0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADRF6602ACPZ-R7

ADRF6602ACPZ-R7

  • 厂商:

    AD(亚德诺)

  • 封装:

    VFQFN40_EP,CSP

  • 描述:

    IC MIXER 1.55-2.15GHZ 40LFCSP

  • 数据手册
  • 价格&库存
ADRF6602ACPZ-R7 数据手册
1000 MHz to 3100 MHz Rx Mixer with Integrated Fractional-N PLL and VCO ADRF6602 Data Sheet FEATURES The PLL can support input reference frequencies from 12 MHz to 160 MHz. The PFD output controls a charge pump whose output drives an off-chip loop filter. Rx mixer with integrated fractional-N PLL RF input frequency range: 1000 MHz to 3100 MHz Internal LO frequency range: 1550 MHz to 2150 MHz Input P1dB: 14.8 dBm Input IP3: 30 dBm IIP3 optimization via external pin SSB noise figure IP3SET pin open: 13.8 dB IP3SET pin at 3.3 V: 15 dB Voltage conversion gain: 6.5 dB Matched 200 Ω IF output impedance IF 3 dB bandwidth: 500 MHz Programmable via 3-wire SPI interface 40-lead, 6 mm × 6 mm LFCSP The loop filter output is then applied to an integrated VCO. The VCO output at 2× fLO is applied to an LO divider, as well as to a programmable PLL divider. The programmable PLL divider is controlled by a Σ-Δ modulator (SDM). The modulus of the SDM can be programmed from 1 to 2047. The active mixer converts the single-ended 50 Ω RF input to a 200 Ω differential IF output. The IF output can operate up to 500 MHz. The ADRF6602 is fabricated using an advanced silicon-germanium BiCMOS process. It is available in a 40-lead, RoHS-compliant, 6 mm × 6 mm LFCSP with an exposed paddle. Performance is specified over the −40°C to +85°C temperature range. APPLICATIONS Table 1. Cellular base stations GENERAL DESCRIPTION Part No. ADRF6601 The ADRF6602 is a high dynamic range active mixer with integrated phase-locked loop (PLL) and voltage controlled oscillator (VCO). The PLL/synthesizer uses a fractional-N PLL to generate a fLO input to the mixer. The reference input can be divided or multiplied and then applied to the PLL phase frequency detector (PFD). ADRF6602 ADRF6603 ADRF6604 Internal LO Range 750 MHz 1160 MHz 1550 MHz 2150 MHz 2100 MHz 2600 MHz 2500 MHz 2900 MHz ±3 dB RFIN Balun Range 300 MHz 2500 MHz 1000 MHz 3100 MHz 1100 MHz 3200 MHz 1200 MHz 3600 MHz ±1 dB RFIN Balun Range 450 MHz 1600 MHz 1350 MHz 2750 MHz 1450 MHz 2850 MHz 1600 MHz 3200 MHz FUNCTIONAL BLOCK DIAGRAM VCC1 VCC2 VCC_LO VCC_MIX VCC_V2I VCC_LO 1 10 17 22 27 34 NC NC 32 INTERNAL LO RANGE 1550MHz TO 2150MHz LON 37 BUFFER LOP 38 BUFFER PLL_EN 16 FRACTION MODULUS REG SPI INTERFACE LE 14 REF_IN 6 ÷2 ÷4 N COUNTER 21 TO 123 MUX TEMP SENSOR 7 DECL3P3 2.5V LDO 9 DECL2P5 VCO LDO 40 DECLVCO VCO CORE PRESCALER ÷2 29 IP3SET CHARGE PUMP 250µA, 500µA (DEFAULT), 750µA, 1000µA – PHASE + FREQUENCY DETECTOR 8 4 DIV BY 2, 1 2 26 RF IN THIRD-ORDER FRACTIONAL INTERPOLATOR ×2 MUXOUT 2:1 MUX INTEGER REG 3.3V LDO 11 15 20 21 23 24 25 28 30 31 35 5 RSET GND 3 39 18 19 CP VTUNE IFP IFN 08545-001 DATA 12 CLK 13 33 ADRF6602 LODRV_EN 36 Figure 1. Rev. D Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2010–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADRF6602 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 RF Specifications .......................................................................... 3 Synthesizer/PLL Specifications ................................................... 4 Register 3—Σ-Δ Modulator Dither Control (Default: 0x10000B) .................................................................................... 17 Register 4—PLL Charge Pump, PFD, and Reference Path Control (Default: 0x0AA7E4)................................................... 18 Register 5—PLL Enable and LO Path Control (Default: 0x0000E5) .................................................................................... 19 Register 6—VCO Control and VCO Enable (Default: 0x1E2106) .................................................................................... 19 Logic Input and Power Specifications ....................................... 4 Register 7—Mixer Bias Enable and External VCO Enable (Default: 0x000007).................................................................... 19 Timing Characteristics ................................................................ 5 Theory of Operation ...................................................................... 20 Absolute Maximum Ratings............................................................ 6 Programming the ADRF6602................................................... 20 ESD Caution .................................................................................. 6 Initialization Sequence .............................................................. 20 Pin Configuration and Function Descriptions ............................. 7 LO Selection Logic ..................................................................... 21 Typical Performance Characteristics ............................................. 9 Applications Information .............................................................. 22 RF Frequency Sweep .................................................................... 9 Basic Connections for Operation ............................................. 22 IF Frequency Sweep ................................................................... 10 AC Test Fixture ............................................................................... 23 Spurious Performance................................................................ 15 Evaluation Board ............................................................................ 24 Register Structure ........................................................................... 