0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADRF6780ACPZN-R7

ADRF6780ACPZN-R7

  • 厂商:

    AD(亚德诺)

  • 封装:

    WFQFN32_EP,CSP

  • 描述:

    ICUPCONVERTER5.9GHZ-23.6GHZ

  • 数据手册
  • 价格&库存
ADRF6780ACPZN-R7 数据手册
5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter ADRF6780 Data Sheet FEATURES GENERAL DESCRIPTION Wideband RF output frequency range: 5.9 GHz to 23.6 GHz Two upconversion modes Direct conversion from baseband I/Q to RF Single sideband upconversion from real IF LO input frequency range: 5.4 GHz to 14 GHz LO doubler for up to 28 GHz Matched 100 Ω balanced RF output, LO input, and IF input High impedance baseband inputs Sideband suppression and carrier feedthrough optimization Variable attenuator and power detector for Tx power control Programmable via 4-wire SPI interface 32-lead, 5 mm × 5 mm LFCSP microwave packaging The ADRF6780 is a silicon germanium (SiGe) design, wideband, microwave upconverter optimized for point to point microwave radio designs operating in the 5.9 GHz to 23.6 GHz frequency range. The upconverter offers two modes of frequency translation. The device is capable of direct conversion to radio frequency (RF) from baseband I/Q input signals, as well as single sideband (SSB) upconversion from a real intermediate frequency (IF) input carrier frequency. The baseband inputs are high impedance and are generally terminated off chip with 100 Ω differential back terminations. The baseband I/Q input path can be disabled and a modulated real IF signal anywhere from 0.8 GHz to 3.5 GHz can fed into the IF input path and upconverted to 5.9 GHz to 23.6 GHz while suppressing the unwanted sideband by typically better than 25 dBc. The serial port interface (SPI) allows tweaking of the quadrature phase adjustment to allow optimum sideband suppression. In addition, the SPI interface allows powering down the output power detector to reduce power consumption when power monitoring is not necessary. APPLICATIONS Point to point microwave radios Radar, electronic warfare systems Instrumentation, automatic test equipment (ATE) The ADRF6780 upconverter comes in a compact, thermally enhanced, 5 mm × 5 mm LFCSP package. The ADRF6780 operates over the −40°C to +85°C temperature range. FUNCTIONAL BLOCK DIAGRAM ALM VPLO LOIP AGND LOIN VPLO SEN SDTO 32 31 30 29 28 27 26 25 1 VPDT 2 VPRF 3 AGND 4 RFOP 5 SPI LOG DET ×1 ×2 BIAS CONTROL QUAD SPLITTER BUFFER VVA 24 SCLK 23 SDIN 22 VP18 21 VPBI 20 IFIP AGND 6 19 AGND RFON 7 18 IFIN AGND 8 17 RST ADRF6780 9 10 VPRF VATT 11 12 BBQN BBQP 13 14 15 16 BBIP BBIN VPBB PWDN 14106-001 ADC VDET Figure 1. Rev. D Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADRF6780 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Carrier Feedthrough Nulling .................................................... 23 Applications ....................................................................................... 1 Sideband Suppression Optimization ....................................... 23 General Description ......................................................................... 1 Linearity ....................................................................................... 23 Functional Block Diagram .............................................................. 1 ADC ............................................................................................. 23 Revision History ............................................................................... 2 Wide Frequency Performance .................................................. 24 Specifications..................................................................................... 3 Layout .......................................................................................... 24 Absolute Maximum Ratings ............................................................ 6 LO Input Driven Differential vs. Single Ended .......................... 25 Thermal Resistance ...................................................................... 6 Register Summary .......................................................................... 27 ESD Caution .................................................................................. 6 Register Details: Wideband Upconverter .................................... 28 Pin Configuration and Function Descriptions ............................. 7 Control Register ......................................................................... 28 Typical Performance Characteristics ............................................. 9 ALARM_READBACK Register ............................................... 28 I/Q Mode ....................................................................................... 9 ALARM_MASK Register .......................................................... 29 IF Mode........................................................................................ 14 Enable Register ........................................................................... 29 Output Detector Performance .................................................. 19 Linearize Register ....................................................................... 30 Return Loss.................................................................................. 20 LO_PATH Register..................................................................... 30 Theory of Operation ...................................................................... 21 ADC_CONTROL Register ....................................................... 31 Baseband ...................................................................................... 21 ADC_OUTPUT Register .......................................................... 31 Single Sideband (SSB) Upconversion ...................................... 21 Basic Connections for Operation ................................................. 32 LO Input Path.............................................................................. 21 Outline Dimensions ....................................................................... 35 Serial Port Interface (SPI) .......................................................... 21 Ordering Guide .......................................................................... 35 Applications Information .............................................................. 23 REVISION HISTORY 1/2019—Rev. C to Rev. D Changes to ADC Section ............................................................... 23 7/2018—Rev. B to Rev. C Changed 32.95 to 9.18 in θJA Column, Table 3 ............................. 6 Changes to Ordering Guide .......................................................... 35 10/2017—Rev. A to Rev. B Changes to Maximum Junction Temperature Parameter, Table 2 ... 6 Change to Table 4 ......................................................................................... 7 Changes to Figure 31 Caption ................................................................. 13 Changes to Ordering Guide..................................................................... 35 5/2016—Rev. 0 to Rev. A Change to Table 4 ............................................................................. 7 Changes to Figure 40 ...................................................................... 15 Changes to Figure 47 ...................................................................... 16 Changes to Figure 58 ...................................................................... 18 Change to Figure 84 ....................................................................... 33 Changes to Table 16 ........................................................................ 