0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADR395ART-R2

ADR395ART-R2

  • 厂商:

    AD(亚德诺)

  • 封装:

    SC74A

  • 描述:

    IC VREF SOT23-5

  • 数据手册
  • 价格&库存
ADR395ART-R2 数据手册
FEATURES PIN CONFIGURATION Compact 5-lead TSOT package Low temperature coefficient B grade: 9 ppm/°C A grade: 25 ppm/°C Initial accuracy B grade: ±4 mV maximum (ADR391) A grade: ±6 mV maximum Ultralow output noise: 5 μV p-p (0.1 Hz to 10 Hz) Low dropout: 300 mV Low supply current 3 μA maximum in shutdown 140 μA maximum in operation No external capacitor required Output current: 5 mA Automotive grade available Wide temperature range: −40°C to +125°C SHDN 1 VIN 2 ADR391/ ADR392/ ADR395 5 GND VOUT (SENSE) 3 (Not to Scale) 4 VOUT (FORCE) 00419-001 Data Sheet Micropower, Low Noise Precision Voltage References with Shutdown ADR391/ADR392/ADR395 Figure 1. 5-Lead TSOT (UJ Suffix) Table 1. Model ADR391B ADR391A ADR392B ADR392A ADR395B ADR395A Output Voltage (VO) 2.5 2.5 4.096 4.096 5.0 5.0 Temperature Coefficient (ppm/°C) 9 25 9 25 9 25 Accuracy (mV) ±4 ±6 ±5 ±6 ±5 ±6 APPLICATIONS Battery-powered instrumentation Portable medical instrumentation Data acquisition systems Industrial process controls Automotive GENERAL DESCRIPTION The ADR391/ADR392/ADR395 are precision 2.5 V, 4.096 V, and 5 V band gap voltage references, respectively, featuring low power and high precision in a tiny footprint. Using patented temperature drift curvature correction techniques from Analog Devices, Inc., the ADR39x references achieve a low 9 ppm/°C of temperature drift in the TSOT package. Rev. I The ADR39x family of micropower, low dropout voltage references provides a stable output voltage from a minimum supply of 300 mV above the output. Their advanced design eliminates the need for external capacitors, which further reduces board space and system cost. The combination of low power operation, small size, and ease of use makes the ADR39x precision voltage references ideally suited for battery-operated applications. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2000–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADR391/ADR392/ADR395 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 ESD Caution...................................................................................6 Applications ....................................................................................... 1 Typical Performance Characteristics ..............................................7 Pin Configuration ............................................................................. 1 Terminology .................................................................................... 13 General Description ......................................................................... 1 Theory of Operation ...................................................................... 14 Revision History ............................................................................... 2 Device Power Dissipation Considerations .............................. 14 Specifications..................................................................................... 3 Shutdown Mode Operation ...................................................... 14 ADR391 Electrical Characteristics............................................. 3 Applications Information .............................................................. 15 ADR392 Electrical Characteristics............................................. 4 Basic Voltage Reference Connection ....................................... 15 ADR395 Electrical Characteristics............................................. 5 Capacitors .................................................................................... 