0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADUM6420ABRNZ5-RL

ADUM6420ABRNZ5-RL

  • 厂商:

    AD(亚德诺)

  • 封装:

    SOIC28W_FP

  • 描述:

    ADUM6420ABRNZ5-RL

  • 数据手册
  • 价格&库存
ADUM6420ABRNZ5-RL 数据手册
FEATURES FUNCTIONAL BLOCK DIAGRAM isoPower integrated, isolated dc-to-dc converter 100 mA output supply AEC-Q100 qualified for automotive applications ADuM6421AW (ADuM6423AW pending) Meets CISPR 32/EN55032 Class B emission limits up to 5 Mbps at a full load on a 2-layer PCB Quad dc to 100 Mbps signal isolation channels 28-lead, fine pitch, SOIC with 8.3 mm minimum creepage High temperature operation: 125°C maximum High common-mode transient immunity: 100 kV/µs Safety and regulatory approvals (pending) UL recognition (pending) 5000 V rms for 1 minute per UL 1577 CSA Component Acceptance Notice 5A (pending) VDE V 0884-11 certificate of conformity (pending) VIORM = 566 V peak CQC certification per GB4943.1-2011 (pending) VDD1 1 28 VDD2 GND1 2 27 GND 2 GND1 3 26 GND 2 VIA/VOA 4 VIB/VOB 5 VIC/VOC 6 VID/VOD 7 GND1 8 4-CHANNEL iCoupler CORE LOW POWER ON-OFF KEYING ADuM6420A/ADuM6421A/ ADuM6422A/ADuM6423A/ ADuM6424A LOW RADIATED EMISSIONS DC TO DC PDIS 9 PCS 23 VOC/VIC 22 VOD/VID 21 GND 2 20 VSEL GND1 10 VDDP 11 25 VOA/VIA 24 VOB/VIB 19 GND ISO OSC RECT REG 18 VISO 17 GND ISO GND1 12 16 NIC NIC 13 GND1 14 15 GND ISO NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING. APPLICATIONS 21365-001 Data Sheet Quad-Channel Isolators with Integrated DC-to-DC Converter ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Figure 1. RS-232 transceivers Power supply start-up bias and gate drives Isolated sensor interfaces Automotive on-board charger (OBC) and dc to dc Industrial programmable logic controllers (PLCs) GENERAL DESCRIPTION The ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ ADuM6424A1 are quad-channel digital isolators with an isoPower®, integrated, isolated dc-to-dc converter. Based on the Analog Devices, Inc., iCoupler® technology, the dc-to-dc converter provides regulated, isolated power that meets CISPR 32/EN 55032 Class B limits at a full load on a 2-layer printed circuit board (PCB) with ferrites. Popular voltage combinations and the associated output current levels are listed in Table 1. The ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ ADuM6424A eliminate the need for a separate, isolated dc-todc converter in 500 mW, isolated designs. The iCoupler chip scale transformer technology is used for isolated logic signals and for the magnetic components of the dc-to-dc converter. The result is a small form factor, total isolation solution. 1 The ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ ADuM6424A isolators provide four independent isolation channels (see the Pin Configurations and Function Descriptions for additional information). Table 1. ADuM6420A/ADuM6421A/ADuM6422A/ ADuM6423A/ADuM6424A Output Current Levels VDDP (V) 5 5 3.3 VISO (V) 5 3.3 3.3 85°C 100 100 60 ISO Current, IISO (mA) 105°C 125°C 65 30 65 30 60 20 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending. Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2021 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 DIN V VDE V 0884-11 Insulation Characteristics ............... 14 Applications ...................................................................................... 1 Recommended Operating Conditions .................................... 14 Functional Block Diagram .............................................................. 1 Absolute Maximum Ratings ......................................................... 15 General Description ......................................................................... 1 ESD Caution ............................................................................... 15 Revision History ............................................................................... 2 Pin Configurations and Function Descriptions ......................... 16 Specifications .................................................................................... 3 Truth Table ................................................................................. 21 Electrical Characteristics—5 V Primary Input Supply/5 V Secondary Isolated Supply .......................................................... 3 Typical Performance Characteristics .......................................... 22 Electrical Characteristics—5 V Primary Input Supply/3.3 V Secondary Isolated Supply .......................................................... 3 Theory of Operation ...................................................................... 26 Electrical Characteristics—3.3 V Primary Input Supply/3.3 V Secondary Isolated Supply .......................................................... 4 PCB Layout ................................................................................. 27 Terminology.................................................................................... 25 Applications Information ............................................................. 27 Electrical Characteristics—5.0 V Operation Digital Isolator Channels Only .............................................................................. 4 Thermal Analysis ....................................................................... 28 Electrical Characteristics—3.3 V Operation Digital Isolator Channels Only .............................................................................. 6 EMI Considerations ................................................................... 28 Electrical Characteristics—2.5 V Operation Digital Isolator Channels Only .............................................................................. 9 Insulation Lifetime ..................................................................... 28 Electrical Characteristics—1.8 V Operation Digital Isolator Channels Only ............................................................................ 11 Package Characteristics ............................................................. 13 Propagation Delay Related Parameters................................... 28 Power Consumption .................................................................. 28 Outline Dimensions ....................................................................... 30 Ordering Guide .......................................................................... 30 Automotive Products ................................................................ 31 Regulatory Approvals ................................................................ 13 Insulation and Safety Related Specifications .......................... 13 REVISION HISTORY 4/2021—Rev. A to Rev. B Added ADuM6423A and ADuM6424A ........................ Universal Changes to Features Section, Applications Section, and Figure 1 .. 1 Changes to Table 2 and Table 3...................................................... 3 Changes to Table 4 and Table 5...................................................... 4 Changes to Table 7 and Table 8...................................................... 6 Changes to Table 10 ......................................................................... 7 Changes to Table 11 ......................................................................... 