1200 MHz to 3600 MHz Rx Mixer with
Integrated Fractional-N PLL and VCO
ADRF6604
Data Sheet
FEATURES
The PLL can support input reference frequencies from 12 MHz
to 160 MHz. The PFD output controls a charge pump whose
output drives an off-chip loop filter.
Rx mixer with integrated fractional-N PLL
RF input frequency range: 1200 MHz to 3600 MHz
Internal LO frequency range: 2500 MHz to 2900 MHz
Input P1dB: 14.5 dBm
Input IP3: 27.5 dBm
IIP3 optimization via external pin
SSB noise figure
IP3SET pin open: 14.3 dB
IP3SET pin at 3.3 V: 15.5 dB
Voltage conversion gain: 6.8 dB
Matched 200 Ω IF output impedance
IF 3 dB bandwidth: 500 MHz
Programmable via 3-wire SPI interface
40-lead, 6 mm × 6 mm LFCSP
The loop filter output is then applied to an integrated VCO. The
VCO output at 2 × fLO is applied to an LO divider, as well as to a
programmable PLL divider. The programmable PLL divider is
controlled by a sigma-delta (Σ-Δ) modulator (SDM). The modulus
of the SDM can be programmed from 1 to 2047.
The active mixer converts the single-ended, 50 Ω RF input to
a differential, 200 Ω IF output. The IF output can operate up
to 500 MHz.
The ADRF6604 is fabricated using an advanced silicon-germanium
BiCMOS process. It is available in a 40-lead, RoHS-compliant,
6 mm × 6 mm LFCSP with an exposed paddle. Performance is
specified over the −40°C to +85°C temperature range.
APPLICATIONS
Table 1.
Cellular base stations
GENERAL DESCRIPTION
Part No.
ADRF6601
The ADRF6604 is a high dynamic range active mixer with
integrated phase-locked loop (PLL) and voltage controlled
oscillator (VCO). The PLL/synthesizer uses a fractional-N
PLL to generate a fLO input to the mixer. The reference input
can be divided or multiplied and then applied to the PLL phase
frequency detector (PFD).
ADRF6602
ADRF6603
ADRF6604
Internal LO
Range
750 MHz
1160 MHz
1550 MHz
2150 MHz
2100 MHz
2600 MHz
2500 MHz
2900 MHz
±3 dB RFIN
Balun Range
300 MHz
2500 MHz
1000 MHz
3100 MHz
1100 MHz
3200 MHz
1200 MHz
3600 MHz
±1 dB RFIN
Balun Range
450 MHz
1600 MHz
1350 MHz
2750 MHz
1450 MHz
2850 MHz
1600 MHz
3200 MHz
FUNCTIONAL BLOCK DIAGRAM
VCC1
VCC2
VCC_LO
VCC_MIX
VCC_V2I
VCC_LO
1
10
17
22
27
34
NC NC
32
LODRV_EN 36
ADRF6604
INTERNAL LO RANGE
2500MHz TO 2900MHz
LON 37
BUFFER
LOP 38
BUFFER
PLL_EN 16
FRACTION MODULUS
REG
CLK 13
SPI
INTERFACE
LE 14
2:1
MUX
INTEGER
REG
REF_IN 6
÷2
÷4
N COUNTER
21 TO 123
MUX
TEMP
SENSOR
7
DECL3P3
2.5V
LDO
9
DECL2P5
VCO
LDO
40 DECLVCO
VCO
CORE
PRESCALER
÷2
29 IP3SET
CHARGE PUMP
250µA,
500µA (DEFAULT),
750µA,
1000µA
–
PHASE
+ FREQUENCY
DETECTOR
MUXOUT 8
4
2
26 RF
IN
THIRD-ORDER
FRACTIONAL
INTERPOLATOR
×2
DIV
BY
2, 1
3.3V
LDO
11 15 20 21 23 24 25 28 30 31 35
5
RSET
GND
3
39
18 19
CP VTUNE IFP IFN
08553-001
DATA 12
33
Figure 1.
Rev. B
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2010–2014 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADRF6604
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
RF Specifications .......................................................................... 3
Synthesizer/PLL Specifications ................................................... 4
Register 3—Σ-Δ Modulator Dither Control
(Default: 0x10000B) ................................................................... 17
Register 4—PLL Charge Pump, PFD, and Reference Path
Control (Default: 0x0AA7E4)................................................... 18
Register 5—PLL Enable and LO Path Control
(Default: 0x0000E5) ................................................................... 19
Register 6—VCO Control and VCO Enable
(Default: 0x1E2106) ................................................................... 19
Logic Input and Power Specifications ....................................... 4
Register 7—Mixer Bias Enable and External VCO Enable
(Default: 0x000007).................................................................... 19
Timing Characteristics ................................................................ 5
Theory of Operation ...................................................................... 20
Absolute Maximum Ratings............................................................ 6
Programming the ADRF6604................................................... 20
ESD Caution .................................................................................. 6
Initialization Sequence .............................................................. 20
Pin Configuration and Function Descriptions ............................. 7
LO Selection Logic ..................................................................... 21
Typical Performance Characteristics ............................................. 9
Applications Information .............................................................. 22
RF Frequency Sweep .................................................................... 9
Basic Connections for Operation ............................................. 22
IF Frequency Sweep ................................................................... 10
AC Test Fixture ............................................................................... 23
Spurious Performance................................................................ 15
Evaluation Board ............................................................................ 24
Register Structure ........................................................................... 16
Evaluation Board Control Software ......................................... 24
Register 0—Integer Divide Control (Default: 0x0001C0)..... 16
Schematic and Artwork ............................................................. 26
Register 1—Modulus Divide Control (Default: 0x003001) ........ 16
Evaluation Board Configuration Options ............................... 28
Register 2—Fractional Divide Control (Default: 0x001802) ...... 17
Outline Dimensions ....................................................................... 29
Ordering Guide .......................................................................... 29
REVISION HISTORY
6/10—Revision 0: Initial Version
1/14—Rev. A to Rev. B
Change to Product Title ................................................................... 1
Updated Outline Dimensions (Lead-to-Pad Dimension)......... 29
5/11—Rev. 0 to Rev. A
Changes to Features and General Description Sections.............. 1
Changes to Table 2 ............................................................................ 3
Changes to Synthesizer Specifications Parameter and to Phase
Noise Parameter, Table 3 ............................................................. 4
Changes to Power Supplies Parameter, Table 4 ............................ 4
Replaced Typical Performance Characteristics Section;
Renumbered Sequentially ........................................................... 9
Added Spurious Performance Section ......................................... 15
Change to Figure 41 ....................................................................... 17
Changes to Figure 42 ...................................................................... 18
Changes to Theory of Operation Section .................................... 20
Changes to Figure 46 ...................................................................... 22
Added AC Test Fixture Section and Figure 47 ........................... 23
Changes to Evaluation Board Control Software Section and
Figure 48 ...................................................................................... 24
Changes to Figure 49 ...................................................................... 25
Rev. B | Page 2 of 32
Data Sheet
ADRF6604
SPECIFICATIONS
RF SPECIFICATIONS
VS = 5 V, ambient temperature (TA) = 25°C, fREF = 153.6 MHz, fPFD = 38.4 MHz, high-side LO injection, fIF = 140 MHz, IIP3 optimized
using CDAC = 0xC and IP3SET = 3.3 V, unless otherwise noted.
Table 2.