16 Evaluation Board Control Software ......................................... 24 Register 0—Integer Divide Control (Default: 0x0001C0)..... 16 Schematic and Artwork ............................................................. 26 Register 1—Modulus Divide Control (Default: 0x003001) .. 16 Evaluation Board Configuration Options ............................... 28 Register 2—Fractional Divide Control (Default: 0x001802) 17 Outline Dimensions ....................................................................... 29 Ordering Guide .......................................................................... 29 REVISION HISTORY 10/13—Rev. C to Rev. D Changed “1550 MHz to 2150 MHz” to “1000 MHz to 3100 MHz” in Product Title ............................................................ 1 Updated Outline Dimensions ....................................................... 29 Changes to Figure 20...................................................................... 14 Changes to Figure 21...................................................................... 17 Changes to Figure 22...................................................................... 18 Changes to Figure 23...................................................................... 19 9/10—Rev. B to Rev. C Changes to Features Section............................................................ 1 Changes to Table 2 ............................................................................ 3 Changes to Table 3 and Table 4 ....................................................... 4 Changes to Table 6 ............................................................................ 6 Changes to Typical Performance Characteristics Section ........... 9 Added Spurious Performance Section ......................................... 15 Changes to Programming the ADRF6602 Section .................... 20 Added AC Test Fixture Section and Figure 47 ........................... 23 Changes to Evaluation Board Control Software Section........... 24 4/10—Rev. 0 to Rev. A Added Table 1 ....................................................................................1 Changes to Figure 1 ...........................................................................1 Change to Synthesizer/PLL Specifications Section .......................4 Change to Table 3 ..............................................................................4 Changes to Initializing Sequence Section ................................... 15 Changes to Figure 16...................................................................... 12 Changes to Figure 17...................................................................... 13 Changes to Figure 19...................................................................... 14 Changes to Figure 21...................................................................... 17 Changes to Figure 24...................................................................... 20 7/10—Rev. A to Rev. B Changes to Table 1 ............................................................................ 1 Changes to Table 6 ............................................................................ 6 1/10—Revision 0: Initial Version Rev. D | Page 2 of 32 Data Sheet ADRF6602 SPECIFICATIONS RF SPECIFICATIONS VS = 5 V; ambient temperature (TA) = 25°C; fREF = 153.6 MHz; fPFD = 38.4 MHz; high-side LO injection; fIF = 140 MHz; IIP3 optimized using CDAC (0x0) and IP3SET (3.3 V), unless otherwise noted. Table 2. Parameter INTERNAL LO FREQUENCY RANGE RF INPUT FREQUENCY RANGE RF INPUT AT 1410 MHz Input Return Loss Input P1dB Second-Order Intercept (IIP2) Third-Order Intercept (IIP3) Single-Side Band Noise Figure LO-to-IF Leakage RF INPUT AT 1760 MHz Input Return Loss Input P1dB Second-Order Intercept (IIP2) Third-Order Intercept (IIP3) Single-Side Band Noise Figure LO-to-IF Leakage RF INPUT AT 2010 MHz Input Return Loss Input P1dB Second-Order Intercept (IIP2) Third-Order Intercept (IIP3) Single-Side Band Noise Figure LO-to-IF Leakage IF OUTPUT Voltage Conversion Gain IF Bandwidth Output Common-Mode Voltage Gain Flatness Gain Variation Output Swing Differential Output Return Loss LO INPUT/OUTPUT (LOP, LON) Frequency Range Output Level (LO as Output) Input Level (LO as Input) Input Impedance Test Conditions/Comments ±3 dB RF input range Min 1550 1000 Relative to 50 Ω (can be improved with external match) −5 dBm each tone (10 MHz spacing between tones) −5 dBm each tone (10 MHz spacing between tones) IP3SET = 3.3 V IP3SET = open At 1× LO frequency, 50 Ω termination at the RF port Relative to 50 Ω (can be improved with external match) −5 dBm each tone (10 MHz spacing between tones) −5 dBm each tone (10 MHz spacing between tones) IP3SET = 3.3 V IP3SET = open At 1× LO frequency, 50 Ω termination at the RF port Relative to 50 Ω (can be improved with external match) −5 dBm each tone (10 MHz spacing between tones) −5 dBm each tone (10 MHz spacing between tones) IP3SET = 3.3 V IP3SET = open At 1× LO frequency, 50 Ω termination at the RF port Differential 200 Ω load Small signal 3 dB bandwidth External pull-up balun or inductors required Over frequency range, any 5 MHz/50 MHz Over full temperature range Differential 200 Ω load Measured through 4:1 balun Externally applied 1× LO input, internal PLL disabled Typ −6 Rev. D | Page 3 of 32 Unit MHz MHz −9 15.5 54.0 33.5 15.2 14.1 −45 dB dBm dBm dBm dB dB dBm −15 15 53.5 30.8 14.9 13.5 −43 dB dBm dBm dBm dB dB dBm fPFD fLO = 1550 MHz to 2150 MHz, fPFD = 38.4 MHz 1 kHz to 10 kHz offset 100 kHz offset 500 kHz offset 1 MHz offset 5 MHz offset 10 MHz offset 