0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADRF6601-EVALZ

ADRF6601-EVALZ

  • 厂商:

    AD(亚德诺)

  • 封装:

    -

  • 描述:

    EVALBOARDFORADRF6601

  • 数据手册
  • 价格&库存
ADRF6601-EVALZ 数据手册
300 MHz to 2500 MHz Rx Mixer with Integrated Fractional-N PLL and VCO ADRF6601 Data Sheet FEATURES The PLL can support input reference frequencies from 12 MHz to 160 MHz. The PFD output controls a charge pump whose output drives an off-chip loop filter. Rx mixer with integrated fractional-N PLL RF input frequency range: 300 MHz to 2500 MHz Internal LO frequency range: 750 MHz to 1160 MHz Input P1dB: 14.5 dBm Input IP3: 31 dBm IIP3 optimization via external pin SSB noise figure IP3SET pin open: 13.5 dB IP3SET pin at 3.3 V: 14.6 dB Voltage conversion gain: 6.7 dB Matched 200 Ω IF output impedance IF 3 dB bandwidth: 500 MHz Programmable via 3-wire SPI interface 40-lead, 6 mm × 6 mm LFCSP The loop filter output is then applied to an integrated VCO. The VCO output at 2 × fLO is applied to an LO divider, as well as to a programmable PLL divider. The programmable PLL divider is controlled by a sigma-delta (Σ-Δ) modulator (SDM). The modulus of the SDM can be programmed from 1 to 2047. The active mixer converts the single-ended 50 Ω RF input to a 200 Ω differential IF output. The IF output can operate up to 500 MHz. The ADRF6601 is fabricated using an advanced silicon-germanium BiCMOS process. It is available in a 40-lead, RoHS-compliant, 6 mm × 6 mm LFCSP with an exposed paddle. Performance is specified over the −40°C to +85°C temperature range. APPLICATIONS Table 1. Cellular base stations GENERAL DESCRIPTION Part No. ADRF6601 The ADRF6601 is a high dynamic range active mixer with an integrated phase-locked loop (PLL) and a voltage controlled oscillator (VCO). The PLL/synthesizer uses a fractional-N PLL to generate a fLO input to the mixer. The reference input can be divided or multiplied and then applied to the PLL phase frequency detector (PFD). ADRF6602 ADRF6603 ADRF6604 Internal LO Range 750 MHz 1160 MHz 1550 MHz 2150 MHz 2100 MHz 2600 MHz 2500 MHz 2900 MHz ±3 dB RFIN Balun Range 300 MHz 2500 MHz 1000 MHz 3100 MHz 1100 MHz 3200 MHz 1200 MHz 3600 MHz ±1 dB RFIN Balun Range 450 MHz 1600 MHz 1350 MHz 2750 MHz 1450 MHz 2850 MHz 1600 MHz 3200 MHz FUNCTIONAL BLOCK DIAGRAM VCC1 VCC2 VCC_LO VCC_MIX VCC_V2I VCC_LO 1 10 17 22 27 34 NC NC 32 33 ADRF6601 INTERNAL LO RANGE 750MHz TO 1160MHz LODRV_EN 36 LON 37 BUFFER LOP 38 BUFFER PLL_EN 16 CLK 13 SPI INTERFACE LE 14 2:1 MUX INTEGER REG THIRD-ORDER FRACTIONAL INTERPOLATOR ×2 REF_IN 6 ÷2 ÷4 N COUNTER 21 TO 123 MUX TEMP SENSOR 7 VCO CORE PRESCALER ÷2 DECL3P3 9 DECL2P5 VCO LDO 40 DECLVCO 26 RFIN 29 IP3SET CHARGE PUMP 250µA, 500µA (DEFAULT), 750µA, 1000µA – PHASE + FREQUENCY DETECTOR MUXOUT 8 4 DIV BY 4, 2, 1 2 2.5V LDO 11 15 20 21 23 24 25 28 30 31 35 5 RSET GND 3 39 CP VTUNE 18 19 IFP IFN 08546-001 FRACTION MODULUS REG DATA 12 3.3V LDO Figure 1. Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2010–2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADRF6601 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 RF Specifications .......................................................................... 3 Synthesizer/PLL Specifications ................................................... 4 Register 3—Σ-Δ Modulator Dither Control (Default: 0x10000B) .................................................................................... 17 Register 4—PLL Charge Pump, PFD, and Reference Path Control (Default: 0x0AA7E4)................................................... 18 Register 5—PLL Enable and LO Path Control (Default: 0x0000E5) .................................................................................... 19 Register 6—VCO Control and VCO Enable (Default: 0x1E2106) .................................................................................... 19 Logic Input and Power Specifications ....................................... 4 Register 7—Mixer Bias Enable and External VCO Enable (Default: 0x000007).................................................................... 19 Timing Characteristics ................................................................ 5 Theory of Operation ...................................................................... 20 Absolute Maximum Ratings ............................................................ 6 Programming the ADRF6601................................................... 20 ESD Caution .................................................................................. 6 Initialization Sequence .............................................................. 20 Pin Configuration and Function Descriptions ............................. 7 LO Selection Logic ..................................................................... 21 Typical Performance Characteristics ............................................. 9 Applications Information .............................................................. 22 RF Frequency Sweep .................................................................... 9 Basic Connections for Operation ............................................. 22 IF Frequency Sweep ................................................................... 10 AC Test Fixture ............................................................................... 23 Spurious Performance................................................................ 15 Evaluation Board ............................................................................ 24 Register Structure ........................................................................... 