Parameter
INTERNAL LO FREQUENCY RANGE
RF INPUT FREQUENCY RANGE
RF INPUT AT 2360 MHz
Input Return Loss
Input P1dB
Second-Order Intercept (IIP2)
Third-Order Intercept (IIP3)
Single-Sideband Noise Figure
LO-to-IF Leakage
RF INPUT AT 2560 MHz
Input Return Loss
Input P1dB
Second-Order Intercept (IIP2)
Third-Order Intercept (IIP3)
Single-Sideband Noise Figure
LO-to-IF Leakage
RF INPUT AT 2760 MHz
Input Return Loss
Input P1dB
Second-Order Intercept (IIP2)
Third-Order Intercept (IIP3)
Single-Sideband Noise Figure
LO-to-IF Leakage
IF OUTPUT
Voltage Conversion Gain
IF Bandwidth
Output Common-Mode Voltage
Gain Flatness
Gain Variation
Output Swing
Output Return Loss
LO INPUT/OUTPUT (LOP, LON)
Frequency Range
Output Level (LO as Output)
Input Level (LO as Input)
Input Impedance
Test Conditions/Comments
±3 dB RF input range
Min
2500
1200
Relative to 50 Ω (can be improved with external match)
−5 dBm each tone (10 MHz spacing between tones)
−5 dBm each tone (10 MHz spacing between tones)
IP3SET = 3.3 V
IP3SET = open
At 1× LO frequency, 50 Ω termination at the RF port
Relative to 50 Ω (can be improved with external match)
−5 dBm each tone (10 MHz spacing between tones)
−5 dBm each tone (10 MHz spacing between tones)
IP3SET = 3.3 V
IP3SET = open
At 1× LO frequency, 50 Ω termination at the RF port
Relative to 50 Ω (can be improved with external match)
−5 dBm each tone (10 MHz spacing between tones)
−5 dBm each tone (10 MHz spacing between tones)
IP3SET = 3.3 V
IP3SET = open
At 1× LO frequency, 50 Ω termination at the RF port
Differential 200 Ω load
Small signal 3 dB bandwidth
External pull-up balun or inductors required
Over frequency range, any 5 MHz/50 MHz
Over full temperature range
Differential 200 Ω load
Relative to 200 Ω
Externally applied 1× LO input, internal PLL disabled
Typ
−6
Rev. B | Page 3 of 32
Unit
MHz
MHz
−16.2
14.6
54.5
28
14.8
13.9
−43
dB
dBm
dBm
dBm
dB
dB
dBm
−21
14.5
58.2
27.6
14.9
14.2
−42
dB
dBm
dBm
dBm
dB
dB
dBm
−20
14.4
64.4
27
15.5
14.6
−44
dB
dBm
dBm
dBm
dB
dB
dBm
6.8
500
5
0.2/0.5
1.3
2
−15
dB
MHz
V
dB
dB
V p-p
dB
250
1× LO into a 50 Ω load, LO output buffer enabled
Max
2900
3600
6000
−9
0
50
+6
MHz
dBm
dBm
Ω
ADRF6604
Data Sheet
SYNTHESIZER/PLL SPECIFICATIONS
VS = 5 V, ambient temperature (TA) = 25°C, fREF = 153.6 MHz, fREF power = 4 dBm, fPFD = 38.4 MHz, high-side LO injection,
fIF = 140 MHz, IIP3 optimized using CDAC = 0xC and IP3SET = 3.3 V, unless otherwise noted.
Table 3.
Parameter
SYNTHESIZER SPECIFICATIONS
Frequency Range
Figure of Merit 1
Reference Spurs
PHASE NOISE
Integrated Phase Noise
PFD Frequency
REFERENCE CHARACTERISTICS
REF_IN Input Frequency
REF_IN Input Capacitance
MUXOUT Output Level
MUXOUT Duty Cycle
CHARGE PUMP
Pump Current
Output Compliance Range
1
Test Conditions/Comments
Synthesizer specifications referenced to 1× LO
Internally generated LO
PREF_IN = 0 dBm
fPFD = 38.4 MHz
fPFD/4
fPFD
>fPFD
fLO = 2500 MHz to 2900 MHz, fPFD = 38.4 MHz
1 kHz to 10 kHz offset
100 kHz offset
500 kHz offset
1 MHz offset
5 MHz offset
10 MHz offset
20 MHz offset
1 kHz to 40 MHz integration bandwidth
Min
Typ
Max
Unit
2900
−221.4
MHz
dBc/Hz/Hz
−107
−82
−80
dBc
dBc
dBc
−87.7
−96
−117
−126
−142
−148
−150
0.69
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
°rms
MHz
2500
20
40
REF_IN, MUXOUT pins
12
160
4
VOL (lock detect output selected)
VOH (lock detect output selected)
0.25
2.7
50
Programmable to 250 µA, 500 µA, 750 µA, 1 mA
500
1
MHz
pF
V
V
%
µA
V
2.8
The figure of merit (FOM) is computed as phase noise (dBc/Hz) – 10 log 10(fPFD) – 20 log 10(fLO/fPFD). The FOM was measured across the full LO range, with fREF = 80 MHz,
and fREF power = 10 dBm (500 V/µs slew rate) with a 40 MHz fPFD. The FOM was computed at 50 kHz offset.
LOGIC INPUT AND POWER SPECIFICATIONS
VS = 5 V, ambient temperature (TA) = 25°C, fREF = 153.6 MHz, fPFD = 38.4 MHz, high-side LO injection, fIF = 140 MHz, IIP3 optimized
using CDAC = 0xC and IP3SET = 3.3 V, unless otherwise noted.
Table 4.
Parameter
LOGIC INPUTS
Input High Voltage, VINH
Input Low Voltage, VINL
Input Current, IINH/IINL
Input Capacitance, CIN
POWER SUPPLIES
Voltage Range
Supply Current
Test Conditions/Comments
CLK, DATA, LE
Min
Typ
1.4
0
Max
Unit
3.3
0.7
V
V
µA
pF
5.25
V
mA
mA
mA
mA
mA
0.1
5
VCC1, VCC2, VCC_LO, VCC_MIX, and VCC_V2I pins
4.75
PLL only
External LO mode (internal PLL disabled, IP3SET pin = 3.3 V, LO output buffer off)
Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer on)
Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer off)
Power-down mode
Rev. B | Page 4 of 32
5
96
164
274
260
30
Data Sheet
ADRF6604
TIMING CHARACTERISTICS
VCC2 = 5 V ± 5%.
Table 5.
Parameter
t1
t2
t3
t4
t5
t6
t7
Limit
20
10
10
25
25
10
20
Unit
ns min
ns min
ns min
ns min
ns min
ns min
ns min
Description
LE setup time
DATA-to-CLK setup time
DATA-to-CLK hold time
CLK high duration
CLK low duration
CLK-to-LE setup time
LE pulse width
Timing Diagram
t4
t5
CLK
t2
DATA
DB23 (MSB)
t3
DB22
DB2
(CONTROL BIT C3)
DB1
(CONTROL BIT C2)
t1
DB0 (LSB)
(CONTROL BIT C1)
t7
08553-002
t6
LE
Figure 2. Timing Diagram
Rev. B | Page 5 of 32
ADRF6604
Data Sheet
ABSOLUTE MAXIMUM RATINGS
Table 6.