17 Absolute Maximum Ratings............................................................ 6 Outline Dimensions ....................................................................... 18 Thermal Resistance ...................................................................... 6 Ordering Guide .......................................................................... 18 REVISION HISTORY 4/2019—Rev. H to Rev. I Change to General Description Section ........................................ 1 Added Figure 19; Renumbered Sequentially ................................ 9 Changes to Shutdown Mode Operation Section ........................ 14 Added Figure 35 and Figure 36..................................................... 14 Deleted Figure 40; Renumbered Sequentially ............................ 17 Changes to Ordering Guide .......................................................... 18 Updated Outline Dimensions ....................................................... 18 10/2009—Rev. G to Rev. H Deleted ADR390 ................................................................. Universal Changes to Ordering Guide Section ............................................ 18 2/2008—Rev. F to Rev. G Changes to Ripple Rejection Ration Parameter (Table 2) ........... 3 Changes to Ripple Rejection Ration Parameter (Table 3) ........... 4 Changes to Ripple Rejection Ration Parameter (Table 4) ........... 5 Changes to Ripple Rejection Ration Parameter (Table 5) ........... 6 Changes to Figure 7 .......................................................................... 9 Changes to Outline Dimensions................................................... 19 Changes to Ordering Guide .......................................................... 19 5/2005—Rev. E to Rev. F Changes to Table 5 ............................................................................ 7 Changes to Figure 2 .......................................................................... 9 4/2004—Rev. D to Rev. E Changes to ADR390—Specifications ............................................. 3 Changes to ADR391—Specifications ............................................. 4 Changes to ADR392—Specifications ............................................. 5 Changes to ADR395—Specifications ............................................. 6 4/2004—Rev. C to Rev. D Updated Format .................................................................. Universal Changes to Title ................................................................................ 1 Changes to Features.......................................................................... 1 Changes to Applications ...................................................................1 Changes to General Description .....................................................1 Changes to Table 1.............................................................................1 Changes to ADR390—Specifications .............................................3 Changes to ADR391—Specifications .............................................4 Changes to ADR392—Specifications .............................................5 Changes to ADR395—Specifications .............................................6 Changes to Absolute Maximum Ratings ........................................7 Changes to Thermal Resistance.......................................................7 Moved ESD Caution..........................................................................7 Changes to Figure 3, Figure 4, Figure 7, and Figure 8 ..................9 Changes to Figure 11, Figure 12, Figure 13, and Figure 14....... 10 Changes to Figure 15, Figure 16, Figure 19, and Figure 20....... 11 Changes to Figure 23 and Figure 24............................................. 