0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADV3219

ADV3219

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    ADV3219 - 800 MHz, 2:1 Analog Multiplexers - Analog Devices

  • 数据手册
  • 价格&库存
ADV3219 数据手册
800 MHz, 2:1 Analog Multiplexers ADV3219/ADV3220 FEATURES Excellent ac performance −3 dB bandwidth 800 MHz (200 mV p-p) 730 MHz (2 V p-p) Slew rate: 2800 V/μs Low power: 75 mW, VS = ±5 V Excellent video performance >100 MHz, 0.1 dB gain flatness 0.02% differential gain/0.02° differential phase error (RL = 150 Ω) Gain = +1 (ADV3219) or gain = +2 (ADV3220) Low crosstalk of −82 dB @ 5 MHz and −60 dB @ 100 MHz High impedance output disable allows connection of multiple devices without loading the output bus 8-lead LFCSP FUNCTIONAL BLOCK DIAGRAM ADV3219 (ADV3220) IN0 1 8 SELECT GND 2 G = +1 (G = +2) 7 EN IN1 3 6 OUT 08649-001 V+ 4 5 V– Figure 1. APPLICATIONS Routing of high speed signals including Video (NTSC, PAL, S, SECAM, YUV, and RGB) Compressed video (MPEG, wavelet) 3-level digital video (HDB3) Data communications Telecommunications GENERAL DESCRIPTION The ADV3219 and ADV3220 are high speed, high slew rate, buffered, 2:1 analog multiplexers. They offer a −3 dB signal bandwidth greater than 800 MHz and channel switch times of less than 20 ns with 1% settling. With −60 dB of crosstalk and −82 dB isolation (at 100 MHz), the ADV3219 and ADV3220 are useful in many high speed applications. The differential gain of less than 0.02% and the differential phase of less than 0.02°, together with 0.1 dB flatness beyond 100 MHz while driving a 75 Ω back terminated load, make the ADV3219 and ADV3220 ideal for all types of signal switching. The ADV3219/ADV3220 include an output buffer that can be placed into a high impedance state to allow multiple outputs to be connected together for cascading stages without the off channels loading the output bus. The ADV3219 has a gain of +1, and the ADV3220 has a gain of +2; they both operate on ±5 V supplies while consuming less than 7.5 mA of idle current. The ADV3219/ADV3220 are available in the 8-lead LFCSP package over the extended industrial temperature range of −40°C to +85°C. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved. ADV3219/ADV3220 TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Absolute Maximum Ratings............................................................ 5 Thermal Resistance ...................................................................... 5 Power Dissipation ......................................................................... 5 ESD Caution .................................................................................. 5 Pin Configuration and Function Descriptions ............................. 6 Typical Performance Characteristics ..............................................7 Circuit Diagrams ............................................................................ 15 Theory of Operation ...................................................................... 