATINGS 1, 2 Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V Output Short-Circuit Duration to GND . . . . . . . . . . . . . . . . . . . . . Observe Derating Curves Storage Temperature Range RT Package . . . . . . . . . . . . . . . . . . . . . . . –65∞C to +150∞C Operating Temperature Range ADR390/ADR391 . . . . . . . . . . . . . . . . . . . –40∞C to +85∞C ADR392/ADR395 . . . . . . . . . . . . . . . . . . –40∞C to +125∞C Junction Temperature Range RT Package . . . . . . . . . . . . . . . . . . . . . . . –65∞C to +150∞C Lead Temperature Range (Soldering, 60 Sec) . . . . . . . . 300∞C Package Type ␪JA ␪JC 5-Lead SOT-23 (RT) 230 Unit ∞C/W NOTES 1 Absolute Maximum Ratings apply at 25∞C, unless otherwise noted. 2 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ORDERING GUIDE Model Temperature Range Package Description Package Option Top Mark Output Voltage Number of Parts Per Reel ADR390ART–RL7 ADR390ART–RL ADR391ART-RL7 ADR391ART-RL ADR392ART-RL7 ADR392ART-RL ADR395ART-RL7 –40∞C to +85∞C –40∞C to +85∞C –40∞C to +85∞C –40∞C to +85∞C –40∞C to +125∞C –40∞C to +125∞C –40∞C to +125∞C 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 RT-5 RT-5 RT-5 RT-5 RT-5 RT-5 RT-5 R0A R0A R1A R1A RCA RCA RDA 2.048 2.048 2.500 2.500 4.096 4.096 5.000 3,000 10,000 3,000 10,000 3,000 10,000 3,000 CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADR390/ADR391/ADR392/ADR395 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. –4– WARNING! ESD SENSITIVE DEVICE REV. C ADR390/ADR391/ADR392/ADR395 PARAMETER DEFINITION Temperature Coefficient (TCV O) The change of output voltage over the operating temperature change and normalized by the output voltage at 25∞C, expressed in ppm/∞C. The equation follows: [ ] TCVO ppm ∞C = where: ( ) ( ) ¥ 10 (25∞C ) ¥ (T - T ) VO T2 - VO T1 VO 2 response can be improved with an additional 1 mF to 10 mF output capacitor in parallel. A capacitor here will act as a source of stored energy for a sudden increase in load current. The only parameter that will degrade, by adding an output capacitor, is turn-on time and it depends on the size of the capacitor chosen. Long-Term Stability 6 Typical shift in output voltage over 1000 hours at a controlled temperature. Figure 1 shows a sample of parts measured at different intervals in a controlled environment of 50∞C for 1000 hours. 1 VO(25∞C) = VO at 25∞C VO(T1) = VO at temperature1 DVO = VO (t0 ) - VO (t1 ) VO(T2) = VO at temperature2 DVO ppm = [ Line Regulation (⌬VO/⌬VIN) The change in output voltage due to a specified change in input voltage. It includes the effects of self-heating. Line regulation is expressed in either percent per volt, parts per million per volt, or microvolts per volt change in input voltage. Input Capacitor VO (t0 ) - VO (t1 ) VO(t1) = VO after 1000 hours operation at a controlled temperature Thermal Hysteresis (VO_HYS) The change of output voltage after the device is cycled through temperature from +25∞C to –40∞C to +85∞C and back to +25∞C. This is a typical value from a sample of parts put through such a cycle. VO VO _ HYS _ HYS = VO (25∞C ) - VO [ ppm ] = VO (25∞C ) - VO where: The ADR39x does not need output capacitors for stability under any load condition. An output capacitor, typically 0.1 mF, will filter out any low level noise voltage and