12 Changes to Figure 27...................................................................... 13 Changes to Ordering Guide .......................................................... 19 Updated Outline Dimensions ....................................................... 19 10/2002—Rev. B to Rev. C Add parts ADR392 and ADR395 ..................................... Universal Changes to Features ..........................................................................1 Changes to General Description .....................................................1 Additions to Table I ...........................................................................1 Changes to Specifications .................................................................2 Changes to Ordering Guide .............................................................4 Changes to Absolute Maximum Ratings ........................................4 New TPCs 3, 4, 7, 8, 11, 12, 15, 16, 19, and 20 ..............................6 New Figures 4 and 5 ....................................................................... 13 Deleted A Negative Precision Reference without Precision Resistors Section ............................................. 13 Edits to General-Purpose Current Source Section .................... 13 Updated Outline Dimensions ....................................................... 15 5/2002—Rev. A to Rev. B Edits to Layout .................................................................... Universal Changes to Figure 6 ........................................................................ 13 Rev. I | Page 2 of 20 Data Sheet ADR391/ADR392/ADR395 SPECIFICATIONS ADR391 ELECTRICAL CHARACTERISTICS VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted. Table 2. Parameter OUTPUT VOLTAGE Symbol VO INITIAL ACCURACY VOERR TEMPERATURE COEFFICIENT TCVO SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION VIN − VO ΔVO/ΔVIN ΔVO/ΔILOAD QUIESCENT CURRENT IIN VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND en p-p tR ΔVO ΔVO_HYS RRR ISC SHUTDOWN PIN Shutdown Supply Current Shutdown Logic Input Current Shutdown Logic Low Shutdown Logic High ISHDN ILOGIC VINL VINH 1 Conditions A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 2.494 2.496 Typ 2.5 2.5 Max 2.506 2.504 6 0.24 4 0.16 25 9 10 25 60 140 120 140 300 VIN = 2.8 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +85°C, VIN = 3 V ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V No load −40°C < TA < +125°C 0.1 Hz to 10 Hz 5 20 50 100 −80 25 30 1000 hours fIN = 60 Hz VIN = 5 V VIN = 15 V 3 500 0.8 2.4 The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period. Rev. I | Page 3 of 20 Unit V V mV % mV % ppm/°C ppm/°C mV ppm/V ppm/mA ppm/mA μA μA μV p-p μs ppm ppm dB mA mA μA nA V V ADR391/ADR392/ADR395 Data Sheet ADR392 ELECTRICAL CHARACTERISTICS VIN = 4.3 V to 15 V, TA = 25°C, unless otherwise noted. Table 3. Parameter OUTPUT VOLTAGE Symbol VO INITIAL ACCURACY VOERR TEMPERATURE COEFFICIENT TCVO SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VIN − VO ΔVO/ΔVIN ΔVO/ΔILOAD IIN VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND en p-p tR ΔVO ΔVO_HYS RRR ISC SHUTDOWN PIN Shutdown Supply Current Shutdown Logic Input Current Shutdown Logic Low Shutdown Logic High ISHDN ILOGIC VINL VINH 1 Conditions A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 4.090 4.091 Typ 4.096 4.096 Max 4.102 4.101 6 0.15 5 0.12 25 9 10 25 140 120 140 300 VIN = 4.3 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V No load −40°C < TA < +125°C 0.1 Hz to 10 Hz 7 20 50 100 −80 25 30 1000 hours fIN = 60 Hz VIN = 5 V VIN = 15 V 3 500 0.8 2.4 The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period. Rev. I | Page 4 of 20 Unit V V mV % mV % ppm/°C ppm/°C mV ppm/V ppm/mA μA μA μV p-p μs ppm ppm dB mA mA μA nA