34 3/2016—Revision 0: Initial Version Rev. D | Page 2 of 35 Data Sheet ADRF6780 SPECIFICATIONS VPBB = VPBI = VPLO = 3.3 V, VP18 = 1.8 V, VPDT = VPRF = 5 V, TA = 25°C, LO = 0 dBm differential drive; baseband I/Q amplitude = −15 dBm differential sine waves in quadrature with a 500 mV dc bias, baseband input termination with 100 Ω externally, IF amplitude = −12 dBm differential sine waves, unless otherwise noted. Table 1. Parameter RF OUTPUT FREQUENCY RANGE LOCAL OSCILLATOR (LO) INPUT FREQUENCY RANGE LO AMPLITUDE RANGE IF INPUT FREQUENCY RANGE BASEBAND (BB) I/Q INPUT FREQUENCY RANGE I/Q MODULATOR PERFORMANCE Modulator Voltage Gain Output Noise Density Output Third-Order Intercept (OIP3) 5.9 GHz to 10 GHz 10 GHz to 14 GHz 14 GHz to 20 GHz 20 GHz to 23.6 GHz Fifth-Order Intermodulation Distortion (IMD5) Output Second-Order Intercept (OIP2) 5.9 GHz to 10 GHz 10 GHz to 14 GHz 14 GHz to 20 GHz 20 GHz to 23.6 GHz Output 1 dB Compression Point (P1dB) 5.9 GHz to 10 GHz 10 GHz to 14 GHz 14 GHz to 20 GHz 20 GHz to 23.6 GHz LO Feedthrough Sideband Suppression Test Conditions/Comments Maximum gain at maximum gain setting Minimum gain at minimum gain setting Output carrier > −5 dBm Output carrier > −14 dBm Output carrier > −22.5 dBm f1BB = 10 MHz, f2BB = 12 MHz, baseband I/Q amplitude per tone = −15 dBm sine waves in quadrature with a 500 mV dc bias, 10 dB gain setting f1 BB = 10 MHz, f2 BB = 12 MHz, baseband I/Q amplitude per tone = −15 dBm sine waves in quadrature with a 500 mV dc bias, 10 dB gain setting f1 BB = 10 MHz, f2 BB = 12 MHz, baseband I/Q amplitude per tone = −15 dBm sine waves in quadrature with a 500 mV dc bias, 10 dB gain setting At 10 dB gain setting At maximum gain setting At 10 dB gain setting At maximum gain setting At 10 dB gain setting At maximum gain setting At 10 dB gain setting At maximum gain setting At 10 dB gain setting (can be improved baseband dc offset adjustment) At 10 dB gain setting Rev. D | Page 3 of 35 Min 5.9 5.4 Typ Max 23.6 14 Unit GHz GHz −6 0.8 DC 0 +6 3.5 750 dBm GHz MHz 10 13 −12 −147 −145 −136 dB dB dBc/Hz dBc/Hz dBc/Hz 24 25 27 27 65 dBm dBm dBm dBm dBm 65 65 66 50 dBm dBm dBm dBm 10.5 11 11 12 10 12 10 11 −25 dBm dBm dBm dBm dBm dBm dBm dBm dBm 25 dBc ADRF6780 Parameter IF UPCONVERTER PERFORMANCE Upconversion Voltage Gain Output Noise Density OIP3 5.9 GHz to 10 GHz 10 GHz to 14 GHz 14 GHz to 20 GHz 20 GHz to 23.6 GHz IMD5 Output P1dB 5.9 GHz to 10 GHz 10 GHz to 14 GHz 14 GHz to 20 GHz 20 GHz to 23.6 GHz LO Feedthrough Sideband Suppression Tx POWER DETECTOR PERFORMANCE Output Level Maximum Minimum ±1 dB Dynamic Range Output Voltage Maximum Minimum Log Slope Time Rise Fall Response RETURN LOSS RF Output LO Input IF Input Baseband I/Q Input Impedance LOGIC INPUTS Input High Voltage Range, VINH Input Low Voltage Range, VINL Input Current, IINH/IINL Input Capacitance, CIN Data Sheet Test Conditions/Comments Min Typ Maximum gain at maximum gain setting Minimum gain at minimum gain setting Output carrier > −5 dBm Output carrier > −14 dBm Output carrier > −22.5 dBm f1 IF = 1810 MHz, f2 IF = 1812 MHz, amplitude per tone = −15 dBm sine waves in quadrature with ac bias, 7 dB gain setting 7 11 −14 −147 −145 −136 23.5 dB dB dBc/Hz dBc/Hz dBc/Hz 27 24 22.5 22.5 80 dBm dBm dBm dBm dBm 10.5 11.5 10 12 9.5 12 9.5 11.5 −35 dBm dBm dBm dBm dBm dBm dBm dBm dBm 25 dBc 2 −30 34 dBm dBm dB 1 0.2 25 V V mV/dB 134 ns 190 ns 30 ns 12 12 17 1 dB dB dB MΩ f1 IF = 1810 MHz, f2 IF = 1812 MHz, amplitude per tone = −15 dBm sine waves in quadrature with ac bias, 7 dB gain setting At 7 dB gain setting At maximum gain setting At 7 dB gain setting At maximum gain setting At 7 dB gain setting At maximum gain setting At 7 dB gain setting At maximum gain setting At 7 dB gain setting (can be improved by baseband dc offset adjustment) At 7 dB gain setting PIN = off to −10 dBm, 10% to 90%, C7 = 10 pF (see Figure 83) PIN = −10 dBm to off, 10% to 90%, C7 = 10 pF (see Figure 83) C7 = 10 pF (see Figure 83) 100 Ω differential 100 Ω differential 100 Ω differential VP18 − 0.4 0 1.8 0.4 100 3 Rev. D | Page 4 of 35 Max Unit V V µA pF Data Sheet Parameter LOGIC OUTPUTS Output High Voltage Range, VOH Output Low Voltage Range, VOL Output High Current, IOH POWER INTERFACE VPBB, VPLO, VPBI VPBB, VPLO, VPBI Supply Current VP18 VP18 Supply Current VPDT, VPRF VPDT, VPRF Supply Current Total Power Consumption ADRF6780 Test Conditions/Comments Min Typ VP18 − 0.4 0 3.15 ×1 LO path enabled, IF path disabled ×2 LO path enabled, IF path disabled ×1 LO path enabled, IF path enabled ×2 LO path enabled, IF path enabled 1.7 4.75 ×1/×2 LO path enabled, IF path disabled ×1/×2 LO path enabled, IF path enabled ×2 LO path enabled, IF path enabled Power down Rev. D | Page 5 of 35 3.3 340 390 490 540 1.8 1 5 180 160 2.58 35 Max Unit 1.8 0.4 500 V V µA 3.45 V mA mA mA mA V mA V mA mA W mW 1.9 5.25 50 ADRF6780 Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 2. Parameter Supply Voltage VPDT, VPRF VPBB, VPLO, VPBI VP18 Maximum Junction Temperature Operating Temperature Range Storage Temperature Range Lead Temperature Range (Soldering 60 sec) θJA is thermal resistance, junction to ambient (°C/W), and θJC is thermal resistance, junction to case (°C/W). Rating 6.5 V 4.3 V 2.3 V 125°C −40°C to +85°C −55°C to +125°C −65°C to +150°C Table 3. Thermal Resistance Package Type 32-Lead LFCSP 1 θJA1 9.18 θJC1 1.14 Unit °C/W See JEDEC Standard JESD51-2 for additional information on optimizing the thermal impedance (printed circuit board (PCB) with 3 × 3 vias). ESD CAUTION Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. D | Page 6 of 35 Data Sheet ADRF6780 32 31 30 29 28 27 26 25 PIN 1 INDICATOR ALM VPLO LOIP AGND LOIN VPLO SEN SDTO PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 2 3 4 5 6 7 8 ADRF6780 TOP VIEW (Not to Scale) 24 23 22 21 20 19 18 17 SCLK SDIN VP18 VPBI IFIP AGND IFIN RST NOTES 1. SOLDER THE EXPOSED PAD TO A LOW IMPEDANCE GROUND PLANE. 2. THE DEVICE NUMBER ON THE FIGURE DOES NOT INDICATE THE LABEL ON THE PACKAGE. PLEASE REFER TO PIN 1 INDICATOR FOR PIN LOCATIONS. 14106-002 VPRF VATT BBQN BBQP BBIP BBIN VPBB PWDN 9 10 11 12 13 14 15 16 VDET VPDT VPRF AGND RFOP AGND RFON AGND Figure 2. Pin Configuration Table 4. Pin Function Descriptions Pin No. 1 Mnemonic VDET 2 VPDT 3, 9 VPRF 4, 6, 8, 19, 29 5, 7 10 AGND 11 to 14 BBQN, BBQP, BBIP, BBIN 15 VPBB 16 PWDN 17 RST 18, 20 IFIN, IFIP 21 VPBI 22 23 VP18 SDIN 24 25 SCLK SDTO 26 SEN RFOP, RFON VATT Description RF Detector Output. The voltage output is proportional to the decibel RF output power. The detector slope is nominally 50 mV/dB. Power Supply Connection for the RF Detector. Decouple the VPDT pin with 100 pF and 0.1 µF capacitors as close as possible to the pin. Note that this pin must always be supplied with 5 V. Power Supply Connections for the RF Path. Decouple the VPRF pin with 100 pF and 0.1 µF capacitors as close as possible to the pins. Analog Grounds. Connect these pins to a low impedance ground plane. RF Outputs. These outputs are 100 Ω differential outputs for the RF path. Frequency range is 5.9 GHz to 23.6 GHz. Modulator Output Attenuator Control Input. The RF voltage variable attenuator is controlled by applying a 0 V to 2.6 V control voltage to the VATT pin. Increase the gain when VATT voltage increases. This pin is linear in dB over central gain range. I Channel and Q Channel Baseband Inputs. These inputs are high input impedance and are typically differentially terminated to a 100 Ω resistor using an off chip termination. The nominal common-mode bias level on these pins must be 0.5 V. Power Supply Connection for Baseband Path. Decouple the VPBB pin with 100 pF and 0.1 µF capacitors as close as possible to the pin. Power Down. The ADRF6780 powers up when the PWDN pin is at a low logic level (1.2 V). When the ADRF6780 is powered up, the SPI can also be used as a power-down capability. The PWDN pin has an internal 18 kΩ pull-down resistor. Reset. This pin provides the ability to reset the SPI to the default register settings. Pull the RST pin to a logic high level in normal operation. Driving the RST pin to a logic low level loads the default SPI register settings. The RST pin has an internal 7.75 kΩ pull-up resistor. IF Inputs. These inputs are 100 Ω differential inputs for IF upconversion, and they must be ac-coupled. When the IF mode is set, remove the 0 Ω R10 to R13 resistors from the I/Q lines. Power Supply Connection. Decouple the VPBI pin with 100 pF and 0.1 µF capacitors as close as possible to the pin. 1.8 V Power Supply. Decouple the VP18 pin with 100 pF and 0.1 µF capacitors as close as possible to the pin. Serial Data Input. Serial data applied to the SDIN pin is loaded into the SPI register upon a successful write command as indicated in the timing diagrams (see Figure 68 to Figure 70). The first most significant bit (MSB) is a control bit and it determines whether data is written to the register (logic high) or read from the serial data output pin (logic low). The SDIN pin has an internal 18 kΩ pull-down resistor. Serial Clock. This pin