will not affect the operation of the part. On the other hand, the load transient 150 DRIFT – ppm 100 50 0 ⴚ50 ⴚ100 86 176 250 324 440 TIME – Hours 640 840 1040 Figure 1. ADR391 Typical Long-Term Drift over 1000 Hours REV. C _ TC ¥ 106 VO_TC = VO at 25∞C after temperature cycle at +25∞C to –40∞C to +85∞C and back to +25∞C DATA TAKEN IN CONTROLLED ENVIRONMENT @ 50ⴗC ⴞ 1ⴗC 0 VO (25∞C ) _ TC VO(25∞C) = VO at 25∞C 200 ⴚ150 ¥ 106 VO(t0) = VO at time 0 Input capacitors are not required on the ADR39x. There is no limit for the value of the capacitor used on the input, but a 1 mF to 10 mF capacitor on the input will improve transient response in applications where the supply suddenly changes. An additional 0.1 mF in parallel will also help in reducing noise from the supply. Output Capacitor VO (t0 ) where: Load Regulation (⌬VO/⌬ILOAD) The change in output voltage due to a specified change in load current. It includes the effects of self-heating. Load regulation is expressed in either microvolts per milliampere, parts per million per milliampere, or W of dc output resistance. ] –5– ADR390/ADR391/ADR392/ADR395 –Typical Performance Characteristics 5.006 2.054 SAMPLE 1 2.052 5.004 SAMPLE 3 5.002 2.048 VOUT – V VOUT – V 2.050 SAMPLE 2 2.046 SAMPLE 2 5.000 SAMPLE 1 4.998 SAMPLE 3 2.044 2.042 ⴚ40 ⴚ15 4.996 10 35 TEMPERATURE – ⴗC 60 4.994 –40 85 TPC 1. ADR390 Output Voltage vs. Temperature 100 125 140 2.504 120 SUPPLY CURRENT – ␮A SAMPLE 1 2.502 VOUT – V 30 65 TEMPERATURE – ⴗC TPC 4. ADR395 Output Voltage vs. Temperature 2.506 SAMPLE 2 2.500 2.498 SAMPLE 3 +85ⴗC 100 +25ⴗC ⴚ40ⴗC 80 60 2.496 2.494 ⴚ40 ⴚ15 10 35 TEMPERATURE – ⴗC 60 40 2.5 85 TPC 2. ADR391 Output Voltage vs. Temperature 5.0 7.5 10.0 INPUT VOLTAGE – V 12.5 15.0 TPC 5. ADR390 Supply Current vs. Input Voltage 4.100 140 4.098 120 SUPPLY CURRENT – ␮A SAMPLE 3 4.096 SAMPLE 2 VOUT – V –5 4.094 SAMPLE 1 4.092 +25ⴗC ⴚ40ⴗC 80 60 4.090 4.088 –40 +85ⴗC 100 0 40 TEMPERATURE – ⴗC 80 40 2.5 125 TPC 3. ADR392 Output Voltage vs. Temperature 5.0 7.5 10.0 INPUT VOLTAGE – V 12.5 15.0 TPC 6. ADR391 Supply Current vs. Input Voltage –6– REV. C ADR390/ADR391/ADR392/ADR395 140 40 IL= 0mA TO 5mA SUPPLY CURRENT – ␮A 120 100 LOAD REGULATION – ppm/mA +125ⴗC +25ⴗC –40ⴗC 80 60 30 VIN = 3.5V 25 VIN = 5.0V 20 15 10 ⴚ40 40 5 7 9 11 INPUT VOLTAGE – V 15 13 TPC 7. ADR392 Supply Current vs. Input Voltage 10 35 TEMPERATURE – ⴗC 60 85 90 LINE REGULATION – ppm/mA +125ⴗC 120 +25ⴗC 100 –40ⴗC 80 60 40 5.5 ⴚ15 TPC 10. ADR391 Load Regulation vs. Temperature 140 SUPPLY CURRENT – ␮A 35 7.0 8.5 10.0 11.5 INPUT VOLTAGE – V 13.0 80 VIN = 7.5V 70 VIN = 5V 60 50 40 –40 14.5 TPC 8. ADR395 Supply Current vs. Input Voltage –5 30 65 TEMPERATURE – ⴗC 125 100 TPC 11. ADR392 Load Regulation vs. Temperature 80 40 35 LOAD REGULATION – ppm/mA LOAD REGULATION – ppm/mA IL= 0mA TO 5mA 30 VIN = 3.0V 25 VIN = 5.0V 20 15 10 ⴚ40 ⴚ15 10 35 TEMPERATURE – ⴗC 60 VIN = 7.5V VIN = 5V 60 50 40 30 –40 85 TPC 9. ADR390 Load Regulation vs. Temperature REV. C 70 –5 30 65 TEMPERATURE – ⴗC 100 125 TPC 12. ADR395 Load Regulation vs. Temperature –7– ADR390/ADR391/ADR392/ADR395 14 5 VIN = 2.5V TO 15V LINE REGULATION – ppm/V LINE REGULATION – ppm/V 12 4 3 2 10 VIN = 5.3V TO 15V 8 6 4 1 2 0 ⴚ40 ⴚ15 10 35 TEMPERATURE – ⴗC 60 0 –40 85 TPC 13. ADR390 Line Regulation