16 Applications Information .............................................................. 17 Circuit Layout ............................................................................. 17 Termination................................................................................. 17 Capacitive Load .......................................................................... 17 Outline Dimensions ....................................................................... 18 Ordering Guide .......................................................................... 18 REVISION HISTORY 4/10—Revision 0: Initial Version Rev. 0 | Page 2 of 20 ADV3219/ADV3220 SPECIFICATIONS VS = ±5 V, TA = 25°C, RL = 150 Ω, CL = 4 pF, ADV3219 at G = +1, ADV3220 at G = +2, unless otherwise noted. Table 1. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth Gain Flatness Propagation Delay Settling Time Slew Rate NOISE/DISTORTION PERFORMANCE Differential Gain Error Differential Phase Error Crosstalk Off Isolation, Input-Output Input Second-Order Intercept Input Third-Order Intercept Output 1 dB Compression Point Input Voltage Noise DC PERFORMANCE Gain Error Gain Matching OUTPUT CHARACTERISTICS Output Impedance Output Disable Capacitance Output Leakage Current Output Voltage Range Conditions 200 mV p-p 2 V p-p 0.1 dB, 200 mV p-p 0.1 dB, 2 V p-p 2 V p-p 1%, 2 V step 2 V step, peak NTSC or PAL NTSC or PAL f = 100 MHz f = 5 MHz f = 100 MHz, one channel f = 70 MHz, ADV3220, RL = 100 Ω f = 70 MHz, ADV3220, RL = 100 Ω f = 70 MHz, ADV3220, RL = 100 Ω 10 MHz to 100 MHz No load RL = 150 Ω Channel-to-channel, no load DC, enabled Disabled Disabled Disabled No load Load Short-circuit current Worst case (all configurations) No load RL = 150 Ω Any switch configuration Output enabled Output enabled Min ADV3219 Typ Max 840 600 100 100 700 5 2200 0.02 0.02 −70 −90 −83 Min ADV3220 Typ Max 800 730 100 100 650 5 2800 0.02 0.02 −60 −82 −82 47 34 20 17 1 1.1 1 1.1 Unit MHz MHz MHz MHz ps ns V/μs % Degrees dB dB dB dBm dBm dBm nV/√Hz % % % Ω MΩ pF μA V V mA 21 mV μV/°C V V pF MΩ μA ns ns mV p-p 16 0.75 1 0.02 1 1.0 2 ±3 ±3 50 ±5 ±10 ±3 ±3 0.6 10 5 15 20 70 0.75 1 0.04 1 1.2 2 ±3 ±3 50 ±5 ±10 ±1.5 ±1.5 0.6 10 6 15 20 100 2.9 2.8 2.9 2.75 INPUT CHARACTERISTICS Input Offset Voltage Input Offset Voltage Drift Input Voltage Range Input Capacitance Input Resistance Input Bias Current SWITCHING CHARACTERISTICS Enable On Time Switching Time, 2 V Step Switching Transient (Glitch) 21 1 1 12 12 50% SELECT to 1% settling IN0 to IN1 switching Rev. 0 | Page 3 of 20 ADV3219/ADV3220 Parameter POWER SUPPLIES Supply Current Conditions V+, output enabled, no load V+, output disabled (EN high) V−, output enabled, no load V−, output disabled (EN high) Supply Voltage Range PSR TEMPERATURE Operating Temperature Range Operating Junction-to-Ambient Thermal Impedance, θJA ±4.5 f = 100 kHz f = 1 MHz Still air Still air −40 85 −72 −62 +85 −40 85 Min ADV3219 Typ Max 7 1.6 7 1.6 8 2.0 8 2.0 ±5.5 ±4.5 −69 −60 +85 Min ADV3220 Typ Max 7.5 1.8 7.5 1.8 9 2.2 9 2.2 ±5.5 Unit mA mA mA mA V dB dB °C °C/W Table 2. Logic Levels VIH SELECT, EN +2.0 V minimum VIL SELECT, EN +0.8 V maximum IIH SELECT, EN ±2 μA maximum IIL SELECT, EN ±2 μA maximum Rev. 0 | Page 4 of 20 ADV3219/ADV3220 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Supply Voltage (V+ − V−) Analog Input Voltage Digital Input Voltage Output Voltage (Disabled Output) Output Short-Circuit Duration Current Temperature Storage Temperature Range Operating Temperature Range Junction Temperature Rating 12 V V− to V+ 0 to V+ (V+ − 1 V) to (V− + 1 V) Momentary 50 mA −65°C to +150°C −40°C to +85°C 150°C POWER DISSIPATION The ADV3219/ADV3220 are operated with ±5 V supplies and can drive loads down to 150 Ω, resulting in a wide range of possible power dissipations. For this reason, extra care must be taken derating the operating conditions based on ambient temperature. Packaged in an 8-lead LFCSP, the ADV3219 and ADV3220 junction-to-ambient thermal impedance (θJA) is 85°C/W. For longterm reliability, the maximum allowed junction temperature of the die, TJ, should not exceed 125°C. Temporarily exceeding this limit can cause a shift in parametric performance due to a change in stresses exerted on the die by the package. Figure 2 shows the range of the allowed internal die power dissipations that meet these conditions over the −40°C to +85°C ambient temperature range. When using Figure 2, do not include the external load power in the maximum power calculation, but do include the load current through the die output transistors. 1.5 TJ = 125°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 4. Thermal Resistance Package Type 8-Lead LFCSP θJA 85 θJC 23 Unit °C/W MAXIMUM POWER (W) 1.2 0.9 0.6 25 35 45 55 65 75 85 AMBIENT TEMPERATURE (°C) Figure 2. Maximum Die Power Dissipation vs. Ambient Temperature ESD CAUTION Rev. 0 | Page 5 of 20 08649-002 0.3 15 ADV3219/ADV3220 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS IN0 1 GND 2 IN1 3 V+ 4 8 SELECT ADV3219/ ADV3220 TOP VIEW (Not to Scale) 7 EN 6 OUT 5 V– 08649-003 NOTES 1. CONNECT THE EXPOSED PAD TO GROUND. Figure 3. Pin Configuration Table 5. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 N/A 1 1 Mnemonic IN0 GND IN1 V+ V− OUT EN SELECT EP Descriptions Analog Input. Ground. Analog Input. Positive Power Supply. Negative Power Supply. Analog Output. Output Enable (Low True). Logic Input for Analog Input Selection. Exposed Pad. Connect the exposed pad to ground. N/A means not applicable. Table 6. Truth Table SELECT 0 1 0 1 EN 0 0 1 1 OUT IN0 IN1 High-Z High-Z Rev. 0 | Page 6 of 20 ADV3219/ADV3220 TYPICAL PERFORMANCE CHARACTERISTICS VS = ±5 V, TA = 25°C, RL = 150 Ω, CL = 4 pF, ADV3219 at G = +1, ADV3220 at G = +2, unless otherwise noted. 