16 Evaluation Board Control Software ......................................... 24 Register 0—Integer Divide Control (Default: 0x0001C0) .... 16 Schematic and Artwork ............................................................. 26 Register 1—Modulus Divide Control (Default: 0x003001) ........ 16 Evaluation Board Configuration Options ............................... 28 Register 2—Fractional Divide Control (Default: 0x001802) ...... 17 Outline Dimensions ....................................................................... 29 Ordering Guide .......................................................................... 29 REVISION HISTORY 1/14—Rev. A to Rev. B Replaced LO Range with RF Range in Data Sheet Title .............. 1 Updated Outline Dimensions ....................................................... 29 3/11—Rev. 0 to Rev. A Changes to Features Section, General Description Section, and Table 1 ............................................................................................ 1 Changes to Table 2 ............................................................................ 3 Changes to Conditions Statement and the Figure of Merit, Reference Spurs, and Phase Noise Parameters, Table 3; Changes to Conditions Statement and the Supply Current Parameter, Table 4 ........................................................................ 4 Changes to Table 6 ............................................................................ 6 Changes to Table 7 ............................................................................ 7 Replaced Typical Performance Characteristics Section .............. 9 Added Spurious Performance Section ......................................... 15 Changes to Figure 44 and Figure 45............................................. 19 Changes to Theory of Operation Section .................................... 20 Added AC Test Fixture Section and Figure 47; Renumbered Sequentially ......................................................... 23 Changes to Evaluation Board Control Software Section........... 24 Changes to Table 10 ........................................................................ 28 1/10—Revision 0: Initial Version Rev. B | Page 2 of 32 Data Sheet ADRF6601 SPECIFICATIONS RF SPECIFICATIONS VS = 5 V, ambient temperature (TA) = 25°C, fREF = 153.6 MHz, fPFD = 38.4 MHz, high-side LO injection, fIF = 140 MHz, IIP3 optimized using CDAC = 0x0 and IP3SET = 3.3 V, unless otherwise noted. Table 2. Parameter INTERNAL LO FREQUENCY RANGE RF INPUT FREQUENCY RANGE RF INPUT AT 610 MHz Input Return Loss Input P1dB Second-Order Intercept (IIP2) Third-Order Intercept (IIP3) Single-Side Band Noise Figure LO-to-IF Leakage RF INPUT AT 910 MHz Input Return Loss Input P1dB Second-Order Intercept (IIP2) Third-Order Intercept (IIP3) Single-Side Band Noise Figure LO-to-IF Leakage RF INPUT AT 1020 MHz Input Return Loss Input P1dB Second-Order Intercept (IIP2) Third-Order Intercept (IIP3) Single-Side Band Noise Figure LO-to-IF Leakage IF OUTPUT Voltage Conversion Gain IF Bandwidth Output Common-Mode Voltage Gain Flatness Gain Variation Output Swing Differential Output Return Loss LO INPUT/OUTPUT (LOP, LON) Frequency Range Output Level (LO as Output) Input Level (LO as Input) Input Impedance Test Conditions/Comments ±3 dB RF input range Min 750 300 Relative to 50 Ω (can be improved with external match) −5 dBm each tone (10 MHz spacing between tones) −5 dBm each tone (10 MHz spacing between tones) IP3SET = 3.3 V IP3SET = open At 1× LO frequency, 50 Ω termination at the RF port Relative to 50 Ω (can be improved with external match) −5 dBm each tone (10 MHz spacing between tones) −5 dBm each tone (10 MHz spacing between tones) IP3SET = 3.3 V IP3SET = open At 1× LO frequency, 50 Ω termination at the RF port Relative to 50 Ω (can be improved with external match) −5 dBm each tone (10 MHz spacing between tones) −5 dBm each tone (10 MHz spacing between tones) IP3SET = 3.3 V IP3SET = open At 1× LO frequency, 50 Ω termination at the RF port Differential 200 Ω load Small signal 3 dB bandwidth External pull-up balun or inductors required Over frequency range, any 5 MHz/50 MHz Over full temperature range Differential 200 Ω load Measured through 4:1 balun Externally applied 1× LO input, internal PLL disabled Typ −6 Rev. B | Page 3 of 32 Unit MHz MHz −11.1 14.8 67.4 33.4 13.3 12.5 −55.5 dB dBm dBm dBm dB dB dBm −16.7 14.5 55.3 30.9 14.6 13.5 −48 dB dBm dBm dBm dB dB dBm −16.8 14.8 60.9 32.2 14.8 13.5 −49 dB dBm dBm dBm dB dB dBm 6.7 500 5 0.2/0.5 1.2 2 −15.5 dB MHz V dB dB V p-p dB 250 1× LO into a 50 Ω load, LO output buffer enabled Max 1160 2500 6000 −6 0 50 +6 MHz dBm dBm Ω ADRF6601 Data Sheet SYNTHESIZER/PLL SPECIFICATIONS VS = 5 V, ambient temperature (TA) = 25°C, fREF = 153.6 MHz, fREF power = 4 dBm, fPFD = 38.4 MHz, high-side LO injection, fIF = 140 MHz, IIP3 optimized using CDAC = 0x0 and IP3SET = 3.3 V, unless otherwise noted. Table 3. Parameter SYNTHESIZER SPECIFICATIONS Frequency Range Figure of Merit 1 Reference Spurs PHASE NOISE Integrated Phase Noise PFD Frequency REFERENCE CHARACTERISTICS REF_IN Input Frequency REF_IN Input Capacitance MUXOUT Output Level MUXOUT Duty Cycle CHARGE PUMP Pump Current Output Compliance Range 1 Test Conditions/Comments Synthesizer specifications referenced to 1× LO Internally generated LO PREF_IN = 0 dBm fPFD = 38.4 MHz fPFD/4 fPFD >fPFD fLO = 750 MHz to 1160 MHz, fPFD = 38.4 MHz 1 kHz to 10 kHz offset 100 kHz offset 500 kHz offset 1 MHz offset 5 MHz offset 10 MHz offset 20 MHz offset 1 kHz to 40 MHz