is the clock input for the SPI interface. The SCLK pin has an internal 18 kΩ pull-down resistor. Serial Data Output. The SDTO pin provides a SPI readback capability. See the timing diagrams for normal operation (see Figure 68 to Figure 70). The SDTO pin has an internal 18 kΩ pull-down resistor. Serial Enable. When the SEN input pin goes high, the data stored in the shift registers is loaded into the register. The SEN pin has an internal 7.75 kΩ pull-up resistor. Rev. D | Page 7 of 35 ADRF6780 Pin No. 27, 31 Mnemonic VPLO 28, 30 LOIN, LOIP 32 ALM EP Data Sheet Description Power Supply Connections for the LO Path. Decouple the VPLO pin with 100 pF and 0.1 µF capacitors as close as possible to the pin. LO Inputs. These inputs are 100 Ω differential inputs for the LO path. The LO input frequency range is 5.4 GHz to 14 GHz. The on-chip LO frequency doubler can be enabled via a SPI command. Alarm. The ALM pin indicates internal alarm conditions. The ALM pin is logic low when an alarm condition is detected. Exposed Pad. Solder the exposed pad to a low impedance ground plane. Rev. D | Page 8 of 35 Data Sheet ADRF6780 TYPICAL PERFORMANCE CHARACTERISTICS VPBB = VPBI = VPLO = 3.3 V, VP18 = 1.8 V, VPDT = VPRF = 5 V, TA = 25°C, LO = 0 dBm differential drive, polyphase filter (PPF, ×1) mode below 14 GHz and differential drive doubler (×2) mode above 14 GHz, VATT = 2.6 V, unless otherwise noted. I/Q MODE Baseband (BB) I/Q amplitude = −15 dBm, differential sine waves in quadrature with a 500 mV dc bias, BB I/Q frequency (fx BB) = 10 MHz, BB input termination with 100 Ω externally, unless otherwise noted. 5 15 fRF = 6GHz fRF = 10GHz fRF = 15GHz fRF = 20GHz fRF = 24GHz VATT = 2.6V 0 10 CONVERSION GAIN (dB) –5 POUT (dBm) –10 VATT = 1.5V –15 –20 VATT = 0.4V –25 5 0 –5 –30 –10 5 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) –15 0.4 14106-003 –40 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 14106-006 –40°C +25°C +85°C –35 2.6 VATT (V) Figure 3. Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings for Various Temperatures, BB I/Q Amplitude = −15 dBm Figure 6. Conversion Gain vs. VATT for Various RF Frequencies (fRF) 5 15 VATT = 2.6V 0 10 –5 VATT = 1.5V P1dB (dBm) POUT (dBm) –10 –15 –20 VATT = 0.4V 5 0 –25 –30 –5 5 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) –10 14106-004 –40 –40°C +25°C +85°C 5 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) Figure 4. Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings for Various Supply Voltages, BB I/Q Amplitude = −15 dBm 14106-008 4.75V/3.15V 5.00V/3.30V 5.25V/3.45V –35 Figure 7. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various Temperatures 5 15 0 VATT = 2.6V 10 –5 VATT = 1.5V P1dB (dBm) POUT (dBm) –10 –15 –20 VATT = 0.4V 5 0 –25 –30 5 7 9 –5 LO = –3dBm LO = –6dBm LO = –9dBm 11 13 15 4.75V/3.15V 5.00V/3.30V 5.25V/3.45V 17 19 RF FREQUENCY (GHz) 21 23 25 –10 5 7 9 11 13 15 17 19 RF FREQUENCY (GHz) Figure 5. Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings for Various LO Inputs, BB I/Q Amplitude = −15 dBm 21 23 25 14106-009 –40 = +9dBm = +6dBm = +3dBm = 0dBm 14106-005 LO LO LO LO –35 Figure 8. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various Supply Voltages Rev. D | Page 9 of 35 ADRF6780 Data Sheet 0 12 10 CARRIER FEEDTHROUGH (dBm) 8 4 2 0 –2 –4 5 7 9 LO = –3dBm LO = –6dBm LO = –9dBm 11 13 15 –20 –30 –40 –50 –60 –70 17 19 21 23 25 RF FREQUENCY (GHz) –80 Figure 9. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various LO Inputs 9 11 13 15 17 19 21 23 25 Figure 12. Carrier Feedthrough vs. RF Frequency (fRF) at Three Gain Settings and Temperatures Before Nulling 60 SIDEBAND SUPPRESSION (dB) 10 P1dB (dBm) 7 RF FREQUENCY (GHz) 15 5 0 –5 50 40 30 20 10 +85°C, VATT = 2.6V +85°C, VATT = 1.5V +85°C, VATT = 0.4V MAXIMUM GAIN 10dB GAIN 5 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) 0 14106-011 –10 5 14106-012 –6 = +9dBm = +6dBm = +3dBm = 0dBm 14106-010 LO LO LO LO –40°C, VATT = 2.6V –40°C, VATT = 1.5V –40°C, VATT = 0.4V +25°C, VATT = 2.6V +25°C, VATT = 1.5V +25°C, VATT = 0.4V Figure 10. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at a 10 dB Gain Setting and the Maximum Gain Setting 5 7 9 11 –40°C, VATT = 2.6V –40°C, VATT = 1.5V –40°C, VATT = 0.4V +25°C, VATT = 2.6V +25°C, VATT = 1.5V +25°C, VATT = 0.4V 13 15 17 19 21 23 25 RF FREQUENCY (GHz) 14106-013 P1dB (dBm) 6 –8 +85°C, VATT = 2.6V +85°C, VATT = 1.5V +85°C, VATT = 0.4V –10 Figure 13. Sideband Suppression vs. RF Frequency (fRF) at Three Gain Settings and Temperatures Before Nulling 80 15 P1dB (dBm) 5 0 –5 60 50 40 30 20 10 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 BB INPUT FREQUENCY (GHz) 1.6 1.8 2.0 0 14106-211 –10 Figure 11. Output 1 dB Compression Point (P1dB) vs. BB Input Frequency at a 10 dB Gain Setting +85°C, VATT = 2.6V +85°C, VATT = 1.5V +85°C, VATT = 0.4V 5 7 9 11 –40°C, VATT = 2.6V –40°C, VATT = 1.5V –40°C, VATT = 0.4V +25°C, VATT = 2.6V +25°C, VATT = 1.5V +25°C, VATT = 0.4V 13 15 17 19 RF FREQUENCY (GHz) 21 23 25 14106-014 SIDEBAND SUPPRESSION (dB) 70 10 Figure 14. Sideband Suppression vs. RF Frequency (fRF) at Three Gain Settings and Temperatures after Nulling Using I_PATH_PHASE_ACCURACY and Q_PATH_PHASE_ACCURACY at 25°C Rev. D | Page 10 of 35 Data Sheet ADRF6780 80 80 –40°C +25°C +85°C 70 60 50 50 40 30 30 20 20 10 10 5 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) Figure 15. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various Temperatures, BB I/Q Amplitude = −15 dBm per Tone 80 70 70 60 60 50 50 30 20 5 10 11 13 15 17 19 21 23 25 40 30 10 15 20 25 RF FREQUENCY (GHz) 0 14106-215 0 9 20 –40°C, RDAC_LINEARIZE +25°C, RDAC_LINEARIZE +85°C, RDAC_LINEARIZE –40°C +25°C +85°C 10 7 LO = –3dBm LO = –6dBm LO = –9dBm Figure 18. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various LO Inputs, BB I/Q Amplitude = −15 dBm per Tone 80 40 5 = +9dBm = +6dBm = +3dBm = 0dBm RF FREQUENCY (GHz) IMD3 (dBm) IMD3 (dBc) 0 LO LO LO LO Figure 16. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various RDAC_LINEARIZE Settings and Various Temperatures, BB I/Q Amplitude = −15 dBm per Tone 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 BB INPUT FREQUENCY (GHz) 14106-219 0 Figure 19. Third-Order Intermodulation Distortion (IMD3) vs. BB Input Frequency at a 10 dB Gain Setting, BB I/Q Amplitude = −15 dBm per Tone 80 70 4.75V/3.15V 5.00V/3.30V 5.25V/3.45V 70 60 60 50 50 IMD3 (dBc) IMD3 (dBc) 40 14106-019 IMD3 (dBc) 60 14106-017 IMD3 (dBc) 70 40 40 30 30 20 10 10 5 7 9 11 13 15 17 19 RF FREQUENCY (GHz) 21 23 25 0 –30 14106-117 0 Figure 17. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) for Various Supply Voltages, BB I/Q Amplitude = −15 dBm per Tone fRF = 6GHz fRF = 10GHz fRF = 15GHz fRF = 20GHz fRF = 24GHz –25 –20 –15 –10 –5 POUT (dBm PER TONE; PIN = –15dBm PER TONE) 0 14106-021 20 Figure 20. Third-Order Intermodulation Distortion (IMD3) vs. Output Power (POUT) for Various RF Frequencies (fRF), BB I/Q Amplitude = −15 dBm per Tone Rev. D | Page 11 of 35 Data Sheet 80 35 70 30 60 25 50 20 15 30 10 20 5 10 5 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) Figure 21. Output Third-Order Intercept (OIP3) vs. RF Frequency (fRF) at a 10 dB Gain Setting, BB I/Q Amplitude = −15 dBm per Tone –20 –10 –15 0 –5 Figure 24. Fifth-Order Intermodulation Distortion (IMD5) vs. Output Power (POUT) for Various RF Frequencies, BB I/Q Amplitude = −15 dBm per Tone fRF = 6GHz fRF = 10GHz fRF = 15GHz fRF = 20GHz fRF = 24GHz 30 70 60 OIP2 (dBm) 25 20 50 40 15 30 10 20 5 10 –23 –21 –19 –17 –15 –13 –11 –9 –7 –5 BB INPUT POWER (dBm PER TONE) 0 14106-222 0 –25 Figure 22. Output Third-Order Intercept (OIP3) vs. BB Input Power at a 10 dB Gain Setting for Various RF Frequencies (fRF) 70 60 60 50 50 OIP2 (dBm) 70 30 20 20 LO LO LO LO 10 –40°C +25°C +85°C 9 11 13 15 17 19 RF FREQUENCY (GHz) 21 23 25 0 14106-023 7 Figure 23. Fifth-Order Intermodulation Distortion (IMD5) vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various Temperatures, BB I/Q Amplitude = −15 dBm per Tone 9 11 13 15 17 19 21 23 25 40 30 5 7 Figure 25. Output Second-Order Intercept (OIP2) vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various Temperatures, BB I/Q Amplitude = −15 dBm per Tone 80 10 5 RF FREQUENCY (GHz) 80 40 –40°C +25°C +85°C 14106-025 35 0 –25 POUT (dBm PER TONE; PIN = –15dBm PER TONE) 80 40 OIP3 (dBm) 0 –30 fRF = 6GHz fRF = 10GHz fRF = 