4 3 2 1 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 1 10 100 FREQUENCY (MHz) 1k 10k 10pF GAIN (dB) 4 3 2 1 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 1 10 100 FREQUENCY (MHz) 1k 10k 10pF GAIN (dB) 4pF 0pF 4pF 2pF 2pF 0pF 08649-004 Figure 4. ADV3219 Small Signal Frequency Response with Capacitive Loads, 200 mV p-p Output 4 3 2 1 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 1 10 100 FREQUENCY (MHz) Figure 7. ADV3220 Small Signal Frequency Response with Capacitive Loads, 200 mV p-p Output 4 3 2 1 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 1 10 2pF 4pF 4pF GAIN (dB) GAIN (dB) 2pF 0pF 0pF 10pF 10pF 08649-005 1k 10k 100 FREQUENCY (MHz) 1k 10k Figure 5. ADV3219 Large Signal Frequency Response with Capacitive Loads, 2 V p-p Output 0.2 0pF 2pF 4pF 10pF Figure 8. ADV3220 Large Signal Frequency Response with Capacitive Loads, 2 V p-p Output 0.2 0pF 2pF 4pF 10pF 0.1 0.1 VOUT (V) 0 VOUT (V) 0 –0.1 –0.1 08649-006 0 5 10 TIME (ns) 15 20 0 5 10 TIME (ns) 15 20 Figure 6. ADV3219 Small Signal Pulse Response vs. Capacitive Load, 200 mV p-p Output Figure 9. ADV3220 Small Signal Pulse Response vs. Capacitive Load, 200 mV p-p Output Rev. 0 | Page 7 of 20 08649-009 –0.2 –0.2 08649-008 08649-007 ADV3219/ADV3220 2 0pF 2pF 4pF 10pF 2 0pF 2pF 4pF 10pF 1 1 VOUT (V) 0 VOUT (V) 08649-010 0 –1 –1 0 5 10 TIME (ns) 15 20 0 5 10 TIME (ns) 15 20 Figure 10. ADV3219 Large Signal Pulse Response vs. Capacitive Load, 2 V p-p Output 3000 1.5 Figure 13. ADV3220 Large Signal Pulse Response vs. Capacitive Load, 2 V p-p Output 4000 3000 1.5 2000 1.0 2000 1.0 SLEW RATE (V/µs) 1000 dv/dt 0.5 VOUT (V) SLEW RATE (V/µs) 0.5 1000 0 –1000 –0.5 –2000 VOUT –3000 dv/dt 0 VOUT (V) VOUT (V) 08649-015 08649-014 0 0 –1000 VOUT –0.5 –2000 –1.0 –1.0 0 0.5 1.0 1.5 2.0 TIME (ns) 2.5 3.0 3.5 08649-011 –3000 –1.5 4.0 –4000 0 0.5 1.0 1.5 2.0 TIME (ns) 2.5 3.0 3.5 –1.5 4.0 Figure 11. ADV3219 Large Signal Rising Slew Rate with 4 pF Load, 2 V p-p Output 3000 VOUT 2000 1.0 1.5 Figure 14. ADV3220 Large Signal Rising Slew Rate with 4 pF Load, 2 V p-p Output 4000 3000 2000 VOUT 1.0 1.5 SLEW RATE (V/µs) 1000 dv/dt 0.5 VOUT (V) SLEW RATE (V/µs) 0.5 1000 0 –1000 –0.5 –2000 dv/dt 0 0 0 –1000 –0.5 –2000 –1.0 –3000 –1.0 0 0.5 1.0 1.5 2.0 TIME (ns) 2.5 3.0 3.5 08649-012 –3000 –1.5 4.0 –4000 0 0.5 1.0 1.5 2.0 TIME (ns) 2.5 3.0 3.5 –1.5 4.0 Figure 12. ADV3219 Large Signal Falling Slew Rate with 4 pF Load, 2 V p-p Output Figure 15. ADV3220 Large Signal Falling Slew Rate with 4 pF Load, 2 V p-p Output Rev. 0 | Page 8 of 20 08649-013 –2 –2 ADV3219/ADV3220 1.5 FALLING EDGE 2.1 1.9 1.7 0.5 SELECT (V) VOUT (V) 1.5 FALLING EDGE 2.1 1.9 1.7 1.0 1.0 0.5 SELECT VOUT (V) 1.5 1.3 SELECT 0 1.5 1.3 0 –0.5 1.1 –1.0 RISING EDGE 0.9 0.7 30 –0.5 1.1 –1.0 RISING EDGE 0.9 0.7 30 08649-016 0 10 TIME (ns) 20 0 10 TIME (ns) 20 Figure 16. ADV3219 Switching Time 0.5 0.4 5 0.3 0.2 VOUT (V) Figure 19. ADV3220 Switching Time 6 0.5 0.4 5 0.3 4 3 0.2 VOUT (V) 6 EN EN 4 3 OUTPUT 2 1 0 0.1 0 –0.1 –0.2 –0.3 OUTPUT 0.1 0 –0.1 –0.2 –0.3 EN (V) 2 1 0 –0.4 08649-017 –0.4 08649-020 –0.5 0 10 20 TIME (ns) 30 40 –1 50 –0.5 0 10 20 TIME (ns) 30 40 –1 50 Figure 17. ADV3219 Enable Glitch 3 EN 2 INPUT +1V 1.9 1.7 1 VOUT (V) EN (V) Figure 20. ADV3220 Enable Glitch 2.1 3 EN 2 INPUT +0.5V 1.9 1.7 1.5 0 1.3 –1 1.1 INPUT –0.5V 1.1 –2 0.9 0.7 30 2.1 1 VOUT (V) 0 1.3 –1 INPUT –1V –2 0.9 0.7 30 08649-018 0 10 TIME (ns) 20 0 10 TIME (ns) 20 Figure 18. ADV3219 Enable On Timing Figure 21. ADV3220 Enable On Timing Rev. 0 | Page 9 of 20 08649-021 –3 –3 EN (V) 1.5 EN (V) 08649-019 –1.5 –1.5 SELECT (V) ADV3219/ADV3220 1.5 INPUT +1V 1.0 2.1 1.9 1.7 0.5 VOUT (V) VOUT (V) EN (V) 1.5 INPUT +0.5V 1.0 2.1 1.9 1.7 0.5 EN (V) SELECT (V) SELECT (V) 08649-027 08649-026 08649-025 EN 0 1.5 1.3 EN 0 1.5 1.3 –0.5 1.1 –1.0 INPUT –1V 0.9 0.7 40 –0.5 1.1 –1.0 INPUT –0.5V 0.9 0.7 40 0 10 20 TIME (ns) 30 08649-022 –1.5 –1.5 0 10 20 TIME (ns) 30 Figure 22. ADV3219 Disable Timing 100 80 5 60 40 VOUT (V) Figure 25. ADV3220 Disable Timing 6 100 80 5 60 4 3 SELECT (V) 6 40 VOUT (V) 4 3 2 1 SELECT 0 20 0 –20 –40 –60 –80 SELECT OUTPUT 20 OUTPUT 0 –20 –40 –60 2 1 0 –80 08649-023 –100 0 10 20 TIME (ns) 30 40 –1 50 –100 0 10 20 TIME (ns) 30 40 –1 50 Figure 23. ADV3219 Switching Glitch Rising Edge 100 80 60 40 VOUT (V) Figure 26. ADV3220 Switching Glitch Rising Edge 6 100 80 5 60 4 3 2 1 0 SELECT (V) 6 SELECT 5 4 3 2 1 0 SELECT 40 VOUT (V) 20 OUTPUT 0 –20 –40 –60 –80 20 OUTPUT 0 –20 –40 –60 –80 0 10 20 TIME (ns) 30 40 08649-024 –100 –1 50 –100 0 10 20 TIME (ns) 30 40 –1 50 Figure 24. ADV3219 Switching Glitch Falling Edge Figure 27. ADV3220 Switching Glitch Falling Edge Rev. 0 | Page 10 of 20 ADV3219/ADV3220 5 INPUT 4 3 2 OUTPUT (V) ERROR (%) ERROR (%) 1.25 5 4 1.25 0.75 3 2 INPUT 0.75 1 ERROR 0 –1 OUTPUT –2 –3 –4 0.25 1 ERROR 0 –1 –2 0.25 –0.25 –0.25 –0.75 –3 OUTPUT –4 08649-028 –0.75 0 1 2 3 4 5 TIME (ns) 6 7 8 9 0 1 2 3 4 5 TIME (ns) 6 7 8 9 Figure 28. ADV3219 Settling Time 2 V Output Step 10 0 –10 –20 PSR (dB) PSR (dB) Figure 31. ADV3220 Settling Time 2 V Output Step 10 0 –10 –20 –30 PSR (V–) –40 –50 PSR (V+) –60 –30 PSR (V–) –40 –50 –60 PSR (V+) –70 –80 08649-029 –70 –80 08649-032 08649-033 –90 0.1 1 10 100 1k 10k –90 0.1 1 10 100 1k 10k FREQUENCY (MHz) FREQUENCY (MHz) Figure 29. ADV3219 PSR 200 180 160 140 NOISE (nV/ Hz) Figure 32. ADV3220 PSR 200 180 160 140 NOISE (nV/ Hz) 120 100 80 60 40 20 08649-030 120 100 80 60 40 20 0 1k 0 1k 10k 100k 1M 10M 100M 10k 100k 1M 10M 100M FREQUENCY (Hz) FREQUENCY (Hz) Figure 30. ADV3219 Noise vs. Frequency Figure 33. ADV3220 Noise vs. Frequency Rev. 0 | Page 11 of 20 08649-031 –5 –1.25 10 –5 –1.25 10 OUTPUT (V) ADV3219/ADV3220 –20 –30 –40 CROSSTALK (dB) CROSSTALK (dB) 08649-034 –20 –30 –40 –50 –60 –70 –80 –90 –100 08649-037 08649-040 –50 –60 –70 –80 –90 –100 –110 1 10 100 FREQUENCY (MHz) 1k 10k –110 1 10 100 FREQUENCY (MHz) 1k 10k Figure 34. ADV3219 Crosstalk vs. Frequency –20 –30 –40 FEEDTHROUGH (dB) Figure 37. ADV3220 Crosstalk vs. Frequency –20 –30 –40 FEEDTHROUGH (dB) 08649-036 –50 –60 –70 –80 –90 –50 –60 –70 –80 –90 –100 –110 1 10 100 FREQUENCY (MHz) 