9 Changes to Table 13 ....................................................................... 10 Changes to Table 14 and Table 16 ............................................... 11 Changes to Table 23 ....................................................................... 15 Added Figure 6 and Table 27; Renumbered Sequentially ........ 19 Added Figure 7 and Table 28 ........................................................ 20 Changes to PCB Layout Section, Table 31, and Figure 25........ 27 Changes to Ordering Guide .......................................................... 30 Added Automotive Products Section .......................................... 31 12/2020—Rev. 0 to Rev. A Changes to Table 1 ........................................................................... 1 Changes to Electrical Characteristics—5 V Primary Input Supply/5 V Secondary Isolated Supply Section............................ 3 Moved Electrical Characteristics—5 V Primary Input Supply/3.3 V Secondary Isolated Supply Section and Table 6; Renumbered Sequentially ............................................................... 3 Added Electrical Characteristics—3.3 V Primary Input Supply/3.3 V Secondary Isolated Supply Section, Table 4, Electrical Characteristics—5.0 V Operation Digital Isolator Channels Only Section, and Table 5 ...............................................4 Changes to Table 7 ............................................................................5 Removed Table 7 and Table 8 .........................................................6 Changes to Table 8 ............................................................................6 Removed Table 9 ...............................................................................7 Changes to Table 10 ..........................................................................7 Changes to Table 11 and Table 13 ..................................................8 Changes to Table 14 ..........................................................................9 Changes to Table 21 ....................................................................... 12 Changes to Table 23 ....................................................................... 13 Change to Table 24 ........................................................................ 14 Change to Table 25 ........................................................................ 15 Change to Table 26 ........................................................................ 16 Changes to Table 28 ....................................................................... 17 Changes to Figure 6, Figure 7, and Figure 8 ............................... 18 Changes to PCB Layout Section, Figure 22, and Figure 23 ...... 23 Change to Thermal Analysis Section .......................................... 24 Changes to Ordering Guide .......................................................... 26 12/2019—Revision 0: Initial Version Rev. B | Page 2 of 31 Data Sheet ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A SPECIFICATIONS ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/5 V SECONDARY ISOLATED SUPPLY All typical specifications are at TA = 25°C, VDDP = VISO = 5 V. Minimum and maximum specifications apply over the entire recommended operation range, which is 4.5 V ≤ (VDDP, VISO) ≤ 5.5 V and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Table 2. DC-to-DC Converters Static Specifications Parameter DC-TO-DC CONVERTERS SUPPLY Setpoint Line Regulation Load Regulation Output Ripple Output Noise Switching Frequency Pulse-Width Modulation (PWM) Frequency Output Supply1 Efficiency at IISO (MAX)1 VDD1 Supply Current No VISO Load Full VISO Load Thermal Shutdown Shutdown Temperature Thermal Hysteresis 1 Symbol Min Typ Max Unit Test Conditions/Comments VISO VISO (LINE) VISO (LOAD) VISO (RIP) 4.75 5.0 20 1 75 5.25 V mV/V % mV p-p ISO current (IISO) = 10 mA IISO = 50 mA, VDDP = 4.5 V to 5.5 V IISO = 10 mA to 90 mA 20 MHz bandwidth, bulk output capacitance (CBO) = 0.1 µF||10 µF, IISO = 90 mA CBO = 0.1 µF||10 µF, IISO = 90 mA VISO (NOISE) fOSC fPWM IISO (MAX) 5 200 180 625 mV p-p MHz kHz mA mA % 100 50 34 IDDP (Q) IDDP (MAX) 14 310 25 4.5 V < VISO < 5.25 V 4.75 V < VISO < 5.25 V IISO = 100 mA mA mA 154 10 °C °C Maximum VISO output current is derated by 1.75 mA/°C for TA > 85°C. ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY All typical specifications are at TA = 25°C, VDDP = 5.0 V, VISO = 3.3 V. Minimum and maximum specifications apply over the entire recommended operation range, which is 4.5 V ≤ VDDP ≤ 5.5 V, 3.0 V ≤ VISO ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Table 3. DC-to-DC Converters Static Specifications Parameter DC-TO-DC CONVERTERS SUPPLY Setpoint Line Regulation Load Regulation Output Ripple Output Noise Switching Frequency Pulse-Width Modulation Frequency Output Supply1 Efficiency at IISO (MAX)1 VDDP Supply Current No VISO Load Full VISO Load Thermal Shutdown Shutdown Temperature Thermal Hysteresis 1 Symbol Min Typ Max Unit Test Conditions/Comments VISO VISO (LINE) VISO (LOAD) VISO (RIP) VISO (NOISE) fOSC fPWM IISO (MAX) 3.135 3.3 20 1 50 130 180 625 3.465 V mV/V % mV p-p mV p-p MHz kHz mA mA % IISO = 10 mA IISO = 50 mA, VDDP = 3.0 V to 3.6 V IISO = 10 mA to 90 mA 20 MHz bandwidth, CBO = 0.1 µF||10 µF, IISO = 90 mA CBO = 0.1 µF||10 µF, IISO = 90 mA 5 100 50 34 IDDP (Q) IDDP (MAX) 14 250 154 10 20 mA mA °C °C Maximum VISO output current is derated by 1.75 mA/°C for TA > 85ºC. Rev. B | Page 3 of 31 3.0 V < VISO < 3.4 V 3.135 V < VISO < 3.465 V IISO = 100 mA ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Data Sheet ELECTRICAL CHARACTERISTICS—3.3 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY All typical specifications are at TA = 25°C, VDDP = VISO = 3.3 V. Minimum and maximum specifications apply over the entire recommended operation range, which is 3.0 V ≤ VDDP, VISO ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Table 4. DC-to-DC Converters Static Specifications Parameter DC-TO-DC CONVERTERS SUPPLY Setpoint Line Regulation Load Regulation Output Ripple Output Noise Switching Frequency Pulse-Width Modulation Frequency Output Supply1 Efficiency at IISO (MAX)1 VDDP Supply Current No VISO Load Full VISO Load Thermal Shutdown Shutdown Temperature Thermal Hysteresis 1 Symbol Min Typ Max Unit Test Conditions/Comments VISO VISO (LINE) VISO (LOAD) VISO (RIP) VISO (NOISE) fOSC fPWM IISO (MAX) 3.135 3.3 20 1 50 130 180 625 3.465 V mV/V % mV p-p mV p-p MHz kHz mA mA % IISO = 10 mA IISO = 30 mA, VDDP = 3.0 V to 3.6 V IISO = 6 mA to54 mA 20 MHz bandwidth, CBO = 0.1 µF||10 µF, IISO = 60 mA CBO = 0.1 µF||10 µF, IISO = 60 mA 5 60 30 34 IDDP (Q) IDDP (MAX) 14 190 20 154 10 3.0 V < VISO < 3.465 V 3.135 V < VISO < 3.465 V IISO = 60 mA mA mA °C °C Maximum VISO output current is derated by 2.0 mA/°C for TA > 105ºC. ELECTRICAL CHARACTERISTICS—5.0 V OPERATION DIGITAL ISOLATOR CHANNELS ONLY All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5.0 V. Minimum and maximum specifications apply over the entire recommended operation range: 4.5 V ≤ VDD1 , VDD2 ≤ 5.5 V and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals. Table 5. Data Channel Supply Current Specifications Parameter SUPPLY CURRENT ADuM6420ABRNZ5 Symbol Min 1 Mbps Typ Max Min 10 Mbps Typ Max 