Parameter
Supply Voltage, VCC1, VCC2, VCC_LO,
VCC_MIX, VCC_V2I
Digital I/O, CLK, DATA, LE, LODRV_EN,
PLL_EN
VTUNE
IFP, IFN
RFIN
LOP, LON, REF_IN
θJA (Exposed Paddle Soldered Down)
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Rating
−0.5 V to +5.5 V
−0.3 V to +3.6 V
0 V to 3.3 V
−0.3 V to VCC_V2I + 0.3 V
16 dBm
13 dBm
35°C/W
150°C
−40°C to +85°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
Rev. B | Page 6 of 32
Data Sheet
ADRF6604
40
39
38
37
36
35
34
33
32
31
DECLVCO
VTUNE
LOP
LON
LODRV_EN
GND
VCC_LO
NC
NC
GND
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
3
4
5
6
7
8
9
10
PIN 1
INDICATOR
ADRF6604
TOP VIEW
(Not to Scale)
30
29
28
27
26
25
24
23
22
21
GND
IP3SET
GND
VCC_V2I
RFIN
GND
GND
GND
VCC_MIX
GND
NOTES
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.
2. THE EXPOSED PADDLE SHOULD BE SOLDERED TO A
LOW IMPEDANCE GROUND PLANE.
08553-003
GND
DATA
CLK
LE
GND
PLL_EN
VCC_LO
IFP
IFN
GND
11
12
13
14
15
16
17
18
19
20
VCC1
DECL3P3
CP
GND
RSET
REF_IN
GND
MUXOUT
DECL2P5
VCC2
Figure 3. Pin Configuration
Table 7. Pin Function Descriptions
Pin No.
1
Mnemonic
VCC1
2
3
4, 7, 11, 15, 20,
21, 23, 24, 25,
28, 30, 31, 35
5
DECL3P3
CP
GND
RSET
Description
Power Supply for the 3.3 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin
should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin.
Decoupling Node for 3.3 V LDO. Connect a 0.1 µF capacitor between this pin and ground.
Charge Pump Output Pin. Connect to VTUNE through the loop filter.
Ground. Connect these pins to a low impedance ground plane.
Charge Pump Current. The nominal charge pump current can be set to 250 µA, 500 µA, 750 µA, or 1 mA using
Bit DB11 and Bit DB10 in Register 4 and by setting Bit DB18 in Register 4 to 0 (internal reference current). In
this mode, no external RSET is required. If Bit DB18 is set to 1, the four nominal charge pump currents (INOMINAL)
can be externally adjusted according to the following equation:
217.4 × I CP
R SET =
I NOMINAL
6
REF_IN
8
MUXOUT
9
10
DECL2P5
VCC2
12
13
DATA
CLK
14
LE
16
PLL_EN
17, 34
VCC_LO
18, 19
IFP, IFN
− 37.8 Ω
Reference Input. Nominal input level is 1 V p-p. Input range is 12 MHz to 160 MHz. This pin is internally dcbiased and should be ac-coupled.
Multiplexer Output. This output can be programmed to provide the reference output signal or the lock detect
signal. The output is selected by programming the appropriate register.
Decoupling Node for 2.5 V LDO. Connect a 0.1 µF capacitor between this pin and ground.
Power Supply for the 2.5 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin
should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin.
Serial Data Input. The serial data input is loaded MSB first; the three LSBs are the control bits.
Serial Clock Input. The serial clock input is used to clock in the serial data to the registers. The data is latched
into the 24-bit shift register on the CLK rising edge. The maximum clock frequency is 20 MHz.
Load Enable. When the LE input pin goes high, the data stored in the shift register is loaded into one of the
eight registers. The relevant latch is selected by the three control bits of the 24-bit word.
PLL Enable. Switch between internal PLL and external LO input. When this pin is logic high, the mixer LO is
automatically switched to the internal PLL and the internal PLL is powered up. When this pin is logic low, the
internal PLL is powered down and the external LO input is routed to the mixer LO inputs. The SPI can also be
used to switch modes.
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled
with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin.
Mixer IF Outputs. These outputs should be pulled to VCC_MIX with RF chokes.
Rev. B | Page 7 of 32
ADRF6604
Data Sheet
Pin No.
22
Mnemonic
VCC_MIX
26
27
RFIN
VCC_V2I
29
32, 33
36
IP3SET
NC
LODRV_EN
37, 38
LON, LOP
39
VTUNE
40
DECLVCO
EPAD
Description
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled
with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin.
RF Input. Single-ended, 50 Ω.
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled
with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin.
Connect a resistor from this pin to a 5 V supply to adjust IIP3. Normally leave open.
NC = No Connect. Do not connect to this pin.
LO Driver Enable. Together with Pin 16 (PLL_EN), this digital input pin determines whether the LOP and LON pins
operate as inputs or outputs. LOP and LON become inputs if the PLL_EN pin is low or if the PLL_EN pin is set
high with the PLEN bit (DB6 in Register 5) set to 0. LOP and LON become outputs if either the LODRV_EN pin
or the LDRV bit (DB3 in Register 5) is set to 1 while the PLL_EN pin is set high. The external LO drive frequency
must be 1× LO. This pin has an internal 100 kΩ pull-down resistor.
Local Oscillator Input/Output. The internally generated 1× LO is available on these pins. When internal LO
generation is disabled, an external 1× LO can be applied to these pins.
VCO Control Voltage Input. This pin is driven by the output of the loop filter. The nominal input voltage
range on this pin is 1.5 V to 2.5 V.
Decoupling Node for VCO LDO. Connect a 100 pF capacitor and a 10 µF capacitor between this pin and ground.
Exposed Paddle. The exposed paddle should be soldered to a low impedance ground plane.
Rev. B | Page 8 of 32
Data Sheet
ADRF6604
TYPICAL PERFORMANCE CHARACTERISTICS
RF FREQUENCY SWEEP
CDAC = 0xC, internally generated high-side LO, RFIN = −5 dBm, fIF = 140 MHz, unless otherwise noted.
5
TA = +85°C
TA = +25°C
TA = –40°C
34
33
31
INPUT IP3 (dBm)
GAIN (dB)
2
1
0
–1
–2
30
29
28
27
26
25
24
–3
23
22
–4
2460
2510
2560
2610
2660
RF FREQUENCY (MHz)
2710
2760
08553-104
2410
21
20
2360
2410
2460
2510
2560
2610
2660
RF FREQUENCY (MHz)
2710
2760
Figure 7. Input IP3 vs. RF Frequency
Figure 4. Gain vs. RF Frequency
18
90
IP3SET = OPEN
IP3SET = 3.3V
TA = +85°C
TA = +25°C
TA = –40°C
17
IP3SET = OPEN
IP3SET = 3.3V
16
INPUT P1dB (dBm)
80
INPUT IP2 (dBm)
TA = +85°C
TA = +25°C
TA = –40°C
32
3
–5
2360
IP3SET = OPEN
IP3SET = 3.3V
08553-107
4
35
IP3SET = OPEN
IP3SET = 3.3V
70
60
50
TA = +85°C
TA = +25°C
TA = –40°C
15
14
13
12
11
10
40
2460
2510
2560
2610
2660
RF FREQUENCY (MHz)
2710
2760
8
2360
08553-105
2410
Figure 5. Input IP2 vs. RF Frequency
18
14
12
10
8
6
0
2360
IP3SET = OPEN
IP3SET = 3.3V
2410
2460
TA = +85°C
TA = +25°C
TA = –40°C
2510
2560
2610
2660
RF FREQUENCY (MHz)
2710
2760
08553-106
NOISE FIGURE (dB)
16
2
2460
2510
2560
2610
2660
RF FREQUENCY (MHz)
Figure 8. Input P1dB vs. RF Frequency
20
4
2410
Figure 6. Noise Figure vs. RF Frequency
Rev. B | Page 9 of 32
2710
2760
08553-108
9
30
2360
ADRF6604
Data Sheet
IF FREQUENCY SWEEP
CDAC = 0xC, internally generated swept low-side LO, fRF = 2490 MHz, RFIN = −5 dBm, unless otherwise noted.