1k 10k –100 08649-039 –110 1 10 100 FREQUENCY (MHz) 1k 10k Figure 35. ADV3219 Off Isolation vs. Frequency 1M 1M Figure 38. ADV3220 Off Isolation vs. Frequency DISABLED OUTPUT IMPEDANCE (Ω) 100k 100k INPUT IMPEDANCE (Ω) 10k 10k 1k 1k 100 10 100 1 10 100 FREQUENCY (MHz) 1k 08649-041 1 10 1 10 100 FREQUENCY (MHz) 1k Figure 36. ADV3219 Disabled Output Impedance vs. Frequency Figure 39. ADV3219/ADV3220 Input Impedance vs. Frequency Rev. 0 | Page 12 of 20 ADV3219/ADV3220 10k 10k ENABLED OUTPUT IMPEDANCE (Ω) 1k ENABLED OUTPUT IMPEDANCE (Ω) 08649-042 1k 100 100 10 10 1 1 0.1 0.1 1 10 100 FREQUENCY (MHz) 1k 1 10 100 FREQUENCY (MHz) 1k Figure 40. ADV3219 Enabled Output Impedance vs. Frequency –10 Figure 43. ADV3220 Enabled Output Impedance vs. Frequency 5 INPUT 4 4 3 OUTPUT INPUT VOLTAGE (V) 08649-047 08649-046 5 –20 OUTPUT VOLTAGE (V) 3 2 1 0 –1 –2 –3 –4 08649-043 INPUT S11 (dB) –30 2 1 0 –1 –2 –3 –4 –5 100 –40 –50 –60 –70 1 10 100 FREQUENCY (MHz) 1k –5 0 20 40 TIME (ns) 60 80 Figure 41. ADV3219/ADV3220, S11 (Measured on Evaluation Board) 1M 0 –10 DISABLED OUTPUT IMPEDANCE (Ω) Figure 44. ADV3219 Overdrive Recovery 100k HARMONIC DISTORTION (dBc) –20 –30 –40 –50 –60 –70 –80 HD2 0dBm HD3 0dBm HD2 10dBm HD3 10dBm 100 INPUT FREQUENCY (MHz) 1k 10k 1k 100 10 1 10 100 FREQUENCY (MHz) 1k Figure 42. ADV3220 Disabled Output Impedance vs. Frequency 08649-044 1 –90 10 Figure 45. ADV3220 Harmonic Distortion, RL = 100 Ω, CL = 4 pF Rev. 0 | Page 13 of 20 08649-045 0.01 0.01 ADV3219/ADV3220 40 35 30 25 20 15 10 5 0 10 INPUT SECOND-ORDER INTERCEPT (dBm) 08649-048 60 INPUT THIRD-ORDER INTERCEPT (dBm) 50 40 30 20 10 100 INPUT FREQUENCY (MHz) 1k 100 INPUT FREQUENCY (MHz) 1k Figure 46. ADV3220 Input Third-Order Intercept, RL = 100 Ω, CL = 4 pF, 0 dBm Input 5 INPUT 4 3 OUTPUT VOLTAGE (V) Figure 48. ADV3220 Input Second-Order Intercept, RL = 100 Ω, CL = 4 pF, 0 dBm Input 24 OUTPUT P1dB GAIN COMPRESSION (dBm) 2.5 2.0 1.5 OUTPUT INPUT VOLTAGE (V) 22 20 18 16 14 12 10 8 6 4 2 100 INPUT FREQUENCY (MHz) 1k 08649-051 2 1 0 –1 –2 –3 –4 –5 0 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 20 40 TIME (ns) 60 80 08649-049 –2.5 100 0 10 Figure 47. ADV3220 Overdrive Recovery Figure 49. ADV3220 Output P1dB Gain Compression, RL = 100 Ω, CL = 4 pF Rev. 0 | Page 14 of 20 08649-050 0 10 ADV3219/ADV3220 CIRCUIT DIAGRAMS V+ IN 0.6pF 08649-052 OUT 08649-055 1.0pF (ADV3219) 1.2pF (ADV3220) V– Figure 50. ADV3219/ADV3220 Analog Input Figure 53. ADV3219/ADV3220 Disabled Output V+ OUT 1kΩ SELECT, EN 08649-053 08649-056 V– Figure 51. ADV3219 Enabled Analog Output Figure 54. ADV3219/ADV3220 Logic Input V+ OUT 1kΩ SELECT, EN INx, OUT 08649-054 GND V– GND Figure 52. ADV3220 Enabled Analog Output Figure 55. ADV3219/ADV3220 ESD Schematic Rev. 0 | Page 15 of 20 08649-057 1kΩ ADV3219/ADV3220 THEORY OF OPERATION The ADV3219/ADV3220 are dual-supply, high performance 2:1 analog multiplexers, optimized for switching between multiple video sources. High peak slew rates enable wide