0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADR4540DEZ

ADR4540DEZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    CLCC8

  • 描述:

    IC VREF SERIES 0.02% 8LCC

  • 数据手册
  • 价格&库存
ADR4540DEZ 数据手册
Ultralow Noise, High Accuracy Voltage References ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 FEATURES PIN CONFIGURATIONS Maximum temperature coefficient (TCVOUT): 0.8 ppm/°C (D grade 0°C to 70°C) 1 ppm/°C (C grade 0°C to 70°C) 2 ppm/°C (B grade −40°C to +125°C) 4 ppm/°C (A grade −40°C to +125°C) Output noise (0.1 Hz to 10 Hz): 1 μV p-p at VOUT of 2.048 V typical Initial output voltage error: B, C, D grade: ±0.02% (maximum) Input voltage range: 3 V to 15 V Operating temperature: A grade and B grade: −40°C to +125°C C grade and D grade: 0°C to +70°C Output current: +10 mA source/−10 mA sink Low quiescent current: 950 μA (maximum) Low dropout voltage: 300 mV at 2 mA (VOUT ≥ 3 V) 8-lead SOIC and LCC package AEC-Q100 qualified for automotive applications Long-term drift: 8 ppm typical at 4500 hours ADR4520/ADR4525/ ADR4530/ADR4533/ ADR4540/ADR4550 8 DNC VIN 2 7 NIC NOTES 1. NIC = NOT INTERNALLY CONNECTED. THIS PIN IS NOT CONNECTED INTERNALLY. 2. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN. Figure 1. 8-Lead SOIC Pin Configuration ADR4520/ADR4525/ ADR4530/ADR4533/ ADR4540/ADR4550 DNC 8 DNC 1 7 VOUTFORCE VIN 2 6 VOUTSENSE GNDFORCE 3 5 NIC 4 GNDSENSE NOTES 1. NIC = NOT INTERNALLY CONNECTED. THIS PIN IS NOT CONNECTED INTERNALLY. 2. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN. Precision data acquisition systems High resolution data converters High precision measurement devices Industrial instrumentation Medical devices Automotive battery monitoring 10203-001 6 VOUT NIC 3 TOP VIEW GND 4 (Not to Scale) 5 NIC APPLICATIONS Figure 2. 8-Lead LCC Pin Configuration GENERAL DESCRIPTION The ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ ADR4550 devices are high precision, low power, low noise voltage references featuring ±0.02% B, C, and D grade maximum initial error, excellent temperature stability, and low output noise. This family of voltage references uses an innovative core topology to achieve high accuracy while offering industry-leading temperature stability and noise performance. The low, thermally induced output voltage hysteresis and low long-term output voltage drift of the devices also improve system accuracy over time and temperature variations. A maximum operating current of 950 μA and a maximum low dropout voltage of 300 mV allow the devices to function very well in portable equipment. The ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ ADR4550 series of references are each provided in an 8-lead SOIC and are available in a wide range of output voltages, all of which are specified over the extended industrial temperature range of −40°C to +125°C. Rev. D NIC 1 10203-057 Data Sheet The ADR4525, ADR4540, and ADR4550 are also available in D, which are in 8 lead LCC package, and C grade with a temperature range of 0°C to 70°C. The ADR4525W, available in an 8-lead SOIC package, is qualified for automotive applications. Table 1. Selection Guide Model ADR4520 ADR4525 ADR4525W ADR4530 ADR4533 ADR4540 ADR4550 Output Voltage (V) 2.048 2.5 2.5 3.0 3.3 4.096 5.0 Grade A, B A, B, C, D B A, B A, B A, B, C, D A, B, C, D Table 2. Voltage Reference Choices from Analog Devices, Inc. VOUT (V) 2.048 Micropower ADR3420 LT6656 2.5 ADR3425 LT1461 LT6656 ADR3450 LT1461 LT6656 5.0 Low Power ADR360 LTC6652 LT6654 ADR361 LTC6652 LT6654 ADR365 LTC6652 LT6654 Ultralow Noise ADR440 LTC6655 ADR441 LTC6655 ADR445 LTC6655 Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2012–2021 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 ADR4530 ..................................................................................... 19 Applications ...................................................................................... 1 ADR4533 ..................................................................................... 22 General Description ......................................................................... 1 ADR4540 ..................................................................................... 25 Pin Configurations ........................................................................... 1 ADR4550 ..................................................................................... 29 Revision History ............................................................................... 2 Terminology.................................................................................... 33 Specifications .................................................................................... 4 Applications Information ............................................................. 34 ADR4520 Electrical Characteristics........................................... 4 Basic Voltage Reference Connection ...................................... 34 ADR4525 Electrical Characteristics........................................... 5 Input and Output Capacitors ................................................... 34 ADR4530 Electrical Characteristics........................................... 6 Location of Reference in System .............................................. 34 ADR4533 Electrical Characteristics........................................... 7 Power Dissipation ...................................................................... 34 ADR4540 Electrical Characteristics........................................... 8 Sample Applications .................................................................. 34 ADR4550 Electrical Characteristics........................................... 9 Long-Term Drift ........................................................................ 35 Absolute Maximum Ratings ......................................................... 10 Thermal Hysteresis .................................................................... 36 Thermal Resistance .................................................................... 10 Humidity Sensitivity .................................................................. 37 ESD Caution................................................................................ 10 Power Cycle Hysteresis ............................................................. 38 Pin Configurations and Function Descriptions ......................... 11 Outline Dimensions ....................................................................... 39 Typical Performance Characteristics ........................................... 12 Ordering Guide .......................................................................... 39 ADR4520 ..................................................................................... 12 Automotive Products ................................................................ 40 ADR4525 ..................................................................................... 15 REVISION HISTORY 1/2021—Rev. C to Rev. D Added 8-Lead LCC Package ........................................ Throughout Changes to Features Section, General Description Section, and Table 1 .......................................................................................................... 1 Added Figure 2; Renumbered Sequentially.......................................... 1 Changes to Table 4 ........................................................................... 5 Changes to Table 7 ........................................................................... 8 Changes to Table 8 ........................................................................... 9 Changes to Table 9 and Table 10 ................................................. 10 Added Figure 4 and Table 11; Renumbered Sequentially ........ 11 Changes to Typical Performance Characteristics Section ........ 12 Changes to Figure 110 and Figure 11 .......................................... 35 Added Figure 112 ........................................................................... 35 Changes to Figure 113 to Figure 116 ........................................... 36 Added Figure 117 ........................................................................... 36 Added Figure 118 ........................................................................... 37 Changes to Figure 120 and Figure 121 ........................................ 37 Changes to Figure 122 ................................................................... 38 Added Figure 124 ........................................................................... 38 Changes to Ordering Guide .......................................................... 