15GHz fRF = 20GHz fRF = 24GHz 5 7 = +9dBm = +6dBm = +3dBm = 0dBm 9 LO = –3dBm LO = –6dBm LO = –9dBm 11 13 15 17 19 RF FREQUENCY (GHz) 21 23 25 14106-026 0 IMD5 (dBc) 40 14106-024 IMD5 (dBc) 40 14106-020 OIP3 (dBm) ADRF6780 Figure 26. Output Second-Order Intercept (OIP2) vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various LO Inputs, BB I/Q Amplitude = −15 dBm per Tone Rev. D | Page 12 of 35 Data Sheet 80 5 60 POUT AT 15GHz, MAX GAIN (dBm) fRF = 6GHz fRF = 10GHz fRF = 15GHz fRF = 20GHz fRF = 24GHz 70 OIP2 (dBm) ADRF6780 50 40 30 20 0 –5 –10 –15 –20 –15 –10 –5 0 POUT (dBm PER TONE; PIN = –15dBm PER TONE) –20 10 MAGNITUDE DELTA, RFON TO RFOP (dB) –40°C +25°C +85°C CARRIER TO NOISE (dBc/Hz) 150 145 140 135 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) Figure 28. Output Noise Density vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various Temperatures with an Output Carrier of −5 dBm 155 CARRIER TO NOISE (dBc/Hz) 150 135 4 9 14 14106-028 130 –1 1.2 1.4 1.6 1.8 2.0 6 4 2 0 –2 –4 –6 –8 7 9 11 13 15 17 19 21 23 25 Figure 31. Magnitude Delta, RFON minus RFOP vs. RF Frequency (fRF) at Three Different Gain Settings 140 VATT GAIN (dB) 1.0 RF FREQUENCY (GHz) fRF = 6GHz fRF = 10GHz fRF = 15GHz fRF = 20GHz fRF = 24GHz –6 0.8 VATT = 2.6V VATT = 1.5V VATT = 0.4V 8 5 145 125 –11 0.6 –10 14106-127 130 7 0.4 Figure 30. Bandwidth, POUT at 15 GHz and the Maximum Gain Setting vs. BB Input Frequency 155 5 0.2 BB FREQUENCY (GHz) Figure 27. Output Second-Order Intercept (OIP2) vs. Output Power (POUT) for Various RF Frequencies (fRF), BB I/Q Amplitude = −15 dBm per Tone 125 0 14106-031 –25 14106-227 0 –30 14106-230 10 Figure 29. Output Noise Density vs. VATT Gain for Various RF Frequencies (fRF) with an Input Carrier of −15 dBm Rev. D | Page 13 of 35 ADRF6780 Data Sheet IF MODE IF frequency (IF mode) = 1900 MHz, IF amplitude = −12 dBm, input ac-coupled, unless otherwise noted. 15 5 fRF = 6GHz fRF = 10GHz fRF = 15GHz fRF = 20GHz fRF = 24GHz VATT = 2.6V 0 10 POUT (dBm) –10 CONVERSION GAIN (dB) –5 VATT = 1.5V –15 VATT = 0.4V –20 –25 5 0 –5 –30 5 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) –15 0.4 14106-037 –40 0.8 1.0 1.2 1.6 1.4 2.0 1.8 2.2 2.4 2.6 VATT (V) Figure 32. Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings for Various Temperatures, IF Amplitude = −12 dBm Figure 35. Conversion Gain vs. VATT at Various RF Frequencies (fRF) 5 15 –40°C +25°C +85°C VATT = 2.6V 0 10 –5 –10 VATT = 1.5V P1dB (dBm) POUT (dBm) 0.6 14106-040 –10 –40°C +25°C +85°C –35 –15 VATT = 0.4V –20 5 0 –25 –30 –5 5 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) –10 14106-038 –40 Figure 33. Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings for Various Supply Voltages, IF Amplitude = −12 dBm 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) Figure 36. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at a 7 dB Gain Setting for Various Temperatures 5 15 VATT = 2.6V 0 10 –5 –10 VATT = 1.5V P1dB (dBm) POUT (dBm) 5 14106-035 4.75/3.15 5.00/3.30 5.25/3.45 –35 –15 VATT = 0.4V –20 5 0 –25 –30 –5 5 7 9 LO = –3dBm LO = –6dBm LO = –9dBm 11 13 15 17 19 RF FREQUENCY (GHz) 21 23 25 Figure 34. Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings for Various LO Inputs, IF Amplitude = −12 dBm 4.75V/3.15V 5.00V/3.30V 5.25V/3.45V –10 5 7 9 11 13 15 17 19 RF FREQUENCY (GHz) 21 23 25 14106-137 –40 = +9dBm = +6dBm = +3dBm = 0dBm 14106-039 LO LO LO LO –35 Figure 37. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at a 7 dB Gain Setting for Various Supply Voltages Rev. D | Page 14 of 35 Data Sheet ADRF6780 0 15 +85°C, VATT = 2.6V +85°C, VATT = 1.5V +85°C, VATT = 0.4V –10 CARRIER FEEDTHROUGH (dBm) 10 0 –5 –15 LO LO LO LO 5 = +9dBm = +6dBm = +3dBm = 0dBm 7 9 LO = –3dBm LO = –6dBm LO = –9dBm 11 13 15 13 19 –20 –30 –40 –50 –60 –70 17 19 21 23 25 RF FREQUENCY (GHz) –80 14106-138 –10 –40°C, VATT = 2.6V –40°C, VATT = 1.5V –40°C, VATT = 0.4V Figure 38. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at a 7 dB Gain Setting for Various LO Inputs 5 7 9 11 15 17 21 23 25 RF FREQUENCY (GHz) 14106-047 P1dB (dBm) 5 +25°C, VATT = 2.6V +25°C, VATT = 1.5V +25°C, VATT = 0.4V Figure 41. Carrier Feedthrough vs. RF Frequency (fRF) at Three Gain Settings for Various Temperatures Before Nulling 40 15 35 5 0 –5 30 25 20 15 10 5 5 9 7 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) 0 14106-139 –10 MAXIMUM GAIN 7dB GAIN Figure 39. 1 dB Output Compression Point (P1dB) vs. RF Frequency (fRF) at a 7 dB Gain Setting and the Maximum Gain Setting +85°C, VATT = 2.6V +85°C, VATT = 1.5V +85°C, VATT = 0.4V 5 7 9 11 –40°C, VATT = 2.6V –40°C, VATT = 1.5V –40°C, VATT = 0.4V +25°C, VATT = 2.6V +25°C, VATT = 1.5V +25°C, VATT = 0.4V 13 15 17 19 21 23 25 RF FREQUENCY (GHz) 14106-048 SIDEBAND SUPPRESSION (dB) P1dB (dBm) 10 Figure 42. Sideband Suppression vs. RF Frequency (fRF) at Three Different Gain Settings for Various Temperatures Before Nulling 80 15 70 10 5 IMD3 (dBc) P1dB AT 15GHz (dBm) 60 0 50 40 30 20 –5 10 1.5 2.0 2.5 IF FREQUENCY (GHz) 3.0 3.5 4.0 0 Figure 40. Output 1 dB Compression Point (P1dB) at 15 GHz vs. IF Frequency at a 7 dB Gain Setting 5 7 9 11 13 15 17 19 RF FREQUENCY (GHz) 21 23 25 14106-050 1.0 14106-240 –10 0.5 –40°C +25°C +85°C Figure 43. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at a 7 dB Gain Setting for Various Temperatures, IF Amplitude = −15 dBm per Tone Rev. D | Page 15 of 35 ADRF6780 Data Sheet 80 100 90 70 80 IMD3 AT 15GHz (dBc) 60 60 50 40 30 9 7 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) 70 70 60 60 50 50 IMD3 (dBc) 80 30 20 20 0 10 4.45V 5.00V 5.25V 5 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) Figure 45. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at a 7 dB Gain Setting and for Various Supply Voltages, IF Amplitude = −15 dBm per Tone 0 –30 35 60 30 50 25 OIP3 (dBm) 70 3.5 4.0 fRF = 6GHz fRF = 10GHz fRF = 15GHz fRF = 20GHz fRF = 24GHz –25 –20 –15 –10 0 –5 20 15 10 20 5 7 = +9dBm = +6dBm = +3dBm = 0dBm 9 LO = –3dBm LO = –6dBm LO = –9dBm 11 13 15 5 17 19 RF FREQUENCY (GHz) 21 23 25 0 14106-052 LO LO LO LO 10 0 3.0 Figure 48. Third-Order Intermodulation Distortion (IMD3) vs. Output Power (POUT) for Various RF Frequencies (fRF), IF Amplitude = −15 dBm per Tone 40 30 2.5 POUT (dBm PER TONE; PIN = –15dBm PER TONE) 80 40 2.0 40 30 10 1.5 Figure 47. Third-Order Intermodulation Distortion (IMD3) at 15 GHz vs. IF Frequency at a 7 dB Gain Setting 80 40 1.0 IF FREQUENCY (GHz) 14106-051 IMD3 (dBc) Figure 44. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at 7 dB Gain Setting for Various RDAC_LINEARIZE Settings and Various Temperatures, IF Amplitude = −15 dBm per Tone IMD3 (dBm) 0 0.5 14106-147 5 14106-053 0 30 10 14106-243 10 40 20 –40°C, RDAC_LINEARIZE +25°C, RDAC_LINEARIZE +85°C, RDAC_LINEARIZE –40°C +25°C +85°C 20 50 Figure 46. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at a 7 dB Gain Setting for Various LO Inputs, IF Amplitude = −15 dBm per Tone 5 7 9 11 13 15 17 19 RF FREQUENCY (GHz) 21 23 25 14106-148 IMD3 (dBc) 70 Figure 49. Output Third-Order Intercept (OIP3) vs. RF Frequency (fRF) at a 7 dB Gain Setting, IF Amplitude = −15 dBm per Tone Rev. D | Page 16 of 35 Data Sheet ADRF6780 35 30 60 OIP2 (dBm) 25 20 15 40 30 20 5 10 –23 –21 –19 –17 –15 –13 –11 –9 –7 –5 IF INPUT POWER (dBm PER TONE) Figure 50. Output Third-Order Intercept (OIP3) vs. IF Input Power at a 7 dB Gain Setting for Various RF Frequencies (fRF) 0 5 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) Figure 53. Output Second-Order Intercept (OIP2) vs. RF Frequency (fRF) at a 7 dB Gain Setting for Various Temperatures, IF Amplitude = −15 dBm per Tone 90 80 80 70 70 LO LO LO LO = +9dBm = +6dBm = +3dBm = 0dBm LO = –3dBm LO = –6dBm LO = –9dBm 60 OIP2 (dBm) 60 IMD5 (dBc) 50 10 0 –25 –40°C +25°C +85°C 70 14106-250 OIP3 (dBm) 80 fRF = 6GHz fRF = 10GHz fRF = 15GHz fRF = 20GHz fRF = 24GHz 14106-057 40 50 40 50 40 30 30 20 20 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) 0 5 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) Figure 51. Fifth-Order Intermodulation Distortion (IMD5) vs. RF Frequency (fRF) at a 7 dB Gain Setting for Various Temperatures, IF Amplitude = −15 dBm per Tone 14106-058 5 14106-055 0 10 –40°C +25°C +85°C 10 Figure 54. Output Second-Order Intercept (OIP2) vs. RF Frequency (fRF) at a 7 dB Gain Setting for Various LO Inputs, IF Amplitude = −15 dBm per Tone 90 80 