bandwidth operation for large input signals. Internal compensation provides for high phase margin, allowing low overshoot and fast settling for pulsed inputs. Low enabled and disabled power consumption make the ADV3219 and ADV3220 ideal for constructing larger arrays. The multiplexer is organized as two input transconductance stages tied in parallel with a single output transimpedance stage followed by a unity-gain buffer. Internal voltage feedback sets the gain. The ADV3219 is configured as a gain of 1, whereas the ADV3220 uses a resistive feedback network and ground buffer to realize gain-of-2 operation (see Figure 56). The ground reference for the ADV3220 is taken from the exposed pad of the package. To minimize spurious signals on the output, tie the exposed pad to a low inductance, quiet ground plane. V+ IN0 ×1 V– V+ IN1 OUT When not in use, place the OUT pin in a low power, high impedance disabled mode via the EN logic input. This mode provides a wideband high impedance on the OUT pin that is useful when paralleling multiple ADV3219/ADV3220 devices in a system to create larger switching arrays. Switching between the inputs is controlled with the SELECT logic input, with IN0 selected when the SELECT line is a logical low and IN1 selected when the select line is a logical high. When EN is a logical low, the output is enabled and connected to one of the two inputs depending on the state of the SELECT pin. When EN is a logical high, the output is placed in a high impedance mode. When not in use, the output can be placed in a low power, high impedance disabled mode via the EN logic input. V– V+ GND 1kΩ 1kΩ 08649-058 V– Figure 56. Conceptual Diagram of ADV3220 Rev. 0 | Page 16 of 20 ADV3219/ADV3220 APPLICATIONS INFORMATION The ADV3219 and ADV3220 are very high speed muxes that can be used to switch video or RF signals. The low output impedance of the ADV3219/ADV3220 allows the output environment to be optimized for use in 75 Ω or 50 Ω systems by choosing the appropriate series termination resistor. For composite video applications, the ADV3220 (gain of +2) is typically used to provide compensation for the loss of the output termination. TERMINATION For a controlled impedance situation, termination resistors are required at the inputs and output of the device. The input termination should be a shunt resistor to ground with a value matching the characteristic impedance of the input trace. To reduce reflections, place the input termination resistor as close to the device input pin as possible. To minimize the input-toinput crosstalk, it is important to use a low inductance shield between input traces to isolate each input. Consideration of ground current paths must be taken to minimize loop currents in the shields to prevent them from providing a coupling medium for crosstalk. For proper matching, the output series termination resistor should be the same value as the characteristic impedance of the output trace and