5
45
IP3SET = OPEN
IP3SET = 3.3V
4
3
TA = +85°C
TA = +25°C
TA = –40°C
IP3SET = OPEN
IP3SET = 3.3V
40
TA = +85°C
TA = +25°C
TA = –40°C
35
INPUT IP3 (dBm)
GAIN (dB)
2
1
0
–1
30
25
20
–2
15
–3
75 100 125 150 175 200 225 250 275 300 325 350 375 400
IF FREQUENCY (MHz)
5
25 50
08553-109
–5
25 50
Figure 9. Gain vs. IF Frequency
Figure 12. Input IP3 vs. IF Frequency, RFIN = −5 dBm
90
20
IP3SET = OPEN
IP3SET = 3.3V
TA = +85°C
TA = +25°C
TA = –40°C
18
16
70
INPUT P1dB (dBm)
60
50
14
12
10
8
6
4
40
2
75 100 125 150 175 200 225 250 275 300 325 350 375 400
IF FREQUENCY (MHz)
0
25 50
08553-110
30
25 50
Figure 10. Input IP2 vs. IF Frequency, RFIN = −5 dBm
18
16
14
12
10
8
6
0
25 50
IP3SET = OPEN
IP3SET = 3.3V
TA = +85°C
TA = +25°C
TA = –40°C
75 100 125 150 175 200 225 250 275 300 325 350 375 400
IF FREQUENCY (MHz)
08553-111
2
TA = +85°C
TA = +25°C
TA = –40°C
75 100 125 150 175 200 225 250 275 300 325 350 375 400
IF FREQUENCY (MHz)
Figure 13. Input P1dB vs. IF Frequency
20
4
IP3SET = OPEN
IP3SET = 3.3V
Figure 11. Noise Figure vs. IF Frequency
Rev. B | Page 10 of 32
08553-113
INPUT IP2 (dBm)
80
NOISE FIGURE (dB)
75 100 125 150 175 200 225 250 275 300 325 350 375 400
IF FREQUENCY (MHz)
08553-112
10
–4
Data Sheet
ADRF6604
0
0
IP3SET = OPEN
IP3SET = 3.3V
–10
TA = +85°C
TA = +25°C
TA = –40°C
–1
–2
–3
–15
–4
RETURN LOSS (dB)
–20
–25
–30
–35
–40
–45
–9
–10
–11
2650
2700
2750
2800
LO FREQUENCY (MHz)
2850
2900
2400
2500
2600
2700
2800
2900
LO FREQUENCY (MHz)
3000
3100
Figure 17. LO Input Return Loss vs. LO Frequency (Including TC1-1-13 Balun)
350
IP3SET = OPEN
IP3SET = 3.3V
08553-117
2600
–20
TA = +85°C
TA = +25°C
TA = –40°C
3.5
300
–40
–45
–50
–55
–60
–65
–70
3.0
RESISTANCE
–35
RESISTANCE (Ω)
LO-TO-RF LEAKAGE (dBm)
–8
–14
–15
2300
08553-114
2550
Figure 14. LO-to-IF Feedthrough vs. LO Frequency,
LO Output Turned Off, CDAC = 0xC
–30
–7
–13
–55
–25
–6
–12
–50
–60
2500
–5
250
2.5
200
2.0
CAPACITANCE
150
1.5
100
1.0
50
0.5
CAPACITANCE (pF)
LO-TO-IF FEEDTHROUGH (dBm)
–5
–75
–80
–85
2600
2650
2700
2750
2800
LO FREQUENCY (MHz)
2850
2900
0
50
Figure 15. LO-to-RF Leakage vs. LO Frequency, LO Output Turned Off
150
200
250
300
350
IF FREQUENCY (MHz)
400
450
0
500
Figure 18. IF Differential Output Impedance (R Parallel, C Equivalent)
0
35
IP3SET = OPEN
IP3SET = 3.3V
–5
30
–10
NOISE FIGURE (dB)
–15
–20
–25
–30
–35
–40
25
20
15
–50
2300
2400
2500
2600
2700
2800
2900
RF FREQUENCY (MHz)
3000
3100
Figure 16. RF Input Return Loss vs. RF Frequency
10
–60
–50
–40
–30
–20
CW BLOCKER LEVEL (dBm)
–10
0
Figure 19. SSB Noise Figure vs. 5 MHz Offset CW Blocker Level,
LO Frequency = 2500 MHz, RF Frequency = 2358 MHz
Rev. B | Page 11 of 32
08553-119
–45
08553-116
RETURN LOSS (dB)
100
08553-118
2550
08553-115
–90
2500
ADRF6604
Data Sheet
0
5.0
–5
4.5
TA = +85°C
TA = +25°C
TA = –40°C
4.0
VTUNE VOLTAGE (V)
–15
–20
–25
–30
–35
–40
3.5
3.0
2.5
2.0
1.5
–45
–55
–60
2160
2260
2360
2460
2560
2660
2760
RF FREQUENCY (MHz)
2860
0.5
2960
0
2500
2550
Figure 20. RF-to-IF Isolation vs. RF Frequency, High-Side LO, IF = 140 MHz,
LO Output Turned Off
2650
2700
2750
2800
LO FREQUENCY (MHz)
2850
2900
Figure 23. VTUNE vs. LO Frequency
0
350
IP3SET = OPEN
IP3SET = 3.3V
–1
–2
–3
TA = +85°C
TA = +25°C
TA = –40°C
IP3SET = OPEN
IP3SET = 3.3V
TA = +85°C
TA = +25°C
TA = –40°C
300
–4
SUPPLY CURRENT (mA)
LO OUTPUT AMPLITUDE (dBm)
2600
08553-123
–50
1.0
TA = +85°C
TA = +25°C
TA = –40°C
IP3SET = OPEN
IP3SET = 3.3V
08553-120
RF-TO-IF ISOLATION (dBc)
–10
–5
–6
–7
–8
–9
–10
–11
250
200
150
–12
2550
2600
2650
2700
2750
2800
LO FREQUENCY (MHz)
2850
2900
100
2500
08553-121
–14
–15
2500
Figure 21. LO Output Amplitude vs. LO Frequency
2.5
2.4
20
2.3
15
2650
2700
2750
2800
LO FREQUENCY (MHz)
2850
2900
IP3SET = OPEN
IP3SET = 3.3V
2.2
2.1
VPTAT VOLTAGE (V)
10
5
0
–5
–10
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
–15
0
50
100
150
TIME (µs)
200
250
1.1
1.0
–55
Figure 22. Frequency Deviation from 2500 MHz vs. Time
(Demonstrates LO Frequency Settling Time from 2490 MHz to 2500 MHz)
–35
–15
5
25
45
TEMPERATURE (°C)
65
85
105
08553-125
1.2
–20
08553-122
FREQUENCY DEVIATION FROM 2500MHz (MHz)
2600
Figure 24. Supply Current vs. LO Frequency
25
–25
2550
08553-124
–13
Figure 25. VPTAT Voltage vs. Temperature (IP3SET = Optimized, Open)
Rev. B | Page 12 of 32
Data Sheet
ADRF6604
Complementary cumulative distribution function (CCDF), fRF = 2360 MHz, fIF = 140 MHz.