integration bandwidth Min Typ Max Unit 1160 −222 MHz dBc/Hz/Hz −107 −83 −88 dBc dBc dBc −99 −108 −127 −135 −147 −151 −153 0.14 dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz °rms MHz 750 20 40 REF_IN, MUXOUT pins 12 160 4 VOL (lock detect output selected) VOH (lock detect output selected) 0.25 2.7 50 Programmable to 250 µA, 500 µA, 750 µA, 1 mA 500 1 MHz pF V V % µA V 2.8 The figure of merit (FOM) is computed as phase noise (dBc/Hz) – 10 log 10(fPFD) – 20 log 10(fLO/fPFD). The FOM was measured across the full LO range with fREF = 80 MHz, and fREF power = 10 dBm (500 V/µs slew rate) with a 40 MHz fPFD. The FOM was computed at 50 kHz offset. LOGIC INPUT AND POWER SPECIFICATIONS VS = 5 V, ambient temperature (TA) = 25°C, fREF = 153.6 MHz, fPFD = 38.4 MHz, high-side LO injection, fIF = 140 MHz, IIP3 optimized using CDAC = 0x0 and IP3SET = 3.3 V, unless otherwise noted. Table 4. Parameter LOGIC INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current, IINH/IINL Input Capacitance, CIN POWER SUPPLIES Voltage Range Supply Current Test Conditions/Comments CLK, DATA, LE Min Typ 1.4 0 Max Unit 3.3 0.7 V V µA pF 5.25 V mA mA mA mA mA 0.1 5 VCC1, VCC2, VCC_LO, VCC_MIX, and VCC_V2I pins 4.75 PLL only External LO mode (internal PLL disabled, IP3SET pin = 3.3 V, LO output buffer off) Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer on) Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer off) Power-down mode Rev. B | Page 4 of 32 5 97 184 294 281 30 Data Sheet ADRF6601 TIMING CHARACTERISTICS VS = 5 V ± 5%. Table 5. Parameter t1 t2 t3 t4 t5 t6 t7 Limit 20 10 10 25 25 10 20 Unit ns min ns min ns min ns min ns min ns min ns min Description LE setup time DATA-to-CLK setup time DATA-to-CLK hold time CLK high duration CLK low duration CLK-to-LE setup time LE pulse width Timing Diagram t4 t5 CLK t2 DATA DB23 (MSB) t3 DB22 DB2 (CONTROL BIT C3) DB1 (CONTROL BIT C2) t1 DB0 (LSB) (CONTROL BIT C1) t7 08546-002 t6 LE Figure 2. Timing Diagram Rev. B | Page 5 of 32 ADRF6601 Data Sheet ABSOLUTE MAXIMUM RATINGS Table 6. Parameter Supply Voltage, VCC1, VCC2, VCC_LO, VCC_MIX, VCC_V2I Digital I/O, CLK, DATA, LE, LODRV_EN, PLL_EN VTUNE IFP, IFN RFIN LOP, LON, REF_IN θJA (Exposed Paddle Soldered Down) Maximum Junction Temperature Operating Temperature Range Storage Temperature Range Rating −0.5 V to +5.5 V −0.3 V to +3.6 V 0 V to 3.3 V −0.3 V to VCC_V2I + 0.3 V 16 dBm 13 dBm 35°C/W 150°C −40°C to +85°C −65°C to +150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION Rev. B | Page 6 of 32 Data Sheet ADRF6601 40 39 38 37 36 35 34 33 32 31 DECLVCO VTUNE LOP LON LODRV_EN GND VCC_LO NC NC GND PIN CONFIGURATION AND FUNCTION DESCRIPTIONS PIN 1 INDICATOR ADRF6601 TOP VIEW (Not to Scale) 30 29 28 27 26 25 24 23 22 21 GND IP3SET GND VCC_V2I RFIN GND GND GND VCC_MIX GND NOTES 1. NC = NO CONNECT. DO NOT CONNECT THIS PIN. 2. THE EXPOSED PADDLE SHOULD BE SOLDERED TO A LOW IMPEDANCE GROUND PLANE. 08546-003 GND DATA CLK LE GND PLL_EN VCC_LO IFP IFN GND 11 12 13 14 15 16 17 18 19 20 VCC1 1 DECL3P3 2 CP 3 GND 4 RSET 5 REF_IN 6 GND 7 MUXOUT 8 DECL2P5 9 VCC2 10 Figure 3. Pin Configuration Table 7. Pin Function Descriptions Pin No. 1 Mnemonic VCC1 2 3 4, 7, 11, 15, 20, 21, 23, 24, 25, 28, 30, 31, 35 5 DECL3P3 CP GND RSET Description Power Supply for the 3.3 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin. Decoupling Node for the 3.3 V LDO. Connect a 0.1 µF capacitor between this pin and ground. Charge Pump Output Pin. Connect to VTUNE through the loop filter. Ground. Connect these pins to a low impedance ground plane. Charge Pump Current. The nominal charge pump current can be set to 250 µA, 500 µA, 750 µA, or 1 mA using Bit DB11 and Bit DB10 in Register 4 and by setting Bit DB18 in Register 4 to 0 (internal reference current). In this mode, no external RSET is required. If Bit DB18 is set to 1, the four nominal charge pump currents (INOMINAL) can be externally adjusted according to the following equation:  217.4 × I CP R SET =   I NOMINAL 6 REF_IN 8 MUXOUT 9 10 DECL2P5 VCC2 12 13 DATA CLK 14 LE 16 PLL_EN 17, 34 VCC_LO 18, 19 IFP, IFN   − 37.8 Ω   Reference Input. Nominal input level is 1 V p-p. Input range is 12 MHz to 160 MHz. This pin is internally dcbiased and should be ac-coupled. Multiplexer Output. This output can be programmed to provide the reference output signal or the lock detect signal. The output is selected by programming the appropriate register. Decoupling Node for the 2.5 V LDO. Connect a 0.1 µF capacitor between this pin and ground. Power Supply for the 2.5 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin. Serial Data Input. The serial data input is loaded MSB first; the three LSBs are the control bits. Serial Clock Input. The serial clock input is used to clock in the serial data to the registers. The data is latched into the 24-bit shift register on the CLK rising edge. Maximum clock frequency is 20 MHz. Load Enable. When the LE input pin goes high, the data stored in the shift registers is loaded into one of the eight registers. The relevant latch is selected by the three control bits of the 24-bit word. PLL Enable. Switch between internal PLL and external LO input. When this pin is logic high, the mixer LO is automatically switched to the internal PLL and the internal PLL is powered up. When this pin is logic low, the internal PLL is powered down and the external LO input is routed to the mixer LO inputs. The SPI can also be used to switch modes. Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin. Mixer IF Outputs. These outputs should be pulled to VCC with RF chokes. Rev. B | Page 7 of 32 ADRF6601 Data Sheet Pin No. 22 Mnemonic VCC_MIX 26 27 RFIN VCC_V2I 29 32, 33 36 IP3SET NC LODRV_EN 37, 38 LON, LOP 39 VTUNE 40 DECLVCO EPAD Description Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin. RF Input (single-ended, 50 Ω). Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin. Connect a resistor from this pin to a 5 V supply to adjust IIP3. Normally leave open. No Connection. LO Driver Enable. Together with Pin 16 (PLL_EN), this digital input pin determines whether the LOP and LON pins operate as inputs or outputs. LOP and LON become inputs if the PLL_EN pin is low or if the PLL_EN pin is set high if the PLEN bit (DB6 in Register 5) is set to 0. LOP and LON become outputs if either the LODRV_EN pin or the LDRV bit (DB3 in Register 5) is set to 1 while the PLL_EN pin is set high. The external LO drive frequency must be 1× LO. This pin has an internal 100 kΩ pull-down resistor. Local Oscillator Input/Output. The internally generated 1× LO is available on these pins. When internal LO generation is disabled, an external 1× LO can be applied to these pins. VCO Control Voltage Input. This pin is driven by the output of the loop filter. The nominal input voltage range on this pin is 1.5 V to 2.5 V. Decoupling Node for the VCO LDO. Connect a 100 pF capacitor and a 10 µF capacitor between this pin and ground. Exposed Paddle. The exposed paddle should be soldered to a low impedance ground plane. Rev. B | Page 8 of 32 Data Sheet ADRF6601 TYPICAL PERFORMANCE CHARACTERISTICS RF FREQUENCY SWEEP CDAC = 0x0, internally generated high-side LO, RFIN = −5 dBm, fIF = 140 MHz, unless otherwise noted. 5 4 45 IP3SET = OPEN IP3SET = 3.3V TA = +85°C TA = +25°C TA = –40°C 40 IP3SET = OPEN IP3SET = 3.3V 3 35 INPUT IP3 (dBm) 1 0 –1 30 25 20 TA = +85°C TA = +25°C TA = –40°C –2 15 –3 10 –4 660 710 760 810 860 910 960 1010 RF FREQUENCY (MHz) 5 610 08546-004 –5 610 660 760 810 860 910 960 1010 RF FREQUENCY (MHz) Figure 7. Input IP3 vs. RF Frequency Figure 4. Gain vs. RF Frequency 20 90 TA = +85°C TA = +25°C TA = –40°C IP3SET = OPEN IP3SET = 3.3V 80 18 IP3SET = OPEN IP3SET = 3.3V 16 INPUT P1dB (dBm) INPUT IP2 (dBm) 710 08546-007 GAIN (dB) 2 70 60 50 14 12 10 TA = +85°C TA = +25°C TA = –40°C 8 6 4 40 710 760 810 860 910 960 1010 RF FREQUENCY (MHz) 0 610 08546-005 660 IP3SET = OPEN IP3SET = 3.3V 14 12 10 8 TA = +85°C TA = +25°C TA = –40°C 4 2 660 710 760 810 860 910 RF FREQUENCY (MHz) 960 1010 08546-006 NOISE FIGURE (dB) 16 0 610 760 810 860 910 Figure 8. Input P1dB vs. RF Frequency 20 6 710 RF FREQUENCY (MHz) Figure 5. Input IP2 vs. RF Frequency 18 660 Figure 6. Noise Figure vs. RF Frequency Rev. B | Page 9 of 32 960 1010 08546-008 2 30 610 ADRF6601 Data Sheet IF FREQUENCY SWEEP CDAC = 0x0, internally generated swept low-side LO, fRF = 1960 MHz, RFIN = −5 dBm, unless otherwise noted. 5 4 45 IP3SET = OPEN IP3SET = 3.3V TA = +85°C TA = +25°C TA = –40°C 40 IP3SET = OPEN IP3SET = 3.3V 3 35 INPUT IP3 (dBm) 1 0 –1 30 25 20 TA = +85°C TA = +25°C TA = –40°C –2 15 –3 10 –4 IF FREQUENCY (MHz) 5 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 08546-009 –5 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 IF FREQUENCY (MHz) Figure 9. Gain vs. IF Frequency Figure 12. Input IP3 vs. IF Frequency, RFIN = −5 dBm 90 20 IP3SET = OPEN IP3SET = 3.3V 80 TA = +85°C TA = +25°C TA = –40°C 18 IP3SET = OPEN IP3SET = 3.3V 16 70 INPUT P1dB (dBm) INPUT IP2 (dBm) 08546-012 GAIN (dB) 2 60 50 14 12 10 8 TA = +85°C TA = +25°C TA = –40°C 6 4 40 IF FREQUENCY (MHz) 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 08546-010 30 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 IF FREQUENCY (MHz) Figure 10. Input IP2 vs. IF Frequency, RFIN = −5 dBm Figure 13. Input P1dB vs. IF Frequency 20 18 IP3SET = OPEN IP3SET = 3.3V 14 12 10 8 TA = +85°C TA = +25°C TA = –40°C 6 4 2 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 IF FREQUENCY (MHz) 08546-011 NOISE FIGURE (dB) 16 Figure 11. Noise Figure vs. IF Frequency Rev. B | Page 10 of 32 08546-013 2 Data Sheet ADRF6601 0 0 –10 –5 –15 –10 –20 RETURN LOSS (dB) LO-TO-IF FEEDTHROUGH (dBm) TA = +85°C TA = +25°C TA = –40°C IP3SET = OPEN IP3SET = 3.3V –5 –25 –30 –35 –40 –45 –50 –15 –20 –25 –30 –55 –60 –35 800 850 900 950 1000 1050 1100 1150 LO FREQUENCY (MHz) –40 500 08546-014 –70 750 600 700 800 900 1000 1100 1200 1300 LO FREQUENCY (MHz) Figure 14. LO-to-IF Feedthrough vs. LO Frequency, LO Output Turned Off, CDAC = 0x0 Figure 17. LO Input Return Loss vs. LO Frequency (Including TC1-1-13 Balun) –30 350 IP3SET = OPEN IP3SET = 3.3V TA = +85°C TA = +25°C TA = –40°C –40 08546-017 –65 3.5 300 3.0 –70 2.5 200 2.0 150 100 1.0 50 0.5 –80 800 850 900 950 1000 1050 1100 1150 LO FREQUENCY (MHz) 0 50 08546-015 –90 750 1.5 CAPACITANCE 150 200 250 300 350 400 450 0 500 IF FREQUENCY (MHz) Figure 15. LO-to-RF Leakage vs. LO Frequency, LO Output Turned Off Figure 18. IF Differential Output Impedance (R Parallel C Equivalent) 0 35 IP3SET = OPEN IP3SET = 3.3V –5 30 NOISE FIGURE (dB) –10 –15 –20 –25 25 20 –30 15 –40 500 600 700 800 900 1000 1100 1200 RF FREQUENCY (MHz) 1300 Figure 16. RF Input Return Loss vs. RF Frequency 10 –60 –50 –40 –30 –20 –10 CW BLOCKER LEVEL (dBm) Figure 19. SSB Noise Figure vs. 5 MHz Offset Blocker Level, LO Frequency = 1055 MHz, RF Frequency = 915 MHz Rev. B | Page 11 of 32 0 08546-019 –35 08546-016 RETURN LOSS (dB) 100 CAPACITANCE (pF) –60 250 08546-018 –50 RESISTANCE (Ω) LO-RF LEAKAGE (dBm) RESISTANCE ADRF6601 Data Sheet 0 5.0 –10 TA = +85°C TA = +25°C TA = –40°C 4.5 –15 4.0 –20 3.5 VTUNE VOLTAGE (V) –25 –30 –35 –40 –45 –50 –55 3.0 