placed as close to the output of the device as possible. This placement reduces the high frequency effect of series parasitic inductance, which can affect gain flatness and −3 dB bandwidth. CIRCUIT LAYOUT Use of proper high speed design techniques is important to ensure optimum performance. Use a low inductance ground plane for power supply bypassing and to provide high quality return paths for the input and output signals. For best performance, it is recommended that power supplies be bypassed with 0.1 μF ceramic capacitors placed as close to the body of the device as possible. To provide stored energy for lower frequency, high current output driving, place 10 μF tantalum capacitors farther from the device. The input and output signal paths should be stripline or microstrip controlled impedance. Video systems typically use a 75 Ω characteristic impedance, whereas RF systems typically use 50 Ω. Various calculators are available to calculate the trace geometry that is required to produce the proper characteristic impedance. CAPACITIVE LOAD A high frequency output generally has difficulty when driving a capacitive load. The usual response is some peaking in the frequency domain or some overshoot in the time domain. If these effects become too large, oscillation can result. The response of the device under various capacitive loads is shown in Figure 4 to Figure 10 and in Figure 13. If a condition arises wherein excessive load capacitance is encountered and the overshoot is too great or the part oscillates, use a small series resistor of a few tens of ohms to improve the performance. Rev. 0 | Page 17 of 20 ADV3219/ADV3220 OUTLINE DIMENSIONS 3.10 3.00 SQ 2.90 5 2.54 2.44 2.34 0.50 BSC 8 PIN 1 INDEX AREA 0.50 0.40 0.30 TOP VIEW EXPOSED PAD 1.80 1.70 1.60 4 BOTTOM VIEW 1 PIN 1 INDICATOR (R 0.15) 0.80 0.75 0.70 SEATING PLANE 0.30 0.25 0.20 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.203 REF FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. COMPLIANT TO JEDEC STANDARDS MO-229-WEED Figure 57. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD] 3 mm × 3 mm Body, Very Very Thin, Dual Lead (CP-8-11) Dimensions shown in millimeters ORDERING GUIDE Model 1 ADV3219ACPZ ADV3219ACPZ-RL ADV3219ACPZ-R7 ADV3220ACPZ ADV3220ACPZ-RL ADV3220ACPZ-R7 ADV3219-EVALZ ADV3220-EVALZ 1 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C Package Description 8-Lead LFCSP_WD 8-Lead LFCSP_WD, 13” Tape and Reel 8-Lead LFCSP_WD, 7” Tape and Reel 8-Lead LFCSP_WD 8-Lead LFCSP_WD, 13” Tape and Reel 8-Lead LFCSP_WD, 7” Tape and Reel Evaluation Board Evaluation Board Package Option CP-8-11 CP-8-11 CP-8-11 CP-8-11 CP-8-11 CP-8-11 111809-A Branding Code F0H F0H F0H F0J F0J F0J Z = RoHS Compliant Part. Rev. 0 | Page 18 of 20 ADV3219/ADV3220 NOTES Rev. 0 | Page 19 of 20 ADV3219/ADV3220 NOTES ©2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08649-0-4/10(0) Rev. 0 | Page 20 of 20
ADV3219 价格&库存

很抱歉,暂时无法提供与“ADV3219”相匹配的价格&库存,您可以联系我们找货

免费人工找货