vs. Temperature –5 30 65 TEMPERATURE – ⴗC 100 125 TPC 16. ADR395 Line Regulation vs. Temperature 2.848 5 4 2.648 VIN_MIN – V LINE REGULATION – ppm/V VIN = 2.8V TO 15V 3 2 ⴚ40ⴗC 2.448 +85ⴗC +25ⴗC 2.248 1 0 ⴚ40 ⴚ15 2.048 10 35 TEMPERATURE – ⴗC 60 85 0 1 2 3 LOAD CURRENT – mA 4 5 TPC 17. ADR390 Minimum Input Voltage vs. Load Current TPC 14. ADR391 Line Regulation vs. Temperature 14 3.30 3.10 10 VIN_MIN – V LINE REGULATION – ppm/V 12 8 VIN = 4.4V TO 15V 6 +85ⴗC +25ⴗC 2.90 ⴚ40ⴗC 4 2.70 2 0 –40 2.50 –5 30 65 TEMPERATURE – ⴗC 100 125 TPC 15. ADR392 Line Regulation vs. Temperature 0 1 2 3 LOAD CURRENT – mA 4 5 TPC 18. ADR391 Minimum Input Voltage vs. Load Current –8– REV. C ADR390/ADR391/ADR392/ADR395 4.8 70 TEMPERATURE: +25ⴗC ⴚ40ⴗC +85ⴗC +25ⴗC 60 +125ⴗC 4.6 4.4 FREQUENCY VIN_MIN – V 50 +25ⴗC –40ⴗC 4.2 40 30 20 4.0 10 3.8 0 1 2 3 LOAD CURRENT – mA 0 ⴚ0.56 5 4 6.0 1k +125ⴗC VIN_MIN – V 5.6 +25ⴗC –40ⴗC 5.0 4.8 1 2 3 LOAD CURRENT – mA 4 0.34 ADR391 ADR390 100 4.6 0 0.19 VIN = 5V VOLTAGE NOISE DENSITY – nV/ Hz 5.8 5.2 ⴚ0.11 ⴚ0.26 0.04 VOUT DEVIATION – mV TPC 22. ADR391 VOUT Hysteresis Distribution TPC 19. ADR392 Minimum Input Voltage vs. Load Current 5.4 ⴚ0.41 5 TPC 20. ADR395 Minimum Input Voltage vs. Load Current 10 100 1k FREQUENCY – Hz 10k TPC 23. Voltage Noise Density vs. Frequency 0 60 TEMPERATURE: +25ⴗC ⴚ40ⴗC +85ⴗC +25ⴗC 0 50 VOLTAGE – 2␮V/DIV 0 FREQUENCY 40 30 20 0 0 0 0 10 0 0 ⴚ0.24 ⴚ0.18 ⴚ0.12 ⴚ0.06 0 0.06 0.12 VOUT DEVIATION – mV 0.18 0.24 0 0.30 TIME – 1 Sec/DIV TPC 21. ADR390 VOUT Hysteresis Distribution REV. C TPC 24. ADR391 Typical Voltage Noise 0.1 Hz to 10 Hz –9– ADR390/ADR391/ADR392/ADR395 0 0 0 0 0 0 VOLTAGE – 1V/DIV VOLTAGE – 100␮V/DIV CL = 0nF 0 0 0 0 0 VLOAD ON LOAD OFF 0 0 0 0 0 0 VOUT 0 TIME – 10ms/DIV TIME – 200␮s/DIV TPC 28. ADR391 Load Transient Response TPC 25. ADR391 Voltage Noise 10 Hz to 10 kHz 0 0 CL = 1nF CBYPASS = 0␮F 0 0 0 LINE INTERRUPTION 0.5V/DIV VOLTAGE – 1V/DIV 0 VOUT VOLTAGE 0 0 VOUT 0 0 LOAD OFF 0 VLOAD ON 1V/DIV 0 0 0 0 0 0 TIME – 10␮s/DIV TIME – 200␮s/DIV TPC 29. ADR391 Load Transient Response TPC 26. ADR391 Line Transient Response 0 0 CL = 100nF CBYPASS = 0.1␮F 0 0 0 0.5V/DIV LINE INTERRUPTION VOLTAGE – 1V/DIV VOLTAGE 0 0 VOUT 0 0 VOUT 0 0 LOAD OFF 0 VLOAD ON 1V/DIV 0 0 0 0 0 0 TIME – 200␮s/DIV TIME – 10␮s/DIV TPC 27. ADR391 Line Transient Response TPC 30. ADR391 Load Transient Response –10– REV. C ADR390/ADR391/ADR392/ADR395 0 0 RL = 500⍀ VIN = 15V 0 0 5V/DIV 0 0 2V/DIV 0 VOLTAGE VOLTAGE VOUT VIN 0 0 0 0 2V/DIV VOUT 0 5V/DIV VIN 0 0 0 0 0 0 TIME – 200␮s/DIV TIME – 20␮s/DIV TPC 34. ADR391 Turn-On/Turn-Off Response at 5 V TPC 31. ADR391 Turn-On Response Time at 15 V 0 0 VIN = 15V 0 0 VIN 5V/DIV 0 VOLTAGE – 5V/DIV VOLTAGE 0 0 0 0 RL = 500⍀ CL = 100nF VOUT 2V/DIV 2V/DIV VOUT 0 0 0 5V/DIV VIN 0 0 0 0 0 0 TIME – 200␮s/DIV TIME – 40␮s/DIV TPC 32. ADR391 Turn-Off Response at 15 V TPC 35. ADR391 Turn-On/Turn-Off Response at 5 V 0 80 CBYPASS = 0.1␮F 60 0 RIPPLE REJECTION – dB 40 0 2V/DIV VOLTAGE VOUT 0 0 0 VIN 5V/DIV 0 20 0 ⴚ20 ⴚ40 ⴚ60 ⴚ80 0 ⴚ100 0 ⴚ120 10 TIME – 200␮s/DIV 1k 10k FREQUENCY – Hz 100k 1M TPC 36. Ripple Rejection vs. Frequency TPC 33. ADR391 Turn-On/Turn-Off Response at 5 V REV. C 100 –11– ADR390/ADR391/ADR392/ADR395 Device Power Dissipation Considerations 100 The ADR390/ADR391/ADR392/ADR395 is