2.5 2.0 1.5 1.0 –60 0.5 –65 650 750 850 950 1050 1150 1250 1350 RF FREQUENCY (MHz) 0 750 08546-020 –70 550 800 900 950 1000 1050 1100 1150 LO FREQUENCY (MHz) Figure 20. RF-to-IF Isolation vs. RF Frequency, High-Side LO, IF = 140 MHz, LO Output Turned Off Figure 23. VTUNE vs. LO Frequency 0 350 IP3SET = OPEN IP3SET = 3.3V –1 IP3SET = OPEN IP3SET = 3.3V TA = +85°C TA = +25°C TA = –40°C –2 300 SUPPLY CURRENT (mA) LO OUTPUT AMPLITUDE (dBm) 850 08546-023 RF-TO-IF ISOLATION (dBc) TA = +85°C TA = +25°C TA = –40°C IP3SET = OPEN IP3SET = 3.3V –5 –3 –4 –5 –6 –7 –8 250 200 TA = +85°C TA = +25°C TA = –40°C 150 850 900 950 1000 1050 1100 1150 LO FREQUENCY (MHz) 100 750 08546-021 800 850 900 950 1000 1050 1100 1150 LO FREQUENCY (MHz) Figure 21. LO Output Amplitude vs. LO Frequency Figure 24. Supply Current vs. LO Frequency 20 2.0 1.9 15 IP3SET = OPEN IP3SET = 3.3V 1.8 VPTAT VOLTAGE (V) 10 5 0 –5 –10 1.6 1.5 1.4 1.3 1.1 0 50 100 150 TIME (µs) 200 250 1.0 –55 Figure 22. Frequency Deviation from 910 MHz vs. Time (Demonstrates LO Frequency Settling Time from 920 MHz to 910 MHz) –35 –15 5 25 45 TEMPERATURE (°C) 65 85 105 08546-025 –20 1.7 1.2 –15 08546-022 FREQUENCY DEVIATION FROM 920MHz (MHz) 800 08546-024 –9 –10 750 Figure 25. VPTAT Voltage vs. Temperature (IP3SET = Optimized, Open) Rev. B | Page 12 of 32 Data Sheet ADRF6601 Complementary cumulative distribution function (CCDF), fRF = 2140 MHz, fIF = 140 MHz. 100 IP3SET = OPEN IP3SET = 3.3V 80 70 60 TA = +85°C TA = +25°C TA = –40°C 50 40 IP3SET = OPEN IP3SET = 3.3V 90 DISTRIBUTION PERCENTAGE (%) 30 20 10 80 70 60 50 40 30 20 TA = +85°C TA = +25°C TA = –40°C 10 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 GAIN (dB) 0 24 08546-026 0 –2.0 26 28 36 38 40 100 DISTRIBUTION PERCENTAGE (%) 80 70 60 TA = +85°C TA = +25°C TA = –40°C 50 40 IP3SET = OPEN IP3SET = 3.3V 90 30 20 10 80 70 60 50 40 30 20 TA = +85°C TA = +25°C TA = –40°C 10 55 60 65 70 75 80 INPUT IP2 (dBm) 0 10 08546-027 0 50 11 12 Figure 27. Input IP2 100 16 17 18 IP3SET = OPEN IP3SET = 3.3V DISTRIBUTION PERCENTAGE (%) 90 80 70 60 50 40 30 20 TA = +85°C TA = +25°C TA = –40°C 12 13 14 NOISE FIGURE (dB) 15 16 80 70 TA = +85°C TA = +25°C TA = –40°C 60 50 40 30 20 10 17 0 –90 08546-028 10 11 15 100 90 10 14 Figure 30. Input P1dB IP3SET = OPEN 9 13 INPUT P1dB (dBm) 08546-030 IP3SET = OPEN IP3SET = 3.3V 90 DISTRIBUTION PERCENTAGE (%) 34 Figure 29. Input IP3 100 DISTRIBUTION PERCENTAGE (%) 32 INPUT IP3 (dBm) Figure 26. Gain 0 30 –80 –70 –60 –50 –40 LO FEEDTHROUGH (dBm) Figure 28. Noise Figure Figure 31. LO Feedthrough to IF, LO Output Turned Off Rev. B | Page 13 of 32 –30 08546-031 DISTRIBUTION PERCENTAGE (%) 90 08546-029 100 ADRF6601 Data Sheet Measured at IF output, CDAC = 0x0, IP3SET = open, internally generated high-side LO, fREF = 153.6 MHz, fPFD = 38.4 MHz, RFIN = −5 dBm, fIF = 140 MHz, unless otherwise noted. Phase noise measurements made at LO output, unless otherwise noted. –80 0.50 TA = +85°C TA = +25°C TA = –40°C –100 –110 –120 LO FREQUENCY = 752MHz –140 –150 0.35 0.30 0.25 0.20 0.15 0.10 100k 1M 10M 100M OFFSET FREQUENCY (Hz) 0 750 08546-032 10k TA = +85°C TA = +25°C TA = –40°C PHASE NOISE (dBc/Hz) SPURS LEVEL (dBc) 1000 –90 –95 –100 1100 1150 –110 –120 OFFSET = 100kHz TA = +85°C TA = +25°C TA = –40°C –130 –140 OFFSET = 5MHz –150 850 900 950 1000 1050 1100 1150 –160 750 08546-033 800 LO FREQUENCY (MHz) Figure 33. PLL Reference Spurs vs. LO Frequency (2× PFD and 4× PFD) 800 850 900 950 1000 OFFSET = 10kHz PHASE NOISE (dBc/Hz) –110 –95 –100 –115 –120 –125 –130 OFFSET = 1MHz –135 –140 0.25× PFD FREQUENCY 900 950 TA = +85°C TA = +25°C TA = –40°C –145 1000 LO FREQUENCY (MHz) 1050 1100 1150 08546-034 850 1150 –105 –90 800 1100 Figure 36. Phase Noise vs. LO Frequency (1 kHz, 100 kHz, and 5 MHz Steps) TA = +85°C TA = +25°C TA = –40°C –85 –105 1050 LO FREQUENCY (MHz) –100 OFFSET AT 3× PFD FREQUENCY OFFSET AT 1× PFD FREQUENCY –80 –110 750 1050 OFFSET = 1kHz –100 –105 SPURS LEVEL (dBc) 950 –90 OFFSET AT 2× PFD FREQUENCY OFFSET AT 4× PFD FREQUENCY –85 –75 900 Figure 35. Integrated Phase Noise vs. LO Frequency –80 –110 750 850 LO FREQUENCY (MHz) Figure 32. Phase Noise vs. Offset Frequency –75 800 08546-035 0.05 –160 1k 08546-036 –130 0.40 Figure 34. PLL Reference Spurs vs. LO Frequency (0.25× PFD, 1× PFD, and 3× PFD) Rev. B | Page 14 of 32 –150 750 800 850 900 950 1000 1050 1100 1150 LO FREQUENCY (MHz) Figure 37. Phase Noise vs. LO Frequency (10 kHz, 1 MHz Steps) 08546-037 PHASE NOISE (dBc/Hz) LO FREQUENCY = 1155.2MHz TA = +85°C TA = +25°C TA = –40°C 0.45 INTEGRATED PHASE NOISE (°rms) –90 Data Sheet ADRF6601 SPURIOUS PERFORMANCE (N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board (see the Evaluation Board section). Mixer spurious products were measured in dB relative to the carrier (dBc) from the IF output power level. All spurious components greater than −125 dBc are shown. LO = 750 MHz, RF = 610 MHz (horizontal axis is m, vertical axis is n), and RFIN power = 0 dBm. N 0 1 2 3 4 5 6 7 0 −115.74 −49.49 −48.77 −81.30 −83.02 −103.16 −110.88 −110.87 1 −63.28 0.0 −42.49 −71.27 −91.24 −111.19 −112.83 −108.26 M 2 −31.83 −64.58 −75.23 −103.32 −105.20 −114.25 −112.85 −112.91 3 −54.52 −24.09 −60.35 −73.13 −88.27 −108.4 −113.85 −111.93 4 −33.54 −71.52 −67.88 −110.05 −113.66 −115.31 −113.55 −113.64 LO = 1050 MHz, RF = 910 MHz (horizontal axis is m, vertical axis is n), and RFIN power = 0 dBm. N 0 1 2 3 4 5 6 7 0 −113.23 −34.12 −49.76 −73.54 −102.66 −108.79 −110.79 1 −57.96 0.0 −47.19 −74.12 −110.29 −107.57 −108.34 −109.87 M 2 −27.78 −58.72 −57.30 −102.24 −100.07 −110.94 −107.38 −109.71 