80 70 70 60 fRF = 6GHz fRF = 10GHz fRF = 15GHz fRF = 20GHz fRF = 24GHz OIP2 (dBm) 50 40 30 10 0 –30 fRF = 6GHz fRF = 10GHz fRF = 15GHz fRF = 20GHz fRF = 24GHz –25 40 30 20 10 –20 –15 –10 –5 POUT (dBm PER TONE; PIN = –15dBm PER TONE) 0 0 –30 14106-056 20 50 –25 –20 –15 –10 –5 POUT (dBm PER TONE; PIN = –15dBm PER TONE) Figure 52. Fifth-Order Intermodulation Distortion (IMD5) vs. Output Power (POUT) for Various RF Frequencies (fRF), IF Amplitude = −15 dBm per Tone 0 14106-059 IMD5 (dBc) 60 Figure 55. Output Second-Order Intercept (OIP2) vs. Output Power (POUT) for Various RF Frequencies (fRF), IF Amplitude = −15 dBm per Tone Rev. D | Page 17 of 35 ADRF6780 Data Sheet 155 5 –40°C +25°C +85°C 140 135 125 5 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) Figure 56. Output Noise Density vs. RF Frequency (fRF) at a 7 dB Gain Setting for Various Temperatures with an Output Carrier of −5 dBm CARRIER TO NOISE (dBc/Hz) 150 140 135 –8 –3 2 VATT GAIN (dB) 7 12 14106-156 130 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Figure 58. Bandwidth, POUT at 15 GHz and Maximum Gain Setting vs. IF Frequency (fIF) 10 fRF = 6GHz fRF = 10GHz fRF = 15GHz fRF = 20GHz fRF = 24GHz 145 125 –13 –15 IF FREQUENCY (GHz) MAGNITUDE DELTA, RFON TO RFOP (dB) 155 –10 –20 0.5 14106-155 130 –5 Figure 57. Output Noise Density vs. VATT Gain for Various RF Frequencies (fRF) with an Input Carrier of −12 dBm Rev. D | Page 18 of 35 VATT = 2.6V VATT = 1.5V VATT = 0.4V 8 6 4 2 0 –2 –4 –6 –8 –10 5 7 9 11 13 15 17 19 RF FREQUENCY (GHz) 21 23 25 14106-159 145 0 14106-158 POUT AT 15GHz, MAX GAIN (dBm) CARRIER TO NOISE (dBc/Hz) 150 Figure 59. Magnitude Delta, RFON to RFOP vs. RF Frequency (fRF) at Three Different Gain Settings Data Sheet ADRF6780 OUTPUT DETECTOR PERFORMANCE 1.2 1.4 –40°C +25°C +85°C 1.2 1.0 VDET (V) 0.8 0.6 0.6 0.4 0.2 0.2 –30 –25 –20 –15 –10 –5 0 5 10 POUT AT 15GHz (dBm) Figure 60. Detector Output (VDET) vs. Output Power (POUT) at 15 GHz for Various Temperatures 5 –40°C +25°C +85°C 4 3 2 1 0 –1 –2 –3 –4 –5 –35 –30 –25 –20 –15 –10 –5 0 5 10 POUT AT 15GHz (dBm) 14106-061 DETECTOR ERROR (dB) 0.8 0.4 14106-060 VDET (V) 1.0 0 –35 –40°C +25°C +85°C Figure 61. Detector Error vs. Output Power (POUT) at 15 GHz for Various Temperatures Rev. D | Page 19 of 35 0 5 7 9 11 13 15 17 19 21 23 RF FREQUENCY (GHz) Figure 62. Detector Output (VDET) vs. RF Frequency (fRF), −5 dBm Output Power (POUT) for Various Temperatures 25 14106-062 1.4 ADRF6780 Data Sheet RETURN LOSS 0 0 –40°C +25°C +85°C –5 –10 –15 –20 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) –25 14106-263 5 –40°C, BASEBAND I PORT +25°C, BASEBAND I PORT +85°C, BASEBAND I PORT –40°C, BASEBAND Q PORT +25°C, BASEBAND Q PORT +85°C, BASEBAND Q PORT 0 1 2 3 4 5 6 IQ FREQUENCY (GHz) Figure 63. RF Output Return Loss S11 vs. RF Frequency for Various Temperatures Figure 65. I/Q Input Return Loss S11 vs. I/Q Frequency for Various Temperatures 0 0 –40°C +25°C +85°C –40°C +25°C +85°C –5 RETURN LOSS (dB) –5 –10 –15 –20 –10 –15 –20 5 7 9 11 13 15 17 19 21 23 25 LO FREQUENCY (GHz) Figure 64. LO Input Return Loss S11 vs. LO Frequency for Various Temperatures –30 0 1 2 3 4 IF FREQUENCY (GHz) 5 6 14106-266 –25 14106-264 RETURN LOSS (dB) –15 –20 –25 –25 –10 14106-265 RETURN LOSS (dB) RETURN LOSS (dB) –5 Figure 66. IF Input Return Loss S11 vs. IF Frequency for Various Temperatures Rev. D | Page 20 of 35 Data Sheet ADRF6780 THEORY OF OPERATION The ADRF6780 is a wideband microwave upconverter optimized for point to point microwave radio designs operating in the 5.9 GHz to 23.6 GHz frequency range. A functional block diagram of the device is shown in Figure 1. The ADRF6780 is programmed via an SPI. Figure 67 shows a block diagram of the LO path. LOIP LOIN ×2 AMP1 PPF MUX BASEBAND The input impedance of the basebands are high input impedance. These inputs are designed to operate with a 0.5 V commonmode voltage. These inputs are differentially terminated to a 100 Ω resistor using an off chip termination. The linearity can be optimized by adding phase correction signals to the current output via adjusting the I_PATH_PHASE_ ACCURACY register (Register 0x05, Bits[3:0]) and the Q_PATH_ PHASE_ACCURACY (Register 0x05, Bits[7:4]) register. SINGLE SIDEBAND (SSB) UPCONVERSION The IF input path can be fed anywhere from 0.8 GHz to 3.5 GHz. The IF inputs path can be upconverted to 5.9 GHz to 23.6 GHz, while suppressing the unwanted sideband by typically better than 25 dBc. The IF upconversion inputs are 100 Ω differential and must be ac-coupled. In addition, the I/Q baseband input must stay floating without any termination on their inputs. LO INPUT PATH The LO input path operates from 5.4 GHz to 14 GHz with a LO amplitude range of −6 dBm to +6 dBm. It is built from two modes: ×1 mode (Register 0x03, Bit 2), which provides an LO output frequency equal to the LO input frequency, and ×2 mode (Register 0x03, Bit 3), which doubles the LO output frequency from the LO input frequency. Note that, when enabling the LO ×2 mode (Register 0x03, Bit 3), the LO ×1 mode (Register 0x03, Bit 2) must be disabled. The LO path is designed to operate differentially. LOIP and LOIN are the inputs to the LO path. It is recommended to use the ADRF6780 with a LO differential input to achieve the best performance. 14106-078 PPF Figure 67. LO Path Block Diagram SERIAL PORT INTERFACE (SPI) The SPI of the ADRF6780 allows the user to configure the device for specific functions or operations via a 4-pin SPI port. This interface provides users with added flexibility and customization. The SPI consists of four control lines: SCLK, SDIN, SDTO, and SEN. The ADRF6780 protocol consists of a write/read bit followed by six register address bits, 16 data bits, and a parity bit. Both the address and data fields are organized MSB first and end with the least significant bit (LSB). For a write, set the first bit to 0, and for a read, set this bit to 1. The write cycle sampling must be done on the rising edge. The 16 bits of the serial write data are shifted in, MSB to LSB. The ADRF6780 input logic level for the write cycle supports an 1.8 V interface. For a read cycle, up to 16 bits of serial read data are shifted out, MSB first. After the 16 bits of data shift out, the parity bit shifts out. The output logic level for a read cycle is 1.8 V. The parity bit always follows the direction of the data. If parity is not used, the transmitting end transmits zero instead of parity. The parity is odd, which means that the total number of ones transmitted during a command, including the read/write bit, the address bit, the data bit, and the parity bit, must be odd. Table 5. Serial Port Register Timing Parameter tDI, SETUP tDI, HOLD tCLK, HIGH tCLK, LOW tCLK, SEN_SETUP Description Data to clock setup time Data to clock hold time Clock high duration Clock low duration Clock to SEN setup time Min 10 10 40 to 60 40 to 60 30 tCLK, DOT tCLK, DOV tCLK, SEN_INACTIVE Clock to data out transition time Clock to data out valid time Clock to SEN inactive tSEN_INACTIVE Inactive SEN (between two operations) Rev. D | Page 21 of 35 Typ Max Unit ns ns % % ns 10 10 20 ns ns ns 80 ns ADRF6780 Data Sheet tCLK, HIGH tCLK, LOW SCLK tCLK, SEN_SETU P tSEN_INACTIVE SEN tCLK, DOT tCLK, SEN_INACTIVE tCLK, DOV SDIN 14106-079 tDI, HOLD tDI, SETUP SDTO Figure 68. Serial Port Register Timing Diagram SEN 1 2 3 4 5 6 7 8 9 D15 D14 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 SDIN R/W A5 A4 A3 A2 A1 A0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 P 14106-080 SCLK Figure 69. Write Serial Port Timing Diagram SEN 1 2 3 4 5 6 7 8 9 D15 D14 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 SCLK SDTO R/W A5 A4 A3 A2 A1 A0 D13 D12 D11 D10 D9 D8 D7 Figure 70. Read Serial Port Timing Diagram Rev. D | Page 22 of 35 D6 D5 D4 D3 D2 D1 D0 P 14106-081 SDIN Data Sheet ADRF6780 APPLICATIONS INFORMATION 300 ADC VALUE DETECTOR VOLTAGE(V) 1.25 1.05 200 150 0.65 100 Figure 14 shows the level of unwanted sideband signal achievable from the ADRF6780 across the I_PATH_PHASE_ACCURACY bits (Register 0x05, Bits[3:0]) and Q_PATH_PHASE_ACCURACY (Register 0x05, Bits[7:4]) bits. 0 –35 0.25 0.05 –31 –27 –23 –19 –15 –11 –7 –3 1 RF OUTPUT POWER (dBm) Figure 71. ADC Detector Output and Detector Output Power, I/Q Mode 300 ADC VALUE DETECTOR VOLTAGE (V) 1.25 250 1.05 200 0.85 150 0.65 100 0.45 50 If further optimization is needed, adjust the amplitude and phase externally through a TxDAC. 