V V Data Sheet ADR391/ADR392/ADR395 ADR395 ELECTRICAL CHARACTERISTICS VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted. Table 4. Parameter OUTPUT VOLTAGE Symbol VO INITIAL ACCURACY VOERR TEMPERATURE COEFFICIENT TCVO SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VIN − VO ΔVO/ΔVIN ΔVO/ΔILOAD IIN VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND en p-p tR ΔVO ΔVO_HYS RRR ISC SHUTDOWN PIN Shutdown Supply Current Shutdown Logic Input Current Shutdown Logic Low Shutdown Logic High ISHDN ILOGIC VINL VINH 1 Conditions A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 4.994 4.995 Typ 5.000 5.000 Max 5.006 5.005 6 0.12 5 0.10 25 9 10 25 140 120 140 300 VIN = 4.3 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6 V No load −40°C < TA < +125°C 0.1 Hz to 10 Hz 8 20 50 100 −80 25 30 1000 hours fIN = 60 Hz VIN = 5 V VIN = 15 V 3 500 0.8 2.4 The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period. Rev. I | Page 5 of 20 Unit V V mV % mV % ppm/°C ppm/°C mV ppm/V ppm/mA μA μA μV p-p μs ppm ppm dB mA mA μA nA V V ADR391/ADR392/ADR395 Data Sheet ABSOLUTE MAXIMUM RATINGS At 25°C, unless otherwise noted. THERMAL RESISTANCE Table 5. θJA is specified for the worst-case conditions, that is, for a device soldered in a circuit board for surface-mount packages. Parameter Supply Voltage Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) Rating 18 V See derating curves −65°C to +125°C −40°C to +125°C −65°C to +125°C 300°C Table 6. Package Type TSOT (UJ-5) ESD CAUTION Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. I | Page 6 of 20 θJA 230 θJC 146 Unit °C/W Data Sheet ADR391/ADR392/ADR395 TYPICAL PERFORMANCE CHARACTERISTICS 2.506 140 SAMPLE 2 2.504 120 SUPPLY CURRENT (µA) SAMPLE 1 SAMPLE 3 2.500 2.498 +85°C +25°C 80 –40°C 60 2.496 –5 30 65 TEMPERATURE (°C) 100 125 40 2.5 00419-004 2.494 –40 +125°C 100 Figure 2. ADR391 Output Voltage (VOUT) vs. Temperature 00419-008 VOUT (V) 2.502 5.0 7.5 10.0 INPUT VOLTAGE (V) 12.5 15.0 Figure 5. ADR391 Supply Current vs. Input Voltage 4.100 140 4.098 +125 °C 120 4.094 SAMPLE 2 SAMPLE 1 4.092 100 +25°C –40°C 80 60 4.090 0 40 TEMPERATURE (°C) 80 125 40 00419-005 4.088 –40 00419-009 VOUT (V) 4.096 SUPPLY CURRENT (µA) SAMPLE 3 5 Figure 3. ADR392 Output Voltage (VOUT) vs. Temperature 7 9 11 INPUT VOLTAGE (V) 140 5.004 SAMPLE 3 +125°C 120 SUPPLY CURRENT (µA) 5.002 SAMPLE 2 5.000 SAMPLE 1 4.998 4.996 +25°C 100 –40°C 80 –5 30 65 TEMPERATURE (°C) 100 125 Figure 4. ADR395 Output Voltage (VOUT) vs. Temperature 40 5.5 00419-010 60 00419-006 VOUT (V) 15 Figure 6. ADR392 Supply Current vs. Input Voltage 5.006 4.994 –40 13 7.0 8.5 11.5 10.0 INPUT VOLTAGE (V) 13.0 Figure 7. ADR395 Supply Current vs. Input Voltage Rev. I | Page 7 of 20 14.5 ADR391/ADR392/ADR395 Data Sheet 25 180 20 LINE REGULATION (ppm/V) 160 VIN = 5V VIN = 3V 140 120 100 15 10 80 –40 –10 20 50 TEMPERATURE (°C) 80 110 125 0 –40 00419-016 5 00419-012 LOAD REGULATION (ppm/mA) IL = 0mA TO 5mA –10 20 50 TEMPERATURE (°C) 80 110 125 Figure 11. ADR391 Line Regulation vs. Temperature Figure 8. ADR391 Load Regulation vs. Temperature 14 90 IL = 0mA TO 5mA LINE REGULATION (ppm/V) LOAD REGULATION (ppm/mA) 12 80 70 VIN = 7.5V 60 VIN = 5V 10 8 VIN = 4.4V TO 15V 6 4 50 –5 100 30 65 TEMPERATURE (°C) 125 0 –40 00419-013 40 –40 –5 30 65 TEMPERATURE (°C) 100 125 00419-017 2 Figure 12. ADR392 Line Regulation vs. Temperature Figure 9. ADR392 Load Regulation vs. Temperature 14 80 IL = 0mA TO 5mA 60 LINE REGULATION (ppm/V) VIN = 7.5V VIN = 5V 50 10 VIN = 5.3V TO 15V 8 6 4 40 30 –40 –5 30 65 TEMPERATURE (°C) 100 125 0 –40 –5 30 65 TEMPERATURE (°C) 100 Figure 13. ADR395 Line Regulation vs. Temperature Figure 10. ADR395 Load Regulation vs. Temperature Rev. I | Page 8 of 20 125 00419-018 2 00419-014 LOAD REGULATION (ppm/mA) 12 70 Data Sheet ADR391/ADR392/ADR395 70 3.6 +125°C 60 +85°C 50 TEMPERATURE: +25°C –40°C +125°C +25°C 3.2 FREQUENCY VIN MIN (V) 3.4 +25°C 3.0 –40°C 40 30 20 2.8 1 2 3 LOAD CURRENT (mA) 4 5 0 –0.56 Figure 14. ADR391 Minimum Input Voltage (VIN) vs. Load Current VOLTAGE NOISE DENSITY (nV/√Hz) VIN MIN (V) 1k 900 800 700 +125°C +25°C 4.4 –40°C 4.2 0 1 2 3 LOAD CURRENT (mA) 4 5 0.19 0.34 VIN = 5V 600 500 400 ADR391 300 200 00419-021 4.0 3.8 –0.26 –0.11 0.04 VOUT DEVIATION (mV) Figure 17. ADR391 VOUT Hysteresis Distribution 4.8 4.6 –0.41 100 10 Figure 15. ADR392 Minimum Input Voltage (VIN) vs. Load Current 100 1k FREQUENCY (Hz) 00419-025 0 00419-020 2.6 00419-024 10 10k Figure 18. Voltage Noise Density vs. Frequency 150 6.0 100 5.8 +125 °C DRIFT (ppm) 50 +25°C 5.4 –40 °C 5.2 0 –50 5.0 –150 4.6 0 1 2 3 LOAD CURRENT (mA) 4 5 Figure 16. ADR395 Minimum Input Voltage (VIN) vs. Load Current 00419-002 –100 4.8 00419-022 VIN MIN (V) 5.6 0 100 200 300 400 500 600 TIME (Hours) 700 800 900 1000 Figure 19. ADR391 Typical Long-Term Drift Over 1000 Hours Rev. I | Page 9 of 20 ADR391/ADR392/ADR395 Data Sheet 0 0 VOLTAGE (2µV/DIV) VOLTAGE (100µV/DIV) 0 0 0 0 0 00419-027 0 00419-026 0 TIME (1s/DIV) TIME (10µs/DIV) Figure 23. ADR391 Voltage Noise 10 Hz to 10 kHz Figure 20. ADR391 Typical Voltage Noise 0.1 Hz to 10 Hz CL = 0nF VOUT LINE INTERRUPTION VOLTAGE (1V/DIV) CBYPASS = 0µF VOLTAGE 0.5V/DIV VOUT VLOAD ON LOAD OFF 00419-028 00419-030 1V/DIV TIME (200µs/DIV) TIME (10µs/DIV) Figure 24. ADR391 Load Transient Response Figure 21. ADR391 Line Transient Response CL = 1nF VOUT VOLTAGE (1V/DIV) CBYPASS = 0.1µF 0.5V/DIV VOLTAGE LINE INTERRUPTION VOUT LOAD OFF VLOAD ON 00419-029 00419-031 1V/DIV TIME (200µs/DIV) TIME (10µs/DIV) Figure 25. ADR391 Load Transient Response Figure 22. ADR391 Line Transient Response Rev. I | Page 10 of 20 Data Sheet ADR391/ADR392/ADR395 CL = 100nF CBYPASS = 0.1µF VOUT VOLTAGE LOAD OFF VLOAD ON 5V/DIV 00419-035 VIN 00419-032 VOLTAGE (1V/DIV) 2V/DIV VOUT TIME (200µs/DIV) TIME (200µs/DIV) Figure 26. ADR391 Load Transient Response Figure 29. ADR391 Turn-On/Turn-Off Response at 5 V with Capacitance VIN = 15V RL = 500Ω 5V/DIV 2V/DIV VIN VOLTAGE 2V/DIV VOUT 5V/DIV VIN 00419-033 00419-036 VOLTAGE VOUT TIME (20µs/DIV) TIME (200µs/DIV) Figure 27. ADR391 Turn-On Response Time at 15 V Figure 30. ADR391 Turn-On/Turn-Off Response at 5 V with Resistor Load RL = 500Ω CL = 100nF VIN = 15V VIN 5V/DIV VOLTAGE 2V/DIV 2V/DIV VIN 5V/DIV 00419-037 VOUT 00419-034 VOLTAGE VOUT TIME (200µs/DIV) TIME (40µs/DIV) Figure 28. ADR391 Turn-Off Response at 15 V Figure 31. ADR391 Turn-On/Turn-Off Response at 5 V Rev. I | Page 11 of 20 Data Sheet 100 60 90 40 80 20 0 –20 –40 –60 60 CL = 0µF 50 40 30 20 –80 –100 –120 10 70 100 1k 10k FREQUENCY (Hz) 100k CL = 1µF 10 0 10 1M 100 1k 10k FREQUENCY (Hz) CL = 0.1µF 100k Figure 33. Output Impedance vs. Frequency Figure 32. Ripple Rejection vs. Frequency Rev. I | Page 12 of 20 1M 00419-039 OUTPUT IMPEDANCE (Ω) 80 00419-038 RIPPLE REJECTION (dB) ADR391/ADR392/ADR395 Data Sheet ADR391/ADR392/ADR395 TERMINOLOGY Temperature Coefficient The change of output voltage with respect to operating temperature changes normalized by the output voltage at 25°C. This parameter is expressed in ppm/°C and can be determined by TCVO ppm/C   VO T2  – VO T1  VO 25C   T2 – T1   10 6 Long-Term Stability Typical shift of output voltage at 25°C on a sample of parts subjected to a test of 1000 hours at 25°C. ΔVO = VO(t0) − VO(t1)   V (t )  VO (t1 ) VO [ppm]   O 0  106  VO (t 0 )   (1) where: VO (25°C) is VO at 25°C. VO (T1) is VO at Temperature 1. VO (T2) is VO at Temperature 2. (2) where: VO (t0) is VO at 25°C at Time 0. VO (t1) is VO at 25°C after 1000 hours operation at 25°C. Line Regulation The change in output