38 3/2020—Rev. B to Rev. C Added ADR4540 C Grade and ADR4550 C Grade . Throughout Changes to Table 4 ............................................................................5 Changes to Table 7 ............................................................................8 Changes to Table 8 ............................................................................9 Deleted Figure 32, Renumbered Sequentially ............................ 18 Changes to Figure 39 ..................................................................... 19 Changes to Figure 52 ..................................................................... 22 Added Figure 69, Renumbered Sequentially .............................. 26 Changes to Figure 79 ..................................................................... 28 Added Figure 83 ............................................................................. 29 Updated Ordering Guide .............................................................. 41 12/2018—Rev. A to Rev. B Changes to Features Section, Table 1, and Table 2 ......................1 Changes to Table 3 ............................................................................4 Changes to Table 4 ............................................................................5 Changes to Table 5 ............................................................................6 Changes to Table 6 ............................................................................7 Changes to Table 7 ............................................................................8 Changes to Table 8 ............................................................................9 Rev. D | Page 2 of 40 Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Added Electrostatic Discharge (ESD) Human Body Model (HBM) Parameter and Moisture Sensitivity Level Rating Parameter, Table 9 ..........................................................................10 Changes to Thermal Resistance Section and Table 10 ..............10 Deleted Figure 4; Renumbered Sequentially ...............................12 Changes to Figure 15 ......................................................................14 Deleted Figure 17 ............................................................................14 Changes to Figure 16 Caption .......................................................15 Added Figure 17; Renumbered Sequentially ...............................15 Deleted Figure 19 ............................................................................15 Changes to Figure 29 ......................................................................17 Deleted Figure 32 ............................................................................17 Deleted Figure 34 ............................................................................18 Changes to Figure 43 ......................................................................20 Deleted Figure 48 ............................................................................20 Deleted Figure 50 ............................................................................21 Changes to Figure 56 ......................................................................23 Deleted Figure 63 ............................................................................23 Deleted Figure 65 ............................................................................24 Changes to Figure 69 ......................................................................26 Deleted Figure 78 ............................................................................26 Deleted Figure 80 ............................................................................27 Changes to Figure 82 ......................................................................29 Deleted Figure 93 ............................................................................29 Changes to Terminology Section.................................................. 30 Deleted Theory of Operation Section and Long-Term Drift Section .............................................................................................. 31 Moved Power Dissipation Section................................................ 31 Added Long-Term Drift (LTD)Section, Figure 86, and Figure 87 ........................................................................................... 32 Added Thermal Hysteresis Section, Figure 88, Figure 89, Figure 90, and Figure 91 ................................................................ 33 Added Humidity Sensitivity Section, Figure 92, Figure 93, and Figure 94 ........................................................................................... 34 Added Power Cycle Hysteresis Section and Figure 95 .............. 35 Changes to Ordering Guide .......................................................... 36 10/2017—Rev. 0 to Rev. A Changed TP Pin to DNC Pin and NC Pin to NIC Pin........................................................................... Throughout Changes to Features Section, Figure 1, and General Description Section ................................................................................................ 1 Changes to Figure 2 and Table 11 ................................................ 10 Changes to Ordering Guide .......................................................... 32 Added Automotive Products Section .......................................... 33 4/2012—Revision 0: Initial Version Rev. D | Page 3 of 40 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet SPECIFICATIONS ADR4520 ELECTRICAL CHARACTERISTICS Unless otherwise noted, supply voltage (VIN) = 3 V to 15 V, IL = 0 mA, TA = 25°C. Table 3. Parameter OUTPUT VOLTAGE INITIAL OUTPUT VOLTAGE ERROR B Grade Symbol VOUT VOUT_ERR Test Conditions/Comments Min Typ 2.048 Max Unit V ±0.02 410 ±0.04 820 % μV % μV % 2 4 4 8 10 80 ppm/°C ppm/°C ppm/°C ppm/°C ppm/V ppm/mA 120 950 1 1 ppm/mA μA V V dB −8 10 1.0 35.8 mA mA μV p-p nV/√Hz −13 −97 −8 −17 ppm ppm ppm ppm 19 25 51 90 ppm ppm ppm µs A Grade SOLDER HEAT RESISTANCE SHIFT TEMPERATURE COEFFICIENT B Grade ±0.02 TCVOUT A Grade LINE REGULATION LOAD REGULATION ΔVOUT/ΔVIN ΔVOUT/ΔIL QUIESCENT CURRENT DROPOUT VOLTAGE IQ VDO RIPPLE REJECTION RATIO OUTPUT CURRENT CAPACITY Sinking Sourcing OUTPUT VOLTAGE NOISE OUTPUT VOLTAGE NOISE DENSITY OUTPUT VOLTAGE HYSTERESIS RRR IL LONG-TERM DRIFT TURN-ON SETTLING TIME eNp-p eN ΔVOUT_HYS ΔVOUT_LTD tR See Terminology section −40°C ≤ TA ≤ +125°C (box method) −40°C ≤ TA ≤ +125°C (bowtie method) −40°C ≤ TA ≤ +125°C (box method) −40°C ≤ TA ≤ +125°C (bowtie method) −40°C ≤ TA ≤ +125°C IL = 0 mA to +10 mA source, −40°C ≤ TA ≤ +125°C IL = 0 mA to −10 mA sink, −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C, no load −40°C ≤ TA ≤ +125°C, no load −40°C ≤ TA ≤ +125°C, IL = 2 mA Input frequency (fIN) = 1 kHz 1 30 100 700 90 0.1 Hz to 10.0 Hz 1 kHz TA = temperature cycled from +25°C to +125°C to−40°C to +25°C (full cycle) 25°C to 125°C to 25°C (half cycle) 25°C to 70°C to 0°C to 25°C (full cycle) 25°C to 70°C to 25°C (half cycle) TA = 25°C 250 hours (early life drift) 1000 hours 4500 hours Output capacitor (COUT) = 1 µF, input capacitor (CIN) = 0.1 µF, load resistance (RLOAD) = 1 kΩ LOAD CAPACITANCE 1 Rev. D | Page 4 of 40 100 µF Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 ADR4525 ELECTRICAL CHARACTERISTICS Unless otherwise noted, VIN = 3 V to 15 V, IL = 0 mA, TA = 25°C. Table 4. Parameter OUTPUT VOLTAGE INITIAL OUTPUT VOLTAGE ERROR B, C, D Grade Symbol VOUT VOUT_ERR Test Conditions/Comments Min Typ 2.500 A Grade SOLDER HEAT RESISTANCE SHIFT A, B, C, D Grade TEMPERATURE COEFFICIENT D Grade B Grade A Grade ΔVOUT/ΔVIN ΔVOUT/ΔIL D Grade QUIESCENT CURRENT DROPOUT VOLTAGE IQ VDO RIPPLE REJECTION RATIO OUTPUT CURRENT CAPACITY Sinking Sourcing OUTPUT VOLTAGE NOISE OUTPUT VOLTAGE NOISE DENSITY OUTPUT VOLTAGE HYSTERESIS A, B, C Grade RRR IL ±0.02 500 ±0.04 1 % μV % mV ΔVOUT_HYS TA = temperature cycled from +25°C to +125°C to−40°C to +25°C (full cycle) 25°C to 125°C to 25°C (half cycle) 25°C to 70°C to 0°C to 25°C (full cycle) 25°C to 70°C to 25°C (half cycle) 25°C to 70°C to 0°C to 25°C (full cycle) 25°C to 70°C to 25°C (half cycle) TA = 25°C 250 hours (early life drift) 1000 hours 4500 hours 250 hours (early life drift) 1000 hours 4500 hours COUT = 1 µF, CIN = 0.1 µF, RLOAD = 1 kΩ ΔVOUT_LTD tR ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/V 80 120 45 9 950 500 500 ppm/mA ppm/mA ppm/mA ppm/mA μA mV mV dB −10 10 1.25 41.3 mA mA μV p-p nV/√Hz −13 −97 −8 −17 1 5 ppm ppm ppm ppm ppm ppm 19 25 51 3 5 8 125 ppm ppm ppm ppm ppm ppm µs µF 30 60 35 4 700 90 1 Rev. D | Page 5 of 40 % 0.8 1.6 1 2 2 4 4 8 10 1 IL = 0 mA to +10 mA source, −40°C ≤ TA ≤ +125°C IL = 0 mA to −10 mA sink, −40°C ≤ TA ≤ +125°C IL = 0 mA to +10 mA source, 0°C ≤ TA ≤ +70°C IL = 0 mA to −10 mA sink, 0°C ≤ TA ≤ +70°C −40°C ≤ TA ≤ +125°C, no load −40°C ≤ TA ≤ +125°C, no load −40°C ≤ TA ≤ +125°C, IL = 2 mA fIN = 1 kHz 0.1 Hz to 10.0 Hz 1 kHz D Grade TURN-ON SETTLING TIME LOAD CAPACITANCE See Terminology