100 Mbps Min Typ Max Unit IDD1 IDD2 4.9 1.5 8.7 2.5 5.5 2.3 9.5 3.6 8.0 8.0 12.2 11.0 mA mA IDD1 IDD2 4.9 1.5 8.7 2.5 5.5 2.3 9.5 3.6 8.0 9.3 12.2 15.0 mA mA IDD1 IDD2 4.2 2.3 8.4 4.5 4.5 2.8 8.5 5.7 8.0 8.8 12.0 12.0 mA mA IDD1 IDD2 4.2 2.3 8.4 4.5 4.5 2.8 8.5 5.7 8.0 9.4 12.0 15.0 mA mA IDD1 IDD2 3.3 3.0 6.0 6.0 3.9 4.0 6.2 6.5 8.3 9.5 12.0 13.5 mA mA IDD1 IDD2 3.3 3.0 6.0 6.0 3.9 4.0 6.2 6.5 8.3 9.5 12.0 14.0 mA mA ADuM6420ABRNZ3 ADuM6421ABRNZ5 ADuM6421ABRNZ3 and ADuM6421AWBRNZ5 ADuM6422ABRNZ5 ADuM6422ABRNZ3 Rev. B | Page 4 of 31 Test Conditions/Comments CL = 0 pF Data Sheet Parameter ADuM6423ABRNZ5 and ADuM6423ABRNZ3 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Symbol Min 1 Mbps Typ Max Min 10 Mbps Typ Max 100 Mbps Min Typ Max Unit IDD1 IDD2 2.3 4.2 4.5 8.4 3.1 4.5 5.7 8.5 9.0 8.2 15.0 12.0 mA mA IDD1 IDD2 1.5 4.8 2.5 8.7 2.5 5.0 3.6 9.5 9.6 8.1 15.0 12.2 mA mA Test Conditions/Comments ADuM6424ABRNZ5 and ADuM6424ABRNZ3 Table 6. Switching Specifications Parameter SWITCHING SPECIFICATIONS Pulse Width Data Rate Propagation Delay Pulse Width Distortion Change vs. Temperature Propagation Delay Skew Channel Matching Codirectional Opposing Direction Jitter Symbol Min PW 10 tPHL, tPLH PWD 7.0 Typ 10 1 1.5 tPSK Max 100 15 5 8.0 tPSKCD tPSKOD 1 1 816 5.0 5.0 Unit Test Conditions/Comments ns Mbps ns ns ps/°C ns Within pulse width distortion (PWD) limit Within PWD limit 50% input to 50% output |tPLH − tPHL| Between any two units at the same temperature, voltage, and load ns ns ps p-p Table 7. Input and Output Characteristics Parameter DC SPECIFICATIONS Input Threshold Logic High Logic Low Output Voltage Logic High Logic Low Undervoltage Lockout Positive Going Threshold Negative Going Threshold Hysteresis Input Currents per Channel Quiescent Supply Current ADuM6420A Symbol Min VIH VIL 0.7 × VDDx VOH VDDx − 0.2 VDDx − 0.5 Max Unit 0.3 × VDDx V V 0.1 0.4 V V V V 1.6 1.5 0.1 +0.01 +10 V V V µA 0 V ≤ VIx ≤ VDDx IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.37 1.2 9.5 1.5 1.2 1.9 16 2.5 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.5 0.9 7.5 3.3 1.4 1.5 14 6.2 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 VOL UVLO VUV+ VUV− VUVH II −10 Typ VDDx VDDx − 0.2 0.0 0.0 Test Conditions/Comments IOx1 = −20 µA, VIx = VIxH2 IOx1 = −3.2 mA, VIx = VIxH2 IOx1 = 20 µA, VIx = VIxL3 IOx1 = 3.2 mA, VIx = VIxL3 VDD1, VDD2, and VDDP supply ADuM6421A Rev. B | Page 5 of 31 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Parameter ADuM6422A Symbol Min Data Sheet Typ Max Unit Test Conditions/Comments IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.7 0.72 5.4 5.3 1.2 1.3 9.5 9.7 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.96 0.5 3.5 7.5 1.5 1.4 6.2 14 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 1.2 0.4 1.7 9.5 1.9 1.2 2.5 16 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDDI (D) IDDO (D) 0.01 0.02 mA/Mbps mA/Mbps Inputs switching, 50% duty cycle Inputs switching, 50% duty cycle 10% to 90% VIx = VDD1 or VISO, common-mode voltage (VCM) = 1000 V, transient magnitude = 800 V VIx = 0 V, VCM = 1000 V, transient magnitude = 800 V ADuM6423A ADuM6424A Dynamic Supply Current Input Output AC SPECIFICATIONS Output Rise Time/Fall Time Common-Mode Transient Immunity4 tR/tF |CMH| 75 2.5 100 ns kV/µs |CML| 75 100 kV/µs IOX is the Channel x output current, where x is A, B, C, or D. VIXH is the input side logic high. VIXL is the input side logic low. 4 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both the rising and falling common-mode voltage edges. 1 2 3 ELECTRICAL CHARACTERISTICS—3.3 V OPERATION DIGITAL ISOLATOR CHANNELS ONLY All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V. Minimum and maximum specifications apply over the entire recommended operation range: 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals. Table 8. Data Channel Supply Current Specifications Parameter SUPPLY CURRENT ADuM6420ABRNZ5 Symbol Min 1 Mbps Typ Max Min 10 Mbps Typ Max 100 Mbps Min Typ Max Unit IDD1 IDD2 4.8 1.4 8.5 2.5 4.9 2.1 9.0 3.4 7.0 7.5 11.0 11.0 mA mA IDD1 IDD2 4.8 1.4 8.5 2.5 4.9 2.1 9.0 3.4 7.0 7.5 11.0 12.0 mA mA IDD1 IDD2 4.0 2.1 8.3 4.4 4.3 2.7 8.4 5.6 7.1 8.0 11.6 11.6 mA mA IDD1 IDD2 4.0 2.1 8.3 4.4 4.3 2.7 8.4 5.6 7.1 8.0 11.6 12.0 mA mA ADuM6420ABRNZ3 ADuM6421ABRNZ5 ADuM6421ABRNZ3 and ADuM6421AWBRNZ5 Rev. B | Page 6 of 31 Test Conditions/Comments CL = 0 pF Data Sheet Parameter ADuM6422ABRNZ5 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Symbol 1 Mbps Typ Max Min Min 10 Mbps Typ Max 100 Mbps Min Typ Max Unit IDD1 IDD2 3.1 3.0 6.0 6.0 3.6 3.7 6.2 6.2 7.4 8.5 11.0 12.0 mA mA IDD1 IDD2 3.1 3.0 6.0 6.0 3.6 3.7 6.0 6.2 7.4 8.5 11.0 13.0 mA mA IDD1 IDD2 2.3 4.2 4.4 8.3 2.9 4.3 5.6 8.4 8.0 7.1 12.0 11.6 mA mA IDD1 IDD2 1.5 4.8 2.5 8.5 2.3 4.8 3.4 9.0 8.0 7.0 12.0 11.0 mA mA Test Conditions/Comments ADuM6422ABRNZ3 ADuM6423ABRNZ5 and ADuM6423ABRNZ3 ADuM6424ABRNZ5 and ADuM6424ABRNZ3 Table 9. Switching Specifications Parameter SWITCHING SPECIFICATIONS Pulse Width Data Rate Propagation Delay Pulse Width Distortion Change vs. Temperature Propagation Delay Skew Channel Matching Codirectional Opposing Direction Jitter Symbol Min PW 10 tPHL, tPLH PWD 7.0 Typ 10 1.0 1.5 tPSK Max 100 16 5.0 8.0 tPSKCD tPSKOD 1.0 1.0 816 5.0 5.0 Unit Test Conditions/Comments ns Mbps ns ns ps/°C ns Within PWD limit Within PWD limit 50% input to 50% output |tPLH − tPHL| Between any two units at the same temperature, voltage, and load ns ns ps p-p Table 10. Input and Output Characteristics Parameter DC SPECIFICATIONS Input Threshold Logic High Logic Low Output Voltage Logic High Logic Low Undervoltage Lockout Positive Going Threshold Negative Going Threshold Hysteresis Input Currents per Channel Symbol Min VIH VIL 0.7 × VDDx VOH VDDx − 0.2 VDDx − 0.5 VOL UVLO VUV+ VUV− VUVH II −10 Typ VDDx VDDx – 0.2 0.0 0.0 1.6 1.5 0.1 +0.01 Max Unit 0.3 × VDDx V V 0.1 0.4 V V V V +10 V V V µA Rev. B | Page 7 of 31 Test Conditions/Comments IOx1 = −20 µA, VIx = VIxH2 IOx1 = −3.2 mA, VIx = VIxH2 IOx1 = 20 µA, VIx = VIxL3 IOx1 = 3.2 mA, VIx = VIxL3 VDD1, VDD2, and VDDP supply 0 V ≤ VIx ≤ VDDx ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Parameter Quiescent Supply Current ADuM6420A Symbol Min Data Sheet Typ Max Unit Test Conditions/Comments IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.34 1.1 9.5 1.5 1.2 1.8 16 2.4 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.48 0.8 7.4 3.2 1.1 1.5 13.5 6.2 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.65 0.7 5.3 5.4 1.2 1.2 9.5 9.6 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.94 0.5 3.5 7.4 1.5 1.1 6.2 13.5 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 1.2 0.35 1.7 9.4 1.8 1.2 2.4 16 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDDI (D) IDDO (D) 0.01 0.01 mA/Mbps mA/Mbps Inputs switching, 50% duty cycle Inputs switching, 50% duty cycle 10% to 90% VIx = VDD1 or VISO, VCM = 1000 V, transient magnitude = 800 V VIx = 0 V, VCM = 1000 V, transient magnitude = 800 V ADuM6421A ADuM6422A ADuM6423A ADuM6424A Dynamic Supply Current Dynamic Input Dynamic Output AC SPECIFICATIONS Output Rise/Fall Time Common-Mode Transient Immunity4 tR/tF |CMH| 75 2.5 100 ns kV/µs |CML| 75 100 kV/µs IOX is the Channel x output current, where x is A, B, C, or D. VIXH is the input side logic high. VIXL is the input side logic low. 4 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both the rising and falling common-mode voltage edges. 