100
100
IP3SET =
OPEN
IP3SET =
3.3V
80
TA = +85°C
TA = +25°C
TA = –40°C
70
60
IP3SET =
OPEN
IP3SET =
3.3V
90
DISTRIBUTION PERCENTAGE (%)
50
40
30
20
80
70
TA = +85°C
TA = +25°C
TA = –40°C
60
50
40
30
20
0
0.5
1.0
GAIN (dB)
1.5
2.0
0
22
08553-126
0
–0.5
23
24
Figure 26. Gain
DISTRIBUTION PERCENTAGE (%)
60
50
40
30
20
TA = +85°C
TA = +25°C
TA = –40°C
0
45
50
55
60
65
INPUT IP2 (dBm)
70
80
TA = +85°C
TA = +25°C
TA = –40°C
70
60
50
40
30
20
10
75
0
10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
INPUT P1dB (dBm)
Figure 27. Input IP2
Figure 30. Input P1dB
100
100
TA = +85°C
TA = +25°C
TA = –40°C
80
IP3SET = OPEN
IP3SET = 3.3V
90
DISTRIBUTION PERCENTAGE (%)
IP3SET = OPEN
90
08553-130
10
70
60
50
40
30
20
10
80
TA = +85°C
TA = +25°C
TA = –40°C
70
60
50
40
30
20
10
11
12
13
14
15
16
17
NOISE FIGURE (dB)
18
19
20
0
–50
08553-128
DISTRIBUTION PERCENTAGE (%)
30
IP3SET =
OPEN
IP3SET =
3.3V
90
70
0
10
29
100
IP3SET =
OPEN
IP3SET =
3.3V
08553-127
DISTRIBUTION PERCENTAGE (%)
80
28
Figure 29. Input IP3
100
90
25
26
27
INPUT IP3 (dBm)
08553-129
10
10
–48
–46
–44
–42
–40
LO FEEDTHROUGH TO IF (dBm)
–38
Figure 31. LO Feedthrough to IF, LO Output Turned Off
Figure 28. Noise Figure
Rev. B | Page 13 of 32
–36
08553-131
DISTRIBUTION PERCENTAGE (%)
90
ADRF6604
Data Sheet
Measured at IF output, CDAC = 0xC, IP3SET = open, internally generated high-side LO, fREF = 153.6 MHz, fPFD = 38.4 MHz,
RFIN = −5 dBm, fIF = 140 MHz, unless otherwise noted. Phase noise measurements made at LO output, unless otherwise noted.
1.0
–70
LO FREQUENCY = 2883.2MHz
–100
LO FREQUENCY = 2537.6MHz
–120
–130
–140
–150
0.8
0.7
0.6
0.5
0.4
0.3
0.2
10M
100M
OFFSET FREQUENCY (Hz)
0
2500
08553-132
1M
1G
Figure 32. Phase Noise vs. Offset Frequency
–80
–75
–90
PHASE NOISE (dBc/Hz)
–90
–95
OFFSET AT 2× PFD
OFFSET AT 4× PFD
–100
TA = +85°C
TA = +25°C
TA = –40°C
2550
2600
–100
2850
2900
OFFSET = 100kHz
–110
TA = +85°C
TA = +25°C
TA = –40°C
–120
–130
OFFSET = 5MHz
–140
2650
2700
2750
2800
LO FREQUENCY (MHz)
2850
2900
–150
2500
08553-133
SPURS LEVEL (dBc)
–85
Figure 33. PLL Reference Spurs vs. LO Frequency (2× PFD and 4× PFD)
2550
2600
2650
2700
2750
2800
LO FREQUENCY (MHz)
2850
2900
Figure 36. Phase Noise vs. LO Frequency (1 kHz, 100 kHz, and 5 MHz Steps)
–70
–75
2650
2700
2750
2800
LO FREQUENCY (MHz)
OFFSET = 1kHz
–80
–110
2500
2600
Figure 35. Integrated Phase Noise vs. LO Frequency
–70
–105
2550
08553-135
0.1
–160
1k
08553-136
PHASE NOISE (dBc/Hz)
–90
–110
TA = +85°C
TA = +25°C
TA = –40°C
0.9
INTEGRATED PHASE NOISE (° rms)
–80
TA = +85°C
TA = +25°C
TA = –40°C
–80
TA = +85°C
TA = +25°C
TA = –40°C
OFFSET AT 3× PFD
OFFSET AT 1× PFD
–85
–90
OFFSET = 10kHz
PHASE NOISE (dBc/Hz)
SPURS LEVEL (dBc)
–80
–85
–90
–95
–95
–100
–105
TA = +85°C
TA = +25°C
TA = –40°C
–110
–115
–100
–120
2550
2600
2650
2700
2750
2800
LO FREQUENCY (MHz)
2850
2900
08553-134
–110
2500
OFFSET = 1MHz
–125
Figure 34. PLL Reference Spurs vs. LO Frequency (0.25× PFD, 1× PFD, and 3× PFD)
Rev. B | Page 14 of 32
–130
2500
2550
2600
2650
2700
2750
2800
LO FREQUENCY (MHz)
2850
2900
Figure 37. Phase Noise vs. LO Frequency (10 kHz, 1 MHz Steps)
08553-137
OFFSET AT 0.25× PFD
–105
Data Sheet
ADRF6604
SPURIOUS PERFORMANCE
(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board (see the Evaluation Board section). Mixer spurious
products were measured in decibels relative to the carrier (dBc) from the IF output power level. All spurious components greater than
−125 dBc are shown.
LO = 2500 MHz, RF = 2360 MHz (horizontal axis is M, vertical axis is N), and RFIN power = 0 dBm.
N
0
-115.19
−23.6708
−63.4281
0
1
2
3
4
5
6
7
1
−43.0184
0.0
−65.1191
−83.6746
M
2
−33.3455
−67.1671
−61.1065
−86.8944
−108.708
3
−47.1921
−79.8957
−58.5001
−104.041
−110.825
4
−80.0324
−105.514
−108.518
−113.19
−108.548
LO = 2700 MHz, RF = 2560 MHz (horizontal axis is M, vertical axis is N), and RFIN power = 0 dBm.
N
0
−114.804
−22.6289
−61.2522
0
1
2
3
4
5
6
7
1
−42.7987
0.0
−66.5602
−84.4436
M
2
−31.9174
−65.0063
−57.5224
−82.5056
−108.087
3
−48.5279
−77.0905
−56.9437
−98.5103
−110.572
4
−76.8305
−98.8811
−99.2295
−113.601
−109.829
LO = 2900 MHz, RF = 2760 MHz (horizontal axis is M, vertical axis is N), and RFIN power = 0 dBm.
N
0
1
2
3
4
5
6
7
0
−114.956
−22.092
−60.2824
1
−44.0336
0.0
−69.8043
−85.957
M
2
−31.2423
−62.6978
−56.7826
−80.7407
−108.949
Rev. B | Page 15 of 32
3
−48.9358
−73.218
−56.7503
−100.938
−110.193
4
−105.061
−100.159
−111.146
−111.428
ADRF6604
Data Sheet
REGISTER STRUCTURE
This section provides the register maps for the ADRF6604. The three LSBs determine the register that is programmed.