0 –35 DETECTOR VOLTAGE (V) The ADRF6780 offers quadrature phase adjustment in the LO path quadrature signals. Make these adjustments through the I_PATH_PHASE_ACCURACY bits (Register 0x05, Bits[3:0]) and Q_PATH_PHASE_ACCURACY (Register 0x05, Bits[7:4]) bits to reject the unwanted sideband signal. 50 ADC VALUE Sideband results from gain and phase imperfections between the I and Q channels. Sideband also results from the quadrature error in generating the quadrature LO signals. Quadrature I and Q signals are constructed in the LO path, and the vector combination of these signals at the RF output results in suppression of the unwanted sideband. Deviation from perfect quadrature on these signals limits the amount of achievable sideband suppression. 0.45 14106-089 SIDEBAND SUPPRESSION OPTIMIZATION 0.85 DETECTOR VOLTAGE (V) 250 0.25 0.05 –31 –27 –23 –19 –15 –11 –7 –3 1 RF OUTPUT POWER (dBm) LINEARITY 14106-090 Carrier feedthrough results from minute dc offsets that occur on the differential baseband inputs. In an I/Q modulator, nonzero differential offsets mix with the LO and result in carrier feedthrough to the RF output. In addition to this effect, some of the signal power at the LO input couples directly to the RF output (this may be because of the bond wire to bond wire coupling or coupling through the silicon substrate). The net carrier feedthrough at the RF output is the vector combination of the signals that appear at the output because of these two effects. A TxDAC can externally accomplish carrier feedthrough nulling. SPI. Figure 71 shows normal operation at I/Q mode, an RF output of 6.7 GHz, an I/Q input of 1 MHz, and a maximum gain. Figure 72 shows normal operation at IF mode and an RF output of 6.7 GHz, an IF input of 800 MHz, and a maximum gain. ADC VALUE CARRIER FEEDTHROUGH NULLING Figure 72. ADC Detector Output and Detector Output Power, IF Mode The linearity in the ADRF6780 can be optimized through the distortion cancellation circuit that is set up by the RDAC_ LINEARIZE bits (Register 0x04, Bits[7:0]) SPI settings. The distortion cancellation circuit connects in parallel with the baseband signal path in such a way that the fundamental is minimally affected whereas the third-order portions cancel to some degree. Adjusting the value of the RDAC_LINEARIZE bits (Register 0x04, Bits[7:0]) changes the resistance value in the cancellation path by fine tuning the amount of third-order destructively added to the main signal path. It also serves as a form or predistortion for third-order impedance generated further down in the signal path. Figure 16 and Figure 44 show the level of linearity improvement achievable across the ADRF6780 RDAC_LINEARIZE bits. ADC The ADRF6780 includes an ADC that connects to a detector. The user has an option to read the detector output from the detector output pin (VDET, Pin 1) or using the ADC from the The following procedure is to read back from the detector for the first time. For each subsequent readback, repeat Step 4 to Step 8. To read back from the detector using the ADC, take the following steps: 1. Set Bit 7 of Register 0x03 to 1 (DETECTOR_ENABLE). 2. Set Bit 1 of Register 0x06 to 1 (ADC_ENABLE). Write 0x02 to Register 0x06. 3. Set Bit 0 of Register 0x06 to 1 (ADC_CLOCK_ENABLE). Write 0x03 to Register 0x06. 4. Set Bit 2 of Register 0x06 to 1 (ADC_START). Write 0x07 to Register 0x06. 5. Wait approximately 200 µs for the ADC to be ready. 6. Read back Bit 8 of Register 0x0C to 1 (ADC_STATUS). When the bit is high, proceed to Step 7. 7. Set Bit 2 of Register 0x06 to 0 (ADC_START). 8. Read back Bits[7:0] of Register 0x0C for the ADC value (ADC_VALUE). To disable the ADC, disable the ADC_CLOCK_ENABLE, ADC_ENABLE, and ADC_START bits. Rev. D | Page 23 of 35 ADRF6780 Data Sheet WIDE FREQUENCY PERFORMANCE LO Path ×1, ×2 Full Range Figure 73 and Figure 74 show the typical performance of the ADRF6780 when using values outside of the RF output frequency range. It is important to understand that this performance is typical and not guaranteed. Figure 75 shows the typical performance of the ADRF6780 when the LO input frequency is used within the full frequency range. It is important to understand that this performance is typical and not guaranteed. Figure 73 was tested in I/Q mode with an RF output frequency of 1 GHz to 31 GHz. The LO input frequency was switched to LO ×2 doubler mode above 14 GHz. Figure 75 was tested with the LO path set to ×1 mode and ×2 mode with a 5.9 GHz to 23.6 GHz frequency range in I/Q mode. It is recommended to switch to LO ×2 doubler mode above 14 GHz to achieve better performance out of the device. Figure 74 was tested in IF mode with an RF output frequency of 1 GHz to 31 GHz. The LO input frequency was switched to LO ×2 doubler mode above 14 GHz. 5 –5 5 –15 POUT (dBm) –5 –25 –35 –25 –45 –35 MAIN TONE (LO ×1) MAIN TONE (LO ×2) SIDEBAND (LO ×1) SIDEBAND (LO ×2) –55 –45 –65 –55 1 6 11 16 21 26 31 RF FREQUENCY (GHz) Figure 73. Output Power (POUT) vs. RF Frequency (fRF) in I/Q Mode at the Maximum Gain Setting, BB I/Q Amplitude = −15 dBm 7 9 11 13 15 17 19 21 23 25 Figure 75. LO ×1 Mode and LO ×2 Mode, Output Power (POUT) vs. RF Frequency (fRF) in I/Q Mode at the Maximum Gain Setting, BB I/Q Amplitude = −15 dBm LAYOUT Solder the exposed pad on the underside of the ADRF6780 to a low thermal and electrical impedance ground plane. This pad is typically soldered to an exposed opening in the solder mask on the evaluation board. Connect these ground vias to all other ground layers on the evaluation board to maximize heat dissipation from the device package. 5 –5 –15 POUT (dBm) 5 RF FREQUENCY (GHz) 14106-073 –65 MAIN TONE SIDEBAND LO FEEDTHROUGH LO FEEDTHROUGH (LO ×1) LO FEEDTHROUGH (LO ×2) 14106-075 POUT (dBm) –15 –25 –35 –45 –55 1 6 11 16 21 26 31 RF FREQUENCY (GHz) 14106-074 –65 MAIN TONE SIDEBAND LO FEEDTHROUGH 14106-093 Figure 74. Output Power (POUT) vs. RF Frequency (fRF) in IF Mode at the Maximum Gain Setting, IF Amplitude = −12 dBm Figure 76. Evaluation Board Layout for the ADRF6780 Package Rev. D | Page 24 of 35 Data Sheet ADRF6780 LO INPUT DRIVEN DIFFERENTIAL vs. SINGLE ENDED The subharmonic measurement compares the two settings. The LO input was set to doubler mode (×2) at a LO frequency of 9 GHz, and the I/Q mode was set with a 10 MHz sine wave. Table 6 represents the output frequencies of the upper sideband, the lower sideband, and the LO leakage at the fundamental output as well as the subharmonic output frequency at a maximum gain. This section provides performance measurements that compare the ADRF6780 using a differential LO input vs. a single-ended LO input. When the device uses a single-ended configuration, LOIP drives while LOIN terminates to 50 Ω. Table 6. LO Single-Ended vs. Differential Configuration Performance Mode Single Ended Differential LO Input Power (dBm) −10 −6 0 +6 −10 −6 0 +6 Fundamental Output Wanted Upper Unwanted Lower Sideband, Sideband, LO – I/Q (dBm) LO + I/Q (dBm) −2.20 −28.83 −2.09 −25.15 −1.94 −28.36 −2.01 −28.36 −1.84 −24.96 −1.85 −27.19 −1.84 −29.46 −1.85 −29.55 LO Leakage (dBm) −32.36 −33.22 −38.08 −42.58 −43.49 −38.86 −37.84 −37.70 Rev. D | Page 25 of 35 Subharmonic Output Unwanted Upper Unwanted Lower Sideband, Sideband, LO/2 – I/Q (dBm) LO/2 + I/Q (dBm) −16.26 −32.85 −18.01 −35.78 −22.83 −42.97 −20.17 −39.80 −29.66 −51.54 −33.18 −51.25 −38.04 −56.50 −40.08 −58.46 LO/2 Leakage (dBm) −36.16 −35.46 −41.50 −38.08 −45.85 −47.12 −58.25 −60.16 ADRF6780 Data Sheet Gain, third-order intermodulation distortion (IMD3), and sideband rejection are also measured. RF frequencies from 5 GHz to 13 GHz are produced in LO ×1 mode, while LO ×2 mode produced RF frequencies from 14 GHz to 25 GHz. In both differential (Figure 77 to Figure 79) and single-ended (Figure 80 to Figure 82) configurations, the total LO power was swept from −10 dBm to +6 dBm. In differential mode, the amplitude was the sum of the LOIP and LOIN inputs. 