1 2 3 Rev. B | Page 8 of 31 Data Sheet ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A ELECTRICAL CHARACTERISTICS—2.5 V OPERATION DIGITAL ISOLATOR CHANNELS ONLY All typical specifications are at TA = 25°C, VDD1 = VDD2 = 2.5 V. Minimum and maximum specifications apply over the entire recommended operation range: 2.25 V ≤ VDD1 ≤ 2.75 V, 2.25 V ≤ VDD2 ≤ 2.75 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals. Table 11. Data Channel Supply Current Specifications Parameter SUPPLY CURRENT ADuM6420ABRNZ5 and ADuM6420ABRNZ3 Symbol 1 Mbps Typ Max Min Min 10 Mbps Typ Max 100 Mbps Min Typ Max Unit IDD1 IDD2 4.8 1.4 8.5 2.3 4.8 2.0 9.0 3.3 6.4 6.5 11.0 9.5 mA mA IDD1 IDD2 4.2 2.3 8.0 4.4 4.4 2.4 8.2 5.4 6.7 6.5 11.5 10.0 mA mA IDD1 IDD2 3.0 3.0 6.0 6.0 3.4 3.4 6.1 6.1 6.4 6.4 9.5 9.5 mA mA IDD1 IDD2 2.3 4.2 4.4 8.0 2.8 4.4 5.4 8.2 6.5 6.7 10.0 11.5 mA mA IDD1 IDD2 1.5 4.8 2.3 8.5 2.0 4.8 3.3 9.0 6.5 6.5 9.5 11.0 mA mA Test Conditions/Comments CL = 0 pF ADuM6421ABRNZ5, ADuM6421ABRNZ3, and ADuM6421AWBRNZ5 ADuM6422ABRNZ5 and ADuM6422ABRNZ3 ADuM6423ABRNZ5 and ADuM6423ABRNZ3 ADuM6424ABRNZ5 and ADuM6424ABRNZ3 Table 12. Switching Specifications Parameter SWITCHING SPECIFICATIONS Pulse Width Data Rate Propagation Delay Pulse Width Distortion Change vs. Temperature Propagation Delay Skew Channel Matching Codirectional Opposing Direction Jitter Symbol Min PW 10 tPHL, tPLH PWD 8.0 Typ 11 1.0 1.5 tPSK Max 100 16 5.0 8.0 tPSKCD tPSKOD 1.0 1.0 816 5.0 5.0 Unit Test Conditions/Comments ns Mbps ns ns ps/°C ns Within PWD limit Within PWD limit 50% input to 50% output |tPLH − tPHL| Between any two units at the same temperature, voltage, and load ns ns ps p-p Table 13. Input and Output Characteristics Parameter DC SPECIFICATIONS Input Threshold Logic High Logic Low Symbol Min VIH VIL 0.7 × VDDx Typ Max Unit 0.3 × VDDx V V Rev. B | Page 9 of 31 Test Conditions/Comments ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Parameter Output Voltage Logic High Logic Low Undervoltage Lockout Positive Going Threshold Negative Going Threshold Hysteresis Input Currents per Channel Quiescent Supply Current ADuM6420A Symbol Min Typ VOH VDDx − 0.2 VDDx − 0.5 VDDx VDDx − 0.2 0.0 0.0 Data Sheet Max Unit Test Conditions/Comments 0.1 0.4 V V V V IOx1 = −20 µA, VIx = VIxH2 IOx1 = −3.2 mA, VIx = VIxH2 IOx1 = 20 µA, VIx = VIxL3 IOx1 = 3.2 mA, VIx = VIxL3 VDD1, VDD2, and VDDP supply 1.6 1.5 0.1 +0.01 +10 V V V µA 0 V ≤ VIx ≤ VDDx IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.33 1.1 1.5 9.5 1.0 1.7 16 2.2 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.5 0.9 7.4 3.2 1.0 1.5 13.5 6.2 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.55 0.55 5.3 5.3 1.2 1.2 9.5 9.5 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.94 0.5 3.5 7.3 1.5 1 6.2 13.5 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 1.2 0.35 1.7 9.3 1.7 1 2.2 16 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDDI (D) IDDO (D) 0.01 0.01 mA/Mbps mA/Mbps Inputs switching, 50% duty cycle Inputs switching, 50% duty cycle 10% to 90% VIx = VDD1 or VISO, VCM = 1000 V, transient magnitude = 800 V VIx = 0 V, VCM = 1000 V, transient magnitude = 800 V VOL UVLO VUV+ VUV− VUVH II −10 ADuM6421A ADuM6422A ADuM6423A ADuM6424A Dynamic Supply Current Dynamic Input Dynamic Output AC SPECIFICATIONS Output Rise/Fall Time Common-Mode Transient Immunity4 tR/tF |CMH| 75 2.5 100 ns kV/µs |CML| 75 100 kV/µs IOx is the Channel x output current, where x means A, B, C, or D. VIxH is the input side logic high. VIxL is the input side logic low. 4 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both the rising and falling common-mode voltage edges. 1 2 3 Rev. B | Page 10 of 31 Data Sheet ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A ELECTRICAL CHARACTERISTICS—1.8 V OPERATION DIGITAL ISOLATOR CHANNELS ONLY All typical specifications are at TA = 25°C, VDD1 = VDD2 = 1.8 V. Minimum and maximum specifications apply over the entire recommended operation range: 1.7 V ≤ VDD1 ≤ 1.9 V, 1.7 V ≤ VDD2 ≤ 1.9 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals. Table 14. Data Channel Supply Current Specifications Parameter SUPPLY CURRENT ADuM6420ABRNZ5 and ADuM6420ABRNZ3 Symbol Min 1 Mbps Typ Max Min 10 Mbps Typ Max 100 Mbps Min Typ Max Unit IDD1 IDD2 4.3 1.3 8.5 2.3 4.9 1.4 8.5 2.5 6.4 6.4 10.6 9.0 mA mA IDD1 IDD2 4.1 2.3 8.0 4.4 4.4 2.6 8.0 5.3 6.7 6.5 11.5 9.5 mA mA IDD1 IDD2 3.0 3.0 6.0 6.0 3.4 3.4 6.2 6.2 6.2 6.0 9.0 9.0 mA mA IDD1 IDD2 2.3 4.2 4.4 8.0 2.8 4.4 5.3 8.0 6.5 6.5 9.5 11.5 mA mA IDD1 IDD2 1.5 4.7 2.3 8.5 2.0 4.7 2.5 8.5 6.3 6.2 9.0 10.6 mA mA Test Conditions/Comments CL = 0 pF ADuM6421ABRNZ5, ADuM6421ABRNZ3, and ADuM6421AWBRNZ5 ADuM6422ABRNZ5 and ADuM6422ABRNZ3 ADuM6423ABRNZ5 and ADuM6423ABRNZ3 ADuM6424ABRNZ5 and ADuM6424ABRNZ3 Table 15. Switching Specifications Parameter SWITCHING SPECIFICATIONS Pulse Width Data Rate Propagation Delay Pulse Width Distortion Change vs. Temperature Propagation Delay Skew Channel Matching Codirectional Opposing Direction Jitter Symbol Min PW 10 tPHL, tPLH PWD 8.0 Typ 12 1.0 1.5 tPSK Max 100 17 5.0 8.0 tPSKCD tPSKOD 1.0 1.0 816 5.0 5.0 Unit Test Conditions/Comments ns Mbps ns ns ps/°C ns Within PWD limit Within PWD limit 50% input to 50% output |tPLH − tPHL| Between any two units at the same temperature, voltage, and load ns ns ps p-p Table 16. Input and Output Characteristics Parameter DC SPECIFICATIONS Input Threshold Logic High Logic Low Output Voltages Logic High Symbol Min VIH VIL 0.7 × VDDx VOH VDDx − 0.1 VDDx − 0.4 Typ Max Unit 0.3 × VDDx V V VDDx VDDx − 0.2 Rev. B | Page 11 of 31 V V Test Conditions/Comments IOx1 = −20 µA, VIx = VIxH2 IOx1 = −3.2 mA, VIx = VIxH2 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Parameter Logic Low Undervoltage Lockout Positive Going Threshold Negative Going Threshold Hysteresis Input Currents per Channel Quiescent Supply Current ADuM6420A Symbol VOL Max 0.1 0.4 Unit V V 1.6 1.5 0.1 +0.01 +10 V V V µA 0 V ≤ VIx ≤ VDDx IDD1 (Q) IDD2 (Q IDD1 (Q) IDD2 (Q) 0.35 1.0 9.4 1.4 1.0 1.7 16 2.2 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.5 0.9 7.5 3.2 1.0 1.4 13.5 6.2 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.6 0.65 5.3 5.3 1.2 1.2 9.5 9.5 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 0.91 0.45 3.5 7.2 1.4 1 6.2 13.5 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 1.2 0.35 1.6 9.3 1.7 1 2.2 16 mA mA mA mA VIx = Logic 0 VIx = Logic 0 VIx = Logic 1 VIx = Logic 1 IDDI (D) IDDO (D) 0.01 0.01 mA/Mbps mA/Mbps Inputs switching, 50% duty cycle Inputs switching, 50% duty cycle 10% to 90% VIx = VDD1 or VISO, VCM = 1000 V, transient magnitude = 800 V VIx = 0 V, VCM = 1000 V, transient magnitude = 800 V UVLO VUV+ VUV− VUVH II Min −10 Typ 0.0 0.2 Data Sheet Test Conditions/Comments IOx1 = 20 µA, VIx = VIxL3 IOx1 = 3.2 mA, VIx = VIxL3 VDD1, VDD2, and VDDP supply ADuM6421A ADuM6422A ADuM6423A ADuM6424A Dynamic Supply Current Input Output AC SPECIFICATIONS Output Rise/Fall Time Common-Mode Transient Immunity4 tR/tF |CMH| 75 2.5 100 ns kV/µs |CML| 75 100 kV/µs IOx is the Channel x output current, where x means A, B, C, or D. VIxH is the input side logic high. 3 VIxL is the input side logic low. 4 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both the rising and falling common-mode voltage edges. 