capable of delivering load currents to 5 mA with an input voltage that ranges from 2.8 V (ADR391 only) to 15 V. When this device is used in applications with large input voltages, care should be taken to avoid exceeding the specified maximum power dissipation or junction temperature that could result in premature device failure. The following formula should be used to calculate a device’s maximum junction temperature or dissipation: 90 OUTPUT IMPEDANCE – ⍀ 80 70 60 CL = 0␮F 50 40 30 20 10 0 10 100 1k 10k FREQUENCY – Hz PD = CL = 0.1␮F CL = 1␮F 100k In this equation, TJ and TA are, respectively, the junction and ambient temperatures, PD is the device power dissipation, and ␪JA is the device package thermal resistance. 1M TPC 37. Output Impedance vs. Frequency Shutdown Mode Operation THEORY OF OPERATION Band gap references are the high performance solution for low supply voltage and low power voltage reference applications, and the ADR390/ADR391/ADR392/ADR395 is no exception. The uniqueness of this product lies in its architecture. By observing Figure 2, the ideal zero TC band gap voltage is referenced to the output, not to ground. Therefore, if noise exists on the ground line, it will be greatly attenuated on VOUT. The band gap cell consists of the pnp pair Q51 and Q52, running at unequal current densities. The difference in VBE results in a voltage with a R58 . This R54 PTAT voltage, combined with VBEs of Q51 and Q52, produces the stable band gap voltage. positive TC, which is amplified by the ratio of 2 × Reduction in the band gap curvature is performed by the ratio of the resistors R44 and R59, one of which is linearly temperature dependent. Precision laser trimming and other patented circuit techniques are used to further enhance the drift performance. The ADR390/ADR391/ADR392/ADR395 includes a shutdown feature that is TTL/CMOS level compatible. A logic LOW or a zero volt condition on the SHDN Pin is required to turn the device off. During shutdown, the output of the reference becomes a high impedance state where its potential would then be determined by external circuitry. If the shutdown feature is not used, the SHDN Pin should be connected to VIN (Pin 2). APPLICATIONS BASIC VOLTAGE REFERENCE CONNECTION The circuit in Figure 3 illustrates the basic configuration for the ADR39x family. Decoupling capacitors are not required for circuit stability. The ADR39x family is capable of driving capacitive loads from 0 µF to 10 µF. However, a 0.1 µF ceramic output capacitor is recommended to absorb and deliver the charge as is required by a dynamic load. SHUTDOWN SHDN GND ADR39x INPUT VIN Q1 TJ − TA θ JA CB * 0.1␮F VIN VOUT(S) VOUT(F) VOUT (FORCE) VOUT (SENSE) R59 * NOT REQUIRED R58 0.1␮F Stacking Reference ICs for Arbitrary Outputs R54 Q51 CB Figure 3. Basic Configuration for the ADR39x Family R49 SHDN OUTPUT * R44 Some applications may require two reference voltage sources, which are a combined sum of standard outputs. Figure 4 circuit shows how this “stacked output” reference can be implemented: R53 Q52 R48 R60 R61 GND Figure 2. Simplified Schematic –12– REV. C ADR390/ADR391/ADR392/ADR395 +VDD OUTPUT TABLE U1/U2 VOUT1 (V) VOUT2 (V) ADR390/ADR390 ADR391/ADR391 ADR392/ADR392 ADR395/ADR395 2.048 2.5 4.096 5 2 4.096 5.0 8.192 10 VIN 4 V