voltage due to a specified change in input voltage. This parameter accounts for the effects of self-heating. Line regulation is expressed in either percent per volt, parts-permillion per volt, or microvolts per volt change in input voltage. Load Regulation The change in output voltage due to a specified change in load current. This parameter accounts for the effects of self-heating. Load regulation is expressed in either microvolts per milliampere, parts-per-million per milliampere, or ohms of dc output resistance. Thermally Induced Output Voltage Hysteresis The change of output voltage after the device cycles through the temperatures from +25°C to –40°C to +125°C and back to +25°C. This is a typical value from a sample of parts put through such a cycle. VO_HYS = VO(25°C) − VO_TC VO _ HYS [ppm]   VO (25 C )  VO _ TC VO (25  C ) (3)  10 6 where: VO (25°C) is VO at 25°C. VO_TC is VO at 25°C after a temperature cycle from +25°C to −40°C to +125°C and back to +25°C. Rev. I | Page 13 of 20 (4) ADR391/ADR392/ADR395 Data Sheet THEORY OF OPERATION Band gap references are the high performance solution for low supply voltage and low power voltage reference applications, and the ADR391/ADR392/ADR395 are no exception. The uniqueness of these devices lies in the architecture. As shown in Figure 34, the ideal zero TC band gap voltage is referenced to the output, not to ground. Therefore, if noise exists on the ground line, it is greatly attenuated on VOUT. The band gap cell consists of the PNP pair, Q51 and Q52, running at unequal current densities. The difference in VBE results in a voltage with a positive TC, which is amplified by a ratio of 2 R58 R54 This PTAT voltage, combined with VBEs of Q51 and Q52, produces a stable band gap voltage. Reduction in the band gap curvature is performed by the ratio of Resistors R44 and R59, one of which is linearly temperature dependent. Precision laser trimming and other patented circuit techniques are used to further enhance the drift performance. VIN the maximum junction temperature or dissipation of the device: PD  VOUT (FORCE) SHUTDOWN MODE OPERATION The ADR391/ADR392/ADR395 include a shutdown feature that is TTL/CMOS level compatible. A logic low or a 0 V condition on the SHDN pin is required to turn the devices off. During shutdown mode, the output of the reference becomes a high impedance state, where its potential is determined by external circuitry. If the ADR39x is powered on with the SHDN pin held low during power on, one of the following conditions must be met:  Capacitor placed between VIN and SHDN as shown in Figure 35, or Low pass filter the input as shown in Figure 36, or ≥200 ms power supply ramp rate to VIN. VOUT (SENSE) R59 (5)  JA where: TJ and TA are, respectively, the junction and ambient temperatures. PD is the device power dissipation. θJA is the device package thermal resistance.   Q1 TJ – TA SHUTDOWN R44 INPUT R58 CB GND SHDN 0.1µF * ADR39x VIN 0.1µF VOUT (FORCE) VOUT (SENSE) R49 R54 Q51 R53 *NOT REQUIRED Q52 * CB OUTPUT 00419-134 SHDN 0.1µF R61 GND SHUTDOWN SHDN Figure 34. Simplified Schematic INPUT 10µF CB DEVICE POWER DISSIPATION CONSIDERATIONS The ADR391/ADR392/ADR395 are capable of delivering load currents to 5 mA, with an input voltage that ranges from 2.8 V (ADR391 only) to 15 V. When these devices are used in applications with large input voltages, care should be taken to avoid exceeding the specified maximum power dissipation or junction temperature because it could result in premature device failure. The following formula should be used to calculate GND ADR39x 10kΩ *NOT REQUIRED * 0.1µF VIN VOUT (FORCE) VOUT (SENSE) CB * OUTPUT 0.1µF Figure 36. Low Pass Filter at VIN Pin If the shutdown feature is not used, the SHDN pin must be