1 2 Rev. B | Page 12 of 31 Data Sheet ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A PACKAGE CHARACTERISTICS Table 17. Thermal and Isolation Characteristics Parameter Resistance (Input to Output)1 Capacitance (Input to Output)1 Input Capacitance2 IC Junction to Ambient Thermal Resistance Symbol RI-O CI-O CI θJA Min Typ 1013 2.2 4.0 45 Max Unit Ω pF pF °C/W Test Conditions/Comments Frequency = 1 MHz Thermocouple located at center of package underside, test conducted on 4-layer board with thin traces3 The device is considered a 2-terminal device: Pin 1 to Pin 14 are shorted together, and Pin 15 to Pin 28 are shorted together. Input capacitance is from any input data pin to ground. 3 See the Thermal Analysis section for thermal model definitions. 1 2 REGULATORY APPROVALS Table 18. UL (Pending)1 Recognized Under UL 1577 Component Recognition Program1 Single Protection, 5000 V rms Isolation Voltage File E214100 CSA (Pending) Approved under CSA Component Acceptance Notice 5A VDE (Pending)2 DIN V VDE V 0884-11 (VDE V 088411):2017-1 CQC (Pending) Certified under CQC11-471543-2012 CSA 60950-1-07+A1+A2 and IEC 60950-1, second edition, +A1+A2: Basic insulation at 830 V rms (1173 V peak) Reinforced insulation at 415 V rms (586 V peak) IEC 60601-1 Edition 3.1: Basic insulation (1 means of patient protection (1 MOPP)), 250 V rms CSA 61010-1-12 and IEC 61010-1 third edition: Basic insulation at 300 V rms mains, 815 V rms (1173 V peak) secondary Reinforced insulation at 300 V rms mains, 415 V rms (586 V peak) File 205078 Reinforced insulation 566 V peak, VIOSM = 6000 V peak Transient voltage, VIOTM = 8000 V peak GB4943.1-2011: Basic insulation at 815 V rms (1173 V peak) Reinforced insulation at 415 V rms (586 V peak) File (pending) File (pending) In accordance with UL 1577, each ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec. 2 In accordance with DIN V VDE V 0884-11, each ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A is proof tested by applying an insulation test voltage ≥1059 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-11 approval. 1 INSULATION AND SAFETY RELATED SPECIFICATIONS Table 19. Critical Safety Related Dimensions and Material Properties Parameter Rated Dielectric Insulation Voltage Minimum External Air Gap (Clearance) Symbol Value 5000 L(I01) 8.3 Minimum External Tracking (Creepage) L(I02) 8.3 Minimum Clearance in the Plane of the PCB L (PCB) 8.3 Minimum Internal Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Isolation Group CTI 25.5 >600 I Unit Test Conditions/Comments V rms 1-minute duration mm min Measured from input terminals to output terminals, shortest distance through air mm min Measured from input terminals to output terminals, shortest distance path along body mm min Measured from input terminals to output terminals, shortest distance through air, line of sight, in the PCB mounting plane μm min Minimum distance through insulation V DIN IEC 112/VDE 0303, Part 1 Material group (DIN VDE 0110, 1/89, Table 1) Rev. B | Page 13 of 31 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Data Sheet DIN V VDE V 0884-11 INSULATION CHARACTERISTICS The ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by the protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-11 approval. Table 20. VDE Characteristics Description Installation Classification per DIN VDE 0110 For Rated Mains Voltage ≤ 150 V rms For Rated Mains Voltage ≤ 300 V rms For Rated Mains Voltage ≤ 400 V rms Climatic Classification Pollution Degree per DIN VDE 0110, Table 1 Maximum Working Insulation Voltage Input to Output Test Voltage, Method b1 Test Conditions/Comments VIORM × 1.875 = VPR, 100% production test, tm = 1 sec, partial discharge < 5 pC Input to Output Test Voltage, Method a After Environmental Tests Subgroup 1 After Input and/or Safety Test Subgroup 2 and Subgroup 3 Highest Allowable Overvoltage Withstand Isolation Voltage Surge Isolation Voltage Reinforced Safety Limiting Values SAFE LIMITING POWER (W) Case Temperature Total Power Dissipation at 25°C Insulation Resistance at TS VIORM × 1.5 = Vpd(m), tini = 60 sec, tm = 10 sec, partial discharge < 5 pC VIORM × 1.2 = Vpd(m), tini = 60 sec, tm = 10 sec, partial discharge < 5 pC Transient overvoltage, tTR = 10 sec 1-minute withstand rating VIOSM(TEST) = 12.8 kV; 1.2 µs rise time; 50 µs, 50% fall time Maximum value allowed in the event of a failure (see Figure 2) VIO = 500 V Symbol Characteristic Unit VIORM VPR I to IV I to IV I to IV 40/125/21 2 566 1059 V peak V peak VPR Vpd(m) 849 V peak Vpd(m) 679 V peak VIOTM VISO VIOSM 8000 5000 8000 V peak V rms V peak TS IS1 RS 150 2.78 >109 °C W Ω 3.0 RECOMMENDED OPERATING CONDITIONS 2.5 Table 21. Parameter Operating Temperature (TA)1 Supply Voltages2 VDDP at VSEL = GNDISO VDDP at VSEL = VISO VDD1, VDD2 2.0 1.5 1.0 1 0.5 0 50 100 150 AMBIENT TEMPERATURE (°C) 200 Max +125 Unit °C 3.0 4.5 1.7 5.5 5.5 5.5 V V V Operation at >85°C requires reduction of the maximum load current. Each voltage is relative to its respective ground. 21365-002 0 2 Min −40 Figure 2. Thermal Derating Curve, Dependence of Safety Limiting Values on Case Temperature, per DIN EN 60747-5-2 Rev. B | Page 14 of 31 Data Sheet ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Table 22. Parameter Storage Temperature (TST) Ambient Operating Temperature Supply Voltages (VDD1, VDDP, VDD2, VISO)1 VISO Supply Current2 Input Voltage (VIA, VIB, VIC, VID, VSEL, PDIS)1, 3 Output Voltage (VOA, VOB, VOC, VOD)1, 3 Average Output Current Per Data Output Pin4 Common-Mode Transients5 Rating −55°C to +150°C −40°C to +125°C −0.5 V to +7.0 V 100 mA −0.5 V to VDDI + 0.5 V −0.5 V to VDDO + 0.5 V −10 mA to +10 mA Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. ESD CAUTION −200 kV/µs to +200 kV/µs All voltages are relative to their respective ground. The VISO pin provides current for dc and dynamic loads on the VISO input and output channels. This current must be included when determining the total VISO supply current. For ambient temperatures between 85°C and 125°C, the maximum allowed current is reduced. 3 VDDI and VDDO refer to the supply voltages on the input and output sides of a given channel, respectively. See the PCB Layout section. 4 See Figure 2 for the maximum rated current values for various temperatures. 5 Common-mode transients refer to common-mode transients across the insulation barrier. Common-mode transients exceeding the absolute maximum ratings may cause latch-up or permanent damage. 1 2 Table 23. Maximum Continuous Working Voltage1 Parameter AC Voltage Bipolar Waveform Basic Insulation Reinforced Insulation Unipolar Waveform Basic Insulation Reinforced Insulation DC Voltage Basic Insulation Reinforced Insulation 1 Rating Constraint 636 V peak 566 V peak 1130 V peak 932 V peak 1158 V peak 579 V peak Limited by package creepage per IEC 60664-1, Pollution Degree 2, Material Group II Limited by package creepage per IEC 60664-1, Pollution Degree 2, Material Group II Maximum continuous working voltage refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more information. Rev. B | Page 15 of 31 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Data Sheet PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS VDD1 1 28 VDD2 GND1 2 27 GND2 GND1 3 26 GND2 VIA 4 25 VOA VIB 5 24 VOB ADuM6420A VID 7 TOP VIEW (Not to Scale) GND1 8 PDIS 9 GND1 10 VDDP 11 GND1 12 NIC 13 GND1 14 23 VOC 22 VOD 21 GND2 20 VSEL 19 GNDISO 18 VISO 17 GNDISO 16 NIC 15 GNDISO NOTES 1. NIC = NOT INTERNALLY CONNECTED. THESE PINS ARE NOT CONNECTED INTERNALLY. 