REGISTER 0—INTEGER DIVIDE CONTROL (DEFAULT: 0x0001C0)
DIVIDE
MODE
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11
0
0
0
0
0
0
0
0
0
0
0
INTEGER DIVIDE RATIO
CONTROL BITS
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DM
ID6
ID5
ID4
ID3
ID2
ID1
ID0
C3(0) C2(0) C1(0)
0
0
DM
DIVIDE MODE
0
FRACTIONAL (DEFAULT)
1
INTEGER
DB1
ID6
ID5
ID4
ID3
ID2
ID1
ID0
INTEGER DIVIDE RATIO
0
0
1
0
1
0
1
21 (INTEGER MODE ONLY)
0
0
1
0
1
1
0
22 (INTEGER MODE ONLY)
0
0
1
0
1
1
1
23 (INTEGER MODE ONLY)
0
0
1
1
0
0
0
24
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
0
1
1
1
0
0
0
56 (DEFAULT)
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
1
1
1
0
1
1
1
119
1
1
1
1
0
0
0
120 (INTEGER MODE ONLY)
1
1
1
1
0
0
1
121 (INTEGER MODE ONLY)
1
1
1
1
0
1
0
122 (INTEGER MODE ONLY)
1
1
1
1
0
1
1
123 (INTEGER MODE ONLY)
DB0
08553-004
RESERVED
Figure 38. Register 0—Integer Divide Control Register Map
REGISTER 1—MODULUS DIVIDE CONTROL (DEFAULT: 0x003001)
0
0
0
0
0
0
CONTROL BITS
MODULUS VALUE
0
0
0
0
DB13
DB12 DB11 DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
MD10
MD9
MD6
MD5
MD4
MD3
MD2
MD1
MD0
C3(0) C2(0) C1(1)
MD8
MD7
DB1
DB0
MD10
MD9
MD8
MD7
MD6
MD5
MD4
MD3
MD2
MD1
MD0
MODULUS VALUE
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
0
2
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
1
1
0
0
0
0
0
0
0
0
0
1536 (DEFAULT)
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
1
1
1
1
1
1
1
1
1
1
1
2047
Figure 39. Register 1—Modulus Divide Control Register Map
Rev. B | Page 16 of 32
08553-005
RESERVED
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14
Data Sheet
ADRF6604
REGISTER 2—FRACTIONAL DIVIDE CONTROL (DEFAULT: 0x001802)
0
0
0
0
0
0
0
0
0
FD10
DB12 DB11 DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
FD9
FD6
FD5
FD4
FD3
FD2
FD1
FD0
FD8
FD7
DB2
DB1
FD10
FD9
FD8
FD7
FD6
FD5
FD4
FD3
FD2
FD1
FD0
FRACTIONAL VALUE
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
768 (DEFAULT)
0
1
1
0
0
0
0
0
0
0
0
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
DB0
C3(0) C2(1) C1(0)
08553-006
0
CONTROL BITS
FRACTIONAL VALUE
RESERVED
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13
100 ms, set the PLEN bit to 1 (Register 5,
Bit DB6).
After this procedure is completed, the other registers should
be programmed in the following order: Register 7, Register 6,
Register 4, Register 3, Register 2, Register 1. Then, after a delay
of >100 ms, Register 0 should be programmed.
The ADRF6604 is programmed via a 3-pin SPI port. The timing
requirements for the SPI port are shown in Figure 2. Eight programmable registers, each with 24 bits, control the operation of
the device. The register functions are listed in Table 8.
Rev. B | Page 20 of 32
Data Sheet
ADRF6604
LO SELECTION LOGIC
The downconverting mixer in the ADRF6604 can be used
without the internal PLL by applying an external differential LO
to Pin 37 (LON) and Pin 38 (LOP). In addition, when using an
LO generated by the internal PLL, the LO signal can be accessed
directly at these pins. This function can be used for debugging
purposes, or the internally generated LO can be used as the LO
for a separate mixer.
The operation of the LO generation and whether LOP and LON
are inputs or outputs are determined by the logic levels applied
at Pin 16 (PLL_EN) and Pin 36 (LODRV_EN), as well as Bit DB3
(LDRV) and Bit DB6 (PLEN) in Register 5. The combination of
externally applied logic and internal bits required for particular
LO functions is given in Table 9.
Table 9. LO Selection Logic
Pin 16 (PLL_EN)
0
0
1
1
1
1
1
Pins 1
Pin 36 (LODRV_EN)
X
X
X
0
X
1
Register 5 Bits1
Bit DB6 (PLEN)
Bit DB3 (LDRV)
0
X
1
X
0
X
1
0
1
1
1
X
X = don’t care.
Rev. B | Page 21 of 32
Output Buffer
Disabled
Disabled
Disabled
Disabled
Enabled
Enabled
Outputs
LO
External
External
External
Internal
Internal
Internal
ADRF6604
Data Sheet
APPLICATIONS INFORMATION
BASIC CONNECTIONS FOR OPERATION
be ac-coupled and terminated with a 50 Ω resistor as shown in
Figure 46. The reference signal, or a divided-down version of
the reference signal, can be brought back off chip at the multiplexer
output pin (MUXOUT). A lock detect signal and a voltage
proportional to the ambient temperature can also be selected
on the multiplexer output pin.
Figure 46 shows the basic connections for the ADRF6604 evaluation board. The six power supply pins should be individually
decoupled using 100 pF and 0.1 µF capacitors located as close as
possible to the device. In addition, the internal decoupling nodes
(DECL3P3, DECL2P5, and DECLVCO) should be decoupled
with the capacitor values shown in Figure 46.
The loop filter is connected between the CP and VTUNE pins.
When connected in this way, the internal VCO is operational.
For information about the loop filter components, see the
Evaluation Board Configuration Options section.
The RF input is internally ac-coupled and needs no external
bias. The IF outputs are open collector, and a bias inductor is
required from these outputs to VCC.
Operation with an external VCO is also possible. In this case,
the loop filter components should be referred to ground. The
output of the loop filter is connected to the input voltage pin of
the external VCO. The output of the VCO is brought back into
the device on the LOP and LON pins, using a balun if necessary.