Rev. B | Page 15 of 32 3 −58.01 −27.14 −68.48 −72.99 −99.75 −110.16 −112.44 −108.58 4 −40.34 −84.94 −65.03 −108.62 −112.69 −115.35 −113.78 −110.01 ADRF6601 Data Sheet REGISTER STRUCTURE This section provides the register maps for the ADRF6601. The three LSBs determine the register that is programmed. REGISTER 0—INTEGER DIVIDE CONTROL (DEFAULT: 0x0001C0) DIVIDE MODE DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 0 0 0 0 0 0 0 0 0 0 0 INTEGER DIVIDE RATIO CONTROL BITS DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DM ID6 ID5 ID4 ID3 ID2 ID1 ID0 C3(0) C2(0) C1(0) 0 0 DM DIVIDE MODE 0 FRACTIONAL (DEFAULT) 1 INTEGER DB1 ID6 ID5 ID4 ID3 ID2 ID1 ID0 INTEGER DIVIDE RATIO 0 0 1 0 1 0 1 21 (INTEGER MODE ONLY) 0 0 1 0 1 1 0 22 (INTEGER MODE ONLY) 0 0 1 0 1 1 1 23 (INTEGER MODE ONLY) 0 0 1 1 0 0 0 24 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0 1 1 1 0 0 0 56 (DEFAULT) ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 1 1 1 0 1 1 1 119 1 1 1 1 0 0 0 120 (INTEGER MODE ONLY) 1 1 1 1 0 0 1 121 (INTEGER MODE ONLY) 1 1 1 1 0 1 0 122 (INTEGER MODE ONLY) 1 1 1 1 0 1 1 123 (INTEGER MODE ONLY) DB0 08546-038 RESERVED Figure 38. Register 0—Integer Divide Control Register Map REGISTER 1—MODULUS DIVIDE CONTROL (DEFAULT: 0x003001) MODULUS VALUE 0 0 0 0 0 0 0 0 0 0 CONTROL BITS DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 MD10 MD9 MD6 MD5 MD4 MD3 MD2 MD1 MD0 C3(0) C2(0) C1(1) MD8 MD7 DB1 DB0 MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0 MODULUS VALUE 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 2 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 1 1 0 0 0 0 0 0 0 0 0 1536 (DEFAULT) ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 1 1 1 1 1 1 1 1 1 1 1 2047 Figure 39. Register 1—Modulus Divide Control Register Map Rev. B | Page 16 of 32 08546-039 RESERVED DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 Data Sheet ADRF6601 REGISTER 2—FRACTIONAL DIVIDE CONTROL (DEFAULT: 0x001802) RESERVED 0 0 0 0 0 FD10 FD9 FD8 FD7 DB9 DB8 DB7 DB6 DB5 DB4 DB3 FD6 FD5 FD4 FD3 FD2 FD1 FD0 DB2 DB1 DB0 C3(0) C2(1) C1(0) 0 0 FD10 FD9 FD8 FD7 FD6 FD5 FD4 FD3 FD2 FD1 FD0 FRACTIONAL VALUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0 1 1 0 0 0 0 0 0 0 0 768 (DEFAULT) ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0 0 DB12 DB11 DB10 08546-040 0 CONTROL BITS FRACTIONAL VALUE DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 ... 100 ms, set the PLEN bit to 1 (Register 5, Bit DB6). After this procedure is complete, the other registers should be programmed in the following order: Register 7, Register 6, Register 4, Register 3, Register 2, Register 1. Then, after a delay of >100 ms, Register 0 should be programmed. Rev. B | Page 20 of 32 Data Sheet ADRF6601 LO SELECTION LOGIC The downconverting mixer in the ADRF6601 can be used without the internal PLL by applying an external differential LO to Pin 37 and Pin 38 (LON and LOP). In addition, when using an LO generated by the internal PLL, the LO signal can be accessed directly at these same pins. This function can be used for debugging purposes, or the internally generated LO can be used as the LO for a separate mixer. The operation of the LO generation and whether LOP and LON are inputs or outputs are determined by the logic levels applied at Pin 16 (PLL_EN) and Pin 36 (LODRV_EN), as well as Bit DB3 (LDRV) and Bit DB6 (PLEN) in Register 5. The combination of externally applied logic and internal bits required for particular LO functions is given in Table 9. Table 9. LO Selection Logic Pin 16 (PLL_EN) 0 0 1 1 1 1 1 Pins 1 Pin 36 (LODRV_EN) X X X 0 X 1 Register 5 Bits1 Bit DB6 (PLEN) Bit DB3 (LDRV) 0 X 1 X 0 X 1 0 1 1 1 X X = don’t care. Rev. B | Page 21 of 32 Output Buffer Disabled Disabled Disabled Disabled Enabled Enabled Outputs LO External External External Internal Internal Internal ADRF6601 Data Sheet APPLICATIONS INFORMATION BASIC CONNECTIONS FOR OPERATION be ac-coupled and terminated with a 50 Ω resistor as shown in Figure 46. The reference signal, or a divided-down version of the reference signal, can be brought back off chip at the multiplexer output pin (MUXOUT). A lock detect signal and a voltage proportional to the ambient temperature can also be selected on the multiplexer output pin. Figure 46 shows the schematic for the ADRF6601 evaluation board. The six power supply pins should be individually decoupled using 100 pF and 0.1 µF capacitors located as close as possible to the device. In addition, the internal decoupling nodes (DECL3P3, DECL2P5, and DECLVCO) should be decoupled with the capacitor values shown in Figure 46. The loop filter is connected between the CP and VTUNE pins. When connected in this way, the internal VCO is operational. For information about the loop filter components, see the Evaluation Board Configuration Options section. The RF input is internally ac-coupled and needs no external bias. The IF outputs are open collector, and a bias inductor is required from these outputs to VCC. Operation with an external VCO is also possible. In this case, the loop filter components should be referred to ground. The output of the loop filter is connected to the input voltage pin of the external VCO. The output of the VCO is brought back into the device on the LOP and LON pins, using a balun if necessary. The reference frequency for the PLL should be from 12 MHz to 160 MHz and should be applied to the REF_IN pin, which should 1 2 3 4 5 VCC R19 0Ω R20 (0402) 0Ω (0402) R54 10kΩ (0402) S2 LO IN/OUT LON 4 3 C19 0.1µF (0402) C9 0.1µF (0402) C33 OPEN (0402) R51 OPEN (0402) R6 