20 MHz offset 1 kHz to 40 MHz integration bandwidth Min Typ Max Unit 2150 −220.5 MHz dBc/Hz −105 −80 −80 dBc dBc dBc −92 −103 −122 −128 −140 −147 −150 0.3 dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz °rms MHz 1550 20 40 REF_IN, MUXOUT pins 12 160 4 VOL (lock detect output selected) VOH (lock detect output selected) 0.25 2.7 50 Programmable to 250 µA, 500 µA, 750 µA, 1 mA 500 1 MHz pF V V % µA V 2.8 The figure of merit (FOM) is computed as phase noise (dBc/Hz) – 10Log10(fPFD) – 20Log10(fLO/fPFD). The FOM was measured across the full LO range, with fREF = 80 MHz, fREF power = 10 dBm (500 V/µs slew rate) with a 40 MHz fPFD. The FOM was computed at 50 kHz offset. LOGIC INPUT AND POWER SPECIFICATIONS VS = 5 V; ambient temperature (TA) = 25°C; fREF = 153.6 MHz; fPFD = 38.4 MHz; high-side LO injection; fIF = 140 MHz; IIP3 optimized using CDAC (0x0) and IP3SET (3.3 V), unless otherwise noted. Table 4. Parameter LOGIC INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current, IINH/IINL Input Capacitance, CIN POWER SUPPLIES Voltage Range Supply Current Test Conditions/Comments CLK, DATA, LE Min Typ 1.4 0 Max Unit 3.3 0.7 V V µA pF 5.25 V mA mA mA mA mA 0.1 5 VCC1, VCC2, VCC_LO, VCC_MIX, and VCC_V2I pins 4.75 PLL only External LO mode (internal PLL disabled, LO output buffer off, IP3SET pin = 3.3 V) Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer on) Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer off) Power-down mode Rev. D | Page 4 of 32 5 97 168 277 263 30 Data Sheet ADRF6602 TIMING CHARACTERISTICS VCC2 = 5 V ± 5%. Table 5. Parameter t1 t2 t3 t4 t5 t6 t7 Limit 20 10 10 25 25 10 20 Unit ns min ns min ns min ns min ns min ns min ns min Description LE setup time DATA-to-CLK setup time DATA-to-CLK hold time CLK high duration CLK low duration CLK-to-LE setup time LE pulse width Timing Diagram t4 t5 CLK t2 DATA DB23 (MSB) t3 DB22 DB2 (CONTROL BIT C3) DB1 (CONTROL BIT C2) t1 DB0 (LSB) (CONTROL BIT C1) t7 08545-002 t6 LE Figure 2. Timing Diagram Rev. D | Page 5 of 32 ADRF6602 Data Sheet ABSOLUTE MAXIMUM RATINGS Table 6. Parameter Supply Voltage, VCC1, VCC2, VCC_LO, VCC_MIX, VCC_V2I Digital I/O, CLK, DATA, LE IFP, IFN RFIN LOP, LON θJA (Exposed Paddle Soldered Down) Maximum Junction Temperature Operating Temperature Range Storage Temperature Range Rating −0.5 V to +5.5 V −0.3 V to +3.6 V −0.3 V to VCC_V2I + 0.3 V 16 dBm 13 dBm 35°C/W 150°C −40°C to +85°C −65°C to +150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION Rev. D | Page 6 of 32 Data Sheet ADRF6602 40 39 38 37 36 35 34 33 32 31 DECLVCO VTUNE LOP LON LODRV_EN GND VCC_LO NC NC GND PIN CONFIGURATION AND FUNCTION DESCRIPTIONS PIN 1 INDICATOR ADRF6602 TOP VIEW (Not to Scale) 30 29 28 27 26 25 24 23 22 21 GND IP3SET GND VCC_V2I RFIN GND GND GND VCC_MIX GND NOTES 1. NC = NO CONNECT. 2. THE EXPOSED PADDLE SHOULD BE SOLDERED TO A LOW IMPEDANCE GROUND PLANE. 08545-003 GND DATA CLK LE GND PLL_EN VCC_LO IFP IFN GND 11 12 13 14 15 16 17 18 19 20 VCC1 1 DECL3P3 2 CP 3 GND 4 RSET 5 REF_IN 6 GND 7 MUXOUT 8 DECL2P5 9 VCC2 10 Figure 3. Pin Configuration Table 7. Pin Function Descriptions Pin No. 1 Mnemonic VCC1 2 3 4, 7, 11, 15, 20, 21, 23, 24, 25, 28, 30, 31, 35 5 DECL3P3 CP GND RSET Description Power Supply for the 3.3 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin. Decoupling Node for 3.3 V LDO. Connect a 0.1 µF capacitor between this pin and ground. Charge Pump Output Pin. Connect to VTUNE through loop filter. Ground. Connect these pins to a low impedance ground plane. Charge Pump Current. The nominal charge pump current can be set to 250 µA, 500 µA, 750 µA, or 1 mA using Bit DB11 and Bit DB10 in Register 4 and by setting Bit DB18 in Register 4 to 0 (internal reference current). In this mode, no external RSET is required. If Bit DB18 is set to 1, the four nominal charge pump currents (INOMINAL) can be externally adjusted according to the following equation:  217.4 × I CP R SET =   I NOMINAL 6 8 REF_IN MUXOUT 9 10 DECL2P5 VCC2 12 13 DATA CLK 14 LE 16 PLL_EN 17, 34 VCC_LO 18, 19 IFP, IFN   − 37.8 Ω   Reference Input. Nominal input level is 1 V p-p. Input range is 12 MHz to 160 MHz. Multiplexer Output. This output can be programmed to provide the reference output signal or the lock detect signal. The output is selected by programming the appropriate register. Decoupling Node for 2.5 V LDO. Connect a 0.1 µF capacitor between this pin and ground. Power Supply for the 2.5 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin. Serial Data Input. The serial data input is loaded MSB first; the three LSBs are the control bits. Serial Clock Input. The serial clock input is used to clock in the serial data to the registers. The data is latched into the 24-bit shift register on the CLK rising edge. Maximum clock frequency is 20 MHz. Load Enable. When the LE input pin goes high, the data stored in the shift registers is loaded into one of the eight registers. The relevant latch is selected by the three control bits of the 24-bit word. PLL Enable. Switch between internal PLL and external LO input. When this pin is logic high, the mixer LO is automatically switched to the internal PLL and the internal PLL is powered up. When this pin is logic low, the internal PLL is powered down and the external LO input is routed to the mixer LO inputs. The SPI can also be used to switch modes. Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin. Mixer IF Outputs. These outputs should be pulled to VCC with RF chokes. Rev. D | Page 7 of 32 ADRF6602 Data Sheet Pin No. 22 Mnemonic VCC_MIX 26 27 RFIN VCC_V2I 29 32, 33 36 IP3SET NC LODRV_EN 37, 38 LON, LOP 39 VTUNE 40 DECLVCO EPAD Description Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin. RF Input (Single-Ended, 50 Ω). Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin. Connect a resistor from this pin to a 5 V supply to adjust IIP3. Normally leave open. No Connection. LO Driver Enable. Together with Pin 16 (PLL_EN), this digital input pin determines whether the LOP and LON pins operate as inputs or outputs. LOP and LON become inputs if the PLL_EN pin is low or if the PLL_EN pin is set high with the PLEN bit (DB6 in Register 5) set to 0. LOP and LON become outputs if either the LODRV_EN pin or the LDRV bit (DB3 in Register 5) is set to 1 while the PLL_EN pin is set high. External LO drive frequency must be 1× LO. This pin should not be left floating. Local Oscillator Input/Output. The internally generated 1× LO is available on these pins. When internal LO generation is disabled, an external 1× LO can be applied to these pins. VCO Control Voltage Input. This pin is driven by the output of the loop filter. Nominal input voltage range on this pin is 1.5 V to 2.5 V. Decoupling Node for VCO LDO. Connect a 100 pF capacitor and a 10 µF capacitor between this pin and ground. Exposed Paddle. The exposed paddle should be soldered to a low impedance ground plane. Rev. D | Page 8 of 32 Data Sheet ADRF6602 TYPICAL PERFORMANCE CHARACTERISTICS RF FREQUENCY SWEEP CDAC = 0x0, internally generated high-side LO, RFIN = −5 dBm, fIF = 140 MHz, unless otherwise noted. 5 4 45 IP3SET = OPEN IP3SET = 3.3V TA = +85°C TA = +25°C TA = –40°C 3 IP3SET = OPEN IP3SET = 3.3V TA = +85°C TA = +25°C TA = –40°C 40 INPUT IP3 (dBm) GAIN (dB) 2 1 0 –1 35 30 –2 25 –3 1510 1610 1710 1810 1910 2010 RF FREQUENCY (MHz) 20 1410 08545-104 –5 1410 TA = +85°C TA = +25°C TA = –40°C 19 1810 1910 2010 IP3SET = OPEN IP3SET = 3.3V TA = +85°C TA = +25°C TA = –40°C 18 INPUT P1dB (dBm) INPUT IP2 (dBm) 80 1710 Figure 7. Input IP3 vs. RF Frequency 20 IP3SET = OPEN IP3SET = 3.3V 1610 RF FREQUENCY (MHz) Figure 4. Gain vs. RF Frequency 90 1510 08545-107 –4 70 60 50 17 16 15 14 13 12 40 1610 1710 1810 1910 2010 RF FREQUENCY (MHz) 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1410 IP3SET = OPEN IP3SET = 3.3V TA = +85°C TA = +25°C TA = –40°C 1510 1610 1710 1810 1510 1610 1710 1810 1910 RF FREQUENCY (MHz) Figure 8. Input P1dB vs. RF Frequency 1910 RF FREQUENCY (MHz) 2010 08545-106 NOISE FIGURE (dB) Figure 5. Input IP2 vs. RF Frequency 10 1410 Figure 6. Noise Figure vs. RF Frequency Rev. D | Page 9 of 32 2010 08545-108 1510 08545-105 11 30 1410 ADRF6602 Data Sheet IF FREQUENCY SWEEP CDAC = 0x0, internally generated swept low-side LO, fRF = 1960 MHz, RFIN = −5 dBm, unless otherwise noted. 5 4 IP3SET = OPEN IP3SET = 3.3V 45 TA = +85°C TA = +25°C TA = –40°C 40 IP3SET = OPEN IP3SET = 3.3V TA = +85°C TA = +25°C TA = –40°C 3 35 INPUT IP3 (dBm) GAIN (dB) 2 1 0 –1 30 25 20 –2 15 –3 IF FREQUENCY (MHz) 5 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 08545-110 –5 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 IF FREQUENCY (MHz) Figure 9. Gain vs. IF Frequency 90 IP3SET = OPEN IP3SET = 3.3V Figure 12. Input IP3 vs. IF Frequency, RFIN = −5 dBm 20 TA = +85°C TA = +25°C TA = –40°C 18 IP3SET = OPEN IP3SET = 3.3V TA = +85°C TA = +25°C TA = –40°C 16 INPUT P1dB (dBm) INPUT IP2 (dBm) 80 08545-113 10 –4 70 60 50 14 12 10 8 6 4 40 Figure 10. Input IP2 vs. IF Frequency, RFIN = −5 dBm 20 18 14 12 10 8 6 4 TA = +85°C TA = +25°C TA = –40°C IF FREQUENCY (MHz) 08545-112 NOISE FIGURE (dB) 16 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 IF FREQUENCY (MHz) Figure 13. Input P1dB vs. IF Frequency IP3SET = OPEN IP3SET = 3.3V 2 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 Figure 11. Noise Figure vs. IF Frequency Rev. D | Page 10 of 32 08545-114 IF FREQUENCY (MHz) 08545-111 2 30 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 Data Sheet 0 0 IP3SET = OPEN IP3SET = 3.3V –5 TA = +85°C TA = +25°C TA = –40°C –10 –2 –4 –15 RETURN LOSS (dB) –20 –25 –30 –35 –40 –10 –12 –14 –45 –16 –50 1750 1850 1950 2050 2150 LO FREQUENCY (MHz) Figure 14. LO-to-IF Feedthrough vs. LO Frequency, LO Output Turned Off, CDAC = 0x0 –30 –20 1400 1500 1600 TA = +85°C TA = +25°C TA = –40°C 2000 2100 2200 2300 3.5 300 3.0 RESISTANCE 250 RESISTANCE (Ω) –60 –70 1950 2050 2150 LO FREQUENCY (MHz) Figure 15. LO-to-RF Leakage vs. LO Frequency, LO Output Turned Off 2.0 150 1.5 CAPACITANCE 100 1.0 50 0.5 0 50 08545-109 1850 2.5 200 –80 1750 1900 Figure 17. LO Input Return Loss vs. LO Frequency (Including TC1-1-13 Balun) –50 1650 1800 LO FREQUENCY (MHz) 350 IP3SET = OPEN IP3SET = 3.3V –40 –90 1550 1700 100 150 200 250 300 350 400 450 CAPACITANCE (pF) 1650 08545-115 –60 1550 08545-117 –18 –55 LO-TO-RF LEAKAGE (dBm) –6 –8 0 500 08545-118 LO-TO-IF FEEDTHROUGH (dBm) ADRF6602 IF FREQUENCY (MHz) Figure 18. IF Differential Output Impedance (R Parallel C Equivalent) 0 35 –10 IP3SET = OPEN IP3SET = 3.3V 30 NOISE FIGURE (dB) –30 –40 –50 25 20 –60 15 –80 1400 1500 1600 1700 1800 1900 2000 2100 2200 RF FREQUENCY (MHz) 2300 Figure 16. RF Input Return Loss vs. RF Frequency 10 –60 –50 –40 –30 –20 –10 CW BLOCKER LEVEL (dBm) Figure 19. SSB Noise Figure vs. 5 MHz Offset Blocker Level, LO Frequency = 2105 MHz, RF Frequency = 1965 MHz Rev. D | Page 11 of 32 0 08545-200 –70 08545-116 RETURN LOSS (dB) –20 ADRF6602 0 Data Sheet 5.0 IP3SET = OPEN IP3SET = 3.3V –5 TA = +85°C TA = +25°C TA = –40°C 4.0 –15 VTUNE VOLTAGE (V) –20 –25 –30 –35 –40 3.5 3.0 2.5 2.0 1.5 –45 1.0 –50 0.5 –55 1500 1700 1900 2100 2300 RF FREQUENCY (MHz) 0 1550 08545-119 –60 1300 1650 TA = +85°C TA = +25°C TA = –40°C 2050 2150 IP3SET = OPEN IP3SET = 3.3V TA = +85°C TA = +25°C TA = –40°C 300 –2 SUPPLY CURRENT (mA) LO OUTPUT AMPLITUDE (dBm) –1 1950 Figure 23. VTUNE vs. LO Frequency 350 IP3SET = OPEN IP3SET = 3.3V 1850 LO FREQUENCY (MHz) Figure 20. RF-to-IF Leakage vs. RF Frequency, High-Side LO, IF = 140 MHz, LO Output Turned Off 0 1750 08545-122 RF-TO-IF ISOLATION (dBc) –10 TA = +85°C TA = +25°C TA = –40°C 4.5 –3 –4 –5 –6 –7 250 200 150 –8 1750 1850 1950 2050 2150 LO FREQUENCY (MHz) 100 1550 08545-120 1650 1750 1850 1950 2050 2150 LO FREQUENCY (MHz) Figure 21. LO Output Amplitude vs. LO Frequency Figure 24. Supply Current vs. LO Frequency 20 2.0 1.9 15 IP3SET = OPEN IP3SET = 3.3V 1.8 VPTAT VOLTAGE (V) 10 5 0 –5 1.7 1.6 1.5 1.4 1.3 –10 1.2 –15 0 50 100 150 200 TIME (ns) Figure 22. Frequency Deviation from LO Frequency at LO = 1.97 GHz to 1.96 GHz vs. Lock Time 250 1.0 –55 –35 –15 5 25 45 TEMPERATURE (°C) 65 85 105 08545-124 1.1 –20 08545-222 FREQUENCY DEVIATION FROM 1960MHz (MHz) 1650 08545-123 –9 –10 1550 Figure 25. VPTAT Voltage vs. Temperature (IP3SET = Optimized, Open) Rev. D | Page 12 of 32 Data Sheet ADRF6602 Complementary cumulative distribution function (CCDF), fRF = 1960 MHz, fIF = 140 MHz. 70 60 50 40 30 20 TA = +85°C TA = +25°C TA = –40°C –0.5 0 0.5 1.0 1.5 2.0 60 50 40 30 20 TA = +85°C TA = +25°C TA = –40°C 2.5 GAIN (dB) 0 20 22 24 DISTRIBUTION PERCENTAGE (%) 70 60 50 40 30 20 TA = +85°C TA = +25°C TA = –40°C 10 45 50 55 60 65 70 75 80 70 60 50 40 30 20 TA = +85°C TA = +25°C TA = –40°C 0 9 10 11 100 DISTRIBUTION PERCENTAGE (%) 70 60 50 40 30 20 TA = +85°C TA = +25°C TA = –40°C 10 NOISE FIGURE (dB) 15 16 17 18 16 17 80 70 60 50 40 30 20 TA = +85°C TA = +25°C TA = –40°C 10 18 08545-127 DISTRIBUTION PERCENTAGE (%) 80 15 14 IP3SET = OPEN IP3SET = 3.3V 90 14 13 Figure 30. Input P1dB IP3SET = OPEN 13 12 INPUT P1dB (dBm) 90 12 36 80 Figure 27. Input IP2 0 11 34 10 INPUT IP2 (dBm) 100 32 IP3SET = OPEN IP3SET = 3.3V 90 08545-126 DISTRIBUTION PERCENTAGE (%) 100 80 0 40 30 Figure 29. Input IP3 IP3SET = OPEN IP3SET = 3.3V 90 28 INPUT IP3 (dBm) Figure 26. Gain 100 26 08545-129 –1.0 70 10 08545-125 10 80 08545-128 80 0 –1.5 IP3SET = OPEN IP3SET = 3.3V 90 DISTRIBUTION PERCENTAGE (%) 90 DISTRIBUTION PERCENTAGE (%) 100 IP3SET = OPEN IP3SET = 3.3V Figure 28. Noise Figure 0 –55 –53 –51 –49 –47 –45 –43 –41 –39 –37 LO FEEDTHROUGH (dBm) Figure 31. LO Feedthrough to IF, LO Output Turned Off Rev. D | Page 13 of 32 –35 08545-130 100 ADRF6602 Data Sheet Measured at IF output, CDAC = 0x0, IP3SET = open, internally generated high-side LO, fREF = 153.6 MHz, fPFD = 38.4 MHz, RFIN = −5 dBm, fIF = 140 MHz, unless otherwise noted. Phase noise measurements made at LO output, unless otherwise noted. 1.0 LO FREQUENCY = 2134.4MHz TA = +85°C TA = +25°C TA = –40°C –100 –110 –120 LO FREQUENCY = 1558.4MHz –130 –140 –150 0.8 0.7 0.6 0.5 0.4 0.3 0.2 10k 100k 1M 10M 100M OFFSET FREQUENCY (Hz) 0 1550 TA = +85°C TA = +25°C TA = –40°C PHASE NOISE (dBc/Hz) 2150 –100 –100 OFFSET = 1kHz –110 –120 OFFSET = 100kHz –130 –140 OFFSET = 5MHz –150 1750 1850 1950 2050 2150 LO FREQUENCY (MHz) –160 1550 08545-132 1650 Figure 33. PLL Reference Spurs vs. LO Frequency (2× PFD and 4× PFD) 1850 1950 2050 2150 Figure 36. Phase Noise vs. LO Frequency (1 kHz, 100 kHz, and 5 MHz Steps) –80 TA = +85°C TA = +25°C TA = –40°C –90 PHASE NOISE (dBc/Hz) –80 1750 LO FREQUENCY (MHz) TA = +85°C TA = +25°C TA = –40°C 3× PFD FREQUENCY 1× PFD FREQUENCY 1650 08545-134 SPURRS LEVEL (dBc) –95 –105 SPURRS LEVEL (dBc) 2050 TA = +85°C TA = +25°C TA = –40°C –90 –90 –85 –90 –95 –100 –100 –110 OFFSET = 10kHz –120 –130 –140 0.25× PFD FREQUENCY OFFSET = 1MHz –105 –150 1650 1750 1850 1950 LO FREQUENCY (MHz) 2050 2150 08545-232 –110 1550 1950 Figure 35. Integrated Phase Noise vs. LO Frequency –85 –75 1850 –80 2× PFD FREQUENCY 4× PFD FREQUENCY –80 –110 1550 1750 LO FREQUENCY (MHz) Figure 32. Phase Noise vs. Offset Frequency –75 1650 08545-133 0.1 08545-131 –160 1k TA = +85°C TA = +25°C TA = –40°C 0.9 Figure 34. PLL Reference Spurs vs. LO Frequency (0.25× PFD, 1× PFD, and 3× PFD) Rev. D | Page 14 of 32 –160 1550 1650 1750 1850 1950 2050 2150 LO FREQUENCY (MHz) Figure 37. Phase Noise vs. LO Frequency (10 kHz, 1 MHz Steps) 08545-135 PHASE NOISE (dBc/Hz) –90 INTEGRATED PHASE NOISE (°rms) –80 Data Sheet ADRF6602 SPURIOUS PERFORMANCE (N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board (see the Evaluation Board section). Mixer spurious products were measured in dB relative to the carrier (dBc) from the IF output power level. All spurious components greater than −125 dBc are shown. LO = 1550 MHz, RF = 1410 MHz (horizontal axis is m, vertical axis is n), and RFIN power = −10 dBm. N 0 −95.78 −27.96 −80.82 −105.61 −120.72 0 1 2 3 4 5 6 7 1 −36.11 0.00 −84.22 −93.37 −121.95 −122.11 M 2 −38.06 −75.14 −70.69 −112.15 −123.15 −122.03 −122.02 3 −43.03 −44.01 −83.52 −84.67 −120.95 −122.97 −121.46 −122.03 4 −81.04 −90.50 −121.89 −123.77 −123.53 −122.62 −121.44 LO = 1900 MHz, RF = 1760 MHz (horizontal axis is m, vertical axis is n), and RFIN power = −10 dBm. N 0 −96.17 −23.66 −69.90 −105.85 0 1 2 3 4 5 6 7 1 −35.62 0.00 −80.06 −107.79 −122.72 M 2 −23.14 −63.13 −71.05 −104.24 −121.39 −122.78 3 −51.42 −40.94 −86.55 −78.66 −122.69 −122.48 −122.39 4 −68.37 −95.26 −121.43 −124.20 −117.55 −123.67 −119.57 LO = 2150 MHz, RF = 2010 MHz (horizontal axis is m, vertical axis is n), and RFIN power = −10 dBm. N 0 1 2 3 4 5 6 7 0 −94.96 −21.91 −76.22 1 −36.89 0.00 −77.24 −97.36 −122.66 M 2 −22.24 −69.83 −75.74 −101.06 −122.37 −122.76 Rev. D | Page 15 of 32 3 +9.56 −31.34 −80.30 −76.16 −120.59 −121.11 −122.63 4 +9.56 +9.56 −87.09 −121.60 −125.16 −124.51 −122.41 −122.93 ADRF6602 Data Sheet REGISTER STRUCTURE This section provides the register maps for the ADRF6602. The three LSBs determine the register that is programmed. REGISTER 0—INTEGER DIVIDE CONTROL (DEFAULT: 0x0001C0) DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 0 0 0 0 0 0 0 0 0 0 0 0 0 INTEGER DIVIDE RATIO CONTROL BITS DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DM ID6 ID5 ID4 ID3 ID2 ID1 ID0 C3(0) C2(0) C1(0) DM DIVIDE MODE 0 FRACTIONAL (DEFAULT) 1 INTEGER DB1 ID6 ID5 ID4 ID3 ID2 ID1 ID0 INTEGER DIVIDE RATIO 0 0 1 0 1 0 1 21 (INTEGER MODE ONLY) 0 0 1 0 1 1 0 22 (INTEGER MODE ONLY) 0 0 1 0 1 1 1 23 (INTEGER MODE ONLY) 0 0 1 1 0 0 0 24 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... DB0 0 1 1 1 0 0 0 56 (DEFAULT) ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 1 1 1 0 1 1 1 119 1 1 1 1 0 0 0 120 (INTEGER MODE ONLY) 1 1 1 1 0 0 1 121 (INTEGER MODE ONLY) 1 1 1 1 0 1 0 122 (INTEGER MODE ONLY) 1 1 1 1 0 1 1 123 (INTEGER MODE ONLY) 08545-004 DIVIDE MODE RESERVED Figure 38. Register 0—Integer Divide Control Register Map RESERVED DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 0 0 0 0 0 0 0 0 0 0 DB13 DB12 DB11 DB10 MODULUS VALUE DB9 DB8 DB7 DB6 DB5 DB4 DB3 CONTROL BITS DB2 DB1 DB0 MD10 MD9 MD6 MD3 MD2 MD1 MD0 C3(0) C2(0) C1(1) MD10 0 0 ... ... 1 ... ... 1 MD9 0 0 ... ... 1 ... ... 1 MD8 MD8 0 0 ... ... 0 ... ... 1 MD7 MD7 0 0 ... ... 0 ... ... 1 MD6 0 0 ... ... 0 ... ... 1 MD5 MD5 0 0 ... ... 0 ... ... 1 MD4 MD4 0 0 ... ... 0 ... ... 1 Figure 39. Register 1—Modulus Divide Control Register Map Rev. D | Page 16 of 32 MD3 0 0 ... ... 0 ... ... 1 MD2 0 0 ... ... 0 ... ... 1 MD1 0 1 ... ... 0 ... ... 1 MD0 1 0 ... ... 0 ... ... 1 MODULUS VALUE 1 2 ... ... 1536 (DEFAULT) ... ... 2047 08545-005 REGISTER 1—MODULUS DIVIDE CONTROL (DEFAULT: 0x003001) Data Sheet ADRF6602 REGISTER 2—FRACTIONAL DIVIDE CONTROL (DEFAULT: 0x001802) 0 0 0 0 0 CONTROL BITS FRACTIONAL VALUE 0 0 0 0 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 FD0 DB2 DB1 DB0 0 FD10 FD9 FD8 FD7 FD6 FD5 FD4 FD3 FD2 FD1 C3(0) C2(1) C1(0) FD10 FD9 FD8 FD7 FD6 FD5 FD4 FD3 FD2 FD1 FD0 FRACTIONAL VALUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0 1 1 0 0 0 0 0 0 0 0 768 (DEFAULT) ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 100 ms, set the PLEN bit to 1 (Register 5, Bit DB6). After this procedure is followed, the other registers should be programmed in this order: Register 7, Register 6, Register 4, Register 3, Register 2, Register 1. Then, after a delay of >100 ms, Register 0 should be programmed. Rev. D | Page 20 of 32 Data Sheet ADRF6602 LO SELECTION LOGIC The downconverting mixer in the ADRF6602 can be used without the internal PLL by applying an external differential LO to Pin 37 and Pin 38 (LON and LOP). In addition, when using an LO generated by the internal PLL, the LO signal can be accessed directly at these same pins. This function can be used for debugging purposes, or the internally generated LO can be used as the LO for a separate mixer. The operation of the LO generation and whether LOP and LON are inputs or outputs are determined by the logic levels applied at Pin 16 (PLL_EN) and Pin 36 (LODRV_EN), as well as Bit DB3 (LDRV) and Bit DB6 (PLEN) in Register 5. The combination of externally applied logic and internal bits required for particular LO functions is given in Table 9. Table 9. LO Selection Logic Pin 16 (PLL_EN) 0 0 1 1 1 1 1 Pins 1 Pin 36 (LODRV_EN) X X X 0 X 1 Register 5 Bits1 Bit DB6 (PLEN) Bit DB3 (LDRV) 0 X 1 X 0 X 1 0 1 1 1 X X = don’t care. Rev. D | Page 21 of 32 Output Buffer Disabled Disabled Disabled Disabled Enabled Enabled Outputs LO External External External Internal Internal Internal ADRF6602 Data Sheet APPLICATIONS INFORMATION BASIC CONNECTIONS FOR OPERATION be ac-coupled and terminated with a 50 Ω resistor as shown in Figure 46. The reference signal, or a divided-down version of the reference signal, can be brought back off chip at the multiplexer output pin (MUXOUT). A lock detect signal and a voltage proportional to the ambient temperature can also be selected on the multiplexer output pin. Figure 46 shows the schematic for the ADRF6602 evaluation board. The six power supply pins should be individually decoupled using 100 pF and 0.1 µF capacitors located as close as possible to the device. In addition, the internal decoupling nodes (DECL3P3, DECL2P5, and DECLVCO) should be decoupled with the capacitor values shown in Figure 46. The loop filter is connected between the CP and VTUNE pins. When connected in this way, the internal VCO is operational. For information about the loop filter components, see the Evaluation Board Configuration Options section. The RF input is internally ac-coupled and needs no external bias. The IF outputs are open collector, and a bias inductor is required from these outputs to VCC. Operation with an external VCO is also possible. In this case, the loop filter components should be referred to ground. The output of the loop filter is connected to the input voltage pin of the external VCO. The output of the VCO is brought back into the device on the LOP and LON pins, using a balun if necessary. The reference frequency for the PLL should be from 12 MHz to 160 MHz and should be applied to the REF_IN pin, which should 1 2 3 VCC R54 10kΩ (0402) S2 LO IN/OUT LON 4 3 C5 1nF LOP 1 (0402) 5 REF_IN R70 49.9Ω (0402) C34 OPEN (0402) R52 OPEN (0402) C19 0.1µF (0402) C9 0.1µF (0402) C33 OPEN (0402) R51 OPEN (0402) R6 0Ω (0402) C8 100pF (0402) R26 0Ω (0402) C24 100pF (0402) R25 0Ω (0402) C22 100pF (0402) R25 0Ω (0402) C21 100pF (0402) R17 0Ω (0402) C18 100pF (0402) R7 0Ω (0402) C10 100pF (0402) C32 OPEN (0402) R50 OPEN (0402) VCC_MIX VCC_LO 22 27 VCC2 17 VCC1 10 1 LE VCC_V2I DATA C20 0.1µF (0402) CLK C23 0.1µF (0402) 13 12 14 16 DECL2P5 9 SPI INTERFACE 37 DIVIDER ÷2 BUFFER 38 BUFFER ADRF6602 ×2 6 N COUNTER 21 TO 123 TEMP SENSOR CHARGE PUMP 250µA, 500µA (DEFAULT), 750µA, 1000µA – PHASE + FREQUENCY DETECTOR 8 4 7 11 15 20 21 23 24 25 28 30 31 35 RSET R2 R37 OPEN 0Ω (0402) (0402) CP TEST POINT (ORANGE) R38 0Ω (0402) C14 22pF (0603) 29 3 39 CP C2 OPEN (0402) 40 18 VTUNE DECLVCO C13 6.8pF (0603) R1 0Ω (0402) C11 0.1µF (0402) C41 OPEN (0603) IP3SET C40 22pF (0603) IFN VCC +5V VTUNE R63 OPEN (0402) RFIN C27 0.1µF (0402) 19 IFP R62 0Ω (0402) R10 3.0kΩ (0603) C15 2.7nF (1206) C12 R8 100pF 0Ω (0402) (0402) R27 0Ω (0402) R9 10kΩ R65 10kΩ (0402) (0402) R11 OPEN (0402) C43 10µF (0603) 5 C42 10µF (0603) R28 0Ω (0402) VCO CORE PRESCALER ÷2 MUX C17 0.1µF (0402) RFIN 26 THIRD-ORDER FRACTIONAL INTERPOLATOR C16 R18 100pF 0Ω (0402) (0402) DECL3P3 2 DIV BY 2, 1 2:1 MUX FRACTION MODULUS INTEGER REG REG ÷2 MUXOUT R16 0Ω (0402) P1 9-PIN DSUB 9 C25 0.1µF (0402) ÷4 REFOUT 8 R36 0Ω R30 R35 (0402) 0Ω 0Ω (0402) (0402) R57 0Ω (0402) R19 0Ω R20 (0402) 0Ω (0402) 36 T8 TC1-1-13+ C6 1nF (0402) C31 1nF (0402) REF_IN 7 C7 0.1µF (0402) 34 LODRV_EN 6 PLL_EN VCC_LO R56 0Ω (0402) 5 R53 10kΩ (0402) VCC RED +5V VCC1 RED R55 OPEN (0402) S1 OPEN 4 1 4 2 R59 0Ω (0402) 3 5 R43 0Ω (0402) RFOUT C29 0.1µF (0402) R12 0Ω (0402) C1 100pF (0402) Figure 46. Basic Connections for Operation of the ADRF6602 Rev. D | Page 22 of 32 08545-024 A peak-to-peak differential swing on RFIN of 1 V (0.353 V rms for a sine wave input) results in an IF output power of 3.8 dBm. Data Sheet ADRF6602 AC TEST FIXTURE the signal generation and measurement equipment. Figure 47 shows the typical AC test set up used in the characterization of the ADRF6602. Characterization data for the ADRF6602 was taken under very strict test conditions. All possible techniques were used to achieve optimum accuracy and to remove degrading effects of ADRF6602 CHARACTERIZATION RACK DIAGRAM. ALL INSTRUMENTS ARE CONTROLLED BY A LAB COMPUTER VIA A USB TO GPIB CONTROLLER, DAISY CHAINED TO EACH INDIVIDUAL INSTRUMENT. RF1 AGILENT N5181A HP 11636A POWER DIVIDER RF2 AGILENT N5181A REF_IN AGILENT N5181A RFIN REF_IN ADRF6602 EVALUATION BOARD 9-PIN CONTROLLER DSUB AND 10-PIN DC HEADER IF_OUT ROHDE & SCHWARTZ FSEA30 AGILENT 34401A SET TO IDC (SET FOR SUPPLY CURRENT) GND VIA 10-PIN DC HEADER 5V dc VIA 10-PIN DC HEADER 3.3V dc VIA 10-PIN DC HEADER AGILENT 34980A WITH THREE 34921 MODULES AND ONE 34950 MODULE AGILENT E3631A 25V SET TO 3.3V, 6V SET TO 5V. RETURNS ARE JUMPERED TOGETHER Figure 47. ADRF6602 AC Test Set Up Rev. D | Page 23 of 32 08545-047 5V dc MEASURED FOR SUPPLY CURRENT ADRF6602 Data Sheet EVALUATION BOARD Figure 50 shows the schematic of the RoHS-compliant evaluation board for the ADRF6602. This board has four layers and was designed using Rogers 4350 hybrid material to minimize high frequency losses. FR4 material is also adequate if the design can accept the slightly higher trace loss of this material. The evaluation board is designed to operate using the internal VCO of the device (the default configuration) or with an external VCO. To use an external VCO, R62 and R12 should be removed. Place 0 Ω resistors in R63 and R11. The input of the external VCO should be connected to the VTUNE SMA connector, and the external VCO output should be connected to the LO IN/OUT SMA connector. In addition to these hardware changes, internal register settings must also be changed to enable operation with an external VCO (see the Register 6—VCO Control and VCO Enable (Default: 0x1E2106) section). To connect the evaluation board to a USB port, a USB adapter board (EVAL-ADF4XXXZ-USB) must be purchased from Analog Devices. This board connects to the PC using a standard USB cable with a USB mini-connector at one end. An additional 25-pin male to 9-pin female adapter is required to mate the ADF4XXXZ-USB board to the 9-pin D-Sub connector on the ADRF6602 evaluation board. Additional configuration options for the evaluation board are described in Table 10. EVALUATION BOARD CONTROL SOFTWARE The evaluation board can be connected to the PC using a PC parallel port or a USB port. These options are selectable from the opening menu of the software interface (see Figure 48). The evaluation board is shipped with a 25-pin parallel port cable for connection to the PC parallel port. 08545-025 Software to program the ADRF6602 is available for download on the ADRF6602 product page under the Evaluation Boards & Development Kits section. To install the software 1. Download and extract the zip file: ADRF6x0x_3p0p0_XP_install.exe file. 2. Follow the instructions in the read me file. Figure 48. Control Software Opening Menu Figure 49 shows the main menu of the control software with the default settings displayed. Rev. D | Page 24 of 32 ADRF6602 08545-026 Data Sheet Figure 49. Main Screen of the ADRF6602 Evaluation Board Software Rev. D | Page 25 of 32 3P3V_LDO AG N D REFIN OSC_3P3V AG N D AG N D AG N D AG N D R70 49.9 AG N D 1 1000PF C31 10PF C3 22000PF C4 0 R15 100PF 0.1UF OSC_3P3V C12 C11 0 R8 C41 1 3P3V1 AG N D 100PF 0.1UF AG N D C10 C9 0 R7 10UF VCC 1 VCC4 0 R37 AG N D 0 DNI R49 2P5V_LDO REFOUT R11 VCO_LDO 22PF C14 DNI 0 R16 AG N D 1 AG N D 0.1UF C2 VCO_LDO R10 0 R1 2.7NF C15 C42 10UF AG N D 10K P1-1 10UF C43 VCC R71 R12 AG N D AG N D 1 C18 100PF AG N D C19 0.1UF AG N D 0 R17 100PF 0.1UF 0 R18 C16 AG N D C17 VCC2 1 2P5V AG N D AG N D 100PF