The reference frequency for the PLL should be from 12 MHz to
160 MHz and should be applied to the REF_IN pin, which should
1
2
3
4
5
6
VCC
R19
0Ω
R20 (0402)
0Ω
(0402)
R54
10kΩ
(0402)
S2
LO IN/OUT
LON
4
3
T8
TC1-1-13+
C19
0.1µF
(0402)
C9
0.1µF
(0402)
C33
OPEN
(0402)
R51
OPEN
(0402)
R6
0Ω
(0402)
C8
100pF
(0402)
R26
0Ω
(0402)
C24
100pF
(0402)
R25
0Ω
(0402)
C22
100pF
(0402)
R24
0Ω
(0402)
C21
100pF
(0402)
R17
0Ω
(0402)
C18
100pF
(0402)
R7
0Ω
(0402)
C10
100pF
(0402)
C32
OPEN
(0402)
R50
OPEN
(0402)
VCC_MIX
VCC_LO
22
27
VCC2
17
VCC1
10
1
C31
1nF
(0402) REF_IN
REF_IN
R70
49.9Ω
(0402)
R16
0Ω
(0402)
13
12
14
DECL2P5
9
37
DIVIDER
÷2
BUFFER
BUFFER
FRACTION
REG
MODULUS
INTEGER
REG
2
DIV
BY
2, 1
2:1
MUX
ADRF6604
26
THIRD-ORDER
FRACTIONAL
INTERPOLATOR
×2
N COUNTER
21 TO 123
6
÷2
MUXOUT
16
C16
R18
100pF 0Ω
(0402) (0402)
C17
0.1µF
(0402)
C42
10µF
(0603)
DECL3P3
C12
R8
100pF 0Ω
(0402) (0402)
C11
0.1µF
(0402)
C41
OPEN
(0603)
SPI
INTERFACE
TEMP
SENSOR
8
4
7
11 15 20 21 23 24 25 28 30 31 35
RSET
R2
R37 OPEN
0Ω (0402)
(0402)
CP
TEST
POINT
(ORANGE)
R38
0Ω
(0402)
C14
22pF
(0603)
29
3
5
39
CP
R10
3kΩ
(0603)
C15
2.7nF
(1206)
C2
OPEN
(0402)
40
18
C13
6.8pF
(0603)
R1
0Ω
(0402)
VTUNE
C40
22pF
(0603)
1
2
R59
0Ω 3
(0402)
4
RFOUT
R43
0Ω
5 (0402)
C29
0.1µF
(0402)
R12
0Ω
(0402)
C1
100pF
(0402)
Figure 46. Basic Connections for Operation of the ADRF6604
Rev. B | Page 22 of 32
IFN
VCC
+5V
R63
OPEN
(0402)
C27
0.1µF
(0402)
19
VTUNE DECLVCO IFP
R62
0Ω
(0402)
RFIN
IP3SET
R27
0Ω
(0402)
R9 10kΩ R65 10kΩ
(0402)
(0402)
R11
OPEN
(0402)
C43
10µF
(0603)
R28
0Ω
(0402)
CHARGE PUMP
250µA,
500µA (DEFAULT),
750µA,
1000µA
–
PHASE
+ FREQUENCY
DETECTOR
RFIN
VCO
CORE
PRESCALER
÷2
MUX
÷4
REFOUT
CLK
VCC_V2I
LE
C20
0.1µF
(0402)
DATA
C23
0.1µF
(0402)
36
C6
1nF
(0402)
R52
OPEN
(0402)
C25
0.1µF
(0402)
C5
1nF LOP 38
1 (0402)
5
C34
OPEN
(0402)
C7
0.1µF
(0402)
34
LODRV_EN
R36
0Ω
R30
(0402)
0Ω
(0402) R57
0Ω
(0402)
R35
0Ω
(0402)
PLL_EN
VCC_LO
R56
0Ω
(0402)
P1
9-PIN
DSUB
9
R53
10kΩ
(0402)
VCC
RED
+5V
VCC1
RED
R55
OPEN
(0402)
S1
OPEN
8
7
08553-024
A peak-to-peak differential swing on RFIN of 1 V (0.353 V rms
for a sine wave input) results in an IF output power of 4.7 dBm.
Data Sheet
ADRF6604
AC TEST FIXTURE
the signal generation and measurement equipment. Figure 47
shows the typical AC test setup used in the characterization of
the ADRF6604.
Characterization data for the ADRF6604 was taken under very
strict test conditions. All possible techniques were used to
achieve optimum accuracy and to remove degrading effects of
ADRF6604 CHARACTERIZATION RACK DIAGRAM.
ALL INSTRUMENTS ARE CONTROLLED BY A LAB
COMPUTER VIA A USB TO GPIB CONTROLLER, DAISY
CHAINED TO EACH INDIVIDUAL INSTRUMENT.
RF1 AGILENT N5181A
HP 11636A
POWER DIVIDER
RF2 AGILENT N5181A
REF_IN AGILENT N5181A
RFIN
REF_IN
ADRF6604
EVALUATION BOARD
9-PIN CONTROLLER D-SUB AND
10-PIN DC HEADER
IF_OUT
ROHDE & SCHWARZ
FSEA30
AGILENT 34401A SET TO IDC
(SET FOR SUPPLY CURRENT)
GND VIA
10-PIN DC HEADER
5V dc VIA
10-PIN DC HEADER
3.3V dc VIA
10-PIN DC HEADER
AGILENT 34980A WITH THREE 34921 MODULES
AND ONE 34950 MODULE
AGILENT E3631A 25V SET TO
3.3V, 6V SET TO 5V.
RETURNS ARE
JUMPERED TOGETHER
Figure 47. ADRF6604 AC Test Setup
Rev. B | Page 23 of 32
08553-027
5V dc MEASURED FOR SUPPLY CURRENT
ADRF6604
Data Sheet
EVALUATION BOARD
Figure 50 shows the schematic of the RoHS-compliant evaluation
board for the ADRF6604. This board has four layers and was
designed using Rogers 4350 hybrid material to minimize high
frequency losses. FR4 material is also adequate if the design can
accept the slightly higher trace loss of this material.
The evaluation board is designed to operate using the internal
VCO of the device (the default configuration) or using an external
VCO. To use an external VCO, R62 and R12 should be removed.
Place 0 Ω resistors in R63 and R11. The input of the external
VCO should be connected to the VTUNE SMA connector, and
the external VCO output should be connected to the LO IN/OUT
SMA connector. In addition to these hardware changes, internal
register settings must be changed to enable operation with an
external VCO (see the Register 6—VCO Control and VCO
Enable (Default: 0x1E2106) section).
To connect the evaluation board to a USB port, a USB adapter board
(EVAL-ADF4XXXZ-USB) must be purchased from Analog Devices.
This board connects to the PC using a standard USB cable with
a USB mini-connector at one end. An additional 25-pin male to
9-pin female adapter is required to mate the EVAL-ADF4XXXZUSB board to the 9-pin D-Sub connector on the ADRF6604
evaluation board.
Additional configuration options for the evaluation board are
described in Table 10.
EVALUATION BOARD CONTROL SOFTWARE
The evaluation board can be connected to the PC using a PC
parallel port or a USB port. These options are selectable from the
opening menu of the software interface (see Figure 48). The
evaluation board is shipped with a 25-pin parallel port cable
for connection to the PC parallel port.
08553-028
Software to program the ADRF6604 is available for download
from the ADRF6604 product page under the Evaluation Boards
& Kits section. To install the software
1. Download and extract the zip file:
ADRF6x0x_customer_6p0p0_install.zip file.
2. Follow the instructions in the read me file.
Figure 48. Control Software Opening Menu
Figure 49 shows the main window of the control software with
the default settings displayed.