connected to VIN (Pin 2). Rev. I | Page 14 of 20 00419-135 R60 00419-040 Figure 35. VIN and SHDN Capacitor R48 Data Sheet ADR391/ADR392/ADR395 APPLICATIONS INFORMATION BASIC VOLTAGE REFERENCE CONNECTION The circuit shown in Figure 37 illustrates the basic configuration for the ADR39x family. Decoupling capacitors are not required for circuit stability. The ADR39x family is capable of driving capacitive loads from 0 μF to 10 μF. However, a 0.1 μF ceramic output capacitor is recommended to absorb and deliver the charge, as required by a dynamic load. SHUTDOWN GND SHDN ADR39x CB * VIN VOUT (FORCE) VOUT (SENSE) 0.1µF CB *NOT REQUIRED * OUTPUT 00419-041 INPUT 0.1µF Figure 37. Basic Configuration for the ADR39x Family Stacking Reference ICs for Arbitrary Outputs Some applications may require two reference voltage sources, which are a combined sum of standard outputs. Figure 38 shows how this stacked output reference can be implemented. ADR391/ADR391 ADR392/ADR392 ADR395/ADR395 VOUT1 (V) VOUT2 (V) 2.5 4.096 5 VIN A negative reference can be easily generated by adding an A1 op amp and is configured as shown in Figure 39. VOUT (FORCE) and VOUT (SENSE) are at virtual ground and, therefore, the negative reference can be taken directly from the output of the op amp. The op amp must be dual-supply, low offset, and rail-to-rail if the negative supply voltage is close to the reference output. 5.0 8.192 10 U2 VIN C2 0.1µF While this concept is simple, a precaution is required. Because the lower reference circuit must sink a small bias current from U2 plus the base current from the series PNP output transistor in U2, either the external load of U1 or an external resistor must provide a path for this current. If the U1 minimum load is not well defined, the external resistor should be used and set to a value that conservatively passes 600 μA of current with the applicable VOUT1 across it. Note that the two U1 and U2 reference circuits are treated locally as macrocells; each has its own bypasses at input and output for best stability. Both U1 and U2 in this circuit can source dc currents up to their full rating. The minimum input voltage, VIN, is determined by the sum of the outputs, VOUT2, plus the dropout voltage of U2. A Negative Precision Reference without Precision Resistors OUTPUT TABLE U1/U2 Two reference ICs are used, fed from an unregulated input, VIN. The outputs of the individual ICs are connected in series, which provide two output voltages, VOUT1 and VOUT2. VOUT1 is the terminal voltage of U1, while VOUT2 is the sum of this voltage and the terminal voltage of U2. U1 and U2 are chosen for the two voltages that supply the required outputs (see the Output Table in Figure 38). For example, if both U1 and U2 are ADR391s, VOUT1 is 2.5 V and VOUT2 is 5.0 V. SHDN VOUT (FORCE) +VDD VOUT2 VOUT (SENSE) GND VIN VOUT (FORCE) SHDN VOUT (SENSE) U1 GND VOUT1 VOUT (SENSE) –VREF A1 00419-042 GND –VDD Figure 38. Stacking Voltage References with the ADR391/ADR392/ADR395 Rev. I | Page 15 of 20 Figure 39. Negative Reference 00419-043 C2 0.1µF VIN SHDN VOUT (FORCE) ADR391/ADR392/ADR395 Data Sheet General-Purpose Current Source High Power Performance with Current Limit Many times in low power applications, the need arises for a precision current source that can operate on low supply voltages. The ADR391/ADR392/ADR395 can be configured as a precision current source. As shown in Figure 40, the circuit configuration is a floating current source with a grounded load. The reference output voltage is bootstrapped across RSET, which sets the output current into the load. With this configuration, circuit precision is maintained for load currents in the range from the reference supply current, typically 90 μA to approximately 5 mA. In