21365-003 VIC 6 Figure 3. ADuM6420A Pin Configuration Table 24. ADuM6420A Pin Function Descriptions Pin No. 1 2, 3, 8, 10, 12, 14 4 5 6 7 9 11 13, 16 15, 17, 19 18 20 21, 26, 27 22 23 24 25 28 Mnemonic Description Power Supply for the Side 1 Logic Circuits of the Device. VDD1 requires a 100 nF bypass capacitor. VDD1 is VDD1 independent of VDDP and can operate with power supply voltages between 1.7 V and 5.5 V. Ground 1. Ground references for the primary isolator. Pin 2, Pin 3, Pin 8, Pin 10, Pin 12, and Pin 14 are GND1 internally connected, and it is recommended to connect the GND1 pins to a common ground. VIA Logic Input A. VIB Logic Input B. VIC Logic Input C. VID Logic Input D. Power Disable. When PDIS is tied to GND1, the power converter is active. When a logic high voltage is PDIS applied to PDIS, the power supply enters low power standby mode. VDDP Primary Supply Voltage, 3.0 V to 5.5 V. VDDP requires 100 nF and 10 µF bypass capacitors to GND1. NIC Not Internally Connected. These pins are not connected internally. Ground References for VISO on Side 2. It is recommended to connect the GNDISO pins together. The GNDISO GNDISO pins are internally isolated from GND2. VISO Secondary Supply Voltage Output for External Loads. Connect to VDD2 to power the isolator channels. VSEL Output Voltage Select Input. Connect VSEL to VISO for a 5 V output or to GNDISO for a 3.3 V output. Ground References for VDD2 on Side 2. It is recommended that the GND2 pins be connected together. The GND2 GND2 pins are internally isolated from GNDISO. VOD Logic Output D. VOC Logic Output C. VOB Logic Output B. VOA Logic Output A. Power Supply for the Side 2 Logic Circuits of the Device. VDD2 requires a 100 nF bypass capacitor. VDD2 is VDD2 independent of VISO and can operate with power supply voltages between 1.7 V and 5.5 V. Rev. B | Page 16 of 31 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A 28 VDD2 VDD1 1 GND1 2 27 GND2 GND1 3 26 GND2 VIA 4 25 VOA VIB 5 24 VOB VIC 6 VOD 7 GND1 8 PDIS 9 GND1 10 VDDP 11 GND1 12 NIC 13 GND1 14 ADuM6421A TOP VIEW (Not to Scale) 23 VOC 22 VID 21 GND2 20 VSEL 19 GNDISO 18 VISO 17 GNDISO 16 NIC 15 GNDISO NOTES 1. NIC = NOT INTERNALLY CONNECTED. THESE PINS ARE NOT CONNECTED INTERNALLY. 21365-004 Data Sheet Figure 4. ADuM6421A Pin Configuration Table 25. ADuM6421A Pin Function Descriptions Pin No. 1 2, 3, 8, 10, 12, 14 4 5 6 7 9 11 13, 16 15, 17, 19 18 20 21, 26, 27 22 23 24 25 28 Mnemonic Description Power Supply for the Side 1 Logic Circuits of the Device. VDD1 requires a 0.10 µF bypass capacitor to GND1. VDD1 VDD1 is independent of VDDP and can operate with power supply voltages between 1.7 V and 5.5 V. Ground 1. Ground references for the primary isolator. Pin 2, Pin 3, Pin 8, Pin 10, Pin 12, and Pin14 are GND1 internally connected, and it is recommended to connect the GND1 pins to a common ground. VIA Logic Input A. VIB Logic Input B. VIC Logic Input C. VOD Logic Output D. Power Disable. When PDIS is tied to GND1, the power converter is active. When a logic high voltage is PDIS applied to PDIS, the power supply enters low power standby mode. VDDP DC-to-DC Converter Supply Voltage, 3.0 V to 5.5 V. VDDP requires 0.10 µF and 10 µF bypass capacitors to GND1. NIC Not Internally Connected. These pins are not connected internally. Grounds for the Isolated DC-to-DC Converter. Connect the GNDISO pins together through one ferrite bead to GNDISO PCB ground. The GNDISO pins are internally isolated from GND2. Secondary Supply Voltage Output for External Loads. VISO requires 0.10 µF and 10 µF capacitors to GNDISO. VISO Connect VISO through a ferrite bead to external loads. VSEL Output Voltage Select Input. Connect VSEL to VISO for a 5 V output or to GNDISO for a 3.3 V output. Ground References for VDD2 on Side 2. It is recommended that the GND2 pins be connected together. The GND2 GND2 pins are internally isolated from GNDISO. VID Logic Input D. VOC Logic Output C. VOB Logic Output B. VOA Logic Output A. Power Supply for the Side 2 Logic Circuits of the Device. VDD2 requires a 100 nF bypass capacitor. VDD2 is VDD2 independent of VISO and can operate with power supply voltages between 1.7 V and 5.5 V. Rev. B | Page 17 of 31 VDD1 1 28 VDD2 GND1 2 27 GND2 GND1 3 26 GND2 VIA 4 25 VOA VIB 5 24 VOB VOC 6 23 VIC 22 VID 21 GND2 PDIS 9 20 VSEL GND1 10 19 GNDISO VDDP 11 18 VISO GND1 12 17 GNDISO NIC 13 16 NIC GND1 14 15 GNDISO VOD 7 GND1 8 ADuM6422A TOP VIEW (Not to Scale) NOTES 1. NIC = NOT INTERNALLY CONNECTED. THESE PINS ARE NOT CONNECTED INTERNALLY. Data Sheet 21365-005 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Figure 5. ADuM6422A Pin Configuration Table 26. ADuM6422A Pin Function Descriptions Pin No. 1 2, 3, 8, 10, 12, 14 4 5 6 7 9 11 13, 16 15, 17, 19 18 20 21, 26, 27 22 23 24 25 28 Mnemonic Description Power Supply for the Side 1 Logic Circuits of the Device. VDD1 requires a 0.10 µF bypass capacitor to GND1. VDD1 VDD1 is independent of VDDP and can operate with power supply voltages between 1.7 V and 5.5 V. Ground 1. Ground references for the primary isolator. Pin 2, Pin 3, Pin 8, Pin 10, Pin 12, and Pin 14 are GND1 internally connected, and it is recommended to connect the GND1 pins to a common ground. VIA Logic Input A. VIB Logic Input B. VOC Logic Output C. VOD Logic Output D. Power Disable. When PDIS is tied to GND1, the power converter is active. When a logic high voltage is PDIS applied to PDIS, the power supply enters a low power standby mode. VDDP DC-to-DC Converter Supply Voltage, 3.0 V to 5.5 V. VDDP requires 0.10 µF and 10 µF bypass capacitors to GND1. NIC Not Internally Connected. These pins are not connected internally. Grounds for the Isolated DC-to-DC Converter. Connect the GNDISO pins together through one ferrite bead to GNDISO PCB ground. The GNDISO pins are internally isolated from GND2. Secondary Supply Voltage Output for External Loads. VISO requires 0.10 µF and 10 µF capacitors to GNDISO. VISO Connect VISO through a ferrite bead to external loads. VSEL Output Voltage Select Input. Connect VSEL to VISO for a 5 V output or to GNDISO for a 3.3 V output. Ground Reference for VDD2 on Side 2. It is recommended that the GND2 pins be connected together. The GND2 GND2 pins are internally isolated from GNDISO. VID Logic Input D. VIC Logic Input C. VOB Logic Output B. VOA Logic Output A. Power Supply for the Side 2 Logic Circuits of the Device. VDD2 requires a 100 nF bypass capacitor. VDD2 is VDD2 independent of VISO and can operate with power supply voltages between 1.7 V and 5.5 V. Rev. B | Page 18 of 31 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A VDD1 1 28 VDD2 GND1 2 27 GND2 GND1 3 26 GND2 VIA 4 25 VOA VOB 5 24 VIB VOC 6 23 VIC 22 VID 21 GND2 PDIS 9 20 VSEL GND1 10 19 GNDISO VDDP 11 18 VISO GND1 12 17 GNDISO NIC 13 16 NIC GND1 14 15 GNDISO VOD 7 GND1 8 ADuM6423A TOP VIEW (Not to Scale) NOTES 1. NIC = NOT INTERNALLY CONNECTED. THESE PINS ARE NOT CONNECTED INTERNALLY. 