section 0°C ≤ TA ≤ 70°C (box method) 0°C ≤ TA ≤ 70°C (bowtie method) 0°C ≤ TA ≤ 70°C (box method) 0°C ≤ TA ≤ 70°C (bowtie method) −40°C ≤ TA ≤ +125°C (box method) −40°C ≤ TA ≤ +125°C (bowtie method) −40°C ≤ TA ≤ +125°C (box method) −40°C ≤ TA ≤ +125°C (bowtie method) −40°C ≤ TA ≤ +125°C eNp-p eN D Grade LONG-TERM DRIFT A, B, C Grade Unit V ±0.02 TCVOUT C Grade LINE REGULATION LOAD REGULATION A, B, C Grade Max 100 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet ADR4530 ELECTRICAL CHARACTERISTICS Unless otherwise noted, VIN = 3.1 V to 15 V, IL = 0 mA, TA = 25°C. Table 5. Parameter OUTPUT VOLTAGE INITIAL OUTPUT VOLTAGE ERROR B Grade Symbol VOUT VOUT_ERR Test Conditions/Comments Min Typ 3.000 Max Unit V ±0.02 600 ±0.04 1.2 % μV % mV % 2 4 4 8 10 80 120 950 100 300 ppm/°C ppm/°C ppm/°C ppm/°C ppm/V ppm/mA ppm/mA μA mV mV dB −10 10 1.6 60 mA mA μV p-p nV/√Hz −13 −97 −8 −17 ppm ppm ppm ppm 19 25 51 130 ppm ppm ppm µs µF A Grade SOLDER HEAT RESISTANCE SHIFT TEMPERATURE COEFFICIENT B Grade ±0.02 TCVOUT A Grade LINE REGULATION LOAD REGULATION ΔVOUT/ΔVIN ΔVOUT/ΔIL QUIESCENT CURRENT DROPOUT VOLTAGE IQ VDO RIPPLE REJECTION RATIO OUTPUT CURRENT CAPACITY Sinking Sourcing OUTPUT VOLTAGE NOISE OUTPUT VOLTAGE NOISE DENSITY OUTPUT VOLTAGE HYSTERESIS RRR IL LONG-TERM DRIFT TURN-ON SETTLING TIME LOAD CAPACITANCE eNp-p eN ΔVOUT_HYS ΔVOUT_LTD tR See Terminology section −40°C ≤ TA ≤ +125°C (box method) −40°C ≤ TA ≤ +125°C (bowtie method) −40°C ≤ TA ≤ +125°C (box method) −40°C ≤ TA ≤ +125°C (bowtie method) −40°C ≤ TA ≤ +125°C IL = 0 mA to +10 mA source, −40°C ≤ TA ≤ +125°C IL = 0 mA to −10 mA sink, −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C, no load −40°C ≤ TA ≤ +125°C, no load −40°C ≤ TA ≤ +125°C, IL = 2 mA fIN = 1 kHz 1 30 60 700 90 0.1 Hz to 10.0 Hz 1 kHz TA = temperature cycled from +25°C to +125°C to−40°C to +25°C (full cycle) 25°C to 125°C to 25°C (half cycle) 25°C to 70°C to 0°C to 25°C (full cycle) 25°C to 70°C to 25°C (half cycle) TA = 25°C 250 hours (early life drift) 1000 hours 4500 hours COUT = 0.1 µF, CIN = 0.1 µF, RLOAD = 1 kΩ 0.1 Rev. D | Page 6 of 40 100 Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 ADR4533 ELECTRICAL CHARACTERISTICS Unless otherwise noted, VIN = 3.4 V to 15 V, IL = 0 mA, TA = 25°C. Table 6. Parameter OUTPUT VOLTAGE INITIAL OUTPUT VOLTAGE ERROR B Grade Symbol VOUT VOUT_ERR Test Conditions/Comments Min Typ 3.300 Max Unit V ±0.02 660 ±0.04 1.32 % µV % mV % 2 4 4 8 10 80 120 950 100 300 ppm/°C ppm/°C ppm/°C ppm/°C ppm/V ppm/mA ppm/mA μA mV mV dB −10 10 2.1 64.2 mA mA μV p-p nV/√Hz −13 −97 −8 −17 ppm ppm ppm ppm 19 25 51 135 ppm ppm ppm µs µF A Grade SOLDER HEAT RESISTANCE SHIFT TEMPERATURE COEFFICIENT B Grade ±0.02 TCVOUT A Grade LINE REGULATION LOAD REGULATION ΔVOUT/ΔVIN ΔVOUT/ΔIL QUIESCENT CURRENT DROPOUT VOLTAGE IQ VDO RIPPLE REJECTION RATIO OUTPUT CURRENT CAPACITY Sinking Sourcing OUTPUT VOLTAGE NOISE OUTPUT VOLTAGE NOISE DENSITY OUTPUT VOLTAGE HYSTERESIS RRR IL LONG-TERM DRIFT TURN-ON SETTLING TIME LOAD CAPACITANCE eNp-p eN ΔVOUT_HYS ΔVOUT_LTD tR See Terminology section −40°C ≤ TA ≤ +125°C (box method) −40°C ≤ TA ≤ +125°C (bowtie method) −40°C ≤ TA ≤ +125°C (box method) −40°C ≤ TA ≤ +125°C (bowtie method) −40°C ≤ TA ≤ +125°C IL = 0 mA to +10 mA source, −40°C ≤ TA ≤ +125°C IL = 0 mA to −10 mA sink, −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C, no load −40°C ≤ TA ≤ +125°C, no load −40°C ≤ TA ≤ +125°C, IL = 2 mA fIN =1 kHz 1 30 60 700 90 0.1 Hz to 10.0 Hz 1 kHz TA = temperature cycled from +25°C to +125°C to−40°C to +25°C (full cycle) 25°C to 125°C to 25°C (half cycle) 25°C to 70°C to 0°C to 25°C (full cycle) 25°C to 70°C to 25°C (half cycle) TA = 25°C 250 hours (early life drift) 1000 hours 4500 hours COUT = 0.1 µF, CIN = 0.1 µF, RLOAD = 1 kΩ 0.1 Rev. D | Page 7 of 40 100 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet ADR4540 ELECTRICAL CHARACTERISTICS Unless otherwise noted, VIN = 4.2 V to 15 V, IL = 0 mA, TA = 25°C. Table 7. Parameter OUTPUT VOLTAGE INITIAL OUTPUT VOLTAGE ERROR B, C, D Grade Symbol VOUT VOUT_ERR Test Conditions/Comments Min Typ 4.096 A Grade SOLDER HEAT RESISTANCE SHIFT A, B, C, D Grade TEMPERATURE COEFFICIENT D Grade B Grade A Grade ΔVOUT/ΔVIN ΔVOUT/ΔIL D Grade QUIESCENT CURRENT DROPOUT VOLTAGE IQ VDO RIPPLE REJECTION RATIO OUTPUT CURRENT CAPACITY Sinking Sourcing OUTPUT VOLTAGE NOISE OUTPUT VOLTAGE NOISE DENSITY OUTPUT VOLTAGE HYSTERESIS A, B, C Grade RRR IL eNp-p eN ΔVOUT_HYS D Grade LONG-TERM DRIFT A, B, C Grade ΔVOUT_LTD D Grade TURN-ON SETTLING TIME LOAD CAPACITANCE Unit V ±0.02 820 ±0.04 1.64 % μV % mV ±0.02 TCVOUT C Grade LINE REGULATION LOAD REGULATION A, B, C Grade Max tR See Terminology section 0°C ≤ TA ≤ +70°C (box method) 0°C ≤ TA ≤ +70°C (bowtie method) 0°C ≤ TA ≤ +70°C (box method) 0°C ≤ TA ≤ +70°C (bowtie method) −40°C ≤ TA ≤ +125°C (box method) −40°C ≤ TA ≤ +125°C (bowtie method) −40°C ≤ TA ≤ +125°C (box method) −40°C ≤ TA ≤ +125°C (bowtie method) −40°C ≤ TA ≤ +125°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/V 80 120 25 9 950 100 300 ppm/mA ppm/mA ppm/mA ppm/mA μA mV mV dB −10 10 2.7 83.5 mA mA μV p-p nV/√Hz −13 −97 −8 −17 1 5 ppm ppm ppm ppm ppm ppm 19 25 51 3 5 8 155 ppm ppm ppm ppm ppm ppm µs µF 25 50 15 5 700 90 0.1 Hz to 10.0 Hz 1 kHz TA = temperature cycled from +25°C to +125°C to−40°C to +25°C (full cycle) 25°C to 125°C to 25°C (half cycle) 25°C to 70°C to 0°C to 25°C (full cycle) 25°C to 70°C to 25°C (half cycle) 25°C to 70°C to 0°C to 25°C (full cycle) 25°C to 70°C to 25°C (half cycle) TA = 25°C 250 hours (early life drift) 1000 hours 4500 hours 250 hours (early life drift) 1000 hours 4500 hours COUT = 0.1 µF, CIN = 0.1 µF, RLOAD = 1 kΩ 0.1 Rev. D | Page 8 of 40 0.8 1.6 1 2 2 4 4 8 10 1 IL = 0 mA to +10 mA source, −40°C ≤ TA ≤ +125°C IL = 0 mA to −10 mA sink, −40°C ≤ TA ≤ +125°C IL = 0 mA to +10 mA source, 0°C ≤ TA ≤ +70°C IL = 0 mA to −10 mA sink, 0°C ≤ TA ≤ +70°C −40°C ≤ TA ≤ +125°C, no load −40°C ≤ TA ≤ +125°C, no load −40°C ≤ TA ≤ +125°C, IL = 2 mA fIN = 1 kHz % 100 Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 ADR4550 ELECTRICAL CHARACTERISTICS Unless otherwise noted, VIN = 5.1 V to 15 V, IL = 0 mA, TA = 25°C. Table 8. Parameter OUTPUT VOLTAGE INITIAL OUTPUT VOLTAGE ERROR B, C, D Grade Symbol VOUT VOUT_ERR Test Conditions/Comments Min Typ 5.000 A Grade SOLDER HEAT RESISTANCE SHIFT A, B, C, D Grade TEMPERATURE COEFFICIENT D Grade TCVOUT B Grade A Grade ΔVOUT/ΔVIN ΔVOUT/ΔIL D Grade QUIESCENT CURRENT DROPOUT VOLTAGE IQ VDO RIPPLE REJECTION RATIO OUTPUT CURRENT CAPACITY Sinking Sourcing OUTPUT VOLTAGE NOISE OUTPUT VOLTAGE NOISE DENSITY OUTPUT VOLTAGE HYSTERESIS A, B, C Grade RRR IL ±0.02 1 ±0.04 2 % mV % mV ΔVOUT_HYS TA = temperature cycled from +25°C to +125°C to−40°C to +25°C (full cycle) 25°C to 125°C to 25°C (half cycle) 25°C to 70°C to 0°C to 25°C (full cycle) 25°C to 70°C to 25°C (half cycle) 25°C to 70°C to 0°C to 25°C (full cycle) 25°C to 70°C to 25°C (half cycle) TA = 25°C 250 hours (early life drift) 1000 hours 4500 hours 250 hours (early life drift) 1000 hours 4500 hours COUT = 0.1 µF, CIN = 0.1 µF, RLOAD = 1 kΩ ΔVOUT_LTD tR ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/°C ppm/V 80 120 12 9 950 100 300 ppm/mA ppm/mA ppm/mA ppm/mA μA mV mV dB −10 10 2.8 95.3 mA mA μV p-p nV/√Hz −13 −97 −8 −17 1 5 ppm ppm ppm ppm ppm ppm 19 25 51 3 5 8 160 ppm ppm ppm ppm ppm ppm µs µF 25 35 6 4 700 90 0.1 Rev. D | Page 9 of 40 % 0.8 1.6 1 2 2 4 4 8 10 1 IL = 0 mA to +10 mA source, −40°C ≤ TA ≤ +125°C IL = 0 mA to −10 mA sink, −40°C ≤ TA ≤ +125°C IL = 0 mA to +10 mA source, 0°C ≤ TA ≤ +70°C IL = 0 mA to −10 mA sink, 0°C ≤ TA ≤ +70°C −40°C ≤ TA ≤ +125°C, no load −40°C ≤ TA ≤ +125°C, no load −40°C ≤ TA ≤ +125°C, IL = 2 mA fIN = 1 kHz 0.1 Hz to 10.0 Hz 1 kHz D Grade TURN-ON SETTLING TIME LOAD CAPACITANCE See Terminology section 0°C ≤ TA ≤ +70°C (box method) 0°C ≤ TA ≤ +70°C (bowtie method) 0°C ≤ TA ≤ +70°C (box method) 0°C ≤ TA ≤ +70°C (bowtie method) −40°C ≤ TA ≤ +125°C (box method) −40°C ≤ TA ≤ +125°C (bowtie method) −40°C ≤ TA ≤ +125°C (box method) −40°C ≤ TA ≤ +125°C (bowtie method) −40°C ≤ TA ≤ +125°C eNp-p eN D Grade LONG-TERM DRIFT A, B, C Grade Unit V ±0.02 C Grade LINE REGULATION LOAD REGULATION A, B, C Grade Max 100 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. THERMAL RESISTANCE Table 9. Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Close attention to PCB thermal design is required. Parameter Supply Voltage Operating Temperature Range ADR4525, ADR4540, ADR4550 C and D Grade Only Storage Temperature Range Junction Temperature Range Electrostatic Discharge (ESD) Human Body Model (HBM) Moisture Sensitivity Level Rating Rating 16 V −40°C to +125°C 0°C to 70°C Table 10. Thermal Resistance Package Type 8-Lead SOIC2 1-Layer JEDEC Board 2-Layer JEDEC Board 8- Lead LCC −65°C to +150°C −65°C to +150°C 6 kV MSL-1 θJC1 Unit N/A3 120 120 63 N/A3 N/A3 °C/W °C/W °C/W For the θJC test, 100 μm thermal interface material (TIM) is used. TIM is assumed to have 3.6 W/mK. 2 Thermal impedance simulated values are based on a JEDEC thermal test board. See JEDEC JESD51. 3 N/A means not applicable. 1 Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. θJA ESD CAUTION Rev. D | Page 10 of 40 Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS ADR4520/ADR4525/ ADR4530/ADR4533/ ADR4540/ADR4550 NIC 1 8 DNC VIN 2 7 NIC NIC 3 NOTES 1. NIC = NOT INTERNALLY CONNECTED. THIS PIN IS NOT CONNECTED INTERNALLY. 2. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN. 10203-002 6 VOUT TOP VIEW GND 4 (Not to Scale) 5 NIC Figure 3. 8-Lead SOIC Pin Configuration Table 11. 8-Lead SOIC Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 Mnemonic NIC VIN NIC GND NIC VOUT NIC DNC Description Not Internally Connected. This pin is not connected internally. Input Voltage Connection. Not Internally Connected. This pin is not connected internally. Ground. Not Internally Connected. This pin is not connected internally. Output Voltage. Not Internally Connected. This pin is not connected internally. Do Not Connect. Do not connect to this pin. ADR4520/ADR4525/ ADR4530/ADR4533/ ADR4540/ADR4550 DNC 8 DNC 1 7 VOUTFORCE VIN 2 6 VOUTSENSE GNDFORCE 3 5 NIC 4 10203-058 GNDSENSE NOTES 1. NIC = NOT INTERNALLY CONNECTED. THIS PIN IS NOT CONNECTED INTERNALLY. 2. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN. Figure 4. 8-Lead LCC Pin Configuration Table 12. 8-Lead LCC Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 Mnemonic NIC VIN GNDFORCE GNDSENSE NIC VOUTSENSE VOUTFORCE DNC Description Not Internally Connected. This pin is not connected internally. Input Voltage Connection. Ground connection Ground sensing connection. Connect directly to the ground connection of the load device Not Internally Connected. This pin is not connected internally. Reference Voltage Output. Reference Voltage Output sensing connection. Connect directly to the voltage input of the load device Do Not Connect. Do not connect to this pin. Rev. D | Page 11 of 40 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. ADR4520 2.0485 35 ADR4520 ADR4520 2.0484 30 LOAD REGULATION (ppm/mA) 2.0483 2.0481 2.0480 2.0479 2.0478 2.0477 25 20 15 10 –30 –10 10 30 50 70 90 110 0 –60 10203-101 2.0475 –50 130 TEMPERATURE (°C) –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) Figure 5. ADR4520 B Grade Output Voltage vs. Temperature 10203-107 5 2.0476 Figure 8. ADR4520 Load Regulation vs. Temperature (Sourcing) 100 ADR4520 ADR4520 90 LOAD REGULATION (ppm/mA) VIN (5V/DIV) 1 VOUT (1V/DIV) CH2 1.00V M40.0µs A CH1 9.10V 70 60 50 40 30 20 0 –60 –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) Figure 6. ADR4520 Output Voltage Start-Up Response 1.6 10203-108 CH1 5.00V 80 10 10203-104 CIN = 0.1µF COUT = 0.1µF RL = 1kΩ 2 Figure 9. ADR4520 Load Regulation vs. Temperature (Sinking) 1.4 ADR4520 ADR4520 1.3 1.4 +125°C 1.2 LINE REGULATION (ppm/V) 1.2 +25°C 1.0 –40°C 0.8 0.6 0.4 1.1 1.0 0.9 0.8 0.7 0.6 0.2 –10 –8 –6 –4 –2 0 2 4 6 8 ILOAD (mA) 10 0.4 –60 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) Figure 7. ADR4520 Dropout Voltage vs. Load Current Figure 10. ADR4520 Line Regulation vs. Temperature Rev. D | Page 12 of 40 140 10203-109 0.5 0 10203-106 DROPOUT VOLTAGE (V) VOUT (V) 2.0482 Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 1000 1k ADR4520 ADR4520 +125°C ISY (µA) +25°C –40°C 400 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VIN (V) 10 1 0.01 10203-110 200 100 10 100 1k 10k 100k Figure 13. ADR4520 Output Noise Spectral Density 0 ADR4520 –10 CLOAD = 1µF ADR4520 RIPPLE REJECTION RATIO (dB) 100 80 60 40 20 –20 –30 –40 –50 –60 –70 –80 –90 –100 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 OUTPUT VOLTAGE NOISE DISTRIBUTION (µV p-p) 2.8 –120 10 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) Figure 12. ADR4520 Output Voltage Noise (Maximum Amplitude from 0.1 Hz to 10 Hz) Figure 14. ADR4520 Ripple Rejection Ratio vs. Frequency Rev. D | Page 13 of 40 10203-113 –110 0 10203-111 OCCURRENCE 1 FREQUENCY (Hz) Figure 11. ADR4520 Supply Current (ISY) vs. Supply Voltage 120 0.1 10203-112 600 NOISE DENSITY (nV rms/ Hz) 800 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet 80 ADR4520 T 70 NUMBER OF UNITS 60 INPUT 2 W M40.0µs T 12.0% A CH1 7.02V 0 –0.06 RL = 100kΩ CL = 10µF RL = 100kΩ CL = 1µF 10 0 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10203-115 OUTPUT IMPEDANCE (Ω) RL = 1kΩ CL = 1µF 30 20 0 0.02 0.04 0.06 Figure 17. ADR4520 Solder Heat Resistance Shift (3 × Reflow) 50 RL = 1kΩ CL = 10µF –0.02 SOLDER HEAT SHIFT (%) ADR4520 40 –0.04 Figure 16. ADR4520 Output Impedance vs. Frequency Rev. D | Page 14 of 40 10203-716 B 10203-114 CH2 1.00mV Figure 15. ADR4520 Line Transient Response 60 30 10 CIN = 0.1µF COUT = 1µF CH1 1.00V 40 20 OUTPUT AC 1 50 Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 ADR4525 2.5005 ADR4525 ADR4525 2.5004 VIN (5V/DIV) 2.5003 VOUT (V) 2.5002 2.5001 2.5000 1 VOUT (1V/DIV) 2.4999 2.4998 2.4997 2 –30 –10 10 30 50 70 90 110 130 TEMPERATURE (°C) CH1 5.00V M40.0µs A CH1 9.10V Figure 21. ADR4525 Output Voltage Start-Up Response Figure 18. ADR4525 B Grade Output Voltage vs. Temperature 2.49980 1.4 ADR4525 1.2 DROPOUT VOLTAGE (V) 2.49975 OUTPUT VOLTAGE (V) CH2 1.00V 10203-204 2.4995 –50 10203-201 2.4996 2.49970 2.49965 2.49960 +125°C +25°C 1.0 0.8 –40°C 0.6 0.4 2.49955 0 10 20 30 40 50 60 70 TEMPERATURE (°C) 0 –15 –10 –5 0 5 10 15 ILOAD (mA) 10203-206 2.49950 10203-817 0.2 Figure 22. ADR4525 Dropout Voltage vs. Load Current Figure 19. ADR4525 C Grade Output Voltage vs. Temperature 2.50010 35 ADR4525 LOAD REGULATION (ppm/mA) 30 2.50000 2.49995 2.49990 2.49985 2.49980 2.49975 25 20 15 10 2.49970 0 10 20 30 40 50 60 TEMPERATURE (°C) 70 0 –60 –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) Figure 20. ADR4525 D Grade Output Voltage vs. Temperature Figure 23. ADR4525 Load Regulation vs. Temperature (Sourcing) Rev. D | Page 15 of 40 10203-207 5 10203-926 D GRADE OUTPUT VOLTAGE (V) 2.50005 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet 160 100 ADR4525 ADR4525 140 80 120 70 OCCURRENCE LOAD REGULATION (ppm/mA) 90 60 50 40 30 100 80 60 40 20 20 0 –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) 0.6 10203-208 0 –60 1.2 1.5 1.8 2.1 2.4 2.7 3.0 Figure 27. ADR4525 Output Voltage Noise (Maximum Amplitude from 0.1 Hz to 10 Hz) Figure 24. ADR4525 Load Regulation vs. Temperature (Sinking) 1.4 0.9 OUTPUT VOLTAGE NOISE DISTRIBUTION (µV p-p) 10203-211 10 1k ADR4525 ADR4525 1.3 NOISE DENSITY (nV rms/ Hz) LINE REGULATION (ppm/V) 1.2 1.1 1.0 0.9 0.8 0.7 0.6 100 10 –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) 1 0.01 10203-209 0.4 –60 100 1k 10k 100k 0 ADR4525 –10 RIPPLE REJECTION RATIO (dB) 800 700 600 +25°C –40°C 500 400 300 200 100 –20 –30 –40 –50 –60 –70 –80 –90 –100 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VIN (V) –120 10 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) Figure 29. ADR4525 Ripple Rejection Ratio vs. Frequency Figure 26. ADR4525 Supply Current vs. Supply Voltage Rev. D | Page 16 of 40 10203-213 –110 0 10203-210 ISY (µA) 10 Figure 28. ADR4525 Output Noise Spectral Density ADR4525 +125°C 1 FREQUENCY (Hz) Figure 25. ADR4525 Line Regulation vs. Temperature 900 0.1 10203-212 0.5 Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 80 ADR4525 T 70 NUMBER OF UNITS 60 INPUT 2 OUTPUT AC 1 50 40 30 20 CH2 1.00mV B W M200µs T 10.0% A CH1 4.08V 0 –0.06 10203-214 –0.04 0 –0.02 Figure 30. ADR4525 Line Transient Response VIN = 4V PART 2 5mA IOUT 0mA IOUT 0mA –5mA VOUT 100mV/DIV 10203-920 VOUT 100mV/DIV 200µs/DIV 200µs/DIV Figure 34. ADR4525 A, B C Grade Load Transient Response (Sourcing) Figure 31. ADR4525 A, B C Grade Load Transient Response (Sinking) 40 ADR4525 VIN = 4V SINKING 35 LOAD REGULATION (ppm/mA) 70 RL = 1kΩ CL = 1µF 60 50 RL = 1kΩ CL = 10µF 40 RL = 100kΩ CL = 1µF 30 RL = 100kΩ CL = 10µF 20 30 25 20 15 10 0 10 100 1k 10k 100k FREQUENCY (Hz) Figure 32. ADR4525 Output Impedance vs. Frequency 1M 0 0 10 20 30 40 TEMPERATURE (°C) 50 60 70 10203-923 5 10 10203-215 OUTPUT IMPEDANCE (Ω) 0.06 Figure 33. ADR4525 Solder Heat Resistance Shift (3 × Reflow) VIN = 4V PART 1 80 0.04 0.02 SOLDER HEAT SHIFT (%) 10203-919 CH1 1.00V 10203-731 10 CIN = 0.1µF COUT = 1µF Figure 35. ADR4525 D Grade Load Regulation vs. Temperature (Sinking) Rev. D | Page 17 of 40 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet VIN = 4V PART 1 VIN = 4V PART 1 5mA IOUT 0mA IOUT 0mA –5mA VOUT 100mV/DIV 200µs/DIV Figure 36. ADR4525 D Grade Load Transient Response (Sinking) Figure 38. ADR4525 D Grade Load Transient Response (Sourcing) 40 VIN = 4V SOURCING LOAD REGULATION (ppm/mA) 35 30 25 20 15 10 0 10 20 30 40 TEMPERATURE (°C) 50 60 70 10203-918 5 0 200µs/DIV Figure 37. ADR4525 D Grade Load Regulation vs. Temperature (Sourcing) Rev. D | Page 18 of 40 10203-916 10203-917 VOUT 100mV/DIV Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 ADR4530 3.0005 35 ADR4530 ADR4530 3.0004 30 LOAD REGULATION (ppm/mA) 3.0003 VOUT (V) 3.0002 3.0001 3.0000 2.9999 2.9998 2.9997 25 20 15 10 5 –30 –10 10 30 50 70 90 110 0 –60 10203-301 2.9995 –50 130 TEMPERATURE (°C) –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) Figure 39. ADR4530 B Grade Output Voltage vs. Temperature 10203-307 2.9996 Figure 42. ADR4530 Load Regulation vs. Temperature (Sourcing) 100 ADR4530 ADR4530 VIN (5V/DIV) LOAD REGULATION (ppm/mA) 90 1 2 VOUT (1V/DIV) CH2 1.00V M40.0µs A CH1 3.10V 60 50 40 30 20 0 –60 –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) Figure 40. ADR4530 Output Voltage Start-Up Response 1.4 10203-308 CH1 5.00V 70 10 10203-304 CIN = 0.1µF COUT = 0.1µF RL = 1kΩ 80 Figure 43. ADR4530 Load Regulation vs. Temperature (Sinking) 1.4 ADR4530 ADR4530 1.3 1.2 +125°C LINE REGULATION (ppm/V) +25°C 0.8 –40°C 0.6 0.4 1.1 1.0 0.9 0.8 0.7 0.6 0.2 –10 –5 0 5 10 ILOAD (mA) 15 0.4 –60 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) Figure 44. ADR4530 Line Regulation vs. Temperature Figure 41. ADR4530 Dropout Voltage vs. Load Current Rev. D | Page 19 of 40 140 10203-309 0.5 0 –15 10203-306 DROPOUT VOLTAGE (V) 1.2 1.0 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 900 1k ADR4530 –40°C Data Sheet ADR4530 NOISE DENSITY (nV rms/ Hz) 800 700 +125°C ISY (µA) 600 +25°C 500 400 300 200 100 10 1 2 3 4 5 6 7 8 9 10 11 12 VIN (V) 13 1 0.01 1 10 100 1k 10k 100k FREQUENCY (Hz) Figure 45. ADR4530 Supply Current vs. Supply Voltage Figure 47. ADR4530 Output Noise Spectral Density 100 0 ADR4530 ADR4530 –10 RIPPLE REJECTION RATIO (dB) 90 80 70 60 50 40 30 20 –20 –30 –40 –50 –60 –70 –80 –90 –100 10203-311 OUTPUT VOLTAGE NOISE DISTRIBUTION (µV p-p) 2.9 2.7 2.5 2.3 2.1 1.9 –120 1.7 0 1.5 –110 1.3 10 1.1 OCCURRENCE 0.1 1 10 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) Figure 46. ADR4530 Output Voltage Noise (Maximum Amplitude from 0.1 Hz to 10 Hz) Figure 48. ADR4530 Ripple Rejection Ratio vs. Frequency Rev. D | Page 20 of 40 10203-313 0 10203-310 0 10203-312 100 Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 80 ADR4530 T 70 NUMBER OF UNITS 60 INPUT 2 OUTPUT AC M200µs T 10.0% A CH1 7.02V 0 –0.06 40 RL = 1kΩ CL = 1µF RL = 100kΩ CL = 1µF 10 0 1 10 100 1k 10k 100k 1M FREQUENCY (Hz) 10M 10203-315 OUTPUT IMPEDANCE (Ω) 50 RL = 100kΩ CL = 10µF 0 0.02 0.04 0.06 Figure 51. ADR4530 Solder Heat Resistance Shift (3 × Reflow) ADR4530 20 –0.02 SOLDER HEAT SHIFT (%) Figure 49. ADR4530 Line Transient Response RL = 1kΩ CL = 10µF –0.04 Figure 50. ADR4530 Output Impedance vs. Frequency Rev. D | Page 21 of 40 10203-747 W 10203-314 B CH2 1.00mV 30 30 10 1 60 40 20 CIN = 0.1µF COUT = 1µF CH1 1.00V 50 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet ADR4533 3.3010 35 ADR4533 ADR4533 3.3008 30 LOAD REGULATION (ppm/mA) 3.3006 VOUT (V) 3.3004 3.3002 3.3000 3.2998 3.2996 3.2994 25 20 15 10 5 –30 –10 10 30 50 70 90 110 0 –60 10203-401 3.2990 –50 130 TEMPERATURE (°C) –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) Figure 52. ADR4533 B Grade Output Voltage vs. Temperature 10203-407 3.2992 Figure 55. ADR4533 Load Regulation vs. Temperature (Sourcing) 100 ADR4533 ADR4533 90 LOAD REGULATION (ppm/mA) 1 2 VOUT (1V/DIV) CH1 5.00V CH2 1.00V M40.0µs A CH1 3.10V 70 60 50 40 30 20 10 10203-404 CIN = 0.1µF COUT = 0.1µF RL = 1kΩ 80 0 –60 –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) Figure 53. ADR4533 Output Voltage Start-Up Response 1.0 Figure 56. ADR4533 Load Regulation vs. Temperature (Sinking) 1.2 ADR4533 ADR4533 1.1 +125°C 0.8 LINE REGULATION (ppm/V) 1.0 +25°C 0.6 –40°C 0.4 0.2 0.9 0.8 0.7 0.6 0.5 0.4 –10 –5 0 5 10 ILOAD (mA) 15 Figure 54. ADR4533 Dropout Voltage vs. Load Current 0.2 –60 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) Figure 57. ADR4533 Line Regulation vs. Temperature Rev. D | Page 22 of 40 140 10203-409 0.3 0 –15 10203-406 DROPOUT VOLTAGE (V) 10203-408 VIN (5V/DIV) Data Sheet 900 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 1k ADR4533 ADR4533 +125°C NOISE DENSITY (nV rms/ Hz) 800 700 +25°C ISY (µA) 600 –40°C 500 400 300 200 100 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VIN (V) 1 0.01 10203-410 0 1 10 100 1k 10k 100k FREQUENCY (Hz) Figure 58. ADR4533 Supply Current vs. Supply Voltage Figure 60. ADR4533 Output Noise Spectral Density 60 0 ADR4533 ADR4533 –10 –20 RIPPLE REJECTION RATIO (dB) 50 40 30 20 –30 –40 –50 –60 –70 –80 –90 –100 –110 10 –130 10 100 1k 10k 100k 1M 10M 100M FREQUENCY (kHz) Figure 61. ADR4533 Ripple Rejection Ratio vs. Frequency Figure 59. ADR4533 Output Voltage Noise (Maximum Amplitude from 0.1 Hz to 10 Hz) Rev. D | Page 23 of 40 10203-413 10203-411 OUTPUT VOLTAGE NOISE DISTRIBUTION (µV p-p) 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 0 1.6 –120 BIN OCCURRENCE 0.1 10203-412 100 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet 80 ADR4533 T 70 NUMBER OF UNITS 60 INPUT 2 OUTPUT AC M200µs T 12.0% A CH1 7.02V 0 –0.06 40 RL = 1kΩ CL = 1µF RL = 100kΩ CL = 1µF 10 0 1 10 100 1k 10k 100k 1M FREQUENCY (Hz) 10M 10203-415 OUTPUT IMPEDANCE (Ω) 50 RL = 100kΩ CL = 10µF 0 0.02 0.04 0.06 Figure 64. ADR4533 Solder Heat Resistance Shift (3 × Reflow) ADR4533 20 –0.02 SOLDER HEAT SHIFT (%) Figure 62. ADR4533 Line Transient Response RL = 1kΩ CL = 10µF –0.04 Figure 63. ADR4533 Output Impedance vs. Frequency Rev. D | Page 24 of 40 10203-762 W 10203-414 B CH2 1.00mV 30 30 10 1 60 40 20 CIN = 0.1µF COUT = 1µF CH1 1.00V 50 Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 ADR4540 4.0970 ADR4540 ADR4540 VIN (5V/DIV) 4.0965 VOUT (V) 1 4.0960 2 4.0955 VOUT (1V/DIV) –30 –10 10 30 50 70 90 110 130 TEMPERATURE (°C) CH1 5.00V Figure 65. ADR4540 B Grade Output Voltage vs. Temperature CH2 1.00V M40.0µs A CH1 10203-504 4.0950 –50 10203-501 CIN = 0.1µF COUT = 0.1µF RL = 1kΩ 3.10V Figure 68. ADR4540 Output Voltage Start-Up Response 0.8 VSY = 7V ADR4540 4.09555 0.7 DROPOUT VOLTAGE (V) 4.09550 4.09545 4.09540 +25°C 0.5 0.3 0.2 4.09535 20 30 40 50 60 70 TEMPERATURE (°C) 0 –15 –5 0 5 10 15 ILOAD (mA) Figure 69. ADR4540 Dropout Voltage vs. Load Current Figure 66. ADR4540 C Grade Output Voltage vs. Temperature 35 4.09610 ADR4540 4.09605 30 LOAD REGULATION (ppm/mA) 4.09600 4.09595 4.09590 4.09585 4.09580 4.09575 4.09570 25 20 15 10 5 0 10 20 30 40 50 60 70 TEMPERATURE (°C) Figure 67. ADR4540 D Grade Output Voltage vs. Temperature 10203-924 4.09565 4.09560 –10 10203-506 10 10203-901 0.1 0 VOUT REFERENCE (V) –40°C 0.4 0 –60 –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) Figure 70. ADR4540 Load Regulation vs. Temperature (Sourcing) Rev. D | Page 25 of 40 10203-507 OUTPUT VOLTAGE (V) +125°C 0.6 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet 70 100 ADR4540 ADR4540 90 80 50 70 OCCURRENCE LOAD REGULATION (ppm/mA) 60 60 50 40 30 40 30 20 20 10 OUTPUT VOLTAGE NOISE DISTRIBUTION (µV p-p) Figure 71. ADR4540 Load Regulation vs. Temperature (Sinking) 1.0 10203-511 TEMPERATURE (°C) 0 3.9 140 3.7 120 3.5 100 3.3 80 3.1 60 2.9 40 2.7 20 2.5 0 2.3 –20 2.1 –40 10203-508 0 –60 BIN 10 Figure 74. ADR4540 Output Voltage Noise (Maximum Amplitude from 0.1 Hz to 10 Hz) 1k ADR4540 ADR4540 0.9 NOISE DENSITY (nV rms/ Hz) LINE REGULATION (ppm/V) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 100 10 –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) 1 0.01 10203-509 0 –60 ADR4540 +125°C 700 +25°C 500 400 300 200 100 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VIN (V) 10203-510 ISY (µA) –40°C 0 10 100 1k 10k Figure 75. ADR4540 Output Noise Spectral Density 800 600 1 FREQUENCY (Hz) Figure 72. ADR4540 Line Regulation vs. Temperature 900 0.1 Figure 73. ADR4540 Supply Current vs. Supply Voltage Rev. D | Page 26 of 40 100k 10203-512 0.1 Data Sheet 0 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 60 ADR4540 ADR4540 –20 50 –30 OUTPUT IMPEDANCE (Ω) RIPPLE REJECTION RATIO (dB) –10 –40 –50 –60 –70 –80 –90 RL = 100kΩ CL = 1µF 40 RL = 100kΩ CL = 10µF 30 RL = 1kΩ CL = 10µF 20 RL = 1kΩ CL = 1µF 10 –100 0 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) 1 10203-513 100 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) Figure 76. ADR4540 Ripple Rejection Ratio vs. Frequency 10203-515 –110 –120 10 Figure 79. ADR4540 Output Impedance vs. Frequency 80 ADR4540 T 70 NUMBER OF UNITS 60 INPUT 2 OUTPUT AC 50 40 30 20 CH2 1.00mV B W M200µs T 12.0% A CH1 7.02V 0 –0.06 –0.04 –0.02 0 0.02 0.04 0.06 SOLDER HEAT SHIFT (%) Figure 77. ADR4540 Line Transient Response Figure 80. ADR4540 Solder Heat Resistance Shift (3 × Reflow) VIN = 5.6V PART 1 VIN = 5.6V PART 3 5mA IOUT 0mA IOUT 0mA –5mA VOUT 100mV/DIV 200µs/DIV 10203-914 VOUT 100mV/DIV Figure 78. ADR4540 A, B, C Grade Load Transient Response (Sinking) 200µs/DIV 10203-913 CH1 1.00V 10203-514 1 10203-777 10 CIN = 0.1µF COUT = 1µF Figure 81. ADR4540 A, B, C