some cases, the user may want higher output current delivered to a load and still achieve better than 0.5% accuracy out of the ADR39x. The accuracy for a reference is normally specified on the data sheet with no load. However, the output voltage changes with load current. VIN The circuit shown in Figure 41 provides high current without compromising the accuracy of the ADR39x. The series pass transistor, Q1, provides up to 1 A load current. The ADR39x delivers only the base drive to Q1 through the force pin. The sense pin of the ADR39x is a regulated output and is connected to the load. The Transistor Q2 protects Q1 during short-circuit limit faults by robbing its base drive. The maximum current is SHDN VOUT (SENSE) ADR39x ILMAX ≈ 0.6 V/RS VIN ISET GND R1 R1 VIN R1 4.7kΩ RSET ISY ADJUST SHDN GND VIN P1 Q1 Q2N4921 VOUT (FORCE) IOUT = ISET + ISY (ISET ) VOUT (SENSE) 00419-044 RL U1 Q2 Q2N2222 RS ADR39x Figure 40. A General-Purpose Current Source RL IL 00419-045 0.1µF Figure 41. ADR39x for High Power Performance with Current Limit A similar circuit function can also be achieved with the Darlington transistor configuration, as shown in Figure 42. VIN R1 4.7kΩ U1 SHDN GND VIN Q1 Q2N2222 VOUT (FORCE) VOUT (SENSE) ADR39x Q2 Q2N4921 RS RL Figure 42. ADR39x for High Output Current with Darlington Drive Configuration Rev. I | Page 16 of 20 00419-D-046 VOUT (FORCE) ISY (ISET) (6) Data Sheet ADR391/ADR392/ADR395 CAPACITORS Output Capacitor Input Capacitor The ADR39x does not require output capacitors for stability under any load condition. An output capacitor, typically 0.1 μF, filters out any low level noise voltage and does not affect the operation of the part. On the other hand, the load transient response can improve with the addition of a 1 μF to 10 μF output capacitor in parallel. A capacitor here acts as a source of stored energy for a sudden increase in load current. The only parameter that degrades by adding an output capacitor is the turn-on time, and it depends on the size of the capacitor chosen. Input capacitors are not required on the ADR39x. There is no limit for the value of the capacitor used on the input, but a 1 μF to 10 μF capacitor on the input improves transient response in applications where the supply suddenly changes. An additional 0.1 μF in parallel also helps reduce noise from the supply. Rev. I | Page 17 of 20 ADR391/ADR392/ADR395 Data Sheet OUTLINE DIMENSIONS 3.05 2.90 2.75 TOP VIEW 1.75 1.60 1.45 5 1 4 2 3.05 2.80 2.55 3 0.95 BSC 1.90 REF SIDE VIEW END VIEW 1.00 MAX 0.10 MAX SEATING PLANE 0.50 0.30 PKG-000882 0.20 0.08 8° 4° 0° 0.60 0.45 0.30 COMPLIANT TO JEDEC STANDARDS MO-193-AB 04-05-2017-B 0.90 0.70 Figure 43. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters ORDERING GUIDE Model1,2 ADR391AUJZ-REEL7 ADR391AUJZ-R2 ADR391BUJZ-REEL7 ADR392AUJZ-REEL7 ADR392BUJZ-REEL7 ADR392WBUJZ-R7 ADR395AUJZ-REEL7 ADR395BUJZ-REEL7 1 2 Output Voltage (VO) 2.5 2.5 2.5 4.096 4.096 4.096 5.0 5.0 Initial Accuracy (mV) (%) ±6 0.24 ±6 0.24 ±4 0.16 ±6 0.15 ±5 0.12 ±5 0.12 ±6 0.12 ±5 0.10 Temperature Coefficient (ppm/°C) 25 25 9 25 9 9 25 9 Package Description 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT Z = RoHS Compliant Part. The ADR392WBUJZ-R7 is an automotive grade model. Rev. I | Page 18 of 20 Package Option UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 Marking Code R1A R1A R1B RCA RCB RCB RDA RDB Ordering Quantity 3000 250 3000 3000 3000 3000 3000 3000 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Data Sheet ADR391/ADR392/ADR395 NOTES Rev. I | Page 19 of 20 ADR391/ADR392/ADR395 Data Sheet NOTES ©2000–2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00419-0-4/19(I) Rev. I | Page 20 of 20
ADR395ART-R2 价格&库存

很抱歉,暂时无法提供与“ADR395ART-R2”相匹配的价格&库存,您可以联系我们找货

免费人工找货