21365-006 Data Sheet Figure 6. ADuM6423A Pin Configuration Table 27. ADuM6423A Pin Function Descriptions Pin No. 1 2, 3, 8, 10, 12, 14 4 5 6 7 9 11 13, 16 15, 17, 19 18 20 21, 26, 27 22 23 24 25 28 Mnemonic Description Power Supply for the Side 1 Logic Circuits of the Device. VDD1 requires a 0.10 µF bypass capacitor to GND1. VDD1 VDD1 is independent of VDDP and can operate with power supply voltages between 1.7 V and 5.5 V. Ground 1. Ground references for the primary isolator. Pin 2, Pin 3, Pin 8, Pin 10, Pin 12, and Pin 14 are GND1 internally connected, and it is recommended to connect the GND1 pins to a common ground. VIA Logic Input A. VOB Logic Output B. VOC Logic Output C. VOD Logic Output D. Power Disable. When PDIS is tied to GND1, the power converter is active. When a logic high voltage is PDIS applied to PDIS, the power supply enters a low power standby mode. VDDP DC-to-DC Converter Supply Voltage, 3.0 V to 5.5 V. VDDP requires 0.10 µF and 10 µF bypass capacitors to GND1. NIC Not Internally Connected. These pins are not connected internally. Grounds for the Isolated DC-to-DC Converter. Connect the GNDISO pins together through one ferrite bead to GNDISO PCB ground. The GNDISO pins are internally isolated from GND2. Secondary Supply Voltage Output for External Loads. VISO requires 0.10 µF and 10 µF capacitors to GNDISO. VISO Connect VISO through a ferrite bead to external loads. VSEL Output Voltage Select Input. Connect VSEL to VISO for a 5 V output or to GNDISO for a 3.3 V output. Ground Reference for VDD2 on Side 2. It is recommended that the GND2 pins be connected together. The GND2 GND2 pins are internally isolated from GNDISO. VID Logic Input D. VIC Logic Input C. VIB Logic Input B. VOA Logic Output A. Power Supply for the Side 2 Logic Circuits of the Device. VDD2 requires a 100 nF bypass capacitor. VDD2 is VDD2 independent of VISO and can operate with power supply voltages between 1.7 V and 5.5 V. Rev. B | Page 19 of 31 VDD1 1 28 VDD2 GND1 2 27 GND2 GND1 3 26 GND2 VOA 4 25 VIA VOB 5 24 VIB 23 VIC VOC 6 VOD 7 GND1 8 ADuM6424A TOP VIEW (Not to Scale) 22 VID 21 GND2 PDIS 9 20 VSEL GND1 10 19 GNDISO VDDP 11 18 VISO GND1 12 17 GNDISO NIC 13 16 NIC GND1 14 15 GNDISO NOTES 1. NIC = NOT INTERNALLY CONNECTED. THESE PINS ARE NOT CONNECTED INTERNALLY. Data Sheet 21365-107 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Figure 7. ADuM6424A Pin Configuration Table 28. ADuM6424A Pin Function Descriptions Pin No. 1 2, 3, 8, 10, 12, 14 4 5 6 7 9 11 13, 16 15, 17, 19 18 20 21, 26, 27 22 23 24 25 28 Mnemonic Description Power Supply for the Side 1 Logic Circuits of the Device. VDD1 requires a 0.10 µF bypass capacitor to GND1. VDD1 VDD1 is independent of VDDP and can operate with power supply voltages between 1.7 V and 5.5 V. Ground 1. Ground references for the primary isolator. Pin 2, Pin 3, Pin 8, Pin 10, Pin 12, and Pin 14 are GND1 internally connected, and it is recommended to connect the GND1 pins to a common ground. VOA Logic Output A. VOB Logic Output B. VOC Logic Output C. VOD Logic Output D. Power Disable. When PDIS is tied to GND1, the power converter is active. When a logic high voltage is PDIS applied to PDIS, the power supply enters a low power standby mode. VDDP DC-to-DC Converter Supply Voltage, 3.0 V to 5.5 V. VDDP requires 0.10 µF and 10 µF bypass capacitors to GND1. NIC Not Internally Connected. These pins are not connected internally. Grounds for the Isolated DC-to-DC Converter. Connect the GNDISO pins together through one ferrite bead to GNDISO PCB ground. The GNDISO pins are internally isolated from GND2. Secondary Supply Voltage Output for External Loads. VISO requires 0.10 µF and 10 µF capacitors to GNDISO. VISO Connect VISO through a ferrite bead to external loads. VSEL Output Voltage Select Input. Connect VSEL to VISO for a 5 V output or to GNDISO for a 3.3 V output. Ground Reference for VDD2 on Side 2. It is recommended that the GND2 pins be connected together. The GND2 GND2 pins are internally isolated from GNDISO. VID Logic Input D. VIC Logic Input C. VIB Logic Input B. VIA Logic Input A. Power Supply for the Side 2 Logic Circuits of the Device. VDD2 requires a 100 nF bypass capacitor. VDD2 is VDD2 independent of VISO and can operate with power supply voltages between 1.7 V and 5.5 V. Rev. B | Page 20 of 31 Data Sheet ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A TRUTH TABLE Table 29. Data Section Truth Table (Positive Logic) VDDI State1 Powered Powered Don’t care Unpowered Unpowered 1 VIx Input1 High Low Don’t care Low High VDDO State1 Powered Powered Unpowered Powered Powered VOx Output1 High Low High-Z Low Indeterminate Notes Normal operation, data is high. Normal operation, data is low. Output is off. Output default low. If a high level is applied to an input when no supply is present, the input can parasitically power the input side, causing unpredictable operation. VDDI and VDDO refer to the supply voltages on the input and output sides of the given channel, respectively. VIx and VOx refer to the input and output signals of a given channel (Channel A, Channel B, Channel C, or Channel D). Table 30. Power Section Truth Table (Positive Logic) VDDP (V) 5 5 5 3.3 3.3 3.3 VSEL Input High Don’t care Low Low High Don’t care PDIS Input Low High Low Low Low High Rev. B | Page 21 of 31 VISO (V) 5 0 3.3 3.3 Condition not supported 0 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS IDDP (A) AND POWER DISSIPATION (W) 3.0 30 EFFICIENCY (%) 25 20 15 10 3.3V IN/3.3V OUT 5V IN/5V OUT 5V IN/3.3V OUT 0 0.04 0.02 0 0.10 0.08 0.06 IISO OUTPUT CURRENT (A) 2.5 2.0 1.5 1.0 0.5 0 3.5 21365-006 5 Figure 8. Power Supply Efficiency in Supported Power Configurations 4.5 5.0 5.5 Figure 11. Short-Circuit Input Current (IDDP) and Power Dissipation vs. VDDP 1000 VISO AT 5V (mV) PERCENT LOAD 0.09 500 VISO (mV) 0.08 0.07 0.06 0.05 0 –500 50 3.3V IN/3.3V OUT 5V IN/5V OUT 5V IN/3.3V OUT 0.01 0 0.05 0.10 0.15 0.20 0.35 0.30 0.25 INPUT CURRENT (A) 1 3 4 5 6 0 TIME (ms) Figure 9. IISO Output Current vs. Input Current in Supported Power Configurations Figure 12. VISO Transient Load Response, 5 V Output, 10% to 90% Load Step 1.1 1000 1.0 0.9 VISO AT 3.3V (mV) PERCENT LOAD 500 VISO (mV) 0.8 0.7 0.6 0 100 –1000 0.3 0.2 50 0 0.02 0.04 0.06 IISO OUTPUT CURRENT (A) 0.08 0.10 21365-008 3.3V IN/3.3V OUT 5V IN/5V OUT 5V IN/3.3V OUT 0.1 Figure 10. Total Power Dissipation vs. IISO Output Current in Supported Power Configurations Rev. B | Page 22 of 31 –1 0 1 2 3 4 0 TIME (ms) Figure 13. VISO Transient Load Response, 5 V Input, 3.3 V Output, 10% to 90% Load Step 21365-011 0.4 RATED LOAD (%) –500 0.5 0 2 RATED LOAD (%) 0.02 0 100 –1000 0.03 21365-010 0.04 21365-007 IISO OUTPUT CURRENT (A) 4.0 VDDP (V) 0.10 TOTAL POWER DISSIPATION (W) POWER DISSIPATION IDDP 21365-009 35 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A 3.32 5.08 3.30 5.06 3.28 5.04 3.26 5.02 3.24 5.00 3.22 4.98 3.20 0 0.02 0.04 0.06 0.08 0.10 IISO OUTPUT CURRENT (A) 3.18 –50 3.36 15 3.34 10 5V VISO (RIP) (mV) 50 75 100 125 3.30 3.28 3.26 5 0 –5 –10 3.24 0.02 0.04 0.06 0.08 0.10 IISO OUTPUT CURRENT (A) –15 21365-013 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 21365-016 VISO (V) 25 Figure 17. VISO vs. Temperature, Input = 3.3 V, VISO = 3.3 V 3.32 4.0 TIME (µs) Figure 18. Output Voltage Ripple at 90% Load, VISO = 5 V Figure 15. VISO vs. IISO Output Current, Input = 5 V, VISO = 3.3 V 15 5.10 5.08 10 3.3V VISO (RIP) (mV) 5.06 5.04 5.02 5 0 –5 5.00 –10 4.98 4.96 –50 –25 0 25 50 75 100 TEMPERATURE (°C) 125 21365-014 VISO (V) 0 TEMPERATURE (°C) Figure 14. VISO vs. IISO Output Current, Input = 5 V, VISO = 5 V 3.22 –25 21365-017 4.96 21365-015 VISO (V) 5.10 21365-012 VISO (V) Data Sheet –15 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 TIME (µs) Figure 19. Output Voltage Ripple at 90% Load, VISO = 3.3 V Figure 16. VISO vs. Temperature, Input = 5 V, VISO = 5 V Rev. B | Page 23 of 31 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A 7 5 VISO AT 10% LOAD (V) VISO AT 90% LOAD (V) 6 Data Sheet VISO AT 10% LOAD (V) VISO AT 90% LOAD (V) 4 5 3 VISO (V) 3 2 2 1 1 –1 0 1 2 3 4 TIME (ms) –1 0 1 2 3 4 TIME (ms) Figure 21. 