Grade Load Transient Response (Sourcing) Rev. D | Page 27 of 40 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 6.0 15 VIN = 5.6V 5.5 SOURCING VIN = 5.6V 14 SOURCING 13 5.0 LOAD REGULATION (ppm/mA) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 12 11 10 9 8 7 6 5 4 3 0 0 10 20 30 40 50 60 70 TEMPERATURE (°C) 10203-912 1 0 Figure 82. ADR4540 D Grade Load Regulation vs. Temperature (Sinking) 0 10 20 30 40 50 60 70 TEMPERATURE (°C) 10203-911 2 0.5 Figure 84. ADR4540 D Grade Load Regulation vs. Temperature (Sourcing) VIN = 5.6V PART 1 VIN = 4V PART 1 5mA IOUT 0mA IOUT 0mA –5mA VOUT 100mV/DIV 200µs/DIV 10203-917 VOUT 100mV/DIV Figure 83. ADR4540 D Grade Load Transient Response (Sinking) 200µs/DIV Figure 85. ADR4540 D Grade Load Transient Response (Sourcing) Rev. D | Page 28 of 40 10203-909 LOAD REGULATION (ppm/mA) Data Sheet Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 ADR4550 5.0010 ADR4550 ADR4550 VIN (5V/DIV) 5.0005 VOUT (V) VOUT (1V/DIV) 5.0000 1 4.9995 –30 –10 10 30 50 70 90 110 130 TEMPERATURE (°C) CH1 5.00V Figure 86. ADR4550 B Grade Output Voltage vs. Temperature CH2 1.00V M40.0µs A CH1 9.10V 10203-604 4.9990 –50 10203-601 2 Figure 89. ADR4550 Output Voltage Start-Up Response 0.7 ADR4550 VSY = 7V 4.99920 +125°C 0.6 DROPOUT VOLTAGE (V) OUTPUT VOLTAGE (V) +25°C 4.99915 4.99910 4.99905 0.5 0.4 –40°C 0.3 0.2 0.1 10 20 30 40 50 60 70 TEMPERATURE (°C) 0 –15 10203-902 0 –5 –10 0 5 15 10 ILOAD (mA) 10203-606 4.99900 Figure 90. ADR4550 Dropout Voltage vs. Load Current Figure 87. ADR4550 C Grade Output Voltage vs. Temperature 4.09680 35 ADR4550 4.09675 30 LOAD REGULATION (ppm/mA) 4.09565 4.09560 4.99955 4.99950 4.99945 4.99940 20 15 10 0 10 20 30 40 50 60 70 TEMPERATURE (°C) 0 –60 –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) Figure 88. ADR4550 D Grade Output Voltage vs. Temperature Figure 91. ADR4550 Load Regulation vs. Temperature (Sourcing) Rev. D | Page 29 of 40 10203-607 4.99930 25 5 4.99935 10203-924 VOUT REFERENCE (V) 4.09670 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet 9 100 ADR4550 ADR4550 8 80 7 70 OCCURRENCE 60 50 40 6 5 4 3 30 2 20 1 10 –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE (°C) 0 10203-608 0 –60 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 OUTPUT VOLTAGE NOISE DISTRIBUTION (µV p-p) Figure 92. ADR4550 Load Regulation vs. Temperature (Sinking) 1.0 1.9 10203-611 LOAD REGULATION (ppm/mA) 90 Figure 95. ADR4550 Output Voltage Noise (Maximum Amplitude from 0.1 Hz to 10 Hz) 1k ADR4550 ADR4550 0.9 NOISE DENSITY (nV rms/ Hz) LINE REGULATION (ppm/V) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 100 10 0 50 100 150 TEMPERATURE (°C) ADR4550 +125°C 800 700 +25°C –40°C 500 400 300 200 100 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VIN (V) 10203-610 ISY (µA) 600 0.1 1 10 100 1k 10k FREQUENCY (Hz) Figure 96. ADR4550 Output Noise Spectral Density Figure 93. ADR4550 Line Regulation vs. Temperature 900 1 0.01 Figure 94. ADR4550 Supply Current vs. Supply Voltage Rev. D | Page 30 of 40 100k 10203-612 0 –50 10203-609 0.1 Data Sheet 140 ADR4550 RL = 100kΩ CL = 0.1µF ADR4550 120 OUTPUT IMPEDANCE (Ω) –20 –40 –60 –80 –100 RL = 100kΩ CL = 1µF 100 80 RL = 1kΩ CL = 0.1µF 60 40 RL = 1kΩ CL = 1µF –120 10 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) 0 10 100 1k 10k 1M 100k FREQUENCY (Hz) 10203-615 20 10203-613 RIPPLE REJECTION RATIO (dB) 0 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Figure 100. ADR4550 Output Impedance vs. Frequency Figure 97. ADR4550 Ripple Rejection Ratio vs. Frequency 80 ADR4550 T 70 NUMBER OF UNITS 60 INPUT 2 50 40 30 20 OUTPUT AC CH2 1.00mV B W M200µs T 12.0% A CH1 7.02V 0 –0.06 –0.04 –0.02 0 0.02 0.04 0.06 SOLDER HEAT SHIFT (%) Figure 101. ADR4550 Solder Heat Resistance Shift (3 × Reflow) Figure 98. ADR4550 Line Transient Response VIN = 6.5V PART 3 VIN = 6.5V PART 3 5mA IOUT 0mA IOUT 0mA –5mA VOUT 100mV/DIV 200µs/DIV 10203-908 VOUT 100mV/DIV Figure 99. ADR4550 A, B, C Grade Load Transient Response (Sinking) 200µs/DIV 10203-907 CH1 1.00V 10203-614 1 10203-792 10 CIN = 0.1µF COUT = 1µF Figure 102. ADR4550 A, B, C Grade Load Transient Response (Sourcing) Rev. D | Page 31 of 40 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 4.0 5.0 VIN = 6.5V VIN = 6.5V SINKING 4.5 LOAD REGULATION (ppm/mA) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 SOURCING 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0 10 20 30 40 50 60 70 TEMPERATURE (°C) 0 10203-906 0 0 10 20 30 40 50 60 70 TEMPERATURE (°C) 10203-905 0.5 Figure 105. ADR4550 D Grade Load Regulation (Sourcing) Figure 103. ADR4550 D Grade Load Regulation (Sinking) VIN = 6.5V PART 2 VIN = 6.5V PART 1 5mA IOUT 0mA IOUT 0mA –5mA VOUT 100mV/DIV 200µs/DIV Figure 104. ADR4550 D Grade Load Transient Response (Sinking) 10203-904 VOUT 100mV/DIV 200µs/DIV Figure 106. ADR4550 D Grade Load Transient Response (Sourcing) Rev. D | Page 32 of 40 10203-903 LOAD REGULATION (ppm/mA) Data Sheet Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 TERMINOLOGY Dropout Voltage (VDO) Dropout voltage, sometimes referred to as supply voltage headroom or supply output voltage differential, is defined as the minimum voltage differential between the input and output such that the output voltage is maintained to within 0.1% accuracy. VDO = (VIN − VOUT)min|IL = constant Because the dropout voltage depends on the current passing through the device, it is always specified for a given load current. In series mode devices, the dropout voltage typically increases proportionally to the load current (see Figure 7, Figure 22, Figure 41, Figure 54, Figure 69, and Figure 90). Line Regulation Line regulation refers to the change in output voltage in response to a given change in input voltage and is expressed in percent per volt, ppm per volt, or μV per volt change in input voltage. This parameter accounts for the effects of self heating. Load Regulation Load regulation refers to the change in output voltage in response to a given change in load current and is expressed in μV per mA, ppm per mA, or ohms of dc output resistance. This parameter accounts for the effects of self heating. Solder Heat Resistance (SHR) Shift SHR shift refers to the permanent shift in output voltage that is induced by exposure to reflow soldering and is expressed as a percentage of the output voltage. This shift is caused by changes in the stress exhibited on the die by the package materials when these materials are exposed to high temperatures. This effect is more pronounced in lead-free soldering processes due to higher reflow temperatures. SHR is calculated after three solder reflow cycles to simulate the worst case conditions when assembling a two-sided PCB with surface mount components with one additional rework cycle. The reflow cycles use the JEDEC standard reflow temperature profile. Temperature Coefficient (TCVOUT) The temperature coefficient relates the change in the output voltage to the change in the ambient temperature of the device, as normalized by the output voltage at 25°C. The TCVOUT for the ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 A grade and B grade is fully tested over three temperatures: −40°C, +25°C, and +125°C. The TCVOUT for the C grade and D grade is fully tested over three temperatures: 0°C, +25°C, and +70°C. This parameter is specified using two methods. The box method is the most common method and accounts for the temperature coefficient over the full temperature range, whereas the bowtie method calculates the worst case slope from +25°C and is therefore more useful for systems which are calibrated at +25°C. Box Method The box method is represented by the following equation: TCVOUT = max{VOUT (T1 , T2 , T3 )} − min{VOUT (T1 , T2 , T3 )} VOUT (T2 ) × (T3 − T1 ) × 10 6 where: TCVOUT is expressed in ppm/°C. VOUT(TX) is the output voltage at Temperature TX. T1 = −40°C. T2 = +25°C. T3 = +125°C. This box method ensures that TCVOUT accurately portrays the maximum difference between any of the three temperatures at which the output voltage of the device is measured. Bowtie Method The bowtie method is represented by the following equation: TCVOUT = |max{TCVOUT1, TCVOUT2}| where: TCVOUT 1 = max{VOUT (T1 , T2 )} − min{VOUT (T1 , T2 )} × 10 6 VOUT (T2 ) × (T2 − T1 ) TCVOUT 2 = max{VOUT (T2 , T3 )} − min{VOUT (T2 , T3 )} × 10 6 VOUT (T2 ) × (T3 − T2 ) TCVOUT is expressed in ppm/°C. VOUT(TX) is the output voltage at Temperature TX. T1 = 0°C. T2 = +25°C. T3 = +70°C. Thermally Induced Output Voltage Hysteresis (ΔVOUT_HYS) Thermally induced output voltage hysteresis represents the change in the output voltage after the device is exposed to a specified temperature cycle. This is expressed as a difference in ppm from the nominal output. ∆ = VOUT _ HYS VOUT1_25°C − VOUT2_25°C × 106[ppm] VOUT_25°C where: VOUT1_25°C is the output voltage at 25°C. VOUT2_25°C is the output voltage after temperature cycling. Long-Term Stability (ΔVOUT_LTD) Long-term stability refers to the shift in the output voltage versus time. This is expressed as a difference in ppm from the nominal output. ∆VOUT _ LTD = VOUT (t 1 ) − VOUT (t 0 ) VOUT (t 0 ) × 10 6 [ppm] where: VOUT(t0) is the VOUT at the starting time of the measurement. VOUT(t1) is the VOUT at the end time of the measurement. Rev. D | Page 33 of 40 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Data Sheet APPLICATIONS INFORMATION BASIC VOLTAGE REFERENCE CONNECTION POWER DISSIPATION The circuit shown in Figure 107 shows the basic configuration for the ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ ADR4550 family of voltage references. The ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ ADR4550 voltage references are capable of sourcing and sinking up to 10 mA of load current at room temperature across the rated input voltage range. However, when used in applications subject to high ambient temperatures, the input voltage and load current must be monitored carefully to ensure that the device does not exceeded its maximum power dissipation rating. The maximum power dissipation of the device can be calculated using the following equation: VIN VREF GND 10203-054 PD = Figure 107. ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Simplified Schematic INPUT AND OUTPUT CAPACITORS Input Capacitors A 1 μF to 10 μF electrolytic or ceramic capacitor can be connected to the input to improve transient response in applications where the supply voltage may fluctuate. It is recommended to connect an additional 0.1 μF ceramic capacitor in parallel to reduce supply noise. Output Capacitors θ JA where: PD is the device power dissipation. TJ is the device junction temperature. TA is the ambient temperature. θJA is the package (junction to air) thermal resistance. This relationship can cause acceptable load current in high temperature conditions to be less than the maximum current sourcing capability of the device. Do not operate the device outside of its maximum power rating, because doing so can result in premature failure or permanent damage to the device. SAMPLE APPLICATIONS Bipolar Output Reference An output capacitor is required for stability and to filter out low level voltage noise. The minimum value of the output capacitor (COUT) is shown in Table 13. Table 13. Minimum COUT Value Part Number ADR4520, ADR4525 ADR4530, ADR4533, ADR4540, ADR4550 TJ − TA Minimum COUT Value 1.0 µF 0.1 µF An additional 1 μF to 10 μF electrolytic or ceramic capacitor can be added in parallel to improve transient performance in response to sudden changes in load current; however, doing so increases the turn-on time of the device. Figure 108 shows a bipolar reference configuration. By connecting the output of the ADR4550 to the inverting terminal of an operational amplifier, it is possible to obtain both positive and negative reference voltages. R1 and R2 must be matched as closely as possible to ensure minimal difference between the negative and positive outputs. Resistors with low temperature coefficients must also be used if the circuit is deployed in environments with large temperature swings; otherwise, a voltage difference develops between the two outputs as the ambient temperature changes. VIN VOUT 6 VIN +5V R1 10kΩ 1µF LOCATION OF REFERENCE IN SYSTEM 2 It is recommended to place the ADR4520/ADR4525/ADR4530/ ADR4533/ADR4540/ADR4550 reference as close to the load as possible to minimize the length of the output traces and, therefore, the error introduced by the voltage drop. Current flowing through a PCB trace produces a voltage drop; with longer traces, this drop can reach several millivolts or more, introducing considerable error into the output voltage of the reference. A 1-inch long, 5 mm wide trace of 1-ounce copper has a resistance of approximately 100 mΩ at room temperature; at a load current of 10 mA, this resistance can introduce a full millivolt of error. Rev. D | Page 34 of 40 0.1µF ADR4550 0.1µF R2 10kΩ GND 4 +15V –5V ADA4000-1 R3 5kΩ –15V Figure 108. ADR4550 Bipolar Output Reference 10203-055 BAND GAP ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 3500 hours account for the remaining 50% of the drift. Thus, the early life drift is the dominant contributor, whereas the drift after 1000 hours is significantly lower. Figure 109 shows a configuration for obtaining higher current drive capability from the ADR4520/ADR4525/ADR4530/ ADR4533/ADR4540/ADR4550 references without sacrificing accuracy. The op amp regulates the current flow through the metal-oxide semiconductor field effect transistor (MOSFET) until VOUT equals the output voltage of the reference; current is then drawn directly from VIN instead of from the reference itself, allowing increased current drive capability. CHANGE IN OUTPUT VOLTAGE (ppm) 150 VIN +16V 2 VIN R1 100Ω VOUT 6 2N7002 AD8663 VOUT GND 4 RL 200Ω CL PART NUMBER MINIMUM CL ADR4520, ADR4525 1.0µF ADR4530, ADR4533, ADR4540, ADR4550 0.1µF 50 0 –50 MEAN MEAN PLUS ONE STANDARD DEVIATION MEAN MINUS ONE STANDARD DEVIATION SAMPLE 1 SAMPLE 2 SAMPLE 3 –100 –150 CL 0.1µF 0 500 1000 1500 2000 2500 3000 3500 4000 4500 TIME (Hours) Figure 110. Measured Long-Term Drift of the ADR4520/ADR4525/ADR4530/ ADR4533/ADR4540/ADR4550 over 4,500 Hours 50 Figure 109. Boosted Output Current Reference Because the current sourcing capability of this circuit depends only on the current rating of the MOSFET, the output drive capability can be adjusted to the application simply by choosing an appropriate MOSFET. In all cases, tie the VOUT pin directly to the load device to maintain maximum output voltage accuracy. CHANGE IN OUTPUT VOLTAGE (ppm) ADR4520/ADR4525/ ADR4530/ADR4533/ ADR4540/ADR4550 10203-056 1µF 0.1µF 100 30 20 10 0 –10 –20 –50 Figure 110 shows the long-term drift of the ADR4520/ ADR4525/ADR4530/ADR4533/ADR4540/ADR4550. Sample 1, Sample 2, and Sample 3 plot traces show sample units. The mean drift after 4500 hours is 51 ppm. Note that the early life drift (0 hours to 250 hours) accounts for 40% of the total drift observed over 4500 hours, as shown in Figure 111. The first 1000 hours account for 50% of the total drift, and the remaining MEAN MEAN PLUS ONE STANDARD DEVIATION MEAN MINUS ONE STANDARD DEVIATION SAMPLE 1 SAMPLE 2 SAMPLE 3 –30 –40 LONG-TERM DRIFT 0 50 100 150 200 250 TIME (Hours) Figure 111. Measured Early Life Drift of the ADR4520/ADR4525/ADR4530/ ADR4533/ADR4540/ADR4550 40 CHANGE IN OUTPUT VOLTAGE (ppm) The stability of a precision signal path over its lifetime or between calibration procedures is dependent on the long-term stability of the analog components in the path, such as op amps, references, and data converters. To help system designers predict the longterm drift of circuits that use the ADR4520/ADR4525/ADR4530/ ADR4533/ADR4540/ADR4550, Analog Devices measured the output voltage of multiple units for more than 4500 hours (more than 6 months) using a high precision measurement system, including an ultrastable oil bath. To replicate real-world system performance, the devices under test (DUTs) were soldered onto an FR4 PCB using a standard reflow profile (as defined in the JEDEC J-STD-020D standard), rather than testing them in sockets. This manner of testing is important because expansion and contraction of the PCB can apply stress to the integrated circuit (IC) package and contribute to shifts in the offset voltage. 108 UNITS TA = 25°C 40 10203-798 U6 108 UNITS TA = 25°C 10203-797 Boosted Output Current Reference MEAN MEAN PLUS ONE STANDARD DEVIATION MEAN MINUS ONE STANDARD DEVIATION SAMPLE 1 SAMPLE 2 SAMPLE 3 30 20 54 UNITS TA = 25°C 10 0 –10 –20 –30 –40 0 1000 2000 3000 4000 TIME (HOURS) 5000 10203-812 Data Sheet Figure 112. Measured Long-Term Drift of the ADR4525D/ADR4540D/ ADR4550D over 4,500 Hours Rev. D | Page 35 of 40 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 In the three full cycles, the output hysteresis is typically −13 ppm. The histogram in Figure 114 shows that the hysteresis is larger when the device is cycled through only a half cycle, from room temperature to 125°C and back to room temperature, typically −97 ppm. 250 CYCLE 1 CYCLE 2 CYCLE 3 CHANGE IN OUTPUT VOLTAGE (ppm) 200 CYCLE 1 CYCLE 2 CYCLE 3 150 100 0 10 20 30 50 40 60 10203-800 In addition to stability over time, as described in the LongTerm Drift section, it is useful to know the thermal hysteresis, that is, the stability vs. cycling of temperature. Thermal hysteresis is an important parameter because it tells the system designer how closely the signal returns to its starting amplitude after the ambient temperature changes and the subsequent return to room temperature. Figure 113 shows the change in output voltage as the temperature cycles three times from room temperature to +125°C to −40°C