0 0 –5 –5 VATT = 2.6V VATT = 2.6V –10 –10 VATT = 1.5V –15 POUT (dBm) –20 VATT = 0.4V –25 VATT = 0.4V –25 –40 5 7 9 LO LO LO LO –35 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) –40 Figure 77. LO Differential Input, Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings for Various LO Inputs, BB I/Q Amplitude = −15 dBm 7 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) Figure 80. LO Single-Ended Input, Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings for Various LO Inputs, BB I/Q Amplitude = −15 dBm 80 70 70 60 60 50 50 IMD3 (dBc) 80 40 5 = –10dBm = –6dBm = 0dBm = +6dBm 14106-096 = –10dBm = –6dBm = 0dBm = +6dBm 14106-093 LO LO LO LO –35 40 30 30 20 20 10 0 5 7 = –10dBm = –6dBm = 0dBm = +6dBm 9 11 13 15 17 19 21 23 25 RF FREQUENCY (GHz) Figure 78. LO Differential Input, Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at a 10 dB Gain Setting (POUT ≈ −5 dBm per Tone) 0 50 SIDEBAND SUPPRESSION (dBc) 50 30 20 = –10dBm = –6dBm = 0dBm = +6dBm 0 5 7 9 11 13 15 17 19 RF FREQUENCY (GHz) 21 23 25 Figure 79. LO Differential Input, Sideband Suppression vs. RF Frequency (fRF) Before Nulling 9 11 13 15 17 19 21 23 25 40 30 20 10 LO LO LO LO = –10dBm = –6dBm = 0dBm = +6dBm 7 9 0 14106-095 LO LO LO LO 7 Figure 81. LO Single-Ended Input, Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at a 10 dB Gain Setting (POUT ≈ −5 dBm per Tone) 60 40 5 = –10dBm = –6dBm = 0dBm = +6dBm RF FREQUENCY (GHz) 60 10 LO LO LO LO 10 14106-094 LO LO LO LO 14106-098 IMD3 (dBc) –20 –30 –30 SIDEBAND SUPPRESSION (dBc) –15 5 11 13 15 17 19 RF FREQUENCY (GHz) 21 23 25 14106-097 POUT (dBm) VATT = 1.5V Figure 82. LO Single-Ended Input, Sideband Suppression vs. RF Frequency (fRF) Before Nulling Rev. D | Page 26 of 35 Data Sheet ADRF6780 REGISTER SUMMARY Table 7. Register Summary Hex Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x00 Control [15:8] PARITY_EN SOFT_RESET [7:0] 0x01 ALARM_ READBACK [15:8] 0x02 ALARM_MASK [15:8] 0x03 Enable [15:8] RESERVED CHIP_ID[3:0] PARITY_ ERROR TOO_FEW_ ERRORS TOO_MANY_ ERRORS ADDRESS_ RANGE_ ERROR PARITY_ ERROR_ MASK TOO_FEW_ ERRORS_ MASK TOO_MANY_ ERRORS_ MASK ADDRESS_ RANGE_ ERROR_MASK Linearize ADC_ CONTROL [15:8] [7:0] [7:0] 0x0C ADC_OUTPUT DETECTOR_ ENABLE LO_BUFFER_ ENABLE IF_MODE_ ENABLE IQ_MODE_ ENABLE LO_X2_ ENABLE RESERVED 0x06 [15:8] [7:0] R RESERVED 0xFFFF R/W 0x0157 R/W 0x0080 R/W 0x0000 R/W 0x0000 R/W 0x0010 R VGA_BUFFER_ ENABLE RDAC_LINEARIZE [15:8] 0x0000 RESERVED [7:0] LO_PATH RESERVED RESERVED [15:8] 0x05 R/W RESERVED [7:0] 0x04 R/W 0x0075 CHIP_REVISION [7:0] [7:0] Reset CHIP_ID[7:4] RESERVED LO_PPF_ ENABLE LO_ ENABLE LO_ SIDEBAND Q_PATH_PHASE_ACCURACY UC_BIAS_ ENABLE RESERVED I_PATH_PHASE_ACCURACY RESERVED RESERVED VDET_ OUTPUT_ SELECT RESERVED ADC_VALUE Rev. D | Page 27 of 35 ADC_ START ADC_ ENABLE ADC_CLOCK_ ENABLE ADC_STATUS ADRF6780 Data Sheet REGISTER DETAILS: WIDEBAND UPCONVERTER CONTROL REGISTER Address: 0x00, Reset: 0x0075, Name: Control 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 [15] PARITY_EN (R/W) Enable the Parity for Write Execution [3:0] CHIP_REVISION (R) Chip Revision [14] SOFT_RESET (W) SPI Soft Reset (SPI Soft Reset is Not Self-Reset) [11:4] CHIP_ID (R) Chip ID [13:12] RESERVED Table 8. Bit Descriptions for Control Bits 15 14 [13:12] [11:4] [3:0] Bit Name PARITY_EN SOFT_RESET RESERVED CHIP_ID CHIP_REVISION Settings Description Enable the Parity for Write Execution SPI Soft Reset (SPI Soft Reset is Not Self-Reset) Reserved Chip ID Chip Revision Reset 0x0 0x0 0x0 0x7 0x5 Access R/W W R/W R R ALARM_READBACK REGISTER Address: 0x01, Reset: 0x0000, Name: ALARM_READBACK 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [15] PARITY_ERROR (R) Parity Error [11:0] RESERVED [12] ADDRESS_RANGE_ERROR (R) Address Range Error [14] TOO_FEW_ERRORS (R) Too Few Errors [13] TOO_MANY_ERRORS (R) Too Many Errors Table 9. Bit Descriptions for ALARM_READBACK Bits 15 14 13 12 [11:0] Bit Name PARITY_ERROR TOO_FEW_ERRORS TOO_MANY_ERRORS ADDRESS_RANGE_ERROR RESERVED Settings Description Parity Error Too Few Errors Too Many Errors Address Range Error Reserved Rev. D | Page 28 of 35 Reset 0x0 0x0 0x0 0x0 0x0 Access R R R R R Data Sheet ADRF6780 ALARM_MASK REGISTER Address: 0x02, Reset: 0xFFFF, Name: ALARM_MASK 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 [15] PARITY_ERROR_MASK (R/W) Parity Error Mask - Enable the Alarm Output Pin [11:0] RESERVED [12] ADDRESS_RANGE_ERROR_MASK (R/W) Address Range Error Mask - Enable the Alarm Output Pin [14] TOO_FEW_ERRORS_MASK (R/W) Too Few Errors Mask -Enable the Alarm Output Pin [13] TOO_MANY_ERRORS_MASK (R/W) Too Many Errors Mask - Enable the Alarm Output Pin Table 10. Bit Descriptions for ALARM_MASK Bits 15 14 13 12 [11:0] Bit Name PARITY_ERROR_MASK TOO_FEW_ERRORS_MASK TOO_MANY_ERRORS_MASK ADDRESS_RANGE_ERROR_MASK RESERVED Settings Description Parity Error Mask—Enable the Alarm Output Pin Too Few Errors Mask—Enable the Alarm Output Pin Too Many Errors Mask—Enable the Alarm Output Pin Address Range Error Mask—Enable the Alarm Output Pin Reserved Reset 0x1 0x1 0x1 0x1 0xFFF Access R/W R/W R/W R/W R/W ENABLE REGISTER Address: 0x03, Reset: 0x0157, Name: Enable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 [15:9] RESERVED [0] UC_BIAS_ENABLE (R/W) UC Bias Enable [8] VGA_BUFFER_ENABLE (R/W) VGA Buffer Enable [1] LO_ENABLE (R/W) LO Enable [7] DETECTOR_ENABLE (R/W) Detector Enable [2] LO_PPF_ENABLE (R/W) LO x1 Enable [6] LO_BUFFER_ENABLE (R/W) LO Buffer Enable [3] LO_X2_ENABLE (R/W) LO x2 Enable [5] IF_MODE_ENABLE (R/W) IF Mode Enable [4] IQ_MODE_ENABLE (R/W) IQ Mode Enable Table 11. Bit Descriptions for Enable Bits [15:9] 8 7 6 5 4 3 2 1 0 Bit Name RESERVED VGA_BUFFER_ENABLE DETECTOR_ENABLE LO_BUFFER_ENABLE IF_MODE_ENABLE IQ_MODE_ENABLE LO_X2_ENABLE LO_PPF_ENABLE LO_ENABLE UC_BIAS_ENABLE Settings Description Reserved VGA Buffer Enable Detector Enable LO Buffer Enable IF Mode Enable IQ Mode Enable LO ×2 Enable LO ×1 Enable LO Enable UC Bias Enable Rev. D | Page 29 of 35 Reset 0x0 0x1 0x0 0x1 0x0 0x1 0x0 0x1 0x1 0x1 Access R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W ADRF6780 Data Sheet LINEARIZE REGISTER Address: 0x04, Reset: 0x0080, Name: Linearize 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 [15:8] RESERVED [7:0] RDAC Linearize (R/W) RDAC 8 Bits: for IMD Perform ance Im provem ent (0-255) Table 12. Bit Descriptions for Linearize Bits [15:8] [7:0] Bit Name RESERVED RDAC_LINEARIZE Settings Description Reserved RDAC 8 Bits: for IMD Performance Improvement (0 to 255) Reset 0x0 0x80 Access R/W R/W LO_PATH REGISTER Address: 0x05, Reset: 0x0000, Name: LO_PATH 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [15:11] RESERVED [3:0] I_PATH_PHASE_ACCURACY (R/W) CDAC for I Phase Accuracy [10] LO_SIDEBAND (R/W) Switch to the Other LO SideBand [7:4] Q_PATH_PHASE_ACCURACY (R/W) CDAC for Q Phase Accuracy [9:8] RESERVED Table 13. Bit Descriptions for LO_PATH Bits [15:11] 10 [9:8] [7:4] [3:0] Bit Name RESERVED LO_SIDEBAND RESERVED Q_PATH_PHASE_ACCURACY I_PATH_PHASE_ACCURACY Settings Description Reserved Switch to the Other LO Sideband Reserved CDAC for Q Phase Accuracy CDAC for I Phase Accuracy Rev. D | Page 30 of 35 Reset 0x0 0x0 0x0 0x0 0x0 Access R/W R/W R/W R/W R/W Data Sheet ADRF6780 ADC_CONTROL REGISTER Address: 0x06, Reset: 0x0000, Name: ADC_CONTROL 15 14 13 12 11 10 8 9 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [15:4] RESERVED [0] ADC_CLOCK_ENABLE (R/W) ADC Clock Enable 0: Disable. 1: Enable. [3] VDET_OUTPUT_SELECT (R/W) VDET Output Pin Select 0: VDET Output Select Disable. 1: VDET Output Select Enable. [1] ADC_ENABLE (R/W) ADC Enable and Com parator on 0: Disable. 