0Ω (0402) C8 100pF (0402) R26 0Ω (0402) C24 100pF (0402) R25 0Ω (0402) C22 100pF (0402) R24 0Ω (0402) C21 100pF (0402) R17 0Ω (0402) C18 100pF (0402) R7 0Ω (0402) C10 100pF (0402) C32 OPEN (0402) R50 OPEN (0402) VCC_MIX VCC_LO 22 27 VCC2 17 VCC1 10 1 T8 TC1-1-13+ REF_IN R70 49.9Ω (0402) R16 0Ω (0402) 12 14 DECL2P5 9 37 DIVIDER ÷2 BUFFER BUFFER FRACTION REG MODULUS INTEGER REG 2 DIV BY 4, 2, 1 2:1 MUX ADRF6601 26 THIRD-ORDER FRACTIONAL INTERPOLATOR ×2 N COUNTER 21 TO 123 6 ÷2 MUXOUT 13 C16 R18 100pF 0Ω (0402) (0402) C17 0.1µF (0402) C42 10µF (0603) DECL3P3 C12 R8 100pF 0Ω (0402) (0402) C11 0.1µF (0402) C41 OPEN (0603) SPI INTERFACE TEMP SENSOR 8 4 7 11 15 20 21 23 24 25 38 30 31 35 RSET R2 R37 OPEN 0Ω (0402) (0402) CP TEST POINT (ORANGE) R38 0Ω (0402) C14 22pF (0603) 29 3 5 39 CP R10 3.0kΩ (0603) C15 2.7nF (1206) C2 OPEN (0402) 40 18 C13 6.8pF (0603) R1 0Ω (0402) VTUNE C40 22pF (0603) 1 2 R59 0Ω 3 (0402) 4 RFOUT R43 0Ω 5 (0402) C29 0.1µF (0402) R12 0Ω (0402) C1 100pF (0402) Figure 46. Basic Connections for Operation of the ADRF6601 Rev. B | Page 22 of 32 IFN VCC +5V R63 OPEN (0402) C27 0.1µF (0402) 19 VTUNE DECLVCO IFP R62 0Ω (0402) RFIN IP3SET R27 0Ω (0402) R9 10kΩ R65 10kΩ (0402) (0402) R11 OPEN (0402) C43 10µF (0603) R28 0Ω (0402) CHARGE PUMP 250µA, 500µA (DEFAULT), 750µA, 1000µA – PHASE + FREQUENCY DETECTOR RFIN VCO CORE PRESCALER ÷2 MUX ÷4 REFOUT 16 36 C6 1nF (0402) C31 1nF (0402) REF_IN CLK VCC_V2I LE C20 0.1µF (0402) DATA C23 0.1µF (0402) C5 1nF LOP 38 1 (0402) 5 R52 OPEN (0402) C25 0.1µF (0402) 34 LODRV_EN C34 OPEN (0402) C7 0.1µF (0402) PLL_EN VCC_LO R56 0Ω (0402) R36 0Ω R30 (0402) 0Ω (0402) R57 0Ω (0402) R35 0Ω (0402) R53 10kΩ (0402) VCC RED +5V VCC1 RED R55 OPEN (0402) S1 OPEN P1 9-PIN DSUB 9 8 7 6 08546-046 A peak-to-peak differential swing on RFIN of 1 V (0.353 V rms for a sine wave input) results in an IF output power of 4.7 dBm. Data Sheet ADRF6601 AC TEST FIXTURE the signal generation and measurement equipment. Figure 47 shows the typical ac test setup used in the characterization of the ADRF6601. Characterization data for the ADRF6601 was taken under very strict test conditions. All possible techniques were used to achieve optimum accuracy and to remove degrading effects of ADRF6601 CHARACTERIZATION RACK DIAGRAM. ALL INSTRUMENTS ARE CONTROLLED BY A LAB COMPUTER VIA A USB TO GPIB CONTROLLER, DAISY CHAINED TO EACH INDIVIDUAL INSTRUMENT. RF1 AGILENT N5181A HP 11636A POWER DIVIDER RF2 AGILENT N5181A REF_IN AGILENT N5181A RFIN REF_IN ADRF6601 EVALUATION BOARD 9-PIN CONTROLLER DSUB AND 10-PIN DC HEADER IF_OUT ROHDE & SCHWARTZ FSEA30 AGILENT 34401A SET TO IDC (SET FOR SUPPLY CURRENT) GND VIA 10-PIN DC HEADER 5V dc VIA 10-PIN DC HEADER 3.3V dc VIA 10-PIN DC HEADER AGILENT 34980A WITH THREE 34921 MODULES AND ONE 34950 MODULE AGILENT E3631A 25V SET TO 3.3V, 6V SET TO 5V. RETURNS ARE JUMPERED TOGETHER Figure 47. ADRF6601 AC Test Setup Rev. B | Page 23 of 32 08546-047 5V dc MEASURED FOR SUPPLY CURRENT ADRF6601 Data Sheet EVALUATION BOARD Figure 50 shows the schematic of the RoHS-compliant evaluation board for the ADRF6601. This board has four layers and was designed using Rogers 4350 hybrid material to minimize high frequency losses. FR4 material is also adequate if the design can accept the slightly higher trace loss of this material. This board connects to the PC using a standard USB cable with a USB mini-connector at one end. An additional 25-pin male to 9-pin female adapter is required to mate the EVAL-ADF4XXXZ-USB board to the 9-pin D-Sub connector on the ADRF6601 evaluation board. The evaluation board is designed to operate using the internal VCO of the device (the default configuration) or with an external VCO. To use an external VCO, R62 and R12 should be removed. Place 0 Ω resistors in R63 and R11. The input of the external VCO should be connected to the VTUNE SMA connector, and the external VCO output should be connected to the LO IN/OUT SMA connector. In addition to these hardware changes, internal register settings must also be changed to enable operation with an external VCO (see the Register 6—VCO Control and VCO Enable (Default: 0x1E2106) section). Additional configuration options for the evaluation board are described in Table 10. EVALUATION BOARD CONTROL SOFTWARE The evaluation board can be connected to the PC using a PC USB port. To connect the evaluation board to a USB port, a USB adapter board (EVAL-ADF4XXXZ-USB) must be purchased from Analog Devices. 08546-053 Software to program the ADRF6601 is available for download from the ADRF6601 product page under the Evaluation Boards & Kits section. To install the software 1. Download and extract the zip file: ADRF6x0x_3p0p0_XP_install.exe file. 2. Follow the instructions in the read me file. Figure 48. Control Software Opening Menu Figure 49 shows the main window of the control software with the default settings displayed. Rev. B | Page 24 of 32 ADRF6601 08546-049 Data Sheet Figure 49. Main Window of the ADRF6601 Evaluation Board Software Rev. B | Page 25 of 32 3P3V_LDO 100PF AGND 0.1UF AGND AGND AGND REFIN R70 49.9 AGND AGND OSC_3P3V 1000PF C31 10PF 22000PF C3 C4 0 OSC_3P3V 1 R15 C12 C11 10UF 0 R8 AGND C41 3P3V1 1 AGND C10 100PF C9 0 R7 0.1UF VCC4 1 VCC 0 C14 22PF DNI R11 0 R37 0 R16 AGND 2P5V_LDO REFOUT DNI R49 VCO_LDO 1 VCC AGND C42 10UF P1-1 C13 6.8PF C18 100PF AGND C19 0.1UF AGND 0 R17 AGND AGND VCC2 1 100PF 0.1UF R2 1 R50 1K DNI CLK DNI R72 R62 R63 100K 0 40 39 37 36 DATA 1 LE 34 R54 10K 32 31 26 AGND C20 0.1UF VCC_LO VCC_LO1 1 C21 AGND IP3SET AGND AGND 100PF 0 R24 E-PAD PAD GNDRF 21 VCCBB 22 GNDRF 