Rev. B | Page 24 of 32
ADRF6604
08553-029
Data Sheet
Figure 49. Main Window of the ADRF6604 Evaluation Board Software
Rev. B | Page 25 of 32
3P3V_LDO
AG N D
REFIN
OSC_3P3V
AG N D
AG N D
R70
49.9
AG N D
1
0
R8
1000PF
C31
10PF
C3
22000PF
C4
0
R15
0.1UF
AG N D
10UF
OSC_3P3V
C11
1
AG N D
100PF
C12
AG N D
100PF
0.1UF
AG N D
C10
0
R7
C9
3P3V1
1
VCC4
C41
VCC
1
0
R37
AG N D
0
DNI
R49
2P5V_LDO
REFOUT
R11
VCO_LDO
22PF
C14
0
R16
AG N D
DNI
AG N D
0.1UF
C2
VCO_LDO
1
VCC
AG N D
C42
10UF
P1-1
10UF
C43
0
R1
2.7NF
C15
10K
R12
1
AG N D
AG N D
C18
100PF
AG N D
C19
0.1UF
AG N D
0
100PF
0.1UF
R17
0
R18
C16
AG N D
C17
VCC2
1
2P5V
AG N D
AG N D
100PF
C1
6.8PF
C13
10K
R65
AG N D
22PF
C40
R2
AMP745781-4
9
8
7
6
5
4
3
2
1
P1
R72
R62
9
8
7
6
5
10
P1-6
P1-1
R50
1
1K DNI
CLK
DNI
4
3
2
1
DNI
R36
R57
R30
0
0
0
11
1
GND
R51
DIG_GND
0
R19
1K DNI
12
38
37
1
LE
14
Z1
AG N D
R53
10K
15
35
AG N D
1
AG N D
1
VCC
R54
10K
3
1
LO_EXTERN
33
R56
10K
17
VCC5
16
34
AG N D
3
AG N D
100PF DNI
C34
AG N D
100PF DNI
C33
DATA
13
36
VCC
S2
R52
1K DNI
AG N D
100PF DNI
C32
VCC2
DECL2P5
MUXOUT
GND
REF_IN
RSET
GND
CP
DECL3P3
39
1
VCC1
P3-T7
P4-T7
P3-T7
18
IFP
0
0
VCC1
40
1NF
R55
10K
C5
C6
1NF
DATA
R9
0
3K
TBD
R10
R71
2
R38
DECLVCO
S1
LE
R63
100K
PLL_EN
P3-T7
VCC_LO
CP
Y1
R14
AG N D
VTUNE
3
LODRV_EN
R33
NC
32
0
31
T8
21
22
23
AG N D
C20
1
VCC_LO1
0.1UF
AG N D
VCC_LO
R60
TBD
R25
AG N D
100PF
C27
VCC_LO
VCC_RF
0
R26
C25
VCC_BB
AG N D
0.1UF
1
VCC_RF
VCC_BB
IP3SET
OUTPUT_EN
0
VCC_BB1
AG N D
0.1UF
C24
TBD
R27
AG N D
R31
DNI
R58
VCC
VCC
AG N D
TBD
L2
TBD
AG N D
C23
0.1UF
L1
0
C22
100PF
1
DNI
C36
DNI
C35
0
R48
0
R47
0
AG N D
1
IP3SET
VCC_LO
R29
LO
VCC_BB
R28
C21
0
R24
IP3SET
AG N D
0.1UF
C7
1
VCC_LO
0
R69
0
24
AG N D
AG N D
P1-T7
AG N D
R32
25
26
27
28
0
R6
4
2
5
P4-T7
P4-T7
100PF
AG N D
30
29
E-PAD PAD
GND
VCC_MIX
GND
GND
GND
RFIN
VCC_V2I
GND
IP3SET
GND
AG N D
AG N D
100PF
C8
NC
4
5A
4A
2A
3
5
2
3A
6A
20
OUTPUT_EN
19
NC
AG N D
IFN
1A
GND
0
AG N D
VCC
1
AG N D
AG N D
C28
IFN
IFP
0
R67
0 DNI
R68
AG N D
RFIN
SNS1
SNS
VCC_SENSE
VCC
AGND
AGND
3P3V_LDO
2P5V_LDO
LO_EXTERN
VCO_LDO
VCC_SENSE
T3
AG N D
OUT
1
1
AG N D
GND1
GND
C29
DNI
R44
AG N D
0.1UF
VCC
0
R59
J1 1
J1 2
J1 3
J1 4
J1 5
J1 6
J1 7
J1 8
J1 9
J1 10
1
GND2
TC4-1W
VCC
VCC_RF
10UF
6
R66
P1-T7
GND
T7
R43
1
2
VTUNE
CLK
1
1
GND
4
1
P1-6
LOP
R35
LON
0
VCC_LO
0
GND
R20
Rev. B | Page 26 of 32
R34
Figure 50. Evaluation Board Schematic
0
6
3
P1-T7
AG N D
ADRF6604
Data Sheet
SCHEMATIC AND ARTWORK
2
08553-023
0
0
ADRF6604
08553-012
08553-013
Data Sheet
Figure 52. Evaluation Board Layout (Top)
Figure 51. Evaluation Board Layout (Bottom)
Rev. B | Page 27 of 32
ADRF6604
Data Sheet
EVALUATION BOARD CONFIGURATION OPTIONS
Table 10.
Component
S1, R55, R56, R33
Description
LO select. Switch and resistors to ground the LODRV_EN pin. The LODRV_EN pin setting, in
combination with internal register settings, determines whether the LOP and LON pins
function as inputs or outputs (see the LO Selection Logic section for more information).
LO IN/OUT
SMA Connector
REFIN
SMA Connector
REFOUT
SMA Connector
LO input/output. An external 1× LO or 2× LO can be applied to this single-ended input
connector.
Reference input. The input reference frequency for the PLL is applied to this connector.
Input impedance is 50 Ω.
Multiplexer output. The REFOUT connector connects directly to the MUXOUT pin. The
on-board multiplexer can be programmed to bring out the following signals: REFIN, 2×
REFIN, REFIN/2, and REFIN/4; temperature sensor output voltage; and lock detect indicator.
Charge pump test point. The unfiltered charge pump signal can be probed at this test
point. Note that the CP pin should not be probed during critical measurements, such as
phase noise.
Loop filter. Loop filter components.
CP Test Point
R37, C14, R9, R10,
C15, C13, R65, C40
R11, R12
R62, R63, VTUNE
SMA Connector
R2
RFIN SMA Connector
T3
Loop filter return. When the internal VCO is used, the loop filter components should be
returned to the DECLVCO pin (Pin 40) by installing a 0 Ω resistor in R12. When an external
VCO is used, the loop filter components can be returned to ground by installing a 0 Ω
resistor in R11.
Internal vs. external VCO. When the internal VCO is enabled, the loop filter components are
connected directly to the VTUNE pin (Pin 39) by installing a 0 Ω resistor in R62. To use an
external VCO, R62 should be left open. A 0 Ω resistor should be installed in R63, and the
voltage input of the VCO should be connected to the VTUNE SMA connector. The output of
the VCO is brought back into the PLL via the LO IN/OUT SMA connector.
RSET pin. This pin is unused and should be left open.
RF input. The RF input signal should be applied to the RFIN SMA connector. The RF input of
the ADRF6604 is ac-coupled; therefore, no bias is necessary.
IF output. The differential IF output signals from the ADRF6604 (IFP and IFN) are converted
to a single-ended signal by T3.
Rev. B | Page 28 of 32
Default Condition/
Option Settings
S1 = R55 = open
(not installed),
R56 = R33 = 0 Ω,
LODRV_EN = 0 V
LO input
Lock detect
R12 = 0 Ω (0402),
R11 = open (0402)
R62 = 0 Ω (0402),
R63 = open (0402)
R2 = open (0402)
R3 = R23 = open (0402)
Data Sheet
ADRF6604
OUTLINE DIMENSIONS
6.10
6.00 SQ
5.90
0.60 MAX
0.60 MAX
PIN 1
INDICATOR
31
30
0.50
BSC
10
21
20
TOP VIEW
1.00
0.85
0.80
SEATING
PLANE
12° MAX
0.50
0.40
0.30
0.80 MAX
0.65 TYP
0.30
0.23
0.18
4.25
4.10 SQ
3.95
EXPOSED
PAD
(BOTTOM VIEW)
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
11
0.20 MIN
4.50 REF
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2
06-01-2012-D
5.85
5.75 SQ
5.65
PIN 1
INDICATOR
40 1
Figure 53. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
6 mm × 6 mm Body, Very Thin Quad
(CP-40-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADRF6604ACPZ-R7
ADRF6604-EVALZ
1
Temperature Range
−40°C to +85°C
Package Description
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
Evaluation Board
Z = RoHS Compliant Part.
Rev. B | Page 29 of 32
Package Option
CP-40-1
ADRF6604
Data Sheet
NOTES
Rev. B | Page 30 of 32
Data Sheet
ADRF6604
NOTES
Rev. B | Page 31 of 32
ADRF6604
Data Sheet
NOTES
©2010–2014 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D08553-0-1/14(B)
Rev. B | Page 32 of 32