1: Enable. [2] ADC_START (R/W) ADC FallEdge to Start ADCConversion-Write High Then Low 0: ADC conversion activated at falling edge. 1: Set ADC conversion control high. Table 14. Bit Descriptions for ADC_CONTROL Bits [15:4] 3 Bit Name RESERVED VDET_OUTPUT_SELECT Settings 0 1 2 ADC_START 0 1 1 ADC_ENABLE 0 1 0 ADC_CLOCK_ENABLE 0 1 Description Reserved VDET Output Pin Select VDET Output Select Disable VDET Output Select Enable ADC Fall Edge to Start ADC Conversion Write High Then Low ADC Conversion Activated at Falling Edge Set ADC conversion control High ADC Enable and Comparator On Disable Enable ADC Clock Enable Disable Enable Reset 0x0 0x0 Access R/W R/W 0x0 R/W 0x0 R/W 0x0 R/W ADC_OUTPUT REGISTER Address: 0x0C, Reset: 0x0010, Name: ADC_OUTPUT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [15:9] RESERVED [7:0] ADC_VALUE (R) Detector ADC 8 Bit Output [8] ADC_STATUS (R) ADC Busy 0: Busy. 1: Ready. Table 15. Bit Descriptions for ADC_OUTPUT Bits [15:9] 8 Bit Name RESERVED ADC_STATUS Settings 0 1 [7:0] ADC_VALUE Description Reserved ADC Busy Busy Ready Detector ADC 8-Bit Output Rev. D | Page 31 of 35 Reset 0x0 0x0 Access R/W R 0x0 R ADRF6780 Data Sheet BASIC CONNECTIONS FOR OPERATION Figure 83 to Figure 85 show the basic connections for operating the ADRF6780 as it is implemented on the evaluation board of the device. LOIP LOIP 1 LOIN 1 LOIN 2 3 4 4 3 2 25-146-1000-92 AGND AGND 3.3V_6780 3.3V_6780 C4 0.1UF C0603 C10 4.7NF C0402 C22 0.1UF C0603 C20 4.7NF C0402 C17 33PF C0402 C14 33PF C0402 ALMB R8 5.1K R0402 R2 C16 TBD0603 C0603 DNI C7 10PF C0402 C18 TBD0402 C0402 6780_CS AGND 33 R0402 DNI R3 AGND 5V 1.8V 3.3V_6780 1 RED REDRED1 3.3V_6780 3.3V 33 R0402 C35 TBD0402 C0402 DNI 1.8V VATT GRN ALMB WHT 1 1 VDET WHT AGND 6780_VATT C36 4.7NF C0402 C31 33PF C0402 6780_MISO 33 R0402 C19 TBD0402 C0402 DNI C11 33PF C0402 RED 1 ALMB VDET 1.8V AGND AGND 3.3V 5V 1 6780_MOSI C21 TBD0402 C0402 DNI 5V C6 4.7NF C0402 C34 TBD0402 C0402 DNI AGND AGND C2 0.1UF C0603 6780_SCK AGND C30 TBD0402 C0402 DNI R9 0 R0402 R4 33 R0402 R5 AGND AGND VDET C29 TBD0402 C0402 DNI AGND C39 0.1UF C0603 1 GND1 BLK AGND GND2 BLK 1 AGND AGND C24 TBD0402 C0402 DNI 3.3V_6780 AGND AGND C5 5V 1 2 3 4 5 6 7 8 AGND RFOP 1 2 3 4 6780_RFOP 25-146-1000-92 RFON 1 2 3 4 AGND VDET VPDT VPRF AGND RFOP AGND RFON AGND 5 4 3 2 ADRF6780 SCLK SDIN VP18 VPBI IFIP AGND IFIN RSTB AGND 6780_RSTB C32 TBD0402 C0402 RSTB 1 2 C37 TBD0603 C0603 DNI 9 10 11 12 13 14 15 16 AGND AGND AGND 1.8V R7 10K R0603 DNI 6780_RFON 25-146-1000-92 C33 33PF C0402 C40 0.1UF C0603 100PF C0402 5 4 3 2 AGND 24 23 22 21 20 19 18 17 VPRF VATT BBQN BBQP BBIP BBIN VPBB PWDN AGND 32 31 30 29 28 27 26 25 PAD C9 33PF C0402 C3 4.7NF C0402 ALMB VPLO LOIP AGND LOIN VPLO SENB SDTO C1 0.1UF C0603 IFIN 1 100PF C0402 DUT IFIN 1 C41 IFIP IFIP AGND C38 4.7NF C0402 3 4 B3S1000 AGND AGND PWDN 5V 1.8V PWDN C15 33PF C0402 C13 4.7NF C0402 C8 0.1UF C0603 DNI C25 TBD0402 C0402 C27 R6 10K R0603 C0603 DNI AGND 1 2 69157-102 TBD0603 AGND 6780_VATT AGND R1 0 R0402 3.3V_6780 C12 TBD0402 C0402 DNI C23 33PF C0402 AGND BBQN C26 4.7NF C0402 C28 0.1UF C0603 BBIN AGND BBQP R11 0 R23 BBQN 1 R24 5 4 3 2 50 R0402 R12 0 BBQP 1 BBIP 1 5 4 3 2 5 4 3 2 AGND BBIN 1 R25 50 R0402 5 4 3 2 R26 50 R0402 AGND AGND AGND AGND R13 0 AGND AGND AGND NOTES 1. WHEN THE IF MODE IS SET, REMOVE THE 0Ω R10 TO R13 RESISTORS FROM THE IQ LINES. Figure 83. ADRF6780 Evaluation Board Schematic Page 1 Rev. D | Page 32 of 35 14106-100 R10 0 50 R0402 BBIP Data Sheet ADRF6780 USB XC4 10UF C3216 P XC5 0.1UF C0402 N XC6 0.1UF C0402 XC7 0.1UF C0402 3.3V XC8 0.1UF C0402 USB_VCC USB_DUSB_D+ AGND 1 2 3 4 5 3.3V EN1 SHIELD PINS MOSI MISO SCK 3.3V 3.3V PGC 10UF C0603 3 AGND CS2 USB_D– USB_D+ 1 2 4 6 7 8 9 10 12 13 MCLR_N 5 28 27 25 24 23 22 21 20 19 18 15 14 CS1 MISO MOSI SCK R15 USB_VCC R16 100K R0402 PAD AGND Figure 84. ADRF6780 Evaluation Board Schematic Page 2 NANODAC 3.3V SCK MOSI C45 10UF C3216 AGND 1.8V LDO REGULATOR U3 ADM7170ACPZ-1.8 U2 AD5601BCPZ 1 VDD VOUT 6 2 SCLK GND 5 3 SDIN SYNC_N 4 PAD PAD R14 CS2 6780_VATT 1.8V R19 0 R0603 0 R0603 C42 4.7UF C0603 AGND AGND 1 2 3 4 VOUT VIN 8 VOUT VIN 7 SENSE GND 6 5 SS EN EP C43 PAD 1000PF C0603 AGND AGND 5V C44 4.7UF C0603 AGND 3.3V LDO REGULATORS U5 ADM7172ACPZ-3.3 U4 ADM7172ACPZ-3.3 3.3V_6780 R17 0 R0603 C46 4.7UF C0603 AGND 1 2 3 4 C47 1000PF C0603 AGND VOUT1 VOUT2 SENSE SS VIN1 8 VIN2 7 GND 6 EN 5 EP PAD FXL4TD245BQX C PGC AGND AGND 6780_CS 6780_MOSI 6780_MISO 6780_SCK A EN1 100K R0402 PAD 16 14 B0 13 B1 12 B2 11 B3 USB LB L293-N1N2-25-Z(BLUE) VDD VSS OE_N A0 A1 A2 A3 T_R0_N T_R1_N T_R2_N T_R3_N AGND RA1_AN1_C2INA_RP1 RA0_AN0_C1INA_ULPWU_RP0 RB7_KBI3_PGD_RP10 RB6_KBI2_PGC_RP9 RB5_KBI1_SDI1_SDA1_RP8 RB4_KBI0_SCK1_SCL1_RP7 RB3_AN9_CTEDG2_VPO_RP6 RB2_AN8_CTEDG1_VMO_REFO_RP5 RB1_AN10_RTCC_RP4 RB0_AN12_INT0_RP3 RC7_RX1_DT1_SDO1_RP18 RC6_TX1_CK1_RP17 RA2_AN2_VREF_NEG_CVREF_C2INB RA3_AN3_VREF_POS_C1INB RA5_AN4_SS1_N_HLVDIN_RCV_RP2 OSC1_CLKI_RA7 OSC2_CLKO_RA6 RC0_T1OSO_T1CKI_RP11 RC1_T1OSI_UOE_N_RP12 RC2_AN11_CTPLS_RP13 RC4_D_NEG_VM RC5_D_POS_VP 9 3 4 5 6 2 15 10 7 U1 16 VCCB PAD GND 8 PAD XU1 PIC18F24J50-I/ML 17 11 VDDCORE_VCAP VUSB 26 AGND 1 VCCA 14106-101 AGND XR2 10K R0603 AGND 5V C48 4.7UF C0603 3.3V R18 0 R0603 AGND C49 4.7UF C0603 AGND AGND VIN1 VIN2 GND EN VOUT1 VOUT2 SENSE SS C50 1000PF C0603 EP AGND AGND AGND 3.3V_6780 5V C51 4.7UF C0603 3.3V 14106-102 1 2 3 4 5 6 3.3V XR6 80.6 R1206 XC12 C141 0.1UF C0603 AGND R20 0 CS1 AGND XP1 PROGRAMMING HEADER SAMTECTSW10608GS6PIN C140 0.1UF C0603 R22 10K R0603 R21 0 R0603 DNI PAD1 PAD2 PAD3 PAD4 1.8V 3.3V XP2 MUSB-05-F-AB-SM-A-R Figure 85. ADRF6780 Evaluation Board Schematic Page 3 Rev. D | Page 33 of 35 ADRF6780 Data Sheet Table 16. Evaluation Board Configuration Options Component VPLO3.3V, VPDT5V, VPRF5V, VPBB3.3V, VPBI3.3V, 1P8V, AGND LOIN, LOIP, VDET, RFON, RFOP, BBIN, BBIP, BBQN, BBQN, IFIN, IFIP, VATT SCLK, SDIN, SENB, SDTO R2 to R5 5V, 3.3V, 3.3V_6780, 1.8V, VDET, ALMB, VATT, GND1 to GND2 PWDN Function Power supplies and ground Default Condition Not applicable Data and clock Not applicable SPI 33 Ω series resistors for SPI pins Test points Not applicable R2, R3, R4, R5 = 33 Ω (0402) Not applicable Power-down function R1, R9, R14, R15, R17 to R20, XR2, XR6 Shorts or power supply decoupling resistors R6, R7, R16, R22 Pull-up or pull-down resistors C1 to C4, C6 to C11, C13 to C15, C17, C20, C22, C23, C26, C28, C31, C33, C36, C38 to C40, C42 to C51, XC12, XC4 to XC8, C140, C141 The capacitors provide the required decoupling of the supply related pins R10 to R13 Remove resistors when using IF inputs (IF mode) Resistors provide a broadband 50 Ω termination for baseband input data AC coupling capacitors CS decoupling resistor Do not install (DNI) Apply 1.8 V on PWDN (Pin 2) jumper to power down the device R1, R9, R17, R18, R19 = 0 Ω (0402), R8 = 5.1 kΩ (0402), R15 = 100 kΩ (0402), R14, R20 = 0 Ω (0402), XR2 = 10 kΩ (0603), XR6 = 80.6 Ω (1206) R6, R7, R22 = 10 kΩ (0603), R16 = 100 kΩ (0402) XC4, C45 = 10 µF (3216), XC12 = 10 µF (0603), C42, C44, C46, C48, C49, C51 = 4.7 µF (0603), C1, C2, C4, C8, C22, C28, C39, C40 = 0.1 µF (0603), XC5, XC6, XC7, XC8 = 0.1 µF (0402), C3, C6, C10, C13, C20, C26, C36, C38 = 4.7 nF (0402), C43, C47, C50 = 1000 pF (0603), C9, C11, C14, C15, C17, C23, C31, C33 = 33 pF (0402), C7 = 10 pF (0402), C140, C141 = 0.1 µF (0603) R10, R11, R12, R13 = 0 Ω (0201) R23 to R26 C5, C41 C21 C12, C16, C18, C19, C24, C25, C27, C29, C30, C32, C34, C35, C37, R21 XP1 XP2 Programming header Mini USB connector RSTB USB Reset button Blue LED XU1 U1 U3 to U5 Microcontroller Level shifter 3.3 V and 1.8 V regulators U2 DUT AD5601 nanoDAC ADRF6780, device under test Rev. D | Page 34 of 35 R23, R24, R25, R26 = 49.9 Ω (0402) C5, C41 = 100 pF (0402) C21 = 100 pF (0402) C16, C24, C34, C35 = 0402, C27, C37, R21 = 0603, C12, C18, C19, C25 = 0402, C29, C30, C32 = 0402 Not applicable Connect the mini USB cable to XP2 to interface with the SPI Click RSTB to reset the device LED is blue when the USB is connected to XP2, and the PC and the ADRF6780 evaluation board is powered on with a 5 V supply PIC18F24J50 FXL4TD245BQX ADM7170 (U3) = 1.8 V regulator, ADM7172 (U4) = 3.3 V regulator, ADM7172 (U5) = 3.3 V regulator for ADRF6780 Not applicable Not applicable Data Sheet ADRF6780 OUTLINE DIMENSIONS DETAIL A (JEDEC 95) 5.10 5.00 SQ 4.90 PIN 1 INDIC ATOR AREA OPTIONS (SEE DETAIL A) 32 25 1 24 0.50 BSC 3.40 3.30 SQ 3.20 EXPOSED PAD 8 17 0.45 0.40 0.35 TOP VIEW 0.80 0.75 0.70 END VIEW 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF PKG-003530 SEATING PLANE 9 16 BOTTOM VIEW 0.20 MIN 3.50 REF FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5 03-17-2017-B PIN 1 INDICATOR 0.30 0.25 0.18 Figure 86. 32-Lead Lead Frame Chip Scale Package [LFCSP] 5 mm × 5 mm Body and 0.75 mm Package Height (CP-32-20) Dimensions shown in millimeters ORDERING GUIDE Model1 ADRF6780ACPZN ADRF6780ACPZN-R2 ADRF6780ACPZN-R7 ADRF6780-EVALZ 1 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C Package Description 32-Lead Lead Frame Chip Scale Package [LFCSP] 32-Lead Lead Frame Chip Scale Package [LFCSP] 32-Lead Lead Frame Chip Scale Package [LFCSP] Evaluation Board Z = RoHS Compliant Part. ©2016–2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D14106-0-1/19(D) Rev. D | Page 35 of 35 Package Option CP-32-20 CP-32-20 CP-32-20
ADRF6780ACPZN-R7 价格&库存

很抱歉,暂时无法提供与“ADRF6780ACPZN-R7”相匹配的价格&库存,您可以联系我们找货

免费人工找货