OUT(F) 3 V OUT(S) VIN 2 U2 VIN 1 C2 0.1␮F SHDN 1 SHDN VOUT(F) VOUT(S) 4 GND 5 VOUT2 –VREF A1 3 GND 5 –VDD Figure 5. Negative Reference U1 2 VIN 1 C2 0.1␮F SHDN VOUT(F) VOUT(S) General-Purpose Current Source 4 VOUT1 3 GND 5 Figure 4. Stacking Voltage References with the ADR390/ADR391/ADR392/ADR395 Two reference ICs are used, fed from an unregulated input, VIN. The outputs of the individual ICs are simply connected in series, which provides two output voltages VOUT1 and VOUT2. VOUT1 is the terminal voltage of U1, while VOUT2 is the sum of this voltage and the terminal voltage of U2. U1 and U2 are simply chosen for the two voltages that supply the required outputs (see Output Table). For example, if both U1 and U2 are ADR391s, VOUT1 is 2.5 V and VOUT2 is 5.0 V. While this concept is simple, a precaution is in order. Since the lower reference circuit must sink a small bias current from U2, plus the base current from the series PNP output transistor in U2, either the external load of U1 or R1 must provide a path for this current. If the U1 minimum load is not well defined, the resistor R1 should be used, set to a value that will conservatively pass 600 µA of current with the applicable VOUT1 across it. Note that the two U1 and U2 reference circuits are locally treated as macrocells, each having its own bypasses at input and output for best stability. Both U1 and U2 in this circuit can source dc currents up to their full rating. The minimum input voltage, VIN, is determined by the sum of the outputs, VOUT2, plus the dropout voltage of U2. A Negative Precision Reference without Precision Resistors A negative reference can be easily generated by adding an op amp, A1, and configured as shown in Figure 5. VOUTF and VOUTS are at virtual ground and therefore the negative reference can be taken directly from the output of the op amp. The op amp must be dual supply, low offset, and rail-to-rail if the negative supply voltage is close to the reference output. Many times in low power applications, the need arises for a precision current source that can operate on low supply voltages. As shown in Figure 6, the ADR390/ADR391/ADR392/ADR395 can be configured as a precision current source. The circuit configuration illustrated is a floating current source with a grounded load. The reference’s output voltage is bootstrapped across RSET, which sets the output current into the load. With this configuration, circuit precision is maintained for load currents in the range from the reference’s supply current, typically 90 µA to approximately 5 mA. VIN SHDN VOUT ADR39x VIN ISET VOUT R1 0.1␮F R1 GND ISY (ISET) ISY ADJUST P1 } RSET IOUT = ISET + ISY (ISET) RL Figure 6. A General-Purpose Current Source High Power Performance with Current Limit In some cases, the user may want higher output current delivered to a load and still achieve better than 0.5% accuracy out of the ADR39x. The accuracy for a reference is normally specified on the data sheet with no load. However, the output voltage changes with load current. The circuit in Figure 7 provides high current without compromising the accuracy of the ADR39x. The series pass transistor Q1 provides up to 1 A load current. The ADR39x delivers only the base drive to Q1 through the force pin. The sense pin of the ADR39x