23 NC 24 RFRTN 25 RFIN VCCRF 27 AGND 20 19 29 GNDRF 28 IP3SET GNDRF 30 AGND AGND C7 VCC_LO 1 P1-T7 0.1UF 0 R6 4 2 AGND C8 NC 5 100PF T8 OUTPUT_EN 18 VCC AGND 1 VCC5 R53 10K 33 17 3 2 AGND 100PF DNI C34 AGND 100PF DNI 16 AGND R56 10K AGND AGND 15 14 Z1 35 3 LO_EXTERN P3-T7 1 P4-T7 P4-T7 AGND AGND LO VCC R58 DNI VCC AGND L2 TBD AGND C23 DNI C36 DNI C35 0 0 R48 0 R47 VCC_BB1 1 VCC_BB 0.1UF L1 TBD 0 VCC_LO 0 R32 IFP AGND IFN AGND VCC_BB VCC 1 VCC R68 AGND 0 R67 0 DNI AGND RFIN VCC_RF IP3SET R28 AGND C25 C22 VCC_RF VCC_RF 1 0.1UF R25 R29 VCC_BB C24 AGND 0 R31 OUTPUT_EN 100PF 0 R26 AGND 100PF AGND TBD R60 C27 TBD 0.1UF R27 VCC_LO IP3SET 1 0 R69 0 10UF P3-T7 P3-T7 6 6A 5 5A 4 4A SNS1 SNS 0 T7 R43 AGND P4-T7 1 S2 R52 1K DNI R51 1K DNI 13 C33 12 11 100PF DNI C32 10 VCC 9 2P5_LDO 38 R55 10K VCC1 1 VCC C5 1NF C6 1NF 8 REFOUT/LOCK 7 REFGND 6 REF_IN 5 RSET 4 GNDCP 3 CPOUT 2 3P3_LDO 1 VCC 0 P1 AGND P1-1 1 R19 2 0 3 4 R30 5 0 P1-6 6 R57 7 0 R36 8 0 9 1 AMP745781-4 DIG_GND 22PF C40 AGND C16 0 R18 10K R65 C17 2P5V 1 AGND AGND AGND 10UF 100PF C1 AGND C43 0 R1 R12 0.1UF C2 R9 10K 2.7NF C15 AGND VCO_LDO R10 R71 R38 DNI 0 3K TBD 3 2 CP 1 Y1 R14 VCO_LDO GNDDIG AGND VCO_IN DATA VCC_LO VTUNE OUTPUTEN 0 INBB C28 R66 P1-6 LOP R35 LON 0 CLK 1 GNDBB S1 LE VCO_LDO VCC_SENSE T3 AGND OUT VCC AGND VCC_SENSE AGND 3P3V_LDO 2P5V_LDO LO_EXTERN 4 1 1 LOEXTEN GNDDIG GND R20 VCC_LO 0 R34 DNI R44 AGND 0.1UF C29 2 R33 IPBB IFP 0 Rev. B | Page 26 of 32 GNDBB Figure 50. Evaluation Board Schematic IFN GND 1 R59 0 J1 1 J1 2 J1 3 J1 4 J1 5 J1 6 J1 7 J1 8 J1 9 J1 10 GND1 GND2 1 1 AGND AGND VCC 6 TC4-1W 3 1 1A 2 2A 3 3A 08546-050 P1-T7 P1-T7 ADRF6601 Data Sheet SCHEMATIC AND ARTWORK 0 ADRF6601 Figure 51. Evaluation Board Layout (Bottom) 08546-052 08546-051 Data Sheet Figure 52. Evaluation Board Layout (Top) Rev. B | Page 27 of 32 ADRF6601 Data Sheet EVALUATION BOARD CONFIGURATION OPTIONS Table 10. Component S1, R55, R56, R33 Description LO select. Switch and resistors to ground the LODRV_EN pin. The LODRV_EN pin setting, in combination with internal register settings, determines whether the LOP and LON pins function as inputs or outputs (see the LO Selection Logic section for more information). LO IN/OUT SMA Connector REFIN SMA Connector REFOUT SMA Connector LO input/output. An external 1× LO or 2× LO signal can be applied to this single-ended input connector. Reference input. The input reference frequency for the PLL is applied to this connector. Input impedance is 50 Ω. Multiplexer output. The REFOUT connector connects directly to the MUXOUT pin. The on-board multiplexer can be programmed to bring out the following signals: REF_IN, 2× REF_IN, REF_IN/2, and REF_IN/4; temperature sensor output voltage; and lock detect indicator. Charge pump test point. The unfiltered charge pump signal can be probed at this test point. Note that the CP pin should not be probed during critical measurements such as phase noise. Loop filter. Loop filter components. CP Test Point R37, C14, R9, R10, C15, C13, R65, C40 R11, R12 R62, R63, VTUNE SMA Connector R2 RFIN SMA Connector T3 Loop filter return. When the internal VCO is used, the loop filter components should be returned to Pin 40 (DECLVCO) by installing a 0 Ω resistor in R12. When an external VCO is used, the loop filter components can be returned to ground by installing a 0 Ω resistor in R11. Internal vs. external VCO. When the internal VCO is enabled, the loop filter components are connected directly to the VTUNE pin (Pin 39) by installing a 0 Ω resistor in R62. To use an external VCO, R62 should be left open. A 0 Ω resistor should be installed in R63, and the voltage input of the VCO should be connected to the VTUNE SMA connector. The output of the VCO is brought back into the PLL via the LO IN/OUT SMA connector. RSET pin. This pin is unused and should be left open. RF input. The RF input signal should be applied to the RFIN SMA connector. The RF input of the ADRF6601 is ac-coupled; therefore, no bias is necessary. IF output. The differential IF output signals from the ADRF6601 (IFP and IFN) are converted to a single-ended signal by T3. Rev. B | Page 28 of 32 Default Condition/ Option Settings S1 = R55 = open (not installed), R56 = R33 = 0 Ω, LODRV_EN = 0 V LO input Lock detect R12 = 0 Ω (0402), R11 = open (0402) R62 = 0 Ω (0402), R63 = open (0402) R2 = open (0402) R3 = R23 = open (0402) Data Sheet ADRF6601 OUTLINE DIMENSIONS 6.10 6.00 SQ 5.90 0.60 MAX 0.60 MAX PIN 1 INDICATOR 31 30 0.50 BSC 10 21 20 TOP VIEW 1.00 0.85 0.80 SEATING PLANE 12° MAX 0.50 0.40 0.30 0.80 MAX 0.65 TYP 0.30 0.23 0.18 4.25 4.10 SQ 3.95 EXPOSED PAD (BOTTOM VIEW) 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF 11 0.20 MIN 4.50 REF FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2 06-01-2012-D 5.85 5.75 SQ 5.65 PIN 1 INDICATOR 40 1 Figure 53. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 6 mm × 6 mm Body, Very Thin Quad (CP-40-1) Dimensions shown in millimeters ORDERING GUIDE Model1 ADRF6601ACPZ-R7 ADRF6601-EVALZ 1 Temperature Range −40°C to +85°C Package Description 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ] Evaluation Board Z = RoHS Compliant Part. Rev. B | Page 29 of 32 Package Option CP-40-1 ADRF6601 Data Sheet NOTES Rev. B | Page 30 of 32 Data Sheet ADRF6601 NOTES Rev. B | Page 31 of 32 ADRF6601 Data Sheet NOTES ©2010–2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08546-0-1/14(B) Rev. B | Page 32 of 32
ADRF6601-EVALZ 价格&库存

很抱歉,暂时无法提供与“ADRF6601-EVALZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ADRF6601-EVALZ
  •  国内价格 香港价格
  • 1+1489.376201+179.58510

库存:2