C1 6.8PF C13 10K R65 AG N D 22PF C40 R2 AMP745781-4 9 8 7 6 5 4 3 2 1 P1 R72 R62 9 8 7 6 5 10 P1-6 P1-1 R50 1 1K DNI CLK DNI 4 3 2 1 DNI R36 R57 R30 0 0 0 11 1 GND R51 DIG_GND 0 R19 1K DNI 12 38 37 1 LE 14 Z1 AG N D R53 10K 15 35 AG N D 1 R54 10K VCC 1 AG N D 3 1 LO_EXTERN 33 R56 10K 17 VCC5 16 34 AG N D 3 AG N D 100PF DNI C34 AG N D 100PF DNI C33 DATA 13 36 S2 R52 1K DNI AG N D 100PF DNI C32 VCC2 DECL2P5 MUXOUT GND REF_IN RSET GND CP DECL3P3 39 VCC P3-T7 P4-T7 P3-T7 18 IFP 0 0 VCC1 40 1 VCC1 R55 10K C5 1NF C6 1NF DATA R9 0 3K TBD 2 R38 DECLVCO S1 LE R63 100K PLL_EN P3-T7 VCC_LO CP 1 Y1 R14 AG N D VTUNE 3 LODRV_EN R33 NC 32 0 31 T8 21 22 23 AG N D C20 1 VCC_LO1 0.1UF AG N D VCC_LO TBD R60 R25 AG N D 100PF C27 VCC_LO VCC_RF 0 R26 C25 VCC_BB AG N D 0.1UF 1 VCC_RF VCC_BB IP3SET OUTPUT_EN 0 VCC_BB1 AG N D 0.1UF C24 TBD R27 AG N D R31 DNI R58 VCC VCC AG N D TBD L2 TBD AG N D C23 0.1UF L1 0 C22 100PF 1 DNI C36 DNI C35 0 R48 0 R47 0 AG N D 1 IP3SET VCC_LO R29 LO VCC_BB R28 C21 0 R24 IP3SET AG N D 0.1UF C7 1 VCC_LO 0 R69 0 24 AG N D AG N D P1-T7 AG N D R32 25 26 27 28 0 R6 4 2 5 P4-T7 P4-T7 100PF AG N D 30 29 E-PAD PAD GND VCC_MIX GND GND GND RF IN VCC_V2I GND IP3SET GND AG N D AG N D 100PF C8 NC 4 4A 5A 2A 3 5 2 3A 6A 20 OUTPUT_EN 19 NC AG N D IFN 1A GND 0 AG N D VCC 1 AG N D AG N D C28 IFN IFP 0 R67 0 DNI R68 AG N D RFIN SNS SNS1 VCC_SENSE VCC AGND AGND 3P3V_LDO 2P5V_LDO LO_EXTERN VCO_LDO VCC_SENSE T3 AG N D OUT 1 1 AG N D GND1 GND C29 DNI R44 AG N D 0.1UF VCC 0 R59 J1 1 J1 2 J1 3 J1 4 J1 5 J1 6 J1 7 J1 8 J1 9 J1 10 1 GND2 TC4-1W VCC VCC_RF 10UF 6 R66 P1-T7 GND T7 R43 1 2 VTUNE CLK 1 1 GND 4 1 P1-6 LOP R35 LON 0 VCC_LO 0 GND R20 Rev. D | Page 26 of 32 R34 Figure 50. Evaluation Board Schematic 0 6 3 P1-T7 AG N D ADRF6602 Data Sheet SCHEMATIC AND ARTWORK 2 08545-023 0 0 ADRF6602 Figure 51. Evaluation Board Layout (Bottom) 08545-012 08545-013 Data Sheet Figure 52. Evaluation Board Layout (Top) Rev. D | Page 27 of 32 ADRF6602 Data Sheet EVALUATION BOARD CONFIGURATION OPTIONS Table 10. Component S1, R55, R56, R33 Description LO select. Switch and resistors to ground the LODRV_EN pin. The LODRV_EN pin setting, in combination with internal register settings, determines whether the LOP and LON pins function as inputs or outputs (see the LO Selection Logic section for more information). LO IN/OUT SMA Connector REFIN SMA Connector REFOUT SMA Connector LO input/output. An external 1× LO or 2× LO can be applied to this single-ended input connector. Reference input. The input reference frequency for the PLL is applied to this connector. Input impedance is 50 Ω. Multiplexer output. The REFOUT connector connects directly to the MUXOUT pin. The on-board multiplexer can be programmed to bring out the following signals: REFIN, 2× REFIN, REFIN/2, and REFIN/4; temperature sensor output voltage; and lock detect indicator. Charge pump test point. The unfiltered charge pump signal can be probed at this test point. Note that the CP pin should not be probed during critical measurements such as phase noise. Loop filter. Loop filter components. CP Test Point R37, C14, R9, R10, C15, C13, R65, C40 R11, R12 R62, R63, VTUNE SMA Connector R2 RFIN SMA Connector T3 Loop filter return. When the internal VCO is used, the loop filter components should be returned to Pin 40 (DECLVCO) by installing a 0 Ω resistor in R12. When an external VCO is used, the loop filter components can be returned to ground by installing a 0 Ω resistor in R11. Internal vs. external VCO. When the internal VCO is enabled, the loop filter components are connected directly to the VTUNE pin (Pin 39) by installing a 0 Ω resistor in R62. To use an external VCO, R62 should be left open. A 0 Ω resistor should be installed in R63, and the voltage input of the VCO should be connected to the VTUNE SMA connector. The output of the VCO is brought back into the PLL via the LO IN/OUT SMA connector. RSET pin. This pin is unused and should be left open. RF input. The RF input signal should be applied to the RFIN SMA connector. The RF input of the ADRF6602 is ac-coupled, so no bias is necessary. IF output. The differential IF output signals from the ADRF6602 (IFP and IFN) are converted to a single-ended signal by T3. Rev. D | Page 28 of 32 Default Condition/ Option Settings S1 = R55 = open (not installed), R56 = R33 = 0 Ω, LODRV_EN = 0 V LO input Lock detect R12 = 0 Ω (0402), R11 = open (0402) R62 = 0 Ω (0402), R63 = open (0402) R2 = open (0402) R3 = R23 = open (0402) Data Sheet ADRF6602 OUTLINE DIMENSIONS 6.10 6.00 SQ 5.90 0.60 MAX 0.60 MAX PIN 1 INDICATOR 31 30 0.50 BSC 10 21 20 TOP VIEW 1.00 0.85 0.80 SEATING PLANE 12° MAX 0.50 0.40 0.30 0.80 MAX 0.65 TYP 0.30 0.23 0.18 4.25 4.10 SQ 3.95 EXPOSED PAD (BOTTOM VIEW) 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF 11 0.20 MIN 4.50 REF FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2 06-01-2012-D 5.85 5.75 SQ 5.65 PIN 1 INDICATOR 40 1 Figure 53. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 6 mm × 6 mm Body, Very Thin Quad (CP-40-1) Dimensions shown in millimeters ORDERING GUIDE Model 1 ADRF6602ACPZ-R7 ADRF6602-EVALZ 1 Temperature Range −40°C to +85°C Package Description 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ] Evaluation Board Z = RoHS Compliant Part. Rev. D | Page 29 of 32 Package Option CP-40-1 ADRF6602 Data Sheet NOTES Rev. D | Page 30 of 32 Data Sheet ADRF6602 NOTES Rev. D | Page 31 of 32 ADRF6602 Data Sheet NOTES ©2010–2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08545-0-10/13(D) Rev. D | Page 32 of 32
ADRF6602ACPZ-R7 价格&库存

很抱歉,暂时无法提供与“ADRF6602ACPZ-R7”相匹配的价格&库存,您可以联系我们找货

免费人工找货