5 V Input to 3.3 V Output VISO Start-Up Transient at 10% and 90% Load Figure 20. 5 V Input to 5 V Output VISO Start-Up Transient at 10% and 90% Load Rev. B | Page 24 of 31 21365-023 0 0 21365-022 VISO (V) 4 Data Sheet ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A TERMINOLOGY IDD1 IDD1 is the supply current required for the primary side of the digital isolator. IDD2 IDD2 is the supply current required for the secondary side of the digital isolator. IDDP IDDP is the supply current required for the primary side of the isolated dc-to-dc converter. IISO IISO is the available isolated current supply available to an external load. Propagation Delay, tPHL tPHL is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. Propagation Delay, tPLH tPLH is measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal. Propagation Delay Skew, tPSK tPSK is the magnitude of the worst-case difference in tPHL and/or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions. Channel to Channel Matching, tPSKCD/tPSKOD tPSKCD is the absolute value of the difference in propagation delays between two codirectional channels when operated with identical loads. tPSKOD is the absolute value of the difference in propagation delays between two channels transmitting in opposing directions. Minimum Pulse Width The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed. Maximum Data Rate The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed. Rev. B | Page 25 of 31 ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A Data Sheet THEORY OF OPERATION The dc-to-dc converter section of the ADuM6420A/ ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A works on principles that are common to most modern power supplies. The ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ ADuM6424A have a split controller architecture with isolated PWM feedback. VDDP power is supplied to an oscillating circuit that switches current into a chip scale, air core transformer. Power transferred to the secondary side is rectified and regulated to a value of 3.3 V or 5 V, depending on the setting of the VSEL pin. The secondary (VISO) side controller regulates the output by creating a PWM control signal that is sent to the primary (VDDP) side by a dedicated iCoupler data channel. The PWM modulates the oscillator circuit to control the power being sent to the secondary side. Feedback allows for significantly higher power and efficiency. The ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ ADuM6424A implement undervoltage lockout (UVLO) with hysteresis on the primary and the secondary side input and output pins as well as the VDDP power input. This feature ensures that the converter does not enter oscillation due to noisy input power or slow power-on ramp rates. The digital isolator channels use a high frequency carrier to transmit data across the isolation barrier using iCoupler chip scale transformer coils separated by layers of polyimide isolation. Using an on/off keying technique and the differential architecture shown in Figure 22, the digital isolator channels have low propagation delay and high speed. Internal regulators and input and output design techniques allow logic and supply voltages over a wide range from 1.7 V to 5.5 V, offering voltage translation of 1.8 V, 2.5 V, 3.3 V, and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference. Radiated emissions are minimized with a spread spectrum on/off keying carrier and other techniques. Figure 22 shows the waveforms of the digital isolator channels that have the condition of the fail-safe output state equal to low, where the carrier waveform is off when the input state is low. If the input side is off or not operating, the low fail-safe output state sets the output to low. REGULATOR REGULATOR TRANSMITTER RECEIVER VOUT GND1 GND2 21365-25 VIN Figure 22. Operational Block Diagram of a Single Channel with a Low Fail-Safe Output State, VIN Is the Input Voltage and VOUT Is the Output Voltage Rev. B | Page 26 of 31 Data Sheet ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ADuM6424A APPLICATIONS INFORMATION PCB LAYOUT The ADuM6420A/ADuM6421A/ADuM6422A/ADuM6423A/ ADuM6424A digital isolators with an isoPower integrated dc-todc converter require no external interface circuitry for the logic interfaces. Power supply bypassing is required at the input and output supply pins (see Figure 23, Figure 24, and Figure 25). For proper data channel operation, low equivalent series resistance (ESR) bypass capacitors of 0.01 µF to 0.1 µF are required between the VDD1 pin and GND1 pin as close to the chip pads as possible. Low ESR bypass capacitors of 0.1 µF or 0.22 µF are required between the VISO pin and GNDISO pin as close to the chip pads as possible (see the CISO notes in Figure 24 and Figure 25). Installing the bypass capacitor with traces more than 2 mm in length may result in data corruption. The isoPower inputs require several passive components to bypass the power effectively, as well as set the output voltage. is required. The required capacitor values are 0.1 µF and 10 µF for VDD1. The smaller capacitor must have a low ESR. For example, use of a ceramic capacitor is advised. The total lead length between the ends of the low ESR capacitor and the input power supply pin must not exceed 2 mm. To reduce the level of electromagnetic radiation, the impedance to high frequency currents between the VISO and the GNDISO pins and the PCB trace connections can be increased. Using this method of electromagnetic interference (EMI) suppression controls the radiating signal at the signal source by placing surface-mount ferrite beads in series with the VISO and GNDISO pins, as seen in Figure 25. Note that if ferrite beads are used, all guaranteed electrical specifications may not be met due to the additional series resistance (DCR). The impedance of the ferrite beads must be approximately 1.8 kΩ between the 100 MHz and 1 GHz frequency range to reduce the emissions at the 180 MHz primary switching frequency and the 360 MHz secondary side, rectifying frequency and harmonics. See Table 31 for examples of appropriate surface-mount ferrite beads. Table 31. Surface-Mount Ferrite Bead Examples Manufacturer Taiyo Yuden Murata Electronics Murata Electronics BYPASS
ADUM6420ABRNZ5-RL 价格&库存

很抱歉,暂时无法提供与“ADUM6420ABRNZ5-RL”相匹配的价格&库存,您可以联系我们找货

免费人工找货