and back to room temperature. Figure 115 shows the change in input offset voltage as the temperature cycles three times from room temperature to +70°C to 0°C and back to room temperature. In the three full cycles, the output hysteresis is typically −8 ppm. The histogram in Figure 116 shows that the hysteresis is larger when the device is cycled through only a half cycle, from room temperature to +70°C and back to room temperature, typically −17 ppm. CHANGE IN OUTPUT VOLTAGE (ppm) THERMAL HYSTERESIS Data Sheet 70 TEMPERATURE (°C) 50 Figure 115. Change in Output Voltage over Three Full Temperature Cycles (0°C to 70°C) 0 –50 60 27 UNITS × 3 CYCLES HALF CYCLE = 25°C, 70°C, 25°C FULL CYCLE = 25°C, 70°C, 25°C, 0°C, 25°C –100 HALF CYCLE FULL CYCLE 50 –150 0 20 40 60 80 100 120 TEMPERATURE (°C) Figure 113. Change in Output Voltage over Three Full Temperature Cycles (−40°C to +125°C) 70 20 10 0 –80 –70 –60 –50 –40 –30 –20 –10 0 Figure 116. Histogram Showing the Temperature Hysteresis of the Output Voltage (0°C to 70°C) 40 30 20 –160 –120 –80 –40 0 40 OUTPUT VOLTAGE HYSTERESIS (ppm) 80 100 10203-801 10 0 –200 10 20 30 40 50 60 70 80 OUTPUT VOLTAGE HYSTERESIS (ppm) 50 CHANGE IN OUTPUT VOLTAGE VOLTAGE (ppm) NUMBER OF UNITS 60 HALF CYCLE FULL CYCLE 27 UNITS × 3 CYCLES HALF CYCLE = +26°C, +125°C, +26°C FULL CYCLE = +26°C, +125°C, +26°C, –40°C, +26°C 30 Figure 114. Histogram Showing the Temperature Hysteresis of the Output Voltage (−40°C to +125°C) CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 0 10 20 30 40 TEMPERATURE (°C) 50 60 70 10203-816 80 40 10203-802 –20 NUMBER OF UNITS –250 –40 10203-799 –200 Figure 117. D Grade Change in Output Voltage over Three Full Temperature Cycles (0°C to 70°C) Rev. D | Page 36 of 40 40 27 UNITS x 3 CYCLES HALF CYCLE = 25°C, 70°C, 25°C FULL CYCLE = 25°C, 70°C, 25°C, 0°C, 25°C HALF CYCLE FULL CYCLE –4 10 HUMIDITY SENSITIVITY 30 25 20 15 10 0 –2 0 2 4 6 8 10203-818 5 12 OUTPUT VOLTAGE HYSTERESIS (ppm) Figure 118. D Grade Histogram Showing the Temperature Hysteresis of the Output Voltage (0°C to 70°C) Measuring thermal hysteresis over the full operating temperature range is not reflective of a typical operating environment in most applications. Instead, smaller temperature variations are more normal. The ADR4520/ADR4525/ADR4530/ADR4533/ ADR4540/ADR4550 were tested over 20 different temperature cycles of increasing magnitude, centered at +25°C, starting with +25°C ± 5°C and going up to the full operating temperature range of −40°C to +125°C. The results are shown in Figure 119. For a temperature delta of 100°C (that is, +25°C ± 50°C) the thermal hysteresis is less than 20 ppm for both the full cycle and the half cycle. Above this range, the thermal hysteresis increases significantly. These results show that the standard specification, which covers the full operating temperature range, is close to the worst case performance. The ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ ADR4550 is packaged in a SOIC plastic package and has a moisture sensitivity level of MSL-1, per the JEDEC standard. However, moisture absorption from the air into the package changes the internal mechanical stresses on the die causing shifts in the output voltage. Figure 120 shows the effects of a step change in relative humidity on the output voltage over time. The humidity chamber is maintained at an ambient temperature of +25°C, while the relative humidity undergoes a step change from 20% to 80% at time zero. The relative humidity is maintained at 80% for the duration of the testing. Note that the output voltage shifts quickly compared to the overall settling time, following the step change in relative humidity. Figure 121 shows the effects of 10% increases in relative humidity from 30% to 70% and back to 30%. Note that after the relative humidity returns to 30%, the output voltage is settling back to its starting point. 400 100 HALF LOOP FULL LOOP 300 200 100 0 –100 –200 27 UNITS TA = 25°C RELATIVE HUMIDITY STEP FROM 20% TO 80% –300 –400 80 0 100 200 300 400 500 600 ELAPSED TIME (Hours) Figure 120. Change in Output Voltage vs. Time After Humidity Step Change (20% to 80% Relative Humidity) 60 40 200 20 0 –40 0 20 40 60 80 100 120 TEMPERATURE DELTA (°C) 140 160 10203-805 –20 Figure 119. Thermal Hysteresis for Increasing Temperature Range CHANGE IN OUTPUT VOLTAGE (ppm) THERMAL HYSTERESIS (ppm) SAMPLE 1 SAMPLE 2 SAMPLE 3 27 UNITS TA = 25°C RELATIVE HUMIDITY STEP FROM 30% TO 70% TO 30%, 10% STEPS SAMPLE 1 SAMPLE 2 SAMPLE 3 150 100 50 0 –50 –100 –150 –200 0 100 200 300 400 ELAPSED TIME (Hours) 500 600 10203-804 NUMBER OF UNITS 35 10203-803 45 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 CHANGE IN OUTPUT VOLTAGE (ppm) Data Sheet Figure 121. Change in Output Voltage vs. Time for 10% Humidity Steps (30% to 70% to 30% Relative Humidity in 10% Steps) Rev. D | Page 37 of 40 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 By power cycling large numbers of samples, the power cycle hysteresis can be determined. To keep this measurement independent of other variables and environmental effects, the power cycle testing was performed using a high precision measurement system, including an ultrastable oil bath. Figure 122 shows the power cycle hysteresis. The units were powered down for approximately four hours and then powered up. The ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ ADR4550 do not have any power cycle hysteresis even after a long power-down period, making these devices very suitable for equipment which must maintain its calibration accuracy between power cycles. CHANGE IN OUTPUT VOLTAGE (ppm) 120 108 UNITS TA = 25°C SAMPLE 1 SAMPLE 2 SAMPLE 3 100 80 60 40 20 0 –20 4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470 TIME (Hours) Figure 122. Power Cycle Hysteresis Rev. D | Page 38 of 40 10203-806 POWER CYCLE HYSTERESIS Data Sheet Data Sheet ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 8 4.00 (0.1574) 3.80 (0.1497) 1 5 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 6.20 (0.2441) 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 012407-A COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 123. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) 0.020 0.015 0.010 (R 4 PLCS) 0.087 0.078 0.069 7 0.180 0.177 SQ 0.174 R 0.008 (4 PLCS) 0.054 0.050 0.046 (PLATING OPTION 1, SEE DETAIL A FOR OPTION 2) 0.028 0.020 DIA 0.012 1 0.106 0.100 0.094 0.075 REF R 0.008 (8 PLCS) TOP VIEW 0.008 0.006 0.004 5 3 BOTTOM VIEW 0.077 0.070 0.063 0.019 SQ DETAIL A (OPTION 2) 05-21-2010-D 0.203 0.197 SQ 0.193 0.030 0.025 0.020 Figure 124. 8-Terminal Ceramic Leadless Chip Carrier [LCC] (E-8-1) Dimensions shown in inches ORDERING GUIDE Model 1,2 ADR4520ARZ ADR4520ARZ-R7 ADR4520BRZ ADR4520BRZ-R7 ADR4525ARZ ADR4525ARZ-R7 ADR4525BRZ ADR4525BRZ-R7 ADR4525CRZ ADR4525CRZ-R7 ADR4525DEZ ADR4525DEZ-R7 ADR4525WBRZ-R7 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C 0°C to 70°C 0°C to 70°C 0°C to 70°C 0°C to 70°C −40°C to +125°C Package Description 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead LCC 8-Lead LCC 8-Lead SOIC_N Rev. D | Page 39 of 40 Package Option R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 E-8 E-8 R-8 Ordering Quantity 98 1,000 98 1,000 98 1,000 98 1,000 98 1,000 98 1000 1,000 ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550 Model 1,2 ADR4530ARZ ADR4530ARZ-R7 ADR4530BRZ ADR4530BRZ-R7 ADR4533ARZ ADR4533ARZ-R7 ADR4533BRZ ADR4533BRZ-R7 ADR4540ARZ ADR4540ARZ-R7 ADR4540BRZ ADR4540BRZ-R7 ADR4540CRZ ADR4540CRZ-R7 ADR4540DEZ ADR4540DEZ-R7 ADR4550ARZ ADR4550ARZ-R7 ADR4550BRZ ADR4550BRZ-R7 ADR4550CRZ ADR4550CRZ-R7 ADR4550DEZ ADR4550DEZ-R7 1 2 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C 0°C to 70°C 0°C to 70°C 0°C to 70°C 0°C to 70°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C 0°C to 70°C 0°C to 70°C 0°C to 70°C 0°C to 70°C Package Description 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead LCC 8-Lead LCC 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead LCC 8-Lead LCC Data Sheet Package Option R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 R-8 E-8 E-8 R-8 R-8 R-8 R-8 R-8 R-8 E-8 E-8 Ordering Quantity 98 1,000 98 1,000 98 1,000 98 1,000 98 1,000 98 1,000 98 1,000 98 1000 98 1,000 98 1,000 98 1,000 98 1000 Z = RoHS Compliant Part. W = Qualified for Automotive Applications. See the Automotive Products section. AUTOMOTIVE PRODUCTS The ADR4525W model is available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that this automotive model may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade product shown is available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for this model. ©2012–2021 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D10203-1/2021(D) Rev. D | Page 40 of 40
ADR4540DEZ 价格&库存

很抱歉,暂时无法提供与“ADR4540DEZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货