is a regulated output and is connected to the load. The transistor Q2 protects Q1 during short circuit limit faults by robbing its base drive. The maximum current is ILMAX ≈ 0.6 V/RS. REV. C –13– ADR390/ADR391/ADR392/ADR395 VIN R1 4.7k⍀ U1 SHDN VIN GND GND VIN VOUT (FORCE) ADR39x U1 SHDN VIN VOUT (SENSE) R1 4.7k⍀ Q1 Q2N4921 Q2 Q2N2222 Q1 Q2 VOUT (SENSE) RS RL Q2N2222 VOUT (FORCE) ADR39x IL Q2N4921 RS RL Figure 8. ADR39x High Output Current with Darlington Drive Configuration Figure 7. ADR39x for High Power Performance with Current Limit A similar circuit function can also be achieved with the Darlington transistor configuration (see Figure 8). –14– REV. C ADR390/ADR391/ADR392/ADR395 OUTLINE DIMENSIONS 5-Lead Plastic Surface-Mount Package [SOT-23] (RT-5) Dimensions shown in millimeters 2.90 5 4 2.80 BSC 1.60 BSC 1 2 3 PIN 1 0.95 BSC 1.30 1.15 0.90 1.90 BSC 1.45 MAX 0.15 MAX 0.50 0.30 SEATING PLANE 0.22 0.08 10ⴗ 0ⴗ COMPLIANT TO JEDEC STANDARDS MO-178AA REV. C –15– 0.60 0.45 0.30 ADR390/ADR391/ADR392/ADR395 Revision History Location Page 10/02—Data Sheet changed from REV. B to REV. C. Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Additions to Table I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 C00419–0–10/02(C) Add parts ADR392 and ADR395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 New TPCs 3, 4, 7, 8, 11, 12, 15, 16, 19, and 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 New Figures 4 and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Deleted A Negative Precision Reference without Precision Resistors section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Edits to General-Purpose Current Source section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5/02—Data Sheet changed from REV. A to REV. B. Change to Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PRINTED IN U.S.A. Edits to layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal –16– REV. C Analog Devices: ADR392: Product Page: Package/Price Information ADI Site Navigation ADI Home ADR392 Package/Price Info Description Data Sheets Selection Tables For detailed packaging information, please select the Data Sheets button. Price and Availability Section Pricing displayed for Evaluation Boards and Kits is based on 1-piece pricing. Technical Library Packages Model Status Package/Price Information Package Description Pin Temperature Price* Count Range (100-499) Order Samples ADR392ART-R2 Production 5 ld SOT-23 5 Industrial Purchase ADR392ART-REEL PRODUCTION 5 ld SOT-23 5 INDUSTRIAL - ADR392ART-REEL7 PRODUCTION 5 ld SOT-23 5 INDUSTRIAL - ADR392AUJZ-R2 Pre-Release TSOT-23 5, 6, 8 lead 5 Industrial - ADR392AUJZ-REEL7 Pre-Release TSOT-23 5, 6, 8 lead 5 Industrial - ADR392BUJZ-R2 Pre-Release TSOT-23 5, 6, 8 lead 5 Industrial - ADR392BUJZ-REEL7 Pre-Release TSOT-23 5, 6, 8 lead 5 Industrial - All Design Resources Select a resource... - Pricing is not available for pre-release parts, please contact: /salesdir/>Sales and Distributors Privacy | About This Site | Contact ADI | Site Map | Registration © 1995-2004 Analog Devices, Inc. All Rights Reserved. http://www.analog.com/Analog_Root/productPage/pd...2526level3%253D%25252D1%2526PDBInd%253DM,00.html [3/1/2004 2:23:26 PM]
ADR392ART-R2 价格&库存

很抱歉,暂时